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ABSTRACT 
High labour costs, due to the existing technology that still involves a high degree of 

manually based processing, incur overall high production costs in the fish processing 

industry. Therefore, a higher degree of automation of processing lines is often desirable, 

and this strategy has been adopted by the Norwegian fish processing industry to cut-down 

production costs. In fish processing, despite a slower uptake than in other domains of 

industry, the use of computer vision as a strategy for automation is beginning to gain the 

necessary maturity for online grading and evaluation of various attributes related to fish 

quality. This can enable lower production costs and simultaneously increase quality through 

more consistent and non-destructive evaluation of the fish products. 

This thesis investigates the possibility for automation of fish processing operations by 

the application of computer vision. The thesis summarises research conducted towards the 

development of computer vision-based methods for evaluation of various attributes related 

to whole fish and flesh quality. A brief summary of the main findings is presented here. 

By application of computer vision, a method for the inspection of the presence of 

residual blood in the body cavity of whole Atlantic salmon was developed to determine the 

adequacy of washing. Inadequate washing of fish after bleeding is quite common in 

commercial processing plants. By segmenting the body cavity and performing a colour 

analysis, it was shown that the degree of bleeding correlated well with colour parameters, 

resulting in correct classification of the fish with residual blood. The developed computer 

vision-based classifier showed a good agreement with the manual classification of the fish 

that needed re-washing. The proposed method has potential to automate this type of 

inspection in fish processing lines. 

In addition, a computer vision-based classifier for quality grading of whole Atlantic 

salmon in different grading classes, as specified by the industrial standard, was developed. 

In the proposed solution, after segmentation of the salmon from the image scene, with the 

use of the computer vision techniques, it was possible to extract non-redundant geometrical 

features describing the size and shape of fish. Based on these features, a classifier was 

developed for classification of fish into respective grading classes. The average correct rate 
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of classification was in good agreement with the manual labelling, and the method has a 

potential for grading of Atlantic salmon in fish processing lines. 

Regarding fillet grading, a computer vision-based sorting method for Atlantic salmon 

fillets according to their colour score was developed. The method and classifier/matching 

algorithm was based on the present industrial standard NS 9402 for evaluation of fillets by 

colour according to Roche Cards. As a result, fillets or parts of fillets, could be classified 

into different colour grades. This is important for the industry since different markets tend 

to have different preferences for fillet colour. This classification method is suitable for on-

line industrial purposes. In addition, the method gives colour evaluation of fresh and 

smoked fillets in the CIELab space, similar to the L, a, and b values generated by a Minolta 

Chromameter, for different parts of fillets as well as for the entire fillet. The advantage of 

the computer vision-based method derives from the flexibility in the choice of the size of 

the region of interest of the fillet for colour measurement, as opposed to the Chromameter, 

where the Minolta generated values are obtained by interrogating a very small area of the 

fillet (8 mm). The method can also be used for detection of colour non-uniformities 

(discoloration) in both fresh and smoked fillets. 

A method for computer vision-based measurements and monitoring of transient 2D and 

3D changes in the size and shape of fillets during the rigor process and ice storage was 

developed. The method successfully measured the size (length, width, area) and shape 

(roundness) of Atlantic salmon and cod fillets, and monitored changes to these during ice 

storage with high precision. This was demonstrated by comparison of the exhausted and 

anesthetized fillets. By laser scanning of the fillet, it was possible to obtain size changes in 

the height (mm) and area of the fillet in cross-section. The method can be used not only for 

size and shape analysis of fillets but also for other fish products, both in on-line, as well as 

off-line conditions as a tool for monitoring 2D/3D size and shape changes. The method can 

also be used for determination of fillet yield measured in thickness, which is an important 

parameter for the industry. Together with the colour grading ability, this method can also be 

used for full feature evaluation and classification of any fish or food product from a single 

image (colour, size and shape in 2D/3D). 
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If filleting of fish is done pre-rigor, care should be exercised during colour grading since 

transient colour changes occur in the post-mortem period. As these changes are more 

pronounced than those that occur during ice storage, incorrect colour grading can occur. 

The computer vision method developed for evaluation of colour changes in fillets during 

rigor, ice storage, and due to effects of perimortem handling stress was considered as the 

most suitable method for industrial purposes when compared to both the Minolta 

Chromamater and sensory analysis by a panel.  

A computer vision-based method for evaluation of fresh and smoked fillets with respect 

to bleeding was developed. This form of evaluation is important for the industry as residual 

blood in fillets may lead to reduced visual acceptance of the product. The method was 

considered suitable for the purpose of this type of evaluation.  

The developed computer vision methods have potential for automation of the mentioned 

grading operations in the commercial fish processing lines. Application of the proposed 

solutions would lower the production costs, while simultaneously increasing the quality of 

the products through a more consistent and non-destructive evaluation of these products. 
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Outline of the thesis 
 
This thesis is organized in two parts. Part 1 is organized in five chapters, while Part 2 

consists of the papers that represent the central work in this thesis. 

Part 1 of the thesis is meant as an extended introduction and summary. We start with the 

introductory chapter, where it is discussed about some of the problem issues in today’s fish 

industry. This chapter also includes a review of the sensor technologies in use in the food 

and fish industry. At the end of the chapter, shortly are listed the main contributions of the 

thesis. Chapter 2 provides with the background knowledge regarding the fish processing 

industry as well as computer vision fundamentals. This chapter gives an understanding on 

the structure of a typical fish processing line, explaining some of the unit operations along 

the line which are related to this study. The computer vision part provides an understanding 

on the application of computer vision in an industrial setting related to fish processing. It 

covers specific issues of computer vision that are critical for a successful implementation, 

such as illumination, shape recognition, image segmentation, colour analysis, segmentation 

as well as pattern recognition concepts. 

Chapter 3 has a typical “methods and results” outline and it covers the common thread 

of the study, consisting of the problems/operations that were chosen to deal with during the 

research for the thesis, and the proposed computer vision-based solutions. The results are 

the individual contributions of the thesis. Here, the proposed solutions for the operation of 

sorting/grading of whole salmon into different grading classes using the size/shape 

recognition are presented, as well as the non-destructive quality evaluation of fillets based 

on colour level,  influence of handling stress, rigor mortis, ice storage, and bleeding 

method.  

Chapter 4 consists of discussions and reflections over the work. Here, it will also be 

discussed about the implications of the combined results of the research in the thesis. 

 Chapter 5 contains the conclusions drawn from the work in the thesis, a summary of 

contributions, and suggestions for future work. 

Part 2 of the thesis consists of the papers that have resulted from the research. They 

represent the central work in this thesis. 
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CHAPTER 1 
 
Introduction 
 
“With the level of prosperity in our society, it is more necessary than ever to reduce the 

labour cost in production and transport. This demands development of machinery and 

automation of work process.” 
                                                                                          Grønnevet Committee Report, 15 June 20041 

“The potential for increasing the value generation and the degree of processing in Norway 

lies in market oriented work …..and further automation.” 
                                                                                                 Fisheries Ministry’s White Paper Nr. 19.2 

1.1 Background 
The Norwegian fisheries and aquaculture industry presently faces a number of challenges. 

One of the most important challenges involves creating a market-based profitable 

refinement of marine raw materials. There are several obstacles to this. The major obstacle, 

however, is that Norway has high production costs and is experiencing increasingly 

stronger competition within the international market from a number of producers from 

countries with low production costs such as Chile, regarding the marine raw materials, and 

Poland and China, when it comes to fish processing. The high production costs in Norway 

together with the existing processing technology (still high degree of manually based 

processing) make the processing of fish products in Norway in average 6-10 NOK/kg more 

                                                           
1 The strategy for higher value generation in fish industry is outlined in the Report “Økt verdiskapning i 
fiskeindustrien” edited by the Grønnevet committee in 2004, p. 51., at 
http://odin.dep.no/filarkiv/214606/Sluttrapport_Gronnevet_trykk.pdf 
2 The report “Den blå åker” outlines the marine market development and the important challenges ahead. The 
report can be found at http://odin.dep.no/fkd/norsk/dok/regpubl/stmeld/047001-040003/dok-bn.html 
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expensive than it is in some competitor countries. This situation has given negative effects 

in several domains. It has reduced the amount of processing of fish products in Norway 

creating such conditions where roughly 90% of the entire Norwegian fish product export 

consists of export of whole gutted fish (fresh and frozen), while the export of the processed 

fish products in the form of fillets is about 10-13% (Andahl and Kristiansen, 2005). It has 

also made fish processing plants move their facilities abroad where lower production costs 

make their production more profitable, and in general it has reduced the competitiveness 

and market position of the Norwegian fish industry. 

To create an economically robust business environment, to increase the profitability 

through a competitive level of production costs, and to improve its market position, the 

Norwegian fish industry has adopted the automation of fish processing as a strategy for 

achieving these goals.  The benefits from automation are manifold. Firstly, automation can 

reduce the production costs, which mainly consist of high labour costs, thus achieving a 

long term level of competitiveness of Norwegian fish industry against the low-cost 

production countries. Secondly, automation can increase the overall quality of the fish 

products at the end of the processing chain. 

An overview of the production cost level in Norway compared to other countries, such 

as Poland and China, reveals a huge gap (Table 1.1). The production cost per kilogram is 

highest in Norway, while it is lowest in China. In Norway, the labour costs make up more 

than 6 NOK/kg (1$/kg) from the total production cost per kilogram. Low cost of labour 

force, in an industry that is manually based, make China have the lowest production/labour 

cost in the fish industry. 

Table 1.1 Comparison of production costs for gutted weight as well as bone and skinless products 

between Norway, Poland and China (Ostvik and Jansson, 2004) 

Production/labour costs (NOK/kg) Gutted weight Bone and skinless Labour costs 

Norway  

Poland    

China     

21,00 

22,10 

22,00 

57,69 

49,07 

47,63 

6,69 

1,00 

0,40 
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In Norway, despite the use of some technology, production in the fish industry still requires 

a substantial manual labour because many operations remain non-automated. Manual 

labour is traditionally used for fine trimming and quality sorting of fillets (Figure 1.1). 

Operations to sort/grade whole fish into different quality grading classes are also performed 

manually by human inspectors. 

Table 1.2 Estimated gain with a fully automated processing  (Ostvik and Jansson, 2004) 

 Norway, 1 shift 

Existing techn. 

Poland China Norway, 3 shift 

New techn. 

Product volume (kg) 

Persons per shift 

10200 

50 

10200 10200 10200 

6 

Labour costs, (NOK/kg) 6,69 1,00 0,40 0,74 

Difference: NOK/kg 0,00 -6,69 -6,92 -6,73 

 

Table 1.2 shows the difference between the production costs in Norway with the existing 

technology and the predicted labour costs with the use of a new technology. According to 

this estimate, the labour costs of 6.69 (NOK/kg) could almost be eliminated if the new 

technology can fully automate the operations which today are manually based.  

 

Figure 1.1 Extensive use of manual labour in performing different operations along the processing line 

(Courtesy of Salmar AS). 
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With automation of fish operations, the Norwegian fish processing industry would lower 

its production costs. Automation would provide for a better utilization of machines by 

having a continuous production during three shifts and would reduce the amount of manual 

labour from 50 persons per line/shift, as it is today, to approximately 6. Furthermore, an 

increase of product quality is to be expected as a result of automated fish processing. 

 

1.2 Present situation and potential benefits of fish industry from 
automation 

 
The existing technology in fish processing industry in Norway involves mechanical 

machinery available for the majority of individual operations such as killing, bleeding, 

gutting, de-heading, filleting with removal of the backbone and belly bones, removal of 

pin-bones, trimming and skinning. For whole fish, control and grading with respect to size 

and quality aspects are normally included in the manufacture of fish consumer products. 

The size-grading machinery in use comes from various producers3. This means that the 

machinery has a limited degree of compatibility. Transfer and capacity adaptation for fish 

material flow is done by the use of conveyors, although other systems for supportive 

transport during processing are available4. 

Today, the quality grading of whole salmon is done manually. This includes interior and 

exterior assessment of the fish based on standardized quality parameters. Weight grading is 

done in integrated systems for packaging (Marel, Scanvaegt, Seafood automation). 

The manual labour involved in fish line operations has several other drawbacks, except 

the one of incurring high production costs. Workers along the line, who are involved in 

manual operations, usually work in the upright standing position. The highly repetitive 

nature of their work causes stress and boredom because simple manual operations are 

repeated hundreds of times every day. These operations are also characterized by a high 

demand for concentration all day. Altogether, these factors contribute to a considerable 

human fatigue while performing operations in the line, and human inspection becomes too 
                                                           
3 Nordischer Maschinenbau Rud.Baader GmbH+Co.KG, Trio Fish Processing Machinery AS, Marel hf, Uni-Food 
Technic A/S, Carnitech A/S, Scanvaegt International A/S 
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slow and error prone with respect to quality evaluation. This leads to a decrease of the 

product quality and thereby lessens the profit (Pau and Olafsson, 1991). 

 

1.2.1 Quality enhancement through automation 

In parallel to the demand for a more efficient production in the fish processing industry, the 

demand for quality assurance is just as important. Quality assurance of fish products 

implies a continuous evaluation of these products. In the fish processing industry, this has 

traditionally been done visually. Human evaluation of fish products, as in other domains of 

the food industry, is inherently limited by human inability to objectively, consistently and 

accurately (Panigrahi and Gunasekaran, 2001) evaluate quality by means of sight and 

contact. The inability to do so affects the sorting/grading operations according to relevant 

quality parameters of fish such as the colour level and intensity, length, external blemishes, 

shape defects, and degree of bleeding. For example if human vision is compared to 

computer vision, the human based vision is very strong in recognition of objects (for 

instance in grading of whole Atlantic salmon) but is less powerful for accurate 

measurements of colour level, gray level, length or area (Jahne 2002). 

Benefits regarding the quality of the products would be considerable if the technology 

aiming the automation of these operations would employ some kind of non-contact quality 

evaluation of fish products (whole fish, fillets). Today, due to the manual quality grading, 

evaluation, and processing there is a frequent contact of human operators with the products 

and this lessens the quality and quality assurance of the products. Although fish plants have 

strict regulations on the hygiene, it is noted that humans are a factor in product 

contamination. Therefore, due to the costs for preserving hygiene in fish plant with a large 

number of staff, the overall production costs are additionally increased (Purnell 1998). 

Automation could, on the other hand, result in the improvement of fish products hygiene. It 

would also reduce the need for lighting and heating of the production premises. This would 

allow processing in environments beneficial to the quality of fish products, for instance, 

sustained low temperatures.  

                                                                                                                                                                                 
4 Baader, patents US5413525, US4084294, GB2061854 and GB2103920 
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Another issue where automation would contribute to a considerable decrease in the 

production costs are the training costs for human inspectors involved in the quality grading 

and evaluation. For a long time, the tradition in the fish industry has been to base the 

quality sorting/grading on human inspectors with many years of experience. During the last 

decade, the situation has changed as in the fish processing industry new staff and young 

people with little experience are mainly in charge of evaluation of quality (Olafsdottir et al. 

2004). In addition, the trend is that young people work in the plants for short periods before 

leaving, meaning employment gaps often occur. This adds a higher cost to the entire 

production and lessens the quality assurance. 

Therefore, automation of the processing industry not only would reduce production costs 

and ensure a long-term competitiveness of the Norwegian fish industry in the world market, 

but would also provide a basis for a faster processing of fish products and consistent non-

destructive quality determination of these products. 

What is, then, the right strategy to follow when talking about automation, and which 

technology should be pursued for automation of the quality evaluation and grading of fish 

products? For this purpose a short review of the state of the art in the sensor technology, 

that has potential to be used for automation, will follow. Regarding the issue of the right 

strategy, we see that there are a number of sensor technologies available. Nevertheless, any 

technology that is aimed to be used in the automation of fish operations should be able to 

satisfy the criteria of being rapid, non-destructive/non-contact and, most importantly, have 

on-line capabilities of use. 

 

1.3 Sensor technology in Food and Fish Industry 
Sensor technology is having a rapid development and has been implemented in various 

degrees in areas such as medicine, pharmaceutical industry, and food industry. Many of 

these sensors are based on spectroscopic techniques (fluorescence, measurements in the 

Near Infra Red part of the spectrum), microwaves, NMR (MRI), ultrasound, electronic 

nose, optical techniques, computer vision, and electrochemical methods. Typical product 
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features one is out to evaluate and control in the food industry are eventual defects, colour, 

texture, freshness, taste and composition. 

 

Despite the fact that the aforementioned sensors assist in replacing human evaluation 

when it comes to the important quality parameters of food products, the on-line evaluation 

and control of food products and processes remains a major challenge. In order to be able to 

successfully replace the human factor, the sensor technologies should have on-line 

capabilities of operation. Therefore, as above mentioned, rapid, non-destructive, and on-

line food/fish quality evaluation is necessary in order to ensure high quality of products, but 

also to improve plant productivity and cost-effectiveness.  
  
There are a number of technologies that all have, to various extents, potential of being 

implemented on-line for control of different quality parameters. The technologies to be 

mentioned here are planar X-ray, CT, ultrasound, MRI, TD NMR, NIR and computer 

vision. Some of the techniques like CT, MRI and computer vision are essentially imaging 

methods, which can produce images of internal slices (CT, MRI, and ultrasound), object’s 

surface (computer vision) or planar projections (planar X-ray).  

 

Near Infrared Spectroscopy (NIR) is a promising technique for detection of the nematodes 

in fish fillets and can be fit for on-line implementation (1 fillet per sec). In combination 

with tailored statistical software near infrared reflectance (NIR) and near infrared 

transmittance (NIT) spectroscopy can be successfully used to determine fat contents in fish 

giving high correlations with chemical analysis, provided that specific calibrations are 

made for each sample type. Such non-destructive measurements of fat content in Atlantic 

salmon have been performed by Wold et al. (1996) and, in-vivo, by Solberg et al. (2003). 

Using non-contact reflectance diode array NIR measurement time of 3 s was achieved. On-

line measurement of the fat content in salmon fillets using NIR reflection spectroscopy and 

diode array sensors is commercially available (Qvision AS). Similar measurements on 

whole salmon and pelagic fish (herring, mackerel) are under development with promising 
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results (www.matforsk.no). Same technology can be optimized for on-line measurements of 

the water content in clip-fish, colour, and pigment in fillets. 

 

MRI is a technique that offers a unique opportunity to produce high quality cross-section 

images of intact organisms and thus to obtain basic insight into a number of issues related 

to anatomical studies, composition and structure of tissues, distribution maps of fat, water 

and salt as well as temperature mapping. In fish processing, MRI can be used as a tool for 

the optimization of various unit operations such as salting, freezing and thawing, some of 

which are described by Hills (1998). The main disadvantages of the MRI technology when 

it comes to the use as an on-line scanning technique are: 

- long imaging time 

- often too small magnet bore opening  

- shear size and infrastructure requirements 

- high costs 

- requirement of trained personnel  

MRI instruments can also measure NMR spectra from the specimen, which requires less 

scanning time. Such spectroscopic NMR instrument is implemented on-line in baby-food 

production for quality control of the final production (Hills, 1998). 

 

Planar X-ray technique is a simple imaging where the object is irradiated by an X-ray 

source and a 2D projection image is recorded on the other side. The image intensity is 

proportional to the local density of the object. The technique has been successfully 

implemented for on-line detection of the spine deformities in live salmon of up to 16 cm 

length (Spectral Fusion Technologies Ltd., UK). Examination throughput was between 700 

and 1200 fish per minute. Another example of planar X-ray on-line application is the fish 

bone detection by the “SensorX” system (Marel, Island) and a similar system BoneScan 

(Spectral Fusion Technologies Ltd.). The system detects fish bones down to 0.3 mm at full 

processing speed, scanning the fillets with low-energy X-rays and analyzing the images 

continuously.  
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The computer tomography (CT) is another imaging modality based on X-rays. CT can be 

used for non-destructive determination of the fat content and fat distribution in tissue. The 

method has been successfully used for quantitative determination of sodium chloride in 

ground pork and dry-cured hams (Håseth et al. 2007), but due to high investment costs, size 

and complexity, the instrument is not readily suitable for on-line measurements. 

 

Applied to fish, the low field (LF) NMR has been proven to be a versatile analytical 

method for studying various topics such as effect of processing (Steen et al. 1997, Erikson 

et al. 2004), muscle fat and water content (Toussaint et al. 2001, Sørland et al. 2004). 

Unfortunately, the traditional LF NMR can not be a true non-destructive technique when 

studying whole fish because of the restricted magnet bore size (typically 10 - 40 mm in 

diameter). The mobile NMR instrumentation which is a low field NMR analyser for 

measurements in the near surface volume overcomes the object size restriction and can be 

used to whole fish. Recently the mobile NMR technique was demonstrated to be a potential 

on-site analytical method for in-vivo assessment of fat content in salmon (Veliyulin et al. 

2005). On-line implementation can be feasible with a new magnet design based on 

unilateral magnet array allowing short measurement time (Marble et al. 2007). 

 

Ultrasound is another measurement modality that has been successfully applied to quality 

control of foods with typical frequencies of about 106 Hz (wavelength ≈ 1 mm). The 

detection principle is based on the fact that at phase separation borders within the sample 

there are often significant physical differences in the parameters like density, elasticity and 

viscoelastisity, and the ultrasound waves are reflected, diffracted and scattered from such 

structures. The most well-known application of the ultrasound technology is in-vivo 

imaging for embryo studies under gravidity, which can also be used for muscle food 

investigation. Using high frequency ultrasound (acoustic microscopy) one can achieve a 

resolution close to that of the optic microscopy. This technique has been successfully used 

for detection of nematodes and bones in cod fillets (Hafsteinsson and Rizvi, 1987). 
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Freese and Makow (1968) have performed a number of basic experiments on ‘whitefish’ 

and found that the measured at 6.9 MHz absorption coefficient of the ultrasound waves has 

decreased from 4.2 down to 3.6 dB/cm when fat content in the muscle increased from 7.5 to 

11.5 %. Response from the low-frequency vibration (1-200 Hz) can be used to measure 

stiffness of the fish. In combination with the ‘neural networks’ approach, this method was 

successfully applied for automatic classification of salmon regarding the rigor-mortis 

development (Berg et.al. 1997). The main disadvantage of the conventional ultrasound 

instrumentation is requirements of the physical contact between the detector and the object 

or contact through a layer of water 

 

Computer vision is a relatively young discipline and its origins can be traced back to the 

1960s (Baxes, 1994). Previous work in this research field includes many examples of using 

computer vision for inspection and grading of agricultural and food products, evaluation of 

different parameters in food and meat products, grading of fish according to species, and 

evaluation of different parameters of quality in fish and fish products. 
 
1.4 Choice of the suitable sensor technology 
From the previous discussion, it is seen that the operations of fish grading and 

determination of quality parameters in fish and fish fillets are done by human inspectors in 

two manners. They use both their own sense of vision and the knowledge base that 

originates from training and experience (grading, blemishes), or some kind of 

instrumentation that helps them measure the quality parameters manually, such is the case 

with the colour of fillets. In addition, the standards for quality in fish processing operations 

demand that automation would have to be compatible with the speed of the other machinery 

that is used in operations like gutting and de-heading of whole fish. With respect to the 

quality assurance, automation must also be non-destructive and must ensure the sheer speed 

at which the fish can be quality evaluated and sorted.  
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Out of the all aforementioned sensor technologies, it seems that, presently, NIR and 

computer vision fulfil most of the requirements when it comes to rapid, non-destructive and 

on-line evaluation. While NIR is mainly used for compositional analysis (Gunasekaran and 

Irudayaraj, 2001), such as fat (colour) and water content, computer vision has a broader 

spectrum of applications ranging from size/shape/colour grading to compositional analysis. 

In addition, cost, versatility, maintainability, ease of operation and setup (Chan and Palmer 

1995; Zuech 2004) are factors that seem to favor computer vision in an on-line context. 

Therefore, when evaluating the new technology, implementation of which could be used 

for automation of fish processing line operations, while at the same time fulfilling the 

above conditions, as the work progressed, it became clear that it was more efficient to focus 

on the computer vision as a single strategy for automation.  

 

1.5 Previous work in Computer Vision related to Food/Fish Industry 
Computer vision has been widely used for the inspection and grading of fruits. Kanali et al. 

(1998) reported that automated inspection of products not only results in labour savings, 

but it can also improve inspection objectivity. Paulus and Schrevens (1999) developed a 

computer vision algorithm to characterize objectively the apple shape. Computer vision has 

also been used to classification of oranges. Ruiz et al. (1996) studied three image analysis 

methods to solve the problem of long stems attached to mechanically harvested oranges. 

Nagata et al. (1997) investigated the use of computer vision to sort fresh strawberries 

according to size and shape. The experimental results show that the developed system had 

94-98% of classification accuracy into three grades based on shape and three based on size. 

Nielsen et al. (1998) developed a technique, based on the applied fuzzy sets, to correlate 

attributes of size, colour, shape and abnormalities, obtained from tomato images with the 

inner quality of tomato samples.  

Computer vision has been shown to be a viable inspection approach for grading of 

vegetables (Shearer and Payne, 1990). Heinemann et al. (1994) assessed the quality of 

mushrooms using a computer vision algorithm to grade the mushrooms by an automated 

system. Consequently, computer vision has been used to automate different operations 



 14

regarding mushroom grading and production automation (Reed et al., 1995). Some other 

earlier studies of applications of computer vision for inspection and grading of vegetables 

include grading of potatoes according to shape in order to ensure the sale of uniform 

potatoes classes for different markets (Tao et al., 1995) and grading an inspection of 

peppers according to colour and defects (Shearer and Payne, 1990). 

Visual features are also in extensive use when performing quality evaluation of meat. 

McDonald and Chen (1990) pioneered early work in the area of computer vision based beef 

grading. Based on the reflectance characteristics, they discriminated between fat and lean 

muscle. Gerrard et al. (1996) examined the degree of marbling and colour in 60 steaks. Li 

et al. (1999) used computer vision to characterize beef meat regarding colour, fat marbling 

(based on the area) and texture characteristics. Methods based on processing of digital 

colour images have also been used for detecting defects in chicken meat (Barni et al,1997), 

quality grading of beef (Shiranita et al, 2000), grading of beef with respect to fat marbling 

(Yoshikawa et al, 2000), and crack detection in eggs (Patel et al, 1998). 

The vast amount of work done in applications similar to those described appear to 

suggest that the field of computer vision in recent years has reached a level of maturity that 

is necessary in order to solve grading, inspection and processing tasks in the fish processing 

industry. 

When it comes to the use of computer vision in fish, Tou et al. (1982) showed that 

different fish species could be discriminated from one another by using computer vision. In 

order to be able to discriminate sea fish species, Strachan (1993) developed algorithms to 

generate descriptors for shape and colour. The descriptors were functional even if the fish 

was taken picture in a deformed position. With this computer vision algorithm, 18 species 

of demersal and five species of pelagic fish could be sorted with 98-100% reliability. Jia et 

al. (1996) developed computer vision algorithms for automated processing of ‘channel 

catfish’ (Ictalurus punctatus) including the detection for fish orientation, identification of 

head and different fins. So and Wheaton (1996) used computer vision regarding automated 

opening of oysters. Gunnlaugsson (1997) made a review on how computer vision 

technology could be used in fish processing plants.  
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For automated classification of fresh water fish, Zion et al. (1999) developed a computer 

vision algorithm based on the moment invariants and geometrical parameters. This 

algorithm could sort three different species from one another. Computer vision in fish has 

also been used for grading herring row (Hu et al., 1998) and determination of the fat and 

connective tissue amounts in salmon fillets (Borderias et al, 1999). Although Borderias et 

al. did not achieve a good correlation in their work (R=0,44), the authors concluded that 

this method could be applied for on-line quality control of salmon (at least rough grading in 

different fat classes). Recently Marty-Mahé et al. (2004) have estimated the brown trout 

cutlet fat contents by automated colour image analysis in the CIELab colour space, while 

Stien et al. (2005, 2006) have used image analysis to study the colour composition as well 

as the rigor development of rainbow trout fillet.  

 

1.6 Main contributions and other research 
Despite the above mentioned reported work in the field of computer vision, there is still a 

lack of work which could be beneficial for employing this knowledge in automation of fish 

processing plants. Nonetheless, the uptake of the computer vision in fish industry has been 

slow. Although sorting of fish according to species (Strachan et al. 1990; Strachan 1993; 

Strachan 1994; Zion et al 1999; White et al. 2006; Zion et al. 2007) has been reported, there 

has been no work dealing with the quality grading of Atlantic salmon into different grading 

classes. There is also a lack of work on how computer vision could be used for quality 

evaluation of fish and fillets along the processing line, according to the existing industrial 

standards that describe important quality parameters, with the exception of few recent 

studies reported in the field (Marty-Mahe et al. 2004; Stien et al. 2005; Stien et al. 2006).  

Therefore, in this thesis, the research has been focused on finding computer vision 

based solutions for the automation of several quality evaluation operations along the fish 

processing line. These include automation of grading/sorting of whole salmon according to 

quality grade, and presence of residual blood in the body cavity. In addition, the focus was 

also on developing computer vision methods for the quality evaluation of salmon fillets 

according to parameters of colour, the effect of perimortem handling stress during rigor and 
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ice storage on both colour, 2D and 3D geometry (salmon and cod), and the effect of 

bleeding. Parallel to developing solutions for automation of the above mentioned operations 

in the fish processing industry, showing that computer vision is well-suited for automation 

of fish grading and non-destructive evaluation of the quality of fillets, has also been one of 

the goals of the thesis. The review of the technologies, in the beginning of research, to find 

out which technology was best suited for use in automation of fish processing, can also be 

viewed as a separate contribution.  

Main contributions in this thesis are: 

• Design of a computer vision algorithm for sorting/grading of whole Atlantic 

salmon into quality grading classes. 

• Computer vision algorithm for inspection of the body cavity of Atlantic 

salmon for the residual blood. 

• Computer vision sorting of Atlantic salmon fillets according to their colour 

level based on the industrial Roche colour card standard for sorting/grading of 

fillets. 

• Computer vision evaluation of colour changes of Atlantic salmon fillets 

during rigor and ice storage, and effect of bleeding. 

• Computer vision identification of transient changes in 2D size and shape 

(length, area, width, roundness) and 3D (height, area of cross-section) of 

Atlantic salmon (Salmo salar) and cod (Ghadus morhua) fillets due to rigor 

contractions, during ice storage; effects of perimortem handling stress. 
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CHAPTER 2 
 
Computer Vision in Fish Processing 
 
 
2.1 Introduction 
 

This chapter is intended to give an introduction of the basic concepts in computer vision 

and fish processing. This background information is beneficial for both communities and it 

is believed to be necessary to be able to follow the remaining of the material in this thesis. 

In this chapter, people involved in fisheries will gain the necessary knowledge of what 

computer vision is about and how it can be used for solving different tasks in the fish 

processing. In this context, the computer vision topics which will be covered in this chapter 

include operations such as image acquisition, illumination, camera selection, optics, 

calibration issues, image processing, segmentation, morphological operations, colour, as 

well as basic concepts from pattern recognition such as feature extraction and classifier 

design. 

On the other hand, computer vision community will gain the insight on the fish and the 

fish products which are processed in the processing line. This will be helpful to understand 

certain operations along the line. For this community, it is important to gain basic 

knowledge about fish, mainly Atlantic salmon, and their visual appearance. In addition, 

topics like physiology, size, geometrical and optical properties of Atlantic salmon will be 

described. Fillet colour and other important properties of fillets will also be a part of this 

description. 
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2.2 Physiology of Atlantic salmon 
 
Atlantic salmon (Salmo salar) is a cold water fish belonging to the family of salmonids 

(salmonidae) and is found in the northern part of the Atlantic Ocean. The Atlantic salmon 

available in the world markets is predominantly farmed. The salmon, which is the subject in 

this work, is present in Norwegian waters along the Atlantic Ocean up to the Arctic Ocean.  

The Atlantic salmon (Figure 2.1) has a spool-shaped form and can be up to 150 cm long 

and 40 kg in weight (Pethon, 1994). The streamlined shape makes it easier for salmon to 

move through water. Including the tail, Atlantic salmon have eight fines and each of these 

fines has a different function. The caudal fin or tail is the largest and most powerful and it 

is used to push the fish forward. The other fins are used for steering or balancing. Fins of 

the farmed salmon are heavily reduced and crippled compared to the wild salmon. 

The skin has also a layer of scales. These are small, hard plates that cover the body and 

gives it the necessary stiffness for protection. Scales (Figure 2.1) overlap to form a kind of 

armour plate to protect from predators and bruising. The scales are covered by a slime 

which can vary in thickness. The slime helps the salmon decrease the water resistance 

during swimming (Salte and Åsgård, 1986). 

The lateral line functions like an ear. It can detect the pressure and vibrations in water. It 

consists of several liquid-filled canals, below the skin, along the entire length of the fish. 

This combines the aspects of touch, hearing and seeing. 

During the life period, salmon change their appearance and the colour changes with age, 

resulting in very few black spots along the lateral line. In addition, sexual maturity of 

salmon can be estimated from the external colour appearance. In the case of a moderate 

sexual maturity, the head of the salmon is black (Figure 2.1) but in the case of a high degree 

of sexual maturity the colour of the entire salmon is predominantly heavy green. 
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Figure 2.1 The physiological and morphological properties of Atlantic salmon 

 

2.3 Processing of Atlantic Salmon 

After gutting and deheading, the salmon are filleted. Salmon is a white-flesh fish and the 

colour of the flesh depends from the salmon diet, and usually varies from red to pink 

(Figure 2.2). The natural colour of salmon results from carotenoids (astaxanthin) 

(Sigurgisladottir et al. 1997). Astaxanthin is the chemical that gives krills, lobsters, shrimp, 

and to some crabs their red colour when they are cooked. Wild salmon get carotenoids from 

eating krill and other tiny shellfish. Farmed salmon have a diet with astaxanthin, along with 

the other essential nutrients. 
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Figure 2.2 Fillet after filleting of whole salmon. The flesh colour is reddish. The fillet is fully trimmed. 
 

After filleting, fillets undergo the bone removal process and trimming. Trimming of fillets 

consists on removing peripheral fat along both sides. Depending on the requirements, there 

are different grades of trimming denoted with labels A, B and C. Fillet in Figure 2.2 has the 

C trim grade.  

 

2.4 Optical Properties of Atlantic salmon 
From a computer vision perspective, the knowledge about the optical properties of skin and 

flesh of Atlantic salmon is important. As mentioned, the skin is covered by scales and 

slime. From the optical point of view, the scales can be viewed as small mirrors 

(Bengoetxea, 1991). Because of the slime and the scale layer, Atlantic salmon is considered 

a shiny object in the computer vision. In addition, in processing line the fish are wet and 

this makes them even shinier. Flesh can be reddish for salmon or white for cod and it is not 

as shiny as the skin because flesh has a non-flat surface/structure. 

 

2.5 Computer Vision 
Every computer vision application is characterized by a set of operations such as image 

acquisition, image processing, segmentation and morphological operations. Though 
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necessary, these operations alone can not be used for fulfilling a computer vision task. At 

this point, the result of these operations can be a good segmented silhouette of a whole 

salmon or cod, or even a fine color-balanced fillet image. To be able to tell or classify 

which fish or fillet has a higher quality grade, application of concepts such as feature 

extraction, classifier and knowledge base is necessary. Therefore, a computer vision 

application involves not only image acquisition and image processing operations but also 

image analysis and image understanding as well as classifier algorithms which behave as a 

knowledge base (Figure 2.3). 

 

 

Figure 2.3 The structure of a typical computer vision application. 

 
2.5.1 Image acquisition  

Image acquisition step is critical. From this step depends the design of a successful 

computer vision application. If acquisition results in a poor quality image, then no matter 

how processing resources one can use, the possibility of enhancing the quality of the image 

is limited. On the other hand, images with little noise and with a uniform illumination can 

make the extraction of the necessary information from images much easier. High quality 

images can also save a lot of computational power since images need less pre-processing 

operations prior to the feature extraction. Important elements to take into consideration 

during the design of the image acquisition step are illumination, choice of a camera, optics 

and calibration of images. 
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2.5.1.1 Illumination 

If image acquisition is a critical step for the computer vision application, illumination is 

critical for the image acquisition. In fact, a prerequisite for any computer vision application 

is that the features which are examined can be seen in the image (Pironen 1991; Panigrahi 

and Gunasekaran 2001). If the light is of the wrong type, installed incorrectly, housed 

inefficiently, or mismanaged in some other way, then the computer vision application is 

doomed to failure (Hardin 2004). 

In the age of rapid advances in the processor speed and in camera production, one has 

tendency not to focus on the illumination (Novini 1993), relying too much on the 

computation power of hardware, high resolution images and on the complexity of image 

processing algorithms. This does not guarantee the highest quality of images and the best 

results. In fact, the focus should be the other way around. High quality images can be 

obtained if the illumination is improved and if it is designed in such a way that it enhances 

the image features for the subsequent analysis. In addition, proper illumination always 

makes the application cheaper since it reduces the processing time and hardware 

requirements.  

Improper illumination may cause different problems to appear in images of the scene 

object. Blooming or hot spots, shadowing, interference of ambient light, non-uniform 

illumination and poor light are only some of the most typical effects of incorrect 

illumination. Hot spots and shadowing can make difficult the extraction of important 

features on the object such as colour and texture because these features are obscured. Non-

uniform illumination and shadowing almost always cause problems during the 

segmentation of the objects from the background because the tresholding is difficult. 

Important considerations during the illumination design are the type of light, 

illumination technique, control of illumination, and geometry of propagation (Zuech 2000). 

The type of light should be chosen so that it makes possible the best feature discrimination 

in the object. This can be achieved by using a light source which emits light in different 

wavelengths such as incandescent light, fluorescent, laser or light emitting diodes (LED). 

Control of illumination may include the blocking of light from the ambient. 
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Depending on the nature of features for subsequent analysis there are three main 

illumination techniques which can be used in the design. These are front lighting, 

backlighting and structured lighting (Bengoetxea 1991; Awcock 2000). In front lighting, 

the camera and the light source are on the same side of the object (Figure 2.4a) and this 

type is best suited when the surface of the object is the feature of interest. Backlighting is 

best suited for silhouette extraction of the object and for subsurface features. It does not 

allow extraction of any surface information about the object (Figure 2.4b). Structured 

lighting is a light source with the shape and form of its projected beam (Novini 1993) and it 

is mainly used for showing 3-D information about the object. 

 

                              

 

Figure 2.4. a) Front lighting arrangement; b) Backlighting arrangement 
 

Geometry of light propagation is also an important illumination consideration. The 

geometry of light may be direct or diffuse. If the object is lit under even illumination 

conditions then direct light may be used for a computer vision inspection of any type of 

object. In case of shiny objects such as fish, in order to reduce the specular reflections from 

the surface of fish, diffuse light is preferred. This type of lighting enhances the surface 

features such as colour, texture or eventual damages while avoiding the generation of 

specular reflection which would obscure such information. 
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2.5.1.2 Camera and Optics 

Camera and optics are other key considerations during the design of image acquisition 

stage. Camera is a sensor which is used to capture the image of the object of interest. The 

function of a camera is similar to the function of eye in human vision. Cameras should be 

selected based on resolution, geometrical precision, stability, spectral response, automatic 

gain control, signal-to-noise ratio and response time (Guda et al. 2000). Cameras can be of 

charged coupled device (CCD) type and of CMOS type. CCD cameras have nearly been 

used for all computer vision applications since their introduction almost 25 ago (Wilson 

1998). CCD cameras offer superior image quality and flexibility to the expense of the 

system size and are therefore suitable for industrial applications. CMOS cameras offer 

superior integration, power dissipation and system size at the expense of image quality and 

flexibility (Litwiller 2001). 

Cameras come in different resolutions and their choice is application dependent. If 

inspection of surface is needed, where colour and texture are the features of interest, then 

usually cameras with higher resolution are chosen. However, if analysis of shape of an 

object is needed it can be carried out with a lower resolution camera. Cameras are 

commercially available in many varieties of black-and-white and colour types. Here too, 

the choice is application dependent. To evaluate only shape and other geometrical attributes 

of objects, a black-and white camera could be appropriate. If colour of objects or other 

colour-related parameters are to be evaluated then a colour camera should be selected.  

The four most basic parameters concerning optics in a computer vision system are the 

field of view, resolution, working distance and the depth of the field (Figure 2.5) (Fales 

2003). The field of view is the size of the object to be inspected, while the working distance 

is the distance from the front of the lens to the object under inspection. The depth of field is 

the measure of the range of object distances within which the image appears to be sharp and 

in focus. The resolution is the minimum distinguishable feature size of the object under 

inspection. Numerical calculations of these parameters can be found in Zuech (2000). 

Lens is another key element of camera optics. The function of lens is to project the 

image onto the camera sensor. Lenses have different optical qualities and not all of them 
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are suitable for computer vision applications. The quality becomes crucial when high 

quality images are required such as industrial or scientific applications. Lenses are usually 

categorized on bases of focal length and aperture. The focus is adjusted with ring adjuster 

which is integrated in the lens, in order to bring the certain region of object or entire object 

under focus. From the aperture of the lens depends the maximum amount that can pass 

through the lens. A small aperture makes everything in focus, while a wide aperture can 

make either background or foreground of the object come to focus.  

 

Figure 2.5. Definition of the most important parameters of camera optics (Courtesy of Edmund Optics). 
       

2.5.1.3 Calibration 

The obtained images may not always preserve with fidelity the true geometrical parameters 

and geometrical representation of the object under inspection on the scene. The images may 

simply be geometrically distorted.  The distortions may be such that the images appear ‘pin 

cushioned’ or with a barrel (fish eye) shape (Figure 2.6) (Busch 2005). These distortions 

are caused by camera lens imperfections such as optical aberrations. Perspective distortion 

of images is another geometrical distortion caused by using a wide-angle lens (Lowrie 

2005). Image distortions like these can cause problems in computer vision applications 

because it is necessary that in such applications images are true representations of the 
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object. Regarding imperfections and quality, during a design of computer vision 

application, one has to choose quality lenses.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.2 Image processing  

Image Processing involves steps such as image preprocessing and segmentation. The 

purpose of pre-processing is to enhance the quality of images obtained by the image 

acquisition step. Images after acquisition are often degraded because of distortion and noise 

in the camera and optical system. Image preprocessing steps involves operations of noise 

reduction, contrast enhancement and smoothing, image sharpening and gray level 

correction and transformation (Sonka et al. 1999; Panigrahi et al. 2001; Gonzales et al. 

2004).  

 

2.5.2.1 Segmentation 

Segmentation is the process of separating objects of interest from the rest of the scene or 

background (Zeuch 2000). Segmentation is usually performed based on two properties of 

image intensity values: discontinuity and similarity. The first approach segments the image 

Figure 2.6  Geometric and perspective distortions of the image caused by lens imperfections 
or use of a wide-angle lens. 
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based on the abrupt changes of intensity such as edges (Gonzales et al. 2004). Two of most 

fundamental approaches used for segmentation are thresholding and region-based 

segmentation. Segmentation based on thresholding consists in choosing a value-threshold 

which separates the object from the background. In the simplest case, intensity values of 

pixels of an object and a background are in two different modes. By selecting a threshold 

that separates these two modes, it is possible to extract the object from the scene. In region-

based segmentation, the aim is to partition an image into regions. This is done by using the 

approach of region growing and region splitting.  

 

2.5.2.2 Morphological Operations 

Morphology is a word that deals with forms and structures. In image processing, the 

mathematical morphology is used as a tool to extract image components that are useful in 

representation and description of region shapes (Gonzales et al. 2004). Two most 

fundamental morphological operations are dilation and erosion. Dilation is an operation 

that grows or thickens the objects in a binary image, while erosion shrinks or thins the 

objects in a binary image. The manner and the grade of thickening and thinning are 

controlled by a structuring element.  

Opening and closing as more complex morphological operations are obtained as a 

combination of dilation and erosion. Opening is erosion followed by dilation, while closing 

is a dilation followed by erosion. Opening is used to remove completely the regions of an 

object that can not contain the structuring element, to smooth object contours and to break 

thin connections. Closing joins narrow breaks, fills long thin gulfs and fills holes that are 

smaller than a structuring element.  

Morphological operations are used in pre or post-segmentation stage of the objects in a 

scene. Segmentation alone might not solely isolate the object of interest from a background. 

During segmentation and binary conversion of a gray scale image, it is usual that small 

imperfections appear in the image in the form of isles that do not belong to the objects. 

Morphological operations are used to remove these imperfections resulting in the isolated 



 28

object of interest. More on morphological operations the reader can find in Sonka et al. 

(1999) and Gonzales et al. (2004). 

 

2.5.2 Feature extraction  

After images are processed and segmented they have certain features or properties. These 

images are sent to a feature extractor, whose purpose is to reduce the image data by 

measuring specific image features or properties (Duda et al. 2000). In plain words, this 

means that the image of the object of interest has to be quantified with some feature values 

before it is processed further and before the decision making process takes place. 

Interesting features can be the length or the area of the object or any other size/shape 

parameters. After the relevant, non-redundant features (statistically independent) are 

selected and extracted, these are passed to a classifier (knowledge base) (Figure 2.3) for 

decision making.  

 

2.5.3 Colour  

Colour is an important property of objects in general. In food industry, colour is an 

important quality parameter. Colour is our perception, our response to the combination of 

light, object and human observer (Levkowitz 1997). Colour perception depends upon 

physics of light and complex processing by the eye-brain system. Regarding physics of 

colour, every electromagnetic radiation with a wavelength (λ ) between 400 and 700 nm 

stimulates the human neurosensors and results in sensation of light.  This band is the so 

called visible band of the electromagnetic spectrum.  

Human receptors react only to some wavelengths and are more sensitive to some 

wavelengths than other. Human eye has three different types of cone receptors containing 

different chemical pigments sensitive to certain wavelengths (Shapiro et al. 2000). One type 

of cone is sensitive to blue light at 400 to 500 nm, the other type is sensitive to green light 

and the third type of cones is sensitive to the red light. This makes it possible that every 

colour can be represented as a sum of three independent stimuli: red (R), green (G) and 

blue (B) (Trussell et al. 2005), which are called colour coordinates. Based on this, a colour 
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imaging system represents colour information in terms of colour coordinates. The RGB 

(Red, Green, Blue) colour space is the most known system, but there are also other spaces 

based on specific colour coordinates such as CIELab (L-lightness, a-redness, b-yellowness) 

and HSV (H-hue, S-saturation, V-value).  

 

2.5.4 Pattern recognition 

From the discussion above, it can be seen that image acquisition, image processing and 

feature extraction are not sufficient for deciding whether an object, for example, has 

deformities or not. None of these stages and operations is able to decide if a fish is 

qualitative enough or if it belongs to certain species or a class. These parts if computer 

vision helps only on capturing images and their analysis in order to produce the descriptors 

(features) of the objects that are imaged, without the ability to classify these in classes. In 

order to perform this, a decision logic or model is required. The decision making comprises 

of what is known as pattern recognition, which is “the act of taking raw data and taking an 

action based on the category of a pattern” (Duda et al. 2000). Thus, pattern recognition is a 

scientific discipline whose goal is classification of objects into a number of categories or 

classes. The objects, which are referred to as patterns, can be images or signals 

(Theodoridis et al. 2003).  

The part that does the decision making and classifies objects into classes is simply called 

a classifier. The classifier operates in such a manner that it takes the feature vector 

consisting of object features, generated by a computer vision system, and on the bases of 

these classifies the objects into classes.  

To illustrate the operation of a classifier let us assume that a plant wants grading of fish 

in salmon and cod. Prior to the design of a classifier, one looks at the features that might 

give a good separability between these two classes. If at the plant the production chief tells 

that cod is shorter in length than salmon and smaller in general than salmon, then two 

features which can be used for discrimination might be the length and the area of the fish. If 

the plot of area vs. length is made for both species, it is shown (Figure 2.7) that the class A 
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of cod spreads in a different region than the class B of salmon. In Figure 2.7, each point 

corresponds to a different image from the available database.  

If then we are given a new image of fish (*) which is an unknown pattern, the natural 

thing to do is to plot the area of fish versus its length. From the plot, it can be assumed that 

the fish is more likely to belong to class A than B. This hypothetical example only 

illustrates some of the concepts underlined above.  
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Figur 2.7  Example plot of the area versus length for a number of images corresponding to class A 
(triangles) of cod and class B (circles) of salmon. In this case, a straight line separates both classes. 
     

The measurements (area, length), which are used in the classification, are the features. 

These features are extracted after the processing of fish images and segmentation of only 

fish silhouettes. The straight line which is driven in the plot is what is known as a decision 

line and it actually constitutes the classifier itself. In order to ‘enable’ the classifier to 

classify unknown patterns, the classifier is trained with patterns whose class is already 

known. These training patterns are used to design the classifier so that when an unknown 
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pattern is fed, the classifier will ‘know’, from its previous knowledge, which class will this 

pattern to be assigned.  

In the case of a good separability of classes, a linear classifier can be used for the 

classification. This practically means that if one plots the feature vectors of training patterns 

of two classes then these can be separated well enough with a simple line, as in the previous 

example. The reader can find more on different approaches of classifier design in Duda et 

al. (2000) and Theodoridis et al. (2003). 
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CHAPTER 3 
 
Automation of Fish Processing Line with Computer 
Vision 
 
 3.1 Introduction 
 
In this chapter, the common thread of the problems/operations, which were dealt with in the 

thesis, is given. The common thread is the fish processing line, mainly of Atlantic salmon 

but in the aspects of the quality evaluation of fillets, the same solutions could be applied 

also at the cod processing line. In this section, the chain of operations in a typical fish 

processing line will be shown followed by a brief description. The focus will be on the 

operations that are carried out manually by human inspectors using their sense of vision, 

but also on the other operations that have potential to be automated with computer vision. 

Therefore, in the following sections, the proposed solutions for the addressed operations of 

fish processing line, in form of methods and results, will be presented. 

 
 
3.2 Structure of the fish processing line 
 
The overall structure of a typical fish processing line for Atlantic salmon is shown in Figure 

3.1. This represents the common thread for the research in this thesis, and the denominator 

of all the resulting papers. 
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From the Figure 3.1, it can be seen that fish undergo quite an intensive processing from 

their intake by pumping from the sea cage, at the fish processing plant, up to the filleting 

stage. A typical fish processing plant processes about 100 tons of fish (25.000 to 30.000 

salmon) per shift (7h), where the Atlantic salmon has an average weight of 3-6 kg.  

During transportation from the farm to the sea cage and during the pumping from the sea 

cage, handling has an important impact in the quality of fish products because it may 

stimulate undesirable effects in fish such as stress, which affects the quality of the end 

products (Erikson 2001). Trough pumping, the Atlantic salmon is sent to the so called live 

chilling tanks filled with a sea water, at a temperature of 4°C, and with a certain quantity of 

CO2 in order to anesthetize the fish. The anesthetized fish is then slaughtered where the 

attention is focused on methods which have ethical considerations. Thereafter comes 

bleeding, which consists on tapping the blood from the fish body and this usually takes 

place in specially made tanks for this purpose. Here, the majority of blood is tapped (90%). 

Then, the whole fish is cut, gutted and inner parts of the fish are removed. This is done with 

machines which are already in use (Baader 142). Subsequently, fish are inspected for the 

remaining inner parts or residual blood in the cavity and, if necessary, they are sent to 

washing prior to undergoing the operation of grading. At this point, the fish is graded 

according to its quality class, where human inspectors use different visual features of fish to 

do this.  

Grading operation is followed by the ripening of fish, a process of maturing of fish meat 

for easier processing. Then, the whole fish are deheaded and filleted by the existing 

machinery. However, there are a number of fish plants which do not deal with filleting at 

all, meaning they do sell only whole gutted fish. From the point of deheading and filleting 

begins the fish processing part, consisting of the set of operations which are carried out in 

fillets. In brief, in a typical Atlantic salmon fish plant, this is the point where two units of 

fish processing meet; the unit dealing with only slaughtering, gutting and grading of whole 

fish and the unit of filleting and operations performed in fillets.  
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Figure 3.1 Overview of a typical Atlantic salmon processing line. Block diagrams with green colour 
represent points and operations in processing line where some kind of use of human sense of vision is 
used to perform certain operations. 

 
 

Fillets are then trimmed in different grades of trimming. The most basic trim is done by 

the existing machinery. Then the fillets are subjected to bone removal and skinning which 

are also successfully performed with the existing machinery. From this point on, fillets are 

packed as a whole and subjected to other processing (freezing) and are ready for market 

delivery. Fillets can also be cut in pieces because some markets prefer fish in portion 

packages. Additional processing of fillets includes freezing or vacuum-packaging before 

the market delivery. A great deal of fillet production is also sold as fresh.  
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3.3 Presence of blood in the body cavity  
After slaughtering, fish undergo bleeding. In the Norwegian salmon industry, the fish are 

typically bled for 15 - 20 min in a refrigerated seawater tank. Alternatively, the fish can be 

bled in air, preferably with head down. Appropriate bleeding is necessary for maintaining a 

good product quality at the end of the line. In the salmon industry, blood-spotting and 

discoloration as a result of inappropriate bleeding can cause decrease of fillet flesh quality 

and reduce the market value. These are some of the major causes for fillet downgrading 

(Michie, 2001).  Therefore, good bleeding procedures must be followed. 

 

3.3.1 Inspection of the body cavity for residual blood 

After bleeding of whole fish in tanks, fish is washed and then sent to the grading/sorting 

operation. For quality grading, both external and internal attributes are inspected. In the 

latter case, possible presence of residual blood (adequacy of washing and re-washing after 

bleeding operation, potential blood spots or discoloured areas) is considered. This can be 

done by simply inspecting the body cavity of a whole fish by a human inspector. 

Thereafter, the need for washing can be decided depending on the presence of the residual 

blood in the cavity.  

The proposed method for inspection of body cavity of whole fish for residual blood is 

given in paper 6 (Erikson et al. 2007e). Here, provided that there is a mechanism for 

opening of the gutted fish, computer vision can be used for evaluation of the presence of 

residual blood and adequacy of re-washing. According to the proposed method, by image 

processing techniques is segmented only the body cavity of the fish as a region of interest.  

The image analysis is done by looking at the changes that blood causes into colour 

components of the region of interest. The analysis of images and classifier design is done in 

CIELab colour space, as it is known that this space is very close to the way humans 

perceive colour (Hunt 1991), and is considered as the best color space for quantification of 

colour in food products (Mendoza et al. 2006).  

Presence of blood in the cavity will simply influence the colour features such as 

lightness (L), a and b values, as well as the green (G) channel of the RGB space, for the 
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entire region of interest. A subset of only three features (a, b, G) was used to train the 

classifier, which was able to classify whole fish into “wash” and “ok” category. The “wash” 

category consisted of the fish with residual blood in the cavity, meaning that, prior to any 

further processing, such fish should be sent to re-washing, and the ‘ok’ category consisted 

of the fish with no residual blood. Such fish can be processed further without the need for 

re-washing.  

The classifier was based on the Linear Discriminant Analysis. The predicted 

performance accuracy of this classifier was 92%, as cross-validated with the leave-one-out 

method, a well-established technique for assessing the classification performance (Ripley 

1996; Theodoridis and Koutroumbas 2003).  

 

3.3.2 Quality inspection of fillets as affected by bleeding, stress, salting and smoking 

Residual blood in fillets may lead to reduced visual acceptance of the product (Kelly 1969; 

Huss 1995). The effects of inadequate bleeding are particularly pronounced in salted and 

smoked products like smoked salmon fillets (Robb et al., 2003). Although there is some 

disagreement as to what is the best bleeding method (Huss 1995), it seems clear that 

immediate bleeding of live fish is more important than the actual bleeding method (Roth et 

al. 2005).  

Handling and peri-mortem stress is another important factor in bleeding. Bleeding 

delays the rigor onset in fish. When rested fish are exposed stressors and they show escape 

behaviour (white muscle work), the blood flow is gradually redistributed from the viscera 

to the locomotory muscles to meet the increased oxygen demand (Thorarensen et al. 1993).  

In our study, various analytical methods were used to evaluate the quality of fresh and 

smoked fillets with respect to bleeding procedure and perimortem handling stress. No 

significant difference was registered between the bleeding methods. Salting and smoking, 

rather than handling stress and bleeding, induced the main effect on fillet color in our study. 

The smoked salmon fillets, exhibited a more yellowish appearance than the fresh ones, by 

having a larger Hue and b colour parameter. This was significantly different for all the 
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fillets regardless of the bleeding method. The proposed method for this type of fillet 

evaluation by computer vision is described in paper 6 (Erikson et al., 2007e). 

 

3.4 Quality grading of farmed whole Atlantic salmon  
Grading of whole salmon according to external attributes is based on shape parameters and 

blemishes. In the salmon industry in Norway, commonly two to four workers are necessary 

for manual fish grading and sorting (Figure 3.2), i.e. when biomasses between 80 -120 tons 

are processed per shift (7 h). 

 

3.4.1 Sensory evaluation into grading classes 

According to the Norwegian industry standard for quality grading of farmed salmon (NBS 

10-01), the whole salmon can be classified into three classes: production, ordinary and 

superior. 

Production grade salmon can be characterized by sexual maturity, sores, damages, bleeding 

fins, deformities, deformed jaw, crooked backbone, shortened tail, serious handling defects, 

scales scrapped off, and internal quality faults with significant amounts of melanin in 

muscles. However, the most significant parameters which characterize the production class 

and which appear most often are the crooked backbone, non-streamlined shape, and short 

tail (Figure 2.1). 
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Figure 3.2 Manual grading and sorting of whole salmon in quality classes by human inspectors. Two to 
four persons per shift are necessary to carry out the task (Courtesy of Salmar AS). 

 

Ordinary grade salmon has a limited number of external or internal faults and is without 

substantial faults. However, it can be unsymmetrical, thick/broad in the posterior part, have 

sometimes a shorter tail and moderate external blemishes (loss of scale, minor damages of 

skin). Superior grade salmon is without external or internal faults. It is characterized mainly 

by a natural symmetrical streamline shape and skin without a loss of scales or open sores. 

In a typical farmed Atlantic salmon processing plant, if there are no specific problems with 

the fish, the Superior grade constitutes approximately 90-97% of the biomasses of fish 

which are processed. 

 

3.4.2 Computer vision based grading of whole Atlantic salmon 

From a computer vision perspective, some of the above mentioned characteristics can be 

quantified into shape parameters and, if necessary, colour descriptors. Size and shape of the 

Atlantic salmon can be extracted by segmenting the fish silhouette from the background. 
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Once having the silhouette, one can easily extract parameters such as, for example, length, 

area, width, and roundness.  

Size and shape analysis is the essence of the proposed methods (Misimi et al. 2006, 

Misimi et al. 2007d) for quality grading of the farmed Atlantic salmon. In paper 1 (Misimi 

et al. 2006), size and shape analysis was used for extraction of parameters such as length of 

fish and tail, width, area, and aspect ratio. These parameters were used for designing a 

linear classifier based on linear discriminant function analysis-LDA which was able to 

grade between production and superior/ordinary class with a reliability of 87%, for the 

given data set. In paper 5 (Misimi et al. 2007d), a LDA-based classifier was designed in 

order to perform quality grading, between the ordinary and superior class, with a predicted 

performance accuracy of 91% for the given data set. The algorithm can be extended also for 

the case of the multiple classes, if such classification would be necessary. In such a case, 

instead of generating a threshold y=t which would divide class C1 and C2, the focus would 

be on designing a single K-class discriminant yk, where the sample x would be assigned to 

class Ck if yk(x)>yj(x) for all j≠k. 

In general, when it comes to geometry of the fish, we found that the production grade 

salmon has usually a deformed back, as the most often deformity, while the ordinary grade 

salmon differs from the superior in having a broader back (posterior) part and/or shorter tail 

(Misimi et al. 2007d). These seem to be the most important geometric features to be 

considered when classifying the farmed Atlantic salmon into respective quality grades.  

 
 
3.5 Quality assessment of fillets 
After filleting of salmon, the fillets undergo the operations of trimming, bone removal and 

skinning. In this chain of operations, a quality evaluation of fillets is necessary. Before 

defining the quality parameters of attributes by which the quality is measured or quantified, 

it is necessary to define what is usually meant with the quality of fillets.  

Quality is defined as a description of the product that meets the needs or requirements of 

consumers (Sigurgisladottir, 2001). This description is assisted by taking into consideration 

different characteristics of the products. The most important parameters of fresh Atlantic 
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salmon are colour, fat, texture and freshness. Freshness is a more complex and not a 

standalone attribute as it is usually determined on the basis of colour and texture. Actually, 

in this way the freshness of salmon is perceived by consumers. Other important quality 

parameters of salmon are the presence of discoloration, in form of either bloodspots or huge 

colour variations in fillets, white stripes as well as defects such as melanin spots (Koteng, 

1992).  

 

3.5.1 Colour evaluation of fillets in fish industry 

It is generally accepted that colour of salmon fillets is one of the most important quality 

parameters (Anderson, 2000). Consumers usually perceive the colour of the farmed 

Atlantic salmon to be related  

 

Figure 3.3 The description of the computer vision methods developed in this thesis and flow chart of the 
fish processing operations that these methods have potential to automate. 

 
with such characteristics as freshness, flavour, quality and price. While colour is important 

for quality perception and evaluation, consumer taste is different when it comes to what 

colour is “best”, or which colour “ensures” better quality. Consumers, in different markets 

in the world, have different expectations about the salmon colour. While consumers in 

Japan prefer a more reddish salmon colour (Osland, 2001), consumers in Norway or France 
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most certainly have other colour preferences (Figure 3.3). This makes the colour play an 

important role when evaluating the quality of the product at the ready-for-sale point. It also 

introduces the need for sorting/grading of fillets according to colour in order to categorize 

shipments on the basis of the markets they are intended. 

 

Figure 3.4 a) Use of Minolta chromameter to measure colour b) Use of human vision for comparison of 
salmon flesh with the color card scores. (Both figures adopted from Fish Farming-a colorful adventure, 
with the permission of Vidar Vassvik). 

 

Today, the colour evaluation of fillets is done in several different manners, including the 

chemical analysis of some few batch samples of fillets. According to the Norwegian 

industrial standard (NS 9402, 1994), the colour of Atlantic salmon is measured by using the 

Roche colour card for salmonids or Roche SalmoFan™ (Hoffman-La Roche, Switzerland). 

This can be done manually, by using the human sense of vision (Figure 3.4b). Human 

inspectors can perform colour matching of some samples of salmon fillets against the 

mentioned Roche cards and obtain the average colour for the given batch. Alternatively, the 

colour of salmon fillets, for a limited number of samples, is performed using some kind of 

spectrometric equipment such as Minolta chromameter CR200/300/400 (Figure 3.4a), some 

other spectroscopic instruments, or the samples are sent to laboratory for analysis. The 

measurement with chromameter, for example, is done for a few fillets, so that an average 

colour for the batch of fish, which is processed, is acquired. The measurement head of the 
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instrument has a measuring area of only 8mm, which raises the issue of how representative 

the measurement is for the entire fillet. Measurements in the fillet, when using Minolta 

chromameter, are usually taken in more than one place in the fillet. Three such 

measurements can be taken on the back region of the fillet, over the entire length, and two 

other on the belly region. The average colour for the fillet can then be obtained as the mean 

value of the N measurements: 

∑
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For a given batch of K samples of fillets, the average colour of the sampled fillets is 

calculated as the mean value of fillet average colours (3.1): 
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Although this may sound as an objective colour measurement method, this manner of 

quantification of colour of fillets has several disadvantages. Not only it does not give the 

best representation of colour of sampled fillets, due to measurement in a very tiny area of 

8mm, but it also gives an unreliable measure for the colour of the processed batch. Colour 

of salmon, even from the same batch, varies. In the same batch, variations of colour from 

one fillet to another may be large. In addition, when we performed measurements of fillet 

colour, the low Minolta a and b values suggested the fillets had a somewhat grayish 

appearance, when in fact the Atlantic salmon fillets are of orange/red appearance (Erikson 

et al. 2007b). This can be explained by the fact that the Minolta Chroma Meter is primarily 

designed for flat, nontranslucent and diffuse surfaces, opposite to what a fillet is.  

 

3.5.2 Computer vision based sorting of fillets according to colour  

The proposed method for automation of the fillet colour evaluation based on computer 

vision is presented in papers 2 and 3 (Misimi et al. 2007a; Erikson et al. 2007b). This 

method has three fundamental characteristics which make it the natural solution choice 

when considering online automation of this operation in a fish processing line. It has the 
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necessary speed to cope with time requirements of a processing line, the necessary accuracy 

for colour evaluation, due to the colour calibration, and all-in-one concept of the colour 

evaluation.  

The all-in-one concept means that from a single fillet image, one can get all the 

necessary data about the fillet colour in the form of its 1). class colour category according 

to Roche colour cards and in the form of 2). Lab values in the CIELab colour space. 

Additionally, the flexibility for integration and compatibility with the other quality 

evaluation units based on computer vision along the processing line is another advantage. 

The algorithm for colour matching, described in paper 2 (Misimi et al. 2007a) and paper 

3 (Erikson and Misimi 2007b, in press), was based on the nearest neighbor principle.  From 

the Roche SalmoFan™ ruler and Roche colour card were created the look-up tables with 

the colour values, which the algorithm uses for the colour matching. The colour score of the 

fillet is then set by finding the closest match from the look-up table for the given pixels of 

the chosen fillet region of interest, or for the average value of a small region.  

The results from the computer vision colour evaluation correspond well with the sensory 

evaluation of colour by human inspectors. The generated computer vision colour scores 

according to both Roche cards are, in average, for one unit higher than those perceived in 

sensory evaluation. Nevertheless, the standard deviation of the measurements with the 

computer vision method is smaller, indicating a more consistent measurement. In addition, 

the better side of the computer vision method of colour evaluation is that it is faster, robust, 

consistent and cheaper than the traditional methods.  

 

3.5.3 Effects of ice storage and stress on colour 

Filleting of whole fish is not done immediately after the fish are gutted and deheaded as 

pre-rigor, despite that there is a chain of connected operations and tasks throughout the line, 

as shown in Figure 3.1, between the slaughtering and grading unit and filleting and quality 

evaluation unit. Usually there has to pass some time so that the bones are easily removed 

from the fillets and whole salmon are put in tanks for some hours prior to the start of the 

filleting stage. This is the so-called post-rigor processing of fish. 
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In the meantime, even before the killing and gutting, there are some processes that 

influence the overall quality of fillets at the ready-to-sell point. The way the salmon is 

handled, the rigor process that starts after killing and ice storage of fillets may significantly 

change the appearance and quality of the product. In fact, Robb and Harris (1997) have 

shown that the fillet colour perception depends on peri-mortem handling stress. They found 

that fish that were stressed during the handling stage, showed one unit of Roche colour card 

readings more than those of unstressed fish as determined 24 h post mortem. This 

difference persisted when measurements were repeated four days later, in post-rigor stage.  

Rigor mortis process in salmon may also have an impact in quality parameters of fillet. 

It has been shown previously (Sørensen et al. 1997, Skjervold et al. 2001) that during the 

rigor process, the geometry of fillets changes. Fillets during rigor shrink and this shrinkage 

is irreversible. Since fillets or whole salmon/fish usually are stored in ice, when they are not 

sold as fresh products, it was interesting to see if ice storage, in addition to handling stress 

and rigor mortis process, has any influence in quality parameters of fillet such as colour or 

geometry.  

Development of a computer vision method that would be able to perform such 

evaluations has been a problem of investigation in papers 3 and 4. With the proposed 

method, from a single fillet image, we were able to quantify the colour as well as the 2D 

geometry of the fillet. Additionally, by the use of the 3D scanning with the 3D camera we 

were also able to obtain information on the 3D structure of the fillet and its changes during 

the rigor and the ice storage.  

The main result from the development of the computer vision method for a colour 

evaluation of Atlantic salmon fillets (Erikson and Misimi 2007b, in press) is related to the 

change of colour of fillets during the ice storage. As the rigor progresses, the colour of the 

fillets changed. Therefore, any colour grading of fillets in pre-rigor would not correspond to 

the actual colour of fillets in post-rigor, when they reach the market, resulting in erroneous 

colour labelling of fillets. While the sensory panel was not able to detect any significant 

differences in the colour between the groups of stressed and unstressed fillets, after a week 

of ice storage, the computer vision method exhibited significantly different colour scores 
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(p<0.05) between the two groups. It was concluded that, the evaluation of the colour of the 

fillets by either sensory analysis or manually based instrumental methods has disadvantages 

compared to the computer vision method. The drawbacks of the sensory analysis are that 

the method is slow, costly and subjective. The subjectivity and inconsistency of the sensory 

evaluation probably derived from the physical limitations of the human eye to adequately 

perceive colour (eye fatigue and lack of colour memory). Manually-based instrumental 

colour analysis, on the other hand, is labour intensive and not fast enough to cope with the 

required processing speed. Another typical limitation of such instruments is that they are 

based on direct contact with the fillet and the obtained colour values result from a small 

sample surface, and are usually meant for use in measurement of the colour of flat and non-

translucent surfaces. On the other hand, computer vision method allows fast, nondestructive 

and contact free colour assessment. Therefore, the computer vision method evaluation of 

colour of fish or fillets was considered a method of choice for an on-line colour 

grading/classification. 

 

3.5.4 Effects of ice storage and stress on 2D and 3D size and shape of fillets 

 The transient changes of 2D and 3D geometry of the fillets were easily quantified with the 

proposed computer vision method described in paper 4 (Misimi et al. 2007c). During the 

rigor and ice storage, fillets underwent changes in length, area, and width as well as height 

and cross-section area. Pre-rigor fillets and post-rigor fillets of Atlantic salmon and cod 

after ice storage of seven and three days, respectively, significantly differed in a number of 

these parameters. The proposed computer vision method was able to quantify these 

changes. 

  For Atlantic salmon, we found that pre-rigor filleting resulted in average final 

contraction in length of 10.0% and 7.3% (p<0.05) for unstressed and stressed fillets, 

respectively. The mean fillet areas had contracted in average for 6.4 and 3.0% (p>0.05), 

respectively, compared to their original pre-rigor area. For Atlantic cod fillets, the 

respective contractions in length and area, at the end of the ice storage, were at 14.5 

(p<0.05) and 11% (p>0.05). 
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Perimortem stress did not affect the maximal width changes in salmon fillets and 

roundness of the cod fillets, only a phase displacement did occur. However, the perimortem 

stress affected the roundness of salmon fillets and the width of cod fillets. The maximum 

width increase for salmon and cod were 4 (p<0.05) and 6% (p<0.05), respectively. When it 

comes to roundness, the average final change due to contractions was 11.5 and 6.7% in 

salmon (unstressed vs. stressed), and 16.6 and 18.0% in cod (unstressed vs. stressed). 

As for the cross-section area and height of salmon fillets, both of these parameters at the 

end of ice storage had decreased significantly compared to their initial values (height 5mm 

in average, cross-section area 15% smaller in average, p<0.05). Regarding the effect of 

perimortem stress on the fillet height and cross-section area, ate the end of the ice storage, 

the stressed fillets were significantly thinner (height:16% or 4mm thinner, area 20% 

smaller). In cod fillets, in contrast, despite the relative increase in cross-section area and 

height, at the end of the ice storage only the stressed fillets (at profile A) were significantly 

thicker compared to their initial values. When it comes to the effect of the treatment on the 

fillet height and thickness, no significant differences were observed between the unstressed 

and stressed cod fillets. 

While the changes in Atlantic salmon fillets were more emphasized between the 

unstressed and stressed groups, in Atlantic cod fillets no significant difference between the 

groups was registered except for the width. In the Atlantic cod fillets, the stressed fillets 

showed also a more rapid rate of contractions compared to the unstressed fillets, but not to 

the degree that was observed in the Atlantic salmon fillets.  

To sum up, the differences in geometrical features of unstressed and stressed fillets 

during the rigor contractions and ice storage indicated that the fillets changed size and 

shape and ended up with a different size and shape compared with their initial geometries. 

Perimortem stress resulted in a different ultimate size and shape of the Atlantic salmon 

fillets after ice storage. The industrial relevance of the method is that is quantifies the 

transient changes of standard parameters of the fillets as a result of biochemical changes 

during rigor and ice storage.  
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CHAPTER 4 
 
Discussion and Reflections 
 

Although a discussion is included in each paper, the aim with this section is to discuss and 

reflect on some aspects of the research in the thesis. Specifically, the focus will be on those 

aspects which have been important for the experimental design and the consequent 

processing of the resulting data. This discussion will complement the discussions already 

found in the papers. A natural start is to summarize the discussion regarding the overall 

contribution with this thesis. In the previous chapters, it was shown which tasks of the fish 

processing line were chosen to be addressed. The proposed computer vision based solutions 

for these tasks contained the individual contributions of the research. The combination and 

integration of these individual contributions can be used for automation of the addressed 

operations in a typical fish processing line with the use of computer vision.  

 

4.1 Review of technologies 
 
In the introduction chapter, a review of the available sensor technologies was made and the 

choice of the computer vision as a single strategy for automation was elaborated. The 

advantages of computer vision regarding cost, on-line use, maintenance, non-

destructive/non-contact evaluation, and versatility influenced this choice. In addition, the 
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possibility for simultaneous grading of fish and/or fillets, according to a number of different 

criteria, was pointed out as one of the primary advantages of the computer vision against 

the other technologies. Therefore, since the computer vision was chosen as the single 

strategy for automation, this excluded, at the time, a number of other sensor technologies 

that may otherwise be suitable for use in some of the tasks, mainly for a compositional 

analysis, such as Near Infra-Red (NIR) (Heia et al. 2007), or Magnetic Resonance Imaging 

(MRI) (Veliyulin et al. 2007). 

 

These conclusions were preceded by a careful analysis of a number of sensors and 

technologies that may have potential for use in automation of fish processing operations. 

This review was done at the start of this research. Despite good on-line response, the 

dependence on calibration procedures prior to use (Wiedemann et al. 1998), presence of 

broad-superimposed bands and low absorption intensities (Zanola et al. 2005), expensive 

instrumentation as well as more difficult maintenance, compared to computer vision, were 

some of the disadvantages of the NIR technology. In addition, NIR is mostly suitable for 

compositional analysis such as, for example, fat and water content (Wold et al. 1996, 

Solberg et al. 2003). 

 

Ultrasound and MRI have limitations in coping with the real-time requirements of fish 

processing line. Although MRI possibilities for exploiting it as an on-line sensor in the 

future are great, there are actually no possibilities to do this at the present (Hills 1998), 

because the measurement time (speed) is too long. In addition, the equipment is very 

expensive and there are a number of factors and physical constraints that make this 

technology not suitable for industrial environments such as the delicacy of the equipment, 

as well as highly demanding and expensive maintenance. 

 

Restrictions of the fish processing line regarding speed are that a fish/fillet should be 

evaluated or assessed within maximum 2 seconds, preferably within 1 second. Hence, 

computer vision was considered suitable for this speed requirement as it offers the 
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advantage of the accurate quantification and rapid image and data handling (Panigrahi et al. 

2001). In addition, the flexibility of computer vision when it comes to the possibility of 

eventual integration/fusion of other sensor technologies in a fully automated fish processing 

line make computer vision as a natural choice for fish/fillet grading according to a number 

of quality parameters.  

This flexibility for fusion of sensor technologies becomes even more realistic since 

computer vision is about finding methods to process and analyze images of fish products. 

Therefore, the integration of other technologies which have images as an output would not 

be a major challenge, as soon as the sensor technology becomes available for on-line use. 

In this regard, particularly MRI and ultrasound have prospects to be a part of such fusion of 

technologies. Furthermore, computer vision systems show a high flexibility when it comes 

to object type which is being inspected (whole fish or fillets of different fish arts), which 

could be seen as another advantage (Low et al. 2001).  

Perhaps the biggest advantage of the computer vision over the other technologies is its 

versatility; the ability of computer vision to identify the individual fish/food products and to 

evaluate and grade them according to several different criteria such as size, shape, colour, 

and texture. This means that a computer vision-based system which is grading whole fish 

can very easily be reprogrammed to grade fillets or other fish products, or it can even 

perform grading at two points in line of different products. These aspects contribute to the 

high degree of flexibility.  

Therefore, the aforementioned arguments favored the choice of computer vision as a 

single strategy for automation, while not excluding the other technologies that might 

become available in the future. With the benefit of the hindsight, it is easy to see that we 

could have spared an entire year if we had focused on computer vision alone from the 

outset of the research. Nevertheless, the review and analysis of all the available 

technologies were necessary so that we could choose the optimal technology for us to 

study, which can be used for automation of the fish line operations. 

One thing that needs to be emphasized is that despite the advances in the recent period, 

there is still no computer vision technology available that can fully match the qualitative 
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and interpretative ability of human vision (Chan and Palmer 1995; Jahne 2002). But in a 

situation when quality grading of, for example, whole Atlantic salmon is very repetitive and 

error prone task, the computer vision has the potential to perform this task just as good, or 

even better than human inspectors, and with undoubtedly higher consistency. A computer 

vision based system would not be influenced from the human fatigue or boredom and can 

be very consistent once the grading parameters are set (Zuech 2004; Misimi et al. 2007a). 

 

4.2 General remarks 
 

During the work in this thesis, it has been noted that planning of experiments ahead in time 

had a valuable positive impact on the flow of the experiments that were carried out. 

Nevertheless, some of the problems which came up during the experiments were of such a 

nature that we were unable to affect in advance. Some of the noted difficulties were related 

to the fish/fillet delivery from the processing plant and fish/fillet sampling at the site. In 

addition, some practical problems that were encountered during the image acquisition and 

processing stage will be pointed out.  

 

4.2.1 Fish delivery and sampling 

Fish delivery and fish sampling was highly dependent on the daily catch. Boat-loads of 

fish, in variation to season, day, and farm, can be different when it comes to fish size and 

weight, fish quality, class membership and other external and internal parameters as 

elaborated previously. In this regard, we found out that it is not always possible to acquire a 

uniform distribution of fish with respect to the desired features. In addition, fish processors 

tend to classify most of the fish as “Superior”, in order to maximize the profit. 

  

Our observation is in line to what Sørensen (2003) has reported earlier. He points out 

that the fish industry and various fish producers have the tendency to interpret the industrial 

standards in a voluntary manner when performing the quality grade labelling. Moreover, 

they tend to adopt relative sorting/grading criteria depending from the quality of the 
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incoming batch of fish. For example, we experienced that manual labelling of fish with 

regard to their quality class membership was done a bit differently when comparing two 

leading fish processing plants (samplings at Marine Harvest in 2003 and samplings at 

Salmar AS in April 2006), especially when it comes to the grading into “Ordinary” and 

“Superior”. There could be a number of reasons for that, since the manual grading process 

depends from factors such as the season, batch of the day, and subjectivity of the different 

human inspectors who perform labelling at different shifts. These factors contribute to an 

inconsistent manual grading of fish regarding quality, which is another disadvantage of this 

process apart from incurring higher production costs. Computer vision grading as a 

technology for automation will therefore introduce a more consistent way of grading, since 

it will avoid the classification of fish whose appearance and quality is inconsistent with the 

industrial standard. Once the grading standards have been established, they will be 

consistently applied in grading, unlike human inspectors who tend to be subjective when 

doing so. 

 

Regarding the classifier, one should investigate the possibility for such a classifier 

design which is able to be tuned for the choice of certain quality parameters from the group. 

This would practically mean that, after a large enough database of images for the training 

set is obtained, the operator could be able to tune the classification according to the desired 

parameters. In this way, it can be possible to reduce the variability of the cost of 

classification (Misimi et al. 2007e), which also depends from the ability and readiness of 

fish processor to accept that cost. Although the possibility for tuning of classification 

according to the classification cost and according to certain quality parameters can be seen 

as arguable, one has to take into consideration the fact that one should be able to offer 

solutions for which the fish industry would show readiness to apply in their sorting/grading 

operation.   

 

Sample sizes used for the purpose of the research in this thesis could arguably have been 

larger. A larger sample size would be preferable but it is not always practical, and 



 54

economical. Limitation to the reported sample sizes is partly due to the high cost of the 

experiments of this nature in the industry, and limitations that the industry sets for the 

number of the extracted fish/fillet samples from a single batch. The main idea was to 

develop methods that can be used for automation of fish/fillet quality grading. On the other 

hand, the used sample sizes were within the standard size reported in other research 

experiments of this nature with fish/fillets or food samples which do range from 15 to 60 

individual samples (Jerret et al. 1998; Skjervold et al. 2001; Marty-Mahe et al. 2004; 

Mendoza et al. 2004; Panigrahi et al. 2006; Stien et al. 2006; Heia et al. 2007). Therefore, a 

proper utilization of the images from the existing data sets was important, especially where 

the development of the classification algorithms was involved. To avoid overtraining and 

overfitting, we used a minimal number of the relevant features as well as we avoided the 

overly complexity of our classification model. While a complex classification model, and 

with a large number of features, may result in perfect classification performance of the 

training samples, it is unlikely to perform well on new patterns. This is known as 

overfitting (Duda et al. 2001). In addition, we applied a full cross-validation in the form of 

the leave-one-out method (Ripley, 1996). With this method, each fish sample in the data set 

was left out in turn as a test sample, while the remaining (N-1) samples were used as a 

training data. This was repeated for each fish sample in the dataset. 

 

4.2.2 Image acquisition 

The image acquisition has been one of the most challenging steps during the experiments, 

and especially the choice and the design of illumination has been critical for the quality of 

the obtained images. From the beginning, we experimented with different setups of 

illumination, in order to be able to obtain the most optimal quality of images. Therefore, as 

the work progressed, we attained better illumination solutions for quality evaluation of fish 

and fillets by computer vision. As elaborated in chapter 2, fish and fillets are shiny objects 

from the optical point of view. Because of this, the presence of specular reflections and hot 

points made the image processing difficult when using particular illumination setups.  
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The illumination setup, presented in paper 2, was adapted from Papadakis et al. (2000). 

This setup used 4 fluorescent lamps as light sources and gave satisfactorily results for a 

number of investigations. However, to ensure a more uniform and diffuse illumination it 

was concluded that this could be best achieved by using a light-box in which the light was 

confined in a limited space. The light-box consisted from two fluorescent tubes as light 

sources, had one camera opening on the top, and another opening for placing of fish/fillets 

to be photographed. The structure of this light-box is depicted and explained in paper 4. 

The opening of light-box was closed during the acquisition of fish/fillet images. In this 

way, the light-box cut out the interference of the ambient illumination which can introduce 

illumination non-uniformities. In all of the experiments that were carried out, to achieve 

stable illumination and camera conditions, the light-box and camera were switched on at 

least one hour before the experiment and were not switched off until the experiment was 

over. It is known that fluorescent tubes take some time to warm-up and to reach their full 

output, and stabilize their colour temperature (McDermott et al. 2007). 

 Further improvements in the illumination setup can be achieved if LED arrays would be 

used as a light source. LEDs would provide for a more even illumination. In addition, the 

output, size, low power consumption, lifetime, and stability make them the light source of 

choice in computer vision applications (Telljohann 2006, McDermott et al. 2007). 

Although relatively low-cost, the price of LED arrays is still higher than of fluorescent 

tubes and presently this may affect the availability to industry or research communities.  

Type of illumination can be application-dependent. The more detailed the investigation 

is, the higher the requirements for the illumination will be. Colour inspection, for example, 

requires more uniform and diffuse illumination, contrary to the requirements when only 

isolation of an object from the background, by segmentation, is needed. In applications 

involving both of these operations, such is the inspection of fillets, the illumination must be 

as much uniform and diffuse as possible. In this research, confining the light into the light- 

box and avoiding interference with the ambient light helped in achieving the uniformity of 

illumination. The diffuse lighting was achieved using grey colour paint on the walls of the 

light-box to ensure the appropriate reflectance and to control the colour effect of eventual 
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multiple reflections (Connolly and Palus 1998). These illumination characteristics resulted 

in a satisfactory image quality and facilitated extraction of the investigated features. 

 

4.2.3 Image processing 

The quality of images deriving from the image acquisition stage was satisfactory with 

respect to the feature extraction. Two aspects which are especially worth for discussion are 

segmentation of fish/fillets and extraction of colour. 

 

Segmentation 

For isolation of fish or fillets, as a region of interest, from their backgrounds there were 

several factors which had to be taken into consideration. Apart from the proper illumination 

conditions, the type of the chosen background can be just as important. Therefore, the 

background of the scene where the image acquisition took place was chosen to be such that 

its spectral characteristics were different from the spectral characteristics of fish and fillets. 

From experience, failing to do so can make the segmentation of fish or fillets a challenging 

task as it can be difficult to find the real boundary which separates the fillet/fish and the 

background because of the irregular shape of the fillet and possible reflections. This was 

especially important in cases when quantification of the accurate size of fillets or fish was 

necessary. As a result, a suitable background was chosen, which made the segmentation 

operation easier.  

In our research experiments, for the Atlantic salmon fillets, a gray-white as well as a 

light-blue background was used, aiming to choose backgrounds with different spectral 

characteristics than the fillet. In this way, maximal contrast between the red fillet and the 

background was achieved. For the cod fillets, the use of the gray-white background was not 

appropriate because of the white colour of the cod fillets. Thereby, the maximal contrast 

between the cod fillet and the background of the scene was achieved with a light-blue 

background. The same is valid for the whole fish. In all cases, we found that the automatic 

segmentation of a fish silhouette was easier with the use of the light-blue background, 

because of different spectral characteristics compared to the colour of fish skin or fillet. 
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When the gray-white background was used, we experienced the segmentation as a more 

challenging task and additional image processing operations were necessary for extraction 

of the exact silhouette of fish. This was mainly because of non-uniform color distribution of 

the skin. The skin of the belly part of Atlantic salmon is white; hence finding the exact 

boundary between the fish and such a background can be difficult no matter how good the 

illumination is. Therefore, we adopted the light-blue colour as a background colour for our 

research experiments. 

 

For segmentation, the global thresholding algorithm was used, which is based on the 

method reported by Otsu (1979). Although trivial, it was sufficient for the purpose of 

isolating the fish/fillet from the background. Because of optimal illumination conditions, 

there was no need for the use of any other more complex algorithm for thresholding. More 

complex schemes of thresholding, would probably add some computational load. 

Therefore, the choice of the global thresholding, as a simple thresholding algorithm, in this 

study, has been optimal because of the illumination conditions. Fast thresholding 

computation and segmentation is known to play an important role on the reduction of the 

overall processing time and achieve improvement of the total performance (Lin 2005). 

 

Colour extraction and grading issues 

In chapter 3, it was shown that the colour of fillets is one of the most important quality 

properties for Atlantic salmon fillets (Anderson 2000; Olafsdottir et al. 2004). Out of all 

sensory properties, colour significantly influences the customer acceptance of the product 

as it is associated with quality, safety and value (Nieto-Sandoval et al. 1999). Therefore, it 

was important to ensure that the colour extracted from the images related directly to the 

colour properties (Finlayson and others 2005) of fillets or any other fish product. This was 

done by taking into consideration a number of aspects such is providing with uniform and 

diffuse illumination under controlled conditions, and eventually, colour calibration of 

images.  However, there are some aspects which deserve special attention. 
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As for the effect of illumination in the perceived colour, it is known that the colour 

appearance depends from the colour temperature of the illumination source (Ayama et al. 

2003) and rendering index. As mentioned above, different types of illumination setups were 

used as the work progressed. Initially, a source with colour temperature of approximately 

2800-2900K was used (Misimi et al. 2007a), which is similar to the illumination type used 

by Strachan et al. (1990). In the light-box, the fluorescent tubes had a colour temperature of 

5000K, which is similar to the colour temperature of the daylight (Sandor and Schanda 

2006). In addition, colour calibration of images was performed in order to provide as good 

colour grading as possible. As long as the colour targets for calibration and grading were 

illuminated with the same respective illumination, we experienced satisfactory colour 

grading results of the fillets, which were in good correlation with the subjective perception 

of colour by human inspectors. 

The main objective with the colour grading is to automatically grade fillets according to 

the existing industrial colour standard for Atlantic salmon (Roche Standard). The grading 

of fillets by colour according to this standard has a high relevance to consumers (Robb 

2001). The colour grading is done to generate different classes of fillets regarding their 

colour scores so that fillets with a certain colour grade are, then, shipped to different 

markets. It was previously shown that certain markets prefer different colour of fillet flesh 

(Misimi et al. 2007a).  

However, in this research, the illumination type that is used in the premises where the 

graded fillets are sold, and how this illumination affects consumers in their colour 

perception has not been taken into consideration. It is known that the type of illumination 

that is used in the retail displays, where the food and fish products are sold, differs from the 

illumination that is used for grading (Saenz et al. 2005). Therefore, the retail display 

illumination can make the fillets appear more yellowish or reddish, depending on the colour 

temperature of the illumination and interference of the ambient illumination around. In this 

situation, the consumers may not have the same perception of the colour label of the fillet, 

as graded in the plant under a different illumination source. This is one aspect of 

illumination which may be addressed in the future, if found relevant. 
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During the research, regarding colour, there were also discovered new aspects about 

colour grading which were not the initial aim. It was previously shown that colour of the 

pre-rigor fillets may change due to rigor contractions during the ice storage (Robb and 

Warris 1997). By using computer vision, we found that the colour of post-rigor Atlantic 

salmon fillets is significantly different from the colour of the same fillets in pre-rigor 

(Erikson and Misimi 2007b, in press).  Therefore, any colour grading of fillets in pre-rigor 

would not correspond to the actual colour of fillets in post-rigor, resulting in erroneous 

colour labelling of fillets.  
 
4.3 Implications of the research 
 

4.3.1 Availability 
 
The results of the research can be implemented industrially since the computer vision is an 

available technology which makes possible the low cost implementation of the proposed 

solutions. This plays an important role since, as previously shown in sections 1.3 and 4.1, 

there are sensor technologies which, due to the cost, unavailability, physical constraints and 

speed limitations, can not deliver equipments for on-line use, although the application of 

such a technology may be suitable for the evaluation of a given quality parameter. For 

example, it was shown that MRI, despite good capabilities in the compositional analysis of 

fillets (Veliyulin et al. 2007), presently has not the type of the availability that the fish 

processing industry needs. 

Computer vision, on the other hand, has none of these limitations. Not only it is fast, 

consistent, and robust enough, but also the size of the instruments is such that they can be 

housed in a relatively small space, above the conveyor belts. The easy access and low-cost 

of cameras, lenses, illumination, fast PCs, and relatively easy maintenance, altogether, 

make the computer vision-based solutions affordable for the industrial use. 

 

4.3.2 Automation 

The proposed solutions can be used for automation of the above mentioned quality 

evaluation operations in a typical farmed fish plant line. The most important benefits from 
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automation of fish operations are: 1) increase of profitability by low cost production; 2) 

automated quality grading; 3) higher percentage of processed products; and 4) a more rapid 

processing and quality evaluation of fish products resulting in the increased production 

volume. Altogether, these benefits can result in a higher degree of automation of the 

Norwegian fish industry in general. This can strengthen the position of the Norwegian fish 

industry in the world market against the low-cost production and processing countries such 

as Chile, China, and Poland. As a result, it can also prevent the flagging out of the domestic 

fish processing plants abroad. In addition, Norway may arise as a global supplier of 

automated processing technology. Last but not least, all these factors can also make the fish 

industry as an attractive working place. 

Therefore, a higher degree, preferably full, of automation of the fish industry will make 

the productions costs lower, while at the same time increase the quality of the products and 

their quality assurance, especially with the use of computer vision as a non-destructive/non-

contact, and rapid sensor technology. This can have a manifold reflection in the value 

generation over the entire fish production chain.  

In addition to automation, the closeness of Norwegian fish industry to fish resources will 

affect the quality of fish products, measured in freshness, which is an important advantage 

compared to the low-cost processing countries. This implies also that, with automation, the 

utilization of the raw by-products such as heads of fish, fish entrails, and filet cut-offs will 

remain in the country, since the Norwegian fish industry will be in a position to export 

more bone and skinless products and less unprocessed whole gutted fresh or frozen fish. 

From utilization of by-products, useful products can derive through processing and value-

adding. Apart from the nutritional use, proteins, fatty acids, and minerals of the by-products 

can be used for production of the ingredients for health, pharmaceutical, or cosmetic 

products. Altogether, these factors will provide with the possibility to develop new fish 

processing products, something that is possible only for the countries with a direct access to 

fresh fishery products, such as Norway. 
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CHAPTER 5 

 
Conclusions 
 

In this thesis, computer vision based solutions for a number of fish operations along the fish 

processing line were developed. In general, we have demonstrated that computer vision 

methods can be successfully applied in automation of fish processing line. 

 

5.1 Contributions 
 
The main contributions of this thesis are as follows: 

In chapter 1, after a brief description of the situation in Norwegian fish processing 

plants, a review of the available technologies which can have a potential for use in 

automation of fish processing was given. The review of technologies resulted in selecting 

computer vision as the technology which seemed to be best suited for automation of a 

number of operations in a typical fish processing line.  

In the beginning of chapter 3, the proposed solution for the inspection of the bleeding 

degree in the body cavity of the whole Atlantic salmon prior to quality-class grading was 

presented. This is a part of the contribution described in Paper 6. By segmentation of the 

body cavity of the whole Atlantic salmon and by performing a colour based analysis, it was 

shown that the degree of bleeding correlated well with colour parameters both in the CIE 

Lab as well as in the RGB normalized colour space. This colour analysis was used for 
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designing a classifier with two classes labelled as “OK” and “Wash”, based on the Linear 

Discriminant Analysis. The classifier was able to grade fish that needed re-washing of the 

body cavity due to the presence of blood, labelled as “Wash”, from those which did not 

have any residual blood in the cavity, labelled as ‘OK’, and showed a good agreement with 

the ground truth labelling. It was shown how this type of quality grading can be solved with 

a design of a relatively simple classifier. 

 

Further in this chapter, a design of a classifier for quality grading of whole Atlantic 

salmon in different quality classes was presented. The results of this work are a part of 

contribution described in Paper 1 and Paper 5. In the proposed solution, by segmentation of 

the silhouette of the Atlantic salmon from the scene, the algorithm is able to extract non-

redundant geometrical parameters describing the shape of each individual salmon. On basis 

of these features a classifier was designed. The classifier employed the linear discriminant 

analysis-LDA to separate fish between the classes. For the given dataset, it was shown that 

the average correct rate of classification was in a good agreement with the manual 

labelling. In general, it was shown that by a simple LDA based classifier it was possible to 

simulate the human ability for quality grading. 

 

Design of the computer vision-based sorting system for Atlantic salmon fillets according 

to their colour score was, then, presented. The design of the system and classifier/matching 

algorithm was explained in detail in Paper 2 and 3. Starting from the present industrial 

standard (NS 9402) for sorting of fillets by colour according to Roche Cards, initially a 

Look-up table from these cards was created. These colour scores were used by the 

algorithm in a colour-matching procedure with the flesh of the fillets. The matching was 

performed using the nearest-neighbour principle. As a result, fillets could be classified into 

different colour grades. This classification was not significantly different from the sensory 

evaluation performed by humans and is feasible for on-line industrial purposes. 
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Computer vision system for the evaluation of colour of fillets in CIELab space was 

presented in Paper 2, 3 and Paper 6. This system can be used for evaluation of colour, as a 

quality parameter of fillets, in both fresh and smoked Atlantic salmon fillets. The 

measurements of the colour by this method are in the form of CIELab values, similar to the 

ones generated by Minolta Chromamater or any other colorimetric/spectrometric measuring 

instrument. The advantage of the method by computer vision is viewed on the ability of the 

algorithm to generate Lab values for different parts of the fillet as well as for the entire 

fillet. This is contrary to the Minolta measurements, where the generated values are 

obtained by interrogating a very small area of the fillet (8mm). As Minolta chromameter is 

primarily designed for flat, nontranslucent and diffuse surfaces, the colour a and b values 

generated by Minolta are very low, indicating a greyish colour while the salmon fillet is 

orange/read, which makes this device an inappropriate for measurement of colour of fillets. 

Our computer vision method can also be used for detection of colour non-uniformities 

(discoloration) in both fresh and smoked fillets. Because of the optimal illumination 

conditions, the method can be used for any other fish product for the purpose of colour 

evaluation in on-line conditions. 

 

Development of the computer vision method for measurements of transient 2D and 3D 

changes in size and shape of fillets during the rigor process and ice storage was presented in 

Paper 4. The method was capable to measure the size and shape of the Atlantic salmon and 

cod fillets, and their changes during the ice storage, with a high precision. This was 

demonstrated by comparison of the exhausted and anesthetized fillets. From a single fillet 

image 2D size and shape of the fillets was extracted in the form of length, area, width and 

roundness. Regarding 3D size, by laser scanning of the fillet, it was possible to obtain size 

in the form of combination of the height and the area of the cross-section. Integration of 

these profiles along the entire fillet length can result in the 3D volume images of fillets, 

suitable for volume change study and measurement. This computer vision method can be 

used not only for size and shape analysis of the fillets but also of fish and other fish 

products, both in on-line and off-line conditions. Together with the colour 
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measurement/matching ability, this method can also be used for fully feature evaluation and 

classification of any fish or food product from a single image (colour, size and shape in 2D 

and 3D). 

 

The findings in this thesis are original work and are published in the international 

conferences/journals with peer review. The list of the papers was given in the introductory 

part and they are listed in the Part 2 of the thesis, which begins after this chapter. 

 

Looking back at what has been done in this thesis, it is a general impression that the 

main objectives were met. Although the work in this thesis is not a complete recipe on how 

to fully automate a typical fish processing line, it is an important step towards this goal, 

since it proposes solutions to numerous quality grading/assessment operations along a fish 

processing line. 

The main conclusion that can be drawn from this work is that computer vision is a 

sensor technology that has reached the theoretical and practical level of maturity, and 

industrialization capability, where it can be utilized industrially in fish processing plants, 

something the author recommends to be done in the Norwegian fish industry. The 

versatility, cost, on-line use, maintainability, ease of operation, consistency in evaluation as 

well as contact-free feature of use suggests that computer vision is, presently, a natural 

choice when automation of fish processing plants is to be considered.  
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Abstract: Intensive use of manual labour is necessary in the majority of operations in today’s fish processing plants, 

incurring high labour costs, and human mistakes in processing, evaluation and assessment. Automatization 

of processing line operations is therefore a necessity for faster, low-cost processing. In this paper, we 

present a computer vision system for sorting Atlantic salmon according to size and shape. Sorting is done 

into two grading classes of salmon: “Production Grade” and “Superior/Ordinary Grade”. Images of salmon 

were segmented into binary images, and then feature extraction was performed on the geometrical 

parameters to ensure separability between the two grading classes. The classification algorithm was a 

threshold type classifier. We show that our computer vision system can be used to evaluate and sort salmon 

by shape and deformities in a fast and non-destructive manner. Today, the low-cost of implementing 

advanced computer vision solutions makes this a real possibility for replacing manual labour in fish 

processing plants.

1 INTRODUCTION 

During the last few decades, the number of whitefish 
processing plants in Norway has diminished 
considerably for several reasons. In aquaculture, 
although the production volume of salmonids has 
increased tremendously over the same period of 
time, most of the fish are currently exported as raw 
material, i.e. gutted fresh or frozen. In both sectors, 
particularly due to the high labour costs, fish 
processing is often unprofitable. For instance, for 
slaughtering of farmed salmonids, the needed 
manpower is typically 25-40 persons per shift to 
process 40-100 tons of bled, gutted fish packed in 
ice. Therefore, greater automatization of various unit 
operations, preferably at low investment costs, 
represents a common strategy within the fish 
processing industry today. A fish processing line 
consists of several separate unit operations. 
Arnarson et al. (1988) reviewed and outlined a 
number of possibilities for implementing computer 

vision for automation and improving product quality 
in the fish processing sector. However, several unit 
operations in a fish processing line still rely on, at 
least in part, repetitive manual labour. Manual 
processing and grading has several drawbacks. It is 
influenced by human factors such as mistakes, 
occasional omissions in processing and fatigue. 
These factors may result in imperfections that 
decrease product quality and thereby reduce profit 
(Pau and Olafsson, 1991). Therefore, there is a need 
for automation of basic processing operations to 
obtain faster processing and a more objective and 
consistent quality determination (Strachan and 
Murray, 1991; Gunnlaugsson, 1997; Brosnan and 
Sun, 2002). Here computer vision can contribute to 
further improving the quality of fish products. With 
the latest developments in camera technology and 
the continuous increases in CPU speed, computer 
vision technology has become increasingly more 
relevant. 
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Today computer vision solutions are easy to 
implement with high flexibility and low cost. Until 
recently, the cost of high-resolution, high-speed 
cameras has been comparatively high. These factors 
imply that computer vision can be used effectively 
for online processing of fish (Arnason et al., 1988). 
The non-destructive nature and the sheer speed at 
which the quality of fish can be evaluated and sorted 
are other important factors that encourage the use of 
computer vision based solutions.  
Computer vision has proven successful for online 

process control and inspection of food and 
agricultural products with applications ranging from 
simple automatic visual inspection to more complex 
vision control (Gunasekaran, 2001). Strachan and 
Murray (1991) describe how they developed a 
machine, based on image analysis, for 
discriminating mature herring by sex using infrared 
light. 
Computer vision algorithms for automated 

processing of channel catfish (Ictalurus punctatus) 
have been developed to detect fish orientation, 
identify the head, tail and fins, and to determine 
cutting lines for deheading, detailing, and defining 
(Jia et al., 1996). Moreover, automated separation 
has been developed for several marine fish species 
(Wagner et al., 1987; Strachan and Murray, 1991; 
Strachan, 1993) and for freshwater species such as 
carp (Cyprinus carpio), St. Peter’s fish 
(Oreochromis sp.) and grey mullet (Mugil cephalus)
(Zion et al., 1999). Walkott (1996) gives examples 
on how shape region features can be used for object 
recognition. 
When farmed salmonids are slaughtered, the fish 

size distribution approximately follows a Gaussian 
distribution curve. From a processing point of view, 
a uniform fish size is much favored. This has to do 
with production planning including issues such as 
the correct adjustment of gutting machines, possible 
further processing to a certain uniform product (e.g. 
fillet) and delivery of chilled gutted fish of a given 
weight class to a specific costumer. Another factor is 
that a certain fraction of the fish carries different 
kinds of blemishes that originate from the farming 
period. Sexually mature fish, fish with different 
body deformities (‘short tails’ and ‘humpbacks’) 

Figure 2: Superior class salmon. 

Figure 3: Production class salmon. 

(fig. 3) and skin defects (excessive loss of scales, 
wounds, etc) all occur. Accordingly, our goals were 
to develop computer vision based methods able to 
(fig. 1):  
(i) reject sexually mature fish and sort/grade 

fish with deformities in shape. Such a 
sensor system should be placed prior to fish 
processing since such fish are not worth 
processing. 

(ii) grade fish according to these shape   
parameters. 

Today, salmonids in Norway are graded 
according to external quality as follows: ‘Superior’ 
(no blemishes), ‘Ordinary’ (minor degree of 
blemishes), (fig. 2), ‘Production’ (part of the fish 
may be used for human consumption) (fig. 3) and 
‘Rejected’ (not for human consumption, see (i)).  

Humpback

Short tail

Streamlined shape

Long tail

Figure 1: Stages of classifier design. 
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2 MATERIALS AND METHODS 

2.1 Fish and fish sampling  

Atlantic salmon (Salmo salar) from one fish 
processing plant were used. Group I: Nine 
‘Production Grade’ (weight: 3.58 ± 0.23 kg; length: 
50 ± 2 cm; were selected from the slaughter line on 
12 Oct 2003. The fish were bled and gutted at the 
plant.

Figure 4: Shape parameters for feature extraction. 

Group II: Fourteen “Superior/Ordinary Grade” fish 
were collected from the same commercial 
processing line on 12 Oct 2003. Thus, the fish 
(‘Superior Grade’) had been bled and gutted at the 
plant. The mean fish weight and length were 4.60 ± 
0.4 kg and 59 ± 3 cm, respectively.  

2.2 Image Acquisition  

The images, intended for feature extraction, were 
captured using an image acquisition system for a 
digital colour camera (Nikon Coolpix 5000, Japan) 
at a resolution of 1600 x 1200 pixels and acquired in 
the JPEG format. These were still images. However, 
ccommercial industrial full frame digital cameras 
with comparable resolution are available at near 
real-time speeds (HVDUO-5M, HanVision Co, 
Korea). The use of line-scan colour cameras is most 
likely preferable in an industrial setting, due to their 
high-speed and the fact that fish in most cases are 
transported on conveyor belts. The white balance of 
the camera was set using the camera’s automatic 
white balance. The fish were illuminated using only 
one illumination setup. This setup used two parallel 
halogen lamps under a white glass board to provide 
the necessary illumination, with colour temperature 

2900 K. The lamps were placed 30 cm below the 
fillet. The images were acquired with a camera 
mounted in a stand on a 90˚ angle, 100 cm above the 
fillet. Images were processed with Adobe Photoshop 
prior to processing with Matlab Development 
Environment 7.01 (Mathworks, Natick, 
Massachusetts, USA). Images were filtered, scaled 
and rotated appropriately in the Matlab Image 
Processing toolbox. Images originally had random 
orientation, with a different angle to the horizontal 
axis. Some images were in the flipped orientation. 
By using and writing Matlab functions, all these 
images were oriented in the same direction prior to 
the feature extraction procedure in Matlab. 

2.3 Feature Extraction  

The features are derived from the geometry of the 
salmon’s shape. Standards that the fish processing 
industry uses for classification of “Production 
Grade” and “Superior/Ordinary Grade” are also 
based on the geometrical parameters of salmon 
shape. An inspector at the processing line usually 
looks after parameters such as ‘humpback’, ‘short 
tail’ and ‘sexual maturity’ when he wants to detect 
and grade a “Production Grade” salmon. 
“Superior/Ordinary Grade” salmon has a 
‘streamlined’ shape and with a ‘long tail’ and 
reduced ‘roundness’ compared to “Production 
Grade” salmon. 
Based on the industrial standards and the 

geometrical parameters defining the shape of salmon 
(fig. 4), four features were chosen for extraction, 
which would allow us to classify the salmon. The 
first parameter was the ratio ( lwR ):

maxW

L
R t
lw                                  (1)

where tL  is the total length of fish from its nose to 

the end of the tail, and maxW is the maximum width 

of fish. 
The second parameter was the area ratio ( rA ):

2

1

A

A
Ar                                      (2)

where 1A  is the area on the front half of the fish and 

2A  is the area on the back. 

The third parameter was the ratio ( rW ):

min

max

W

W

rW                                 (3)
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where maxW is the maximum width of fish and 

minW is the minimum length of the fish.  

The final parameter was the ratio ( tlR ):

t

l
tl

L

T
R                                            (4) 

where lT  is the tail length, and tL is the total length 

of the fish. 
In this way we used a total of four features ix ,

4,3,2,1i :

lwRx1                                        (5)

rAx2                                         (6)

rWx3                                        (7)

tlRx4                                        (8)

creating the (1x4) feature vector: 

                         4321 ,,, xxxxx                      (9)

Figure 5: Segmented binary image. 

The geometrical parameters in figure 4, which 
are used in the feature’s definition, were derived in 
Matlab from the segmented binary image of the 
salmon (fig. 5). The size of the image was defined 
with the pair cr, , where r  is the total number of 

rows, and c  is the total number of columns. The 

images were cropped and scaled in Matlab in such a 
manner that the first column is the start point of the 
nose of the fish, and the last column corresponds to 
the end of the tail. Consequently the total length tL ,

which is the length from the nose to the end of the 
tail, was defined as equal to the total number of 
columns in the image: 

cLt                                             (10) 

The width W  of fish is the width of the fish at 

any point. In Matlab it was calculated as the number 
of pixels equal to one (=1) in the row direction at the 
given column position. The maximum width of fish, 

and the appropriate column position, where the 
maximum width occurred, was defined as: 

WJW
j

maxarg,max                (11)

The maximum width occurred at the column 
position located between the dorsal fin (fig. 4) and 
the belly. The minimum width of the fish was 
defined in the same fashion, where we ensured that 
the searching was done on the back side of the fish, 
from column J  to the end of the tail. The minimum 

width of a fish, together with the position where it 
occurred, was: 

WKW
j

minarg,max                (12)

In the rAx2  feature, 1A  in figure 4 was 

defined as the area of the front half of the fish, from 

the head of the fish until the midpoint J  at the dorsal 

fin, where the maximum width occurred. 2A , on the 

other hand, is the area portion of the back half of the 
fish from the midpoint position J  from the dorsal 

fin to the end of the tail. The reason why the area 
ratio was recorded as a feature was that the ratio 
aspect analysis indicated that the “Production 
Grade” fish was rounder than the 
“Superior/Ordinary Grade”. The mean area ratio for 
“Production Grade” fish was 1.3 ± 0.183, while for 
“Superior/Ordinary” fish the mean area ratio was 0.9 
± 0.15. 
Tail length lT  (fig. 4), was defined as the 

difference: 

esl TTT                                  (13)

where, sT  was the position calculated as the 

beginning of the tail, seen from the tail side of the 
fish, and which was calculated as the difference 
between the total length of the fish tL  and the value 

which was 10% of the tL .

10

t
ts

L
LT                                (14)

The point position eT  was designated as the end 

of the tail and was located at the ventral fin. 
Calculating this involved using more parameters. 
The ventral fin of salmon served as the boundary for 
the tail length. After localizing the point K , where 
the minimum width occurred, the middle 
position mR was found, which was the row point at 

half of the minW  . By scanning the binary image from 

the midpoint J to the point K we found the point eT

where the width of the fish was 50% bigger than 

2

minW
Whalf :
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KjJWWWT half
j

e ,
2

3
;arg                         (15)

2.4 Training of the Classifier 

A dataset consisting of 23 labeled binary images of 
salmon was used to train the classifier. Nine images 
of “Production Grade” label salmon and fourteen 
“Superior/Ordinary Grade” label salmon were used 
for this purpose. Prior to training we had to decide 
what type of classifier was most suitable for this 
case. By analyzing the adopted criteria for feature 
extractions one by one, we determined how good 
these criteria were if used as a single classification 
criterion.  

Using only a single criterion for classification 
was ineffective. We could not reliably separate the 
“Production Grade” from the “Superior Grade” 
salmon. By combining two or more criteria, the 
separability between classes was more reliable. By 
applying aspect ratio lwR  in combination with the 

area ratio rA , the separability of classes improved 

(fig. 6). Similar results were obtained with the other 
combinations of features.  

The decision boundary in figure 6 implied that 
a linear classifier might perform the classification 
quite well. Therefore, we applied Linear 
Discriminant Analysis – LDA to train the classifier 
and took into consideration all four features. The 
function written in Matlab was based on the Fisher’s 
linear discriminant (Theodoridis and Koutroumbas, 
2003): 

2
2

2
1

2
21 )(

FDF                      (16)

Testing of the classifier’s performance was 
done with the Leave One Out (LOO) method 
(Theodoridis and Koutroumbas, 2003). Training of 
the algorithm was done with N-1 samples and the 
test was carried out using the excluded sample. If 

1X  and 2X were the respective data for classes 1-

“Production Grade” and 2-“Superior Grade”, then 
the training was done using )(1 jXX  and 

)(2 jXX  samples respectively and the test was 

carried out with the excluded sample )( jX .

N

j

X

X

X

X

,1

,1

2,1

1,1

......

......
  Train with (N-1) 

N

j

X

X

X

X

,1

1,1

2,1

1,1

......

........
   Test 

Figure 6: Features of aspect ratio lwR  and area ratio rA .

The dark line could serve as a decision boundary for our 

classifier. Classification error was lower than when we 

used only one feature. 

Figure 7: Linear discriminant analysis for training the 

algorithm with all four features used. 

3 RESULTS AND DISCUSSION 

Twenty three salmon of “Production Grade” and 
“Superior/Ordinary Grade” were sorted according to 
four features. The classification error was three, two 
from “Production Grade” and one from 
“Superior/Ordinary Grade”. In percent this classifier 
has an 87% (20 out of 23) sorting reliability as 
estimated using the Leave One Out method.  

One of the two “Production Grade” salmons 
which are not correctly classified lies further to the 
right (fig. 7). From the data log we have from the 
day we picked the fish at the processing plant, the 
existing ‘outlier’ has neither ‘humpback’ nor ‘short 
tail’. It was classified as “Production Grade” salmon 

jX ,1
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from the production chief because it had a ‘black 
head’. The work presented, carried out in laboratory 
conditions, with this classification reliability has to 
be repeated with a bigger dataset and repeated in the 
working conditions in the fish processing plant. The 
work shows a feasibility of sorting one type of fish 
into different grading classes based on the standards 
specified by the fish processing industry. There are 
several problems on which one must focus attention 
when doing image acquisition of salmon and 
labelling them into grading classes: 

1. The illumination/backlighting system has 
to be carefully set in order to provide easy 
thresholding and segmentation of fish 
images. 

2. Labelling of salmon, for the training 
phase, into grading classes has to be 
carried out by experts; otherwise one 
might end up with fish having, for 
instance, a wrong class label without 
satisfying any of the parameters defining 
that class. 

4 CONCLUSION 

A computer vision system and algorithm for sorting 
Atlantic salmon into two grading classes is 
described. This classification algorithm works with 
an estimated sorting reliability of 87%. An improved 
version of this system can potentially be used to 
substitute manual inspectors in the fish processing 
line. Further work is required in acquiring a bigger 
dataset and expert help on the correct, unmistakable 
labelling of grading classes, before building a 
prototype. 
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Abstract: The changes in skin and fillet color of anesthetized and exhausted 

Atlantic salmon were determined immediately after killing, during rigor mortis and 

after ice storage for 7 days. Skin color (CIE L*, a*, b*, and related values) was 

determined by a Minolta Chroma Meter. Roche SalmoFanTM Lineal and Roche 

Color Card values were determined by a computer vision method and a sensory 

panel. Before color assessment, the stress levels of the 2 fish groups were 

characterized in terms of white muscle parameters (pH, twitches, rigor mortis and 

core temperature). The results showed that perimortem handling stress initially 

significantly affected several color parameters of skin and fillets. Significant 

transient fillet color changes also occurred in the prerigor phase and during the 

development of rigor mortis. Our results suggested that fillet color was affected by 

postmortem glycolysis (pH drop, particularly in anesthetized fillets), then by onset 

and development of rigor mortis. The color change patterns during storage were 

different for the 2 groups of fish. The computer vision method was considered 

suitable for automated (on-line) quality control and grading of salmonid fillets 

according to color.  

 
 Keywords: Computer vision, skin color, fillet color, handling stress, rigor mortis,  Atlantic salmon 
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Introduction 
The red/orange coloration of salmon and rainbow trout fillets is an important product 

property appreciated by consumers. The flesh color should be deep red/orange and evenly 

distributed along the fillet. Proper coloration is dependent on the astaxanthin and 

cantaxanthin contents in the flesh which are affected by feed composition and feeding 

regimens before harvesting (Nickell and Springate 2001). The high fat content in farmed 

salmonids causes dilution of astaxanthin and interferes with color perception 

(Christiansen and others 1995). The color is considerably paler in high fat regions, such 

as the belly flap, compared with, for example, muscular tissues above the sideline. This is 

because fat is not evenly distributed along the fillet (Aursand and others 1994). 

Moreover, Robb and Warriss (1997) have shown that fillet color perception also depends 

on perimortem handling stress. They found that fish exhibiting high muscle activity at 

slaughter had about one unit lower Roche Color Card readings than those of unstressed 

fish when determined 24 h post mortem. This difference persisted when readings were 

repeated post rigor, after 4 days. Likewise, electro-stimulation of rainbow trout 

(Oncorhynchus mykiss) muscles immediately after death to simulate premortem muscle 

activity resulted in significantly higher flesh L* and hue (Hab
o) values, as well as lower 

chroma (C*
ab) values compared with anesthetised fish.  After 3 d of storage, the 

differences in color persisted, but the chroma values of the electro-stimulated fish 

increased. Roche Color Card scores were also lower for electro-stimulated muscles (Robb 

and others 2000). In the case of Arctic char (Salvelinus alpinus), stress reduced the 

muscle a* value and affected L* values depending on the hatching temperature 

(Jittinandana and others 2003). On the contrary, by comparing Atlantic salmon (Salmo 

salar) subjected to carbon dioxide (high stress) or iso-eugenol (low stress) anesthesia, 

Kiessling and others (2004) concluded that the flesh from the carbon dioxide-exposed 

fish had slightly higher a* and b* values than the fish exposed to iso-eugenol. The fish 

were filleted and evaluated after ice storage for 5 days. After frozen storage for 12 

months, the Roche SalmoFanTM color scores of cutlets were about one unit higher for the 

carbon dioxide-exposed fish. 
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Iger and others (2001) suggested that alterations in skin color may be used as a stress 

indicator for fish reared in aquaculture. Stress induces skin structural changes in several 

species and the fish darken with the onset of the stress incident. Subsequently, the fish 

turned paler than the control fish. In aquaculture, skin coloration patterns can be regarded 

as an index of animal welfare and as an important quality factor (market value) for some 

fish species (Pavlidis and others 2006). Postmortem measurements of skin color during 

storage have been suggested as a method to monitor quality changes, such as in cod 

(Gadus morhua) where skin L* and a* values show a fairly good linear relationship with 

both QIM values and changes in skin appearance (Schubring 2003). Significant changes 

in skin coloration patterns during ice storage for up to 7 days post mortem have also been 

observed for farmed red porgies (Pagrus pagrus) (Pavlidis and others 2006). 

 

Several analytical methods can be employed for assessment of fillet color. Roche Color 

Card and SalmoFanTM are well established concepts for quality control in the salmonid 

industry. Relationships between astaxanthin concentrations and Roche Color Card and 

Roche SalmoFanTM scores have been established (Christiansen and others 1995; Johnston 

and others 2000). 

 

CIE L*a*b* values are determined instrumentally. The intensity of redness (a*) increases 

with increasing carotenoid contents in raw flesh of Atlantic salmon, while lightness (L*) 

decreases and yellowness (b*) is not affected (Skrede and Storebakken 1986). Higher a* 

values are observed with increasing Roche Color Card scores (Christiansen and others 

1995). Increasing fat content in raw fillets has been shown to coincide with increasing L* 

and b* values (Mørkøre and others 2001). Furthermore, the thickness of the flesh is 

another factor affecting color values (Stien and others 2006).  

 

Computer vision has previously been used for sorting different fish species where the 

color was obtained from the red, green and blue (RGB) outputs from a video camera 

(Strachan 1993). After color calibration, L*, a*, and b* values were determined in brown 

trout (Salmo trutta) cutlets by computer vision and image analysis. It was found that the 

L* values significantly decreased from the head to the tail and that higher muscle fat 
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contents resulted in higher L* values (Marty-Mahé 2004).  Automated image analysis has 

also been suggested as a rapid method to quantify composition and color of rainbow trout 

cutlets (Stien and others 2006).  

 

Based on sampling of Atlantic salmon with different stress levels (as defined by white 

muscle pH) at several commercial processing plants, we have never been able to confirm 

that differences in perimortem stress affect postrigor fillet color. This suggests that color 

differences can only be observed under controlled conditions when extreme cases of 

stress, such as with anesthetized and exhausted fish groups, are compared.  Another 

factor might be the time post mortem at which the color is assessed. In the present 

experiment, our goals were to study potential skin and fillet color differences at the point 

of slaughter, during rigor mortis, and after ice storage for 7 days, at a time when the fish 

are typically available to consumers. The extremes of premortem muscle activity 

(anesthetized and exhausted salmon) were used to elucidate whether (1) perimortem 

handling stress affected initial skin and fillet color, (2) fillet color changed during the 

course of rigor mortis, (3) skin and fillet color differences were discernible after ice 

storage for a week, and (4) a computer vision-based method was suitable for on-line 

measurements of skin and fillet color. 

 

Materials and Methods 

 
Fish 

Commercially farmed Atlantic salmon weighing 3.8 ± 1.1 kg with fork lengths of 66 ± 6 

cm (n=40) were netted from the sea cage and transferred to a 1000-L tub. The fish had 

been fasted for 8 days. The tub was transported (< 5 min) by boat to the quay where the 

fish were netted and divided equally into 3 transport tanks on a truck. The tanks had just 

been filled with fresh seawater. The fish were transported under constant oxygenation for 

2 h to our laboratory at a fish density of 17 kg m-3.  By arrival, the fish were calm; 

however, some individuals were observed gulping air near the water surface. Foaming 

was observed in all tanks. The salinity was 35 ppt and the water temperature, pH, 

dissolved oxygen (DO), TA-N, and alkalinity in the 3 tanks ranged from 6.7 – 6.8 oC, 6.3 
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- 7.1, and 114 -310 % saturation, 0.38-0.84 mg L-1, and 113 - 121 mg L-1, respectively. 

The low pH indicated elevated levels of carbon dioxide. The fish were netted from the 

truck and transferred (< 5 min) by means of seawater-filled 200-L tubs to 2 holding tanks 

(4000-L) in our laboratory. The inside color of the holding tanks was green and the 

photoperiod was 8L:16D. The light source in the room consisted of 8 Osram warm white 

L58W/830 fluorescent tubes. Twenty fish were kept in each tank at 22 kg m-3. Fresh 

seawater was pumped, sand-filtered and circulated to the tanks at a rate of 5 m3 h-1. After 

about 2 h, the fish exhibited normal behavior and distributed themselves evenly in the 

water column. The water temperature, pH and DO in both tanks were 8.8 - 9.0 oC, 7.83, 

and 80 - 90% saturation, respectively, throughout the 5 days that the fish were kept in the 

tanks. They were not fed during this period. 

 

Fish sampling – defining stress 

The day before slaughter, one tank was covered with black plastic to reduce possible fish 

stress. On the next morning, the water supply to this tank was closed and oxygen gas was 

distributed to the tank using a diffuser (Point Four Systems Inc, Richmond, Canada). A 

predetermined amount of AQUI-STM (AQUI-S Ltd., Lower Hutt, New Zealand), 17 mg 

L-1, was added to the tank to anesthetize the fish. During this process, no fish struggled 

and the DO levels were kept within 97 – 104% saturation. The first fish was then netted 

from the tank and killed by iki jime using an ‘Iki Jime Tool’ (AQUI-S Ltd.). Each fish 

was subjected to various measurements before the next one was sampled. Immediately 

after brain destruction by iki jime, a blood sample (3-5 mL) was withdrawn from the 

ventral aorta region (behind the operculum) using a heparinized syringe. The blood 

samples were subjected to determination of hematocrit, plasma chloride, and glucose. 

After making a cut with a scalpel between the side line and the dorsal fin, the initial white 

muscle pH and body temperature were measured. Finally, length and weight were 

recorded. The skin color was immediately determined. The fish were sampled over a 

period of 2 h. All fish were alive when sampled except 2 individuals that were sampled 

after about 1.5 h. They were declared dead as they did not respond to stimuli. 
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In the other tank, the fish were chased to exhaustion while the water level was gradually 

reduced to about 15 cm height. In sum, the fish were stressed for 30 min before the first 

fish was netted and killed by iki jime. All 20 fish were sampled and analyzed as with the 

anesthetized group within 2 h. The fish were not allowed to recover from stress during 

this period. No fish were dead by the time of sampling and no fish (both groups) were 

bled. 

 

 

Figure 1-Atlantic salmon fillet color (CIE L*a*b*) was determined at 4 locations L1-L4 (Minolta 
Chroma Meter), as the average of 3 regions R1-R3, or as the average of the whole fillet (computer 
vision and image processing). The measurements were carried out immediately after slaughter and 
filleting, during the course of rigor mortis, and after ice storage for 7 days. The total fat content of a 
slice (10 x 5 cm) within region R1 was 11.5 ± 3.1 % (n = 10). 
 

Postmortem assessment of color 

Immediately after killing and assessments of stress, the skin color was measured at 6 

different locations (Figure 1) on each side of the fish (n = 40). Since there were no 

differences (p>0.05) between the 2 sides, only data from the left side of the fish, which 

was not in direct contact with ice during subsequent storage, are reported here. Seven fish 

in each group were gutted, washed and placed in styrofoam boxes. The rigor mortis 

development in these fish was assessed along with core temperature, muscle pH and 

muscle twitches in restricted zones (few cm2). After 7 days of ice storage, the skin color 

was assessed once more at the same locations as before. 

 

The remaining 13 fish in each group were filleted immediately after killing. The surfaces 

of the fillets (skin on) were washed briefly (blood removal) in running tap water before 

they were labeled. All fillets (52 in total) were subjected to initial color measurements (t 
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= 0 h) at different locations (Figure 1). Subsequently, the color changes during the course 

of rigor mortis (t = 0, 11, 22, 27, 33, 45, and 70 h) and after 7 days (t = 168 h) of ice 

storage were recorded. Between each measurement, the fillets were stored in styrofoam 

boxes on ice (skin side down) in a cold room (5 oC). 
 

 Analytical methods 

Body and core temperature. The fish body temperature was measured in the epaxial 

muscle between the sideline and the dorsal fin immediately after killing. In processed 

fish, the core temperature was measured near the backbone in the thickest part of the fish. 

A Testo 110 thermometer (Testo AG, Lenzkirch, Germany) was used.  

 

Muscle pH. The pH was measured directly in the white muscle in the same location as 

the temperature was determined. After death, the pH was measured during the course of 

rigor mortis and after ice storage for 7 days using a shielded glass electrode (WTW 

SenTix 41) connected to a portable pH meter (model WTW 315i; WTW, Weilheim, 

Germany). During the measurements, the instrument was frequently calibrated using pH 

4.01 and pH 7.00 buffers. Frequent cleaning of the electrodes was needed to obtain 

consistent results. 
 

Skin and fillet color by computer vision. Color analysis was done in CIELab color 

space. Images were captured using an image acquisition system for digital cameras. 

Whole fish or fillets were illuminated in a light box (Waagan AS, Skodje, Norway) 

equipped with two fluorescent tubes (18 W, 5000K). A color digital camera, PixeLINK 

(PixeLink, Ottawa, Canada), was mounted on the top of the illumination box at a vertical 

distance of 60 cm from the fillet sample and images were captured at the maximum (1280 

x 1024) resolution. Images were stored in the computer for later evaluation without 

compression in a bitmap file format (.bmp) in three-dimensional RGB (red, green and 

blue) color space, and processing was carried out in the captured images. The images 

were filtered from noise with a median filter and color was calibrated using a 

GretagMacbeth ColorChecker chart as a color target with 24 color patches (Colour-

Science AG, Hinwil, Switzerland). The device-independent CIE 1931 XYZ values of the 
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colour patches were used for this calibration. Consequently, the calibrated color data 

were converted into CIELab color space using the expressions defined in Wyszecki and 

Stiles (2000), resulting in 3 gray-scale color maps of the L*, a*, and b* components. This 

method determined fillet color in the CIELAB color space by calculating the mean L* a* 

b* values for the entire fillet. Each gray-scale color map of the fillet, prior to calculation 

of mean L*, a*, and b*, was segmented by generating a binary mask (Gonzales and 

others 2004). Then, CIE L*a*b* values for the entire fillet were obtained by calculating 

the average value for CIE L*, a* and b* over the pixels of the fillet region of interest.  

 

Fillet color was also measured over regions (R1-R3, Figure 1) by applying the color 

matching computer vision algorithm (Misimi and others, 2007) according to Roche 

SalmoFanTM and Roche Color Card scales (regions R1 = 5 x 16 cm; R2 and R3 = 3 x 13 

cm). The Roche color scores were used to create a look-up table which was subsequently 

used by the computer vision algorithm for fillet color matching. 

 

Roche Color - Fillet color was assessed visually by using both Roche SalmoFanTM Lineal 

and Color Card (Hoffman-La Roche, Basel, Switzerland). The color scales ranged from 

20 (pink) to 34 (dark red) and from 11 (light orange) to 18 (dark red), respectively. At 

Day 7, 3 people at our laboratory evaluated overall color using both Roche color scales 

(‘sensory panel’). All readings were performed in the light box mentioned above.  

 

Minolta Chroma Meter. CIE L*a*b* values were determined on skin (t = 0 h and 168 

h) and fillets during the course of rigor mortis by using the Minolta Chroma Meter CR-

200 (Minolta, Osaka, Japan). The instrument readings cover an area of 8 mm in diameter. 

The hue angle (0o = red hue; 90o = yellow hue) and color saturation (higher values mean 

more intense color perception) were calculated as Ho
ab = arctan (b*/a*) for a* > 0 or Ho

ab 

= 180o + arctan (b*/a*) for a* < 0, and as C*ab = (a* 2 + b* 2)1/2, respectively. The Entire 

Color Index (ECI) for color assessments was also used (Pavlidis and others, 2006).  

 

Rigor mortis. The course of rigor mortis during ice storage was determined using the 

Rigor Status Method [0 = pre- or postrigor; 1 = rigor onset (first sign of stiffness, for 
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instance. in the neck or tail region); 2 = rigor (a larger area is clearly in rigor); 3 = whole 

fish in rigor; 4 = stronger rigor; 5 = very strong rigor (the fish is extremely stiff, rod-like)] 

(Erikson 2001). Our goal here was to study whether muscle structure (shrinkage during 

rigor) could explain color changes induced by changes in light refraction. The fillet color 

(Minolta Chroma Meter) measurements during rigor mortis were carried out 

simultaneously with the rigor assessments of whole fish.  

 

Statistical analysis 

Unpaired Student’s t-tests (assuming equal variances) were used to compare the levels of 

plasma chloride, hematocrit, blood glucose, NMR relaxation times, and populations, as 

well as fillet Roche color values of anesthetized and exhausted fish. The effect of 

treatment (anesthetized as compared to exhausted fish) and postmortem storage time on 

CIE L*a*b* and related color values were analyzed using a two-way ANOVA. Where 

significance (p<0.05) was indicated, a Tukey post hoc test was run. All data are presented 

as mean values ± standard error of means (SEM).  

 

Results and Discussion 
Blood chemistry (plasma chloride, hematocrit and glucose) of both fish groups showed 

clear stress-related changes related to antemortem muscle activity (exhausted fish) and 

some extent, due to the effect of the anesthetic per se (data not shown).  

 

White muscle biochemistry and early postmortem changes  

The initial white muscle pH of the 2 fish groups and the subsequent drop due to 

postmortem degradation of glycogen is shown in Figure 2. Since the AQUI-STM 

anesthetized fish did not struggle, our initial pH values of 7.5 ± 0.1 were typical of rested 

fish. Chasing the fish to exhaustion resulted in use of muscular glycogen and the mean 

initial pH was reduced to 6.7 ± 0.1. The initial pH values of the 2 groups represented the 

in vivo extremes of Atlantic salmon (Booth and others 1995; Erikson and others 2006). 

During subsequent ice storage, the pH of both groups dropped to around pH 6.45. This 

occurred after about 55 h for the anesthetized fish and after 3 h for the exhausted fish. For 

both groups, rigor mortis started when the muscle pH was reduced to 6.6 - 6.7. Thus, 
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perimortem exercise did not seem to affect muscle pH at the onset of rigor. For chinook 

salmon (O. tshawytscha), Jerrett and Holland (1998) arrived at a similar conclusion. They 

also found that onset of rigor contractions coincided with a muscle pH of 6.6. Nakayama 

and others (1992) reported similar results for carp (Cyprinus carpio). 

 

 

 

Figure 2-Initial white muscle pH (t = 0 h) and subsequent postmortem decay during ice storage of 
anesthetized and exhausted Atlantic salmon. Onset of rigor mortis occurred at a pH of 6.6 – 6.7. 
Mean ± SD (n = 7). 
 

The onset of rigor mortis occurred after about 30 h for anesthetized fish. For exhausted 

fish, this happened after less than 3 h (Figure 3). Maximum rigor strength (at 10 h) was 

higher in exhausted fish and these fish had passed through rigor after 30 h. For the 

anesthetized fish, rigor strength peaked at about 48 h and the fish were in the post-rigor 

state after 60 h. The temperature of the fish during the course of rigor mortis might have 

had some influence on rigor strength and fillet color. As both fish groups were iced 

immediately after slaughter, this meant that the stress effect caused rigor in exhausted 

fish to begin to develop with increasing strength at higher body temperatures than with 
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the anesthetized ones. In fact, for exhausted fish, the rigor peaked roughly around the 

time that the core temperature had leveled out at about 1 oC, the same temperature to 

which the entire rigor course of anesthetized fish were exposed. Even though the 

temperature difference was relatively modest (∆T decreasing from 8 oC), this might, in 

addition to the effect of stress, have had an influence on rigor development during the 

first few hours (< 10 h). It is well established that higher storage temperatures promote 

faster rigor development as well as stronger rigor contractions (Burt and others 1970; 

Erikson 2001).  

 

 

Figure 3-Development of rigor mortis during ice storage of whole gutted Atlantic salmon. Note 
differences between anesthetized and exhausted fish regarding peak rigor values (rigor strength).  
Mean ± SD (n = 7). 

 

Skin color  

As the fish were kept alive for 5 days in our green-walled laboratory tanks, the skin color 

may have been altered as compared with the situation in sea cages. It has been shown that 

some fish species, such as red porgy, alter their skin color within minutes after the fish 

are transferred to a new tank with a background color that is different than that of the 

original environment (van der Salm and others 2006). Just after slaughter (t = 0 h), some 
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of the mean skin color values (Minolta Chroma Meter) on the back (average of L1-L3, 

Figure 1) differed (p < 0.05) between treatments. Different values were obtained in the 

case of a*, b* and Ho
ab (Table 1). Thus, the effect of treatments were related to small 

changes in a* and b* values. In the belly region (average of L4-L6), the b*, Ho
ab, C*

ab and 

ECI values differed between treatments.   

Table 1 - Anesthetized and exhausted Atlantic salmon skin color as determined (Minolta Chroma 

Meter) immediately after killing (t = 0 h) and after ice storage for 7 days (t = 168 h). Back region: 

average of locations L1-L3, Belly region: average of locations L4-L6 (Figure 1).  

Fish group and 

storage time 

L* a* b* Ho
ab (o) C*ab ECI 

Anesthetized 

t = 0 h 

t = 168 h 

 

t = 0 h 

t = 168 h 

 

30.0 ± 0.8aX 

40.8 ± 0.5bX 

 

84.8 ± 0.2aX 

85.7 ± 0.3aX 

 

-1.8 ± 0.1aX 

-1.3 ± 0.1bX 

 

0.8 ± 0.1aX 

0.5 ± 0.1aX 

Back region 

0.9 ± 0.1aX 

1.0 ± 0.4aX 

Belly region 

0.0 ± 0.5aX 

1.9 ± 0.3bX 

 

    155 ± 2aX 

148 ±  10aX 

 

326 ± 3aX  

72 ±  4aX 

 

2.6 ± 0.1aX 

1.8 ± 0.3aX 

 

1.2 ± 0.1aX 

2.0 ± 0.3aX 

 

 

0.5 ± 0.4aX 

0.2 ± 0.5aX 

 

0.8 ± 0.1aX 

1.4 ± 0.4ax 

 

Exhausted 

t = 0 h 

t = 168 h 

 

t = 0 h 

t = 168 h 

 

34.1 ± 1.1aX 

43.3 ±  2.2bX 

 

85.7 ± 0.3aX 

85.4 ± 0.5aX 

 

-1.1 ± 0.0aY 

-1.5 ± 0.1bX 

 

1.1 ± 0.1aX 

0.4 ± 0.1bX 

Back region 

-1.3 ± 0.1aY 

0.1 ± 0.3bX 

Belly region 

3.2 ± 0.2aY 

3.7 ±  0.3aY 

 

311 ± 2aY 

 285 ±  44aX 

 

71 ± 1aY 

84 ± 1aY 

 

1.7 ± 0.1aX 

0.6 ± 0.1bX 

 

3.4 ±  0.1aY 

1.7 ± 0.5aX 

 

-1.5 ± 0.1aX 

-0.5 ± 0.1bX 

 

3.1 ± 0.2aY 

1.5 ± 0.4aX 

 

 

Mean ± SEM, n = 20 (t = 0 h) and n = 7 (t = 168 h). Different letters within each column denote significant difference (p<0.05); a vs 

b: due to ice storage for 1 week. Valid only within each group and fish region (back or belly); X vs Y: due to treatment. Valid only 

between groups, within similar storage time (t = 0 h or t = 168 h) and fish region. 

 

It should be noted that when the a* and b* values are very low (as in this study), only 

small changes in these variables can lead to large changes in the calculated  Ho
ab values, 

as can be seen in Table 2. Higher chroma and ECI values indicated handling stress which 
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induced higher color saturation and a visible color change in the belly region. After ice 

storage for a week, no differences were observed in the back region, whereas the b* and 

hue values in the belly region were still different.   

 

When the postmortem color changes for each treatment are compared, the main effect 

was that both anesthetized and exhausted fish exhibited higher L* values in the back 

region during ice storage (t = 0 h vs. t = 168 h). The L* values in the belly region were 

unaffected over time. Other significant changes for anesthetized fish comprised a* in the 

back region and b* in the belly region. For the exhausted fish, storage resulted in color 

changes in the back (a*, b*, C*
ab,  and ECI) as well as in the belly (a*). As the a* and b* 

values were consistently low throughout the experiment, this indicated that the skin had a 

greyish color.  

 

It is difficult to compare the effects of stress on Atlantic salmon skin color with data from 

other fish species. In addition, color changes after a stress incident seem to occur while 

the fish are still alive. Iger and others (2001) reported that the stressed fish first darkened 

and became paler afterwards. Therefore, the skin color at the time of killing would then 

be dependent on the time after the stressor was introduced.  Depending on the species and 

anatomical region on the fish, there are six kinds of chromatophores with different hues. 

They may appear in different combinations (Fujii 2000). In the grayish skin and whitish 

belly of Atlantic salmon, melanophores (black or brown hue) and leucophores (whitish) 

might constitute a major part of the pigment cells. Some types of iridophores (metallic), 

which are responsible for silvery glitters and whiteness on the side and belly skin, are 

immotile cells that are not directly involved in physiological color changes (Fujii 2000). 

 

Fillet color   

Due to the thermochromic effect, the initial differences in temperature between groups 

may have had a presumably minor effect on fillet color. However, it is known that the 

effect is observable at room temperature when temperature varies by just a few degrees. 

Red - and orange-colored samples are particularly sensitive (Hiltunen and others 2002). 

 108



For example, the L* values of cod fillets are considerably higher when determined 

(Minolta Chroma Meter) at 20 oC than at 4 oC (Stien and others 2005). 

 

Minolta Chroma Meter 

The mean color values of locations L1 - L4 (Figure 1) are presented throughout. In all 

cases, locations L2 - L4 showed nearly similar values whereas location L1 consistently 

exhibited somewhat higher values. Salmon fillet color has been shown to vary between 

different parts of the fillet (Skjervold and others 2001). 

 

The mean Minolta Chroma Meter readings are shown in Figures 4 - 9 and in Table 2. At 

t= 0 h, the mean L* values were 40.6 (anesthetized) and 37.8 (exhausted) showed that 

perimortem stress produced darker fillets initially (p<0.05, Table 2). For both treatments, 

a further drop was observed that peaked at about 20 h and 10 h post mortem for 

anesthetized and exhausted fillets, respectively (Figure 4). After this, the L* values rose 

rather sharply over the next 20 – 40 h before starting to level out. For the anesthetized 

fillets, the L* values showed a further moderate increase during ice storage. After ice 

storage for one week (t = 168 h), the mean L* value of the anesthetized fillets was still 

significantly higher (42.1) than that of their exhausted counterparts (39.8).  Both groups 

of fillets became lighter during ice storage. When the L* curves are compared with the 

rigor curves (Figure 3), we can see for the exhausted fillets that the peak region of L* 

curve basically resembles an inverted rigor-curve (similar time courses). This strongly 

suggests that muscle contractions and altered muscle light scattering properties caused 

changes in lightness. Another factor to consider, typical of very fresh fish, is the 

translucency of the muscle. After killing, the flesh gradually becomes less translucent 

(Stien and others 2005). When the flesh becomes opaque, the light-absorbing and light-

reflecting properties will change (Ozbay and others 2006). As long as the flesh is 

translucent, color reading may also be affected by blood. Since our fish were not bled, it 

might be that the initial fillet color levels reported here would have been somewhat 

altered had the fish been bled. For instance, in bullfrog meat, it has been reported that the 

meat of bled animals was whiter and more yellow (b* value) (Ramos and others 2005). 
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Figure 4- Anesthetized and exhausted Atlantic salmon fillet lightness (L*). Effects of perimortem 
handling stress (0 h), rigor mortis, and ice storage for 7 days (168 h). The mean Minolta Chroma 
Meter readings of locations L1-L4 (Figure 1) are shown. Mean ± SEM (n = 26 fillets). 

 

For the anesthetized fillets, the peak of the L* curve is shifted towards longer storage 

times as compared with the exhausted fillets. This indicates that the magnitude and 

pattern of the changes were affected by perimortem stress in addition to postmortem age.  

No apparent difference was observed in the magnitude of the drop in L* values (2-3 

units). Thus, the lightness differences observed after 1 week of storage may be ascribed 

to perimortem stress rather than to structural changes occurring during the different 

developments of rigor mortis (Figure 3). In whole fish, the rigor peak of anesthetized fish 

occurred between 30 - 60 h. The peak of the corresponding L* curve, however, occurred 

after 20 h. One explanation for this discrepancy may be that handling of fish during rigor 

assessments shortens the duration of rigor (Berg and others 1997). Another explanation 

could be that handling during pre-rigor filleting may have shortened the time to rigor 

onset. It is likely that the anesthetized fish would be most affected by these factors. 

Typical for anesthetized fish was the pre-rigor drop in white muscle pH (Figure 2). The 
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major changes occurred before rigor onset, namely during the first 30 h. The drop in pH 

would cause structural changes as the protein network shrinks (Foegeding and others 

1996), whereas ATP depletion leads to altered membrane permeability and ultimately to 

cessation of the ATP-driven ionic pumps affecting chemical composition of the various 

tissue compartments. Thus, it appears that transient early postmortem color changes in 

salmon fillets were, in addition to the factor mentioned above, affected by at least 2 

factors related to muscle structure, shrinkage due to lowered pH, and then to rigor 

contractions. In swollen DFD (dark, firm and dry) meat (high pH), the fibers scatter less 

light than normal meat. At low pH, the opposite effect occurs as the shrunken fibers of 

PSE (pale, soft and exudative) meat scatter more light than normal, resulting in a pale 

meat (Foegeding and others 1996). Thus, due to the higher pH in the anesthetized fish in 

the early postmortem phase, a darker fillet color might be expected for the anesthetized 

fish compared with the exhausted fish. However, we found that the opposite was true, the 

lightness of our anesthetized salmon was higher and it actually decreased during the 

period with a drop in pH. On the other hand, redness, yellowness, hue, as well as color 

saturation (C*ab), decreased over the same period for the anesthetized fish (see below). 

When rigor started and the pH had more or less leveled out, the lightness increased for 

both fish groups. For salmonids, where the carotenoids are important for fillet color, 

Johnston and others (2000) explained the effect of increasing light scattering by stating 

that light does not penetrate deeply into the fillet before being scattered, resulting in less 

absorption by astaxanthin and, hence, paler color can be perceived. Also, it has been 

hypothesized that differences in lightness, hue and chroma between electrostimulated and 

rested rainbow trout may be caused by differences in the levels of insoluble protein 

(Robb and others 2000). 

 

The corresponding changes in redness (a* values) are shown in Figure 5 and Table 2. For 

the anesthetized fillets, a similar pattern as for the changes in L* values could be 

observed. However, the low a* peak values occurred after longer storage time, namely, 

after 30 h.  
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Figure 5- Anesthetized and exhausted Atlantic salmon fillet redness (a*). Effects of perimortem 
handling stress (0 h), rigor mortis, and ice storage for 7 days (168 h). The mean Minolta Chroma 
Meter readings of locations L1-L4 (Figure 1) are shown. Mean ± SEM (n=26 fillets). 

 

Initially, the fillet a* values gradually decreased. After 30 h, when whole fish rigor 

started, the a* values began to increase and ended up at a slightly lower level (9.3) than 

the mean initial values (10.5). In the exhausted fillets, where rigor started very rapidly 

(Figure 3), the a* values rose and leveled out after 60 - 70 h, basically corresponding to 

completion of the rigor development. In contrast to the anesthetized fillets, the final a* 

values (10.3) were higher than the initial ones (9.1). When the groups are compared, the 

anesthetized fillets had higher a* values initially (p<0.05), but this difference evened out 

after ice storage for 1 week (p>0.05). 

 

The patterns of the postmortem development of yellowness (b*) were basically similar to 

those of redness (Figure 6 and Table 2). Initially, the anesthetized fillets exhibited higher 

b* values than those from their exhausted counterparts (p<0.05).  
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Figure 6- Anesthetized and exhausted Atlantic salmon fillet yellowness (b*). Effects of 
perimortem handling stress (0 h), rigor mortis, and ice storage for 7 days (168 h). The mean 
Minolta Chroma Meter readings of locations L1-L4 (Figure 1) are shown. Mean ± SEM 
(n=26 fillets). 
 

Like redness, however, the difference in yellowness between groups did not persist 

(p>0.05) until a time when the fresh fillets would typically be available to consumers (1 

week). When each group was considered separately, however, significant changes took 

place in both cases. For the anesthetized fillets, the mean b* values decreased from 13.6 

(t = 0 h) to 11.8 (t = 168 h). In contrast, for the exhausted fillets, a significant increase 

from 10.5 to 12.2 was observed (p<0.05). 

 

Apart from transient changes during rigor, the mean hue (Ho
ab) of both groups did not 

change during ice storage (Figure 7). When anesthetized and exhausted fillets are 

compared, the initial higher hue values of the anesthetized fillets (52.5 o vs. 48.9 o, Table 

3) also persisted (p<0.05) after one week of ice storage (51.7 o vs. 49.7 o).  
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Table 2 - Comparison between anesthetized and exhausted Atlantic salmon fillets CIE L* a* 
b*, Ho

ab, and C*ab values immediately after killing (t = 0 h) and after ice storage for 1 week 
(t = 168 h). The average color of whole fillets was determined by the computer vision 
method and the mean color of locations L1 - L4 (Figure 1) was determined by the Minolta 
Chroma Meter.  

Storage time 

and method 

L* a* b* Ho
ab (o) C*ab 

t = 0 h 

Minolta 

Computer vision 

t = 168 h 

Minolta 

Computer vision 

 

40.6 ± 5.6aX 

38.7 ± 0.9aX 

 

42.1 ± 6.1bX 

39.7 ± 0.8bX 

 

10.5 ± 2.6aX 

41.7 ± 1.1aX 

      

     9.3 ± 2.6bX 

   38.0 ± 1.5bX 

Anesthetized 

13.6 ± 3.1aX 

27.5 ± 1.0aX 

 

11.8 ± 3.6bX 

24.0 ± 1.4bX 

 

52.5 ± 1.5aX 

33.3 ± 0.8aX 

 

51.7 ± 3.6aX 

32.7 ± 0.7bX 

 

17.2 ± 4.1aX 

50.0 ± 2.0aX 

 

15.1 ± 4.1bX 

44.3 ± 1.5bX 

t = 0 h 

Minolta 

Computer vision 

t = 168 h 

Minolta 

Computer vision 

 

37.8 ± 3.1aY 

36.7 ± 0.7aY 

 

39.8 ± 4.6bY 

38.9 ± 0.9bX 

 

9.1 ± 3.1aY 

39.7 ± 1.1aY 

 

10.3 ± 3.6bX 

42.3 ± 2.0bY 

Exhausted 

10.5 ± 3.1aY 

25.3 ± 1.0aY 

 

  12.2 ± 4.1bX 

28.4 ± 2.1bY 

 

48.9 ± 3.6aY 

32.3 ±  0.8aY 

 

 49.7 ± 2.0aY 

33.9 ± 1.0bY 

 

13.9 ± 4.1aY 

47.2 ± 1.3aY 

 

 15.9 ± 5.1bX 

50.8 ± 3.5bY 

Mean ± SD (n = 26);   Different letters within each column denote significant difference (p < 0.05); a vs b: due to ice storage for 1 

week within each group;  X vs Y: due to treatment (between groups);  The data obtained by the Minolta Chroma Meter and the 

computer vision method were not compared statistically; 
 

Apart from transient changes during rigor, the mean hue (Ho
ab) of both groups did not 

change during ice storage (Figure 7). When anesthetized and exhausted fillets are 

compared, the initial higher hue values of the anesthetized fillets (52.5 o vs. 48.9 o, Table 

3) also persisted (p<0.05) after one week of ice storage (51.7 o vs. 49.7 o).  

 

Similarly, the mean color saturation (C*ab) also decreased during the pre-rigor phase of 

the anaesthetized fillets (Figure 8), that is, during the period with the large drop in pH 

(Figure 2). After this, the chroma increased and leveled out at about 70 h, when the fish 

were in the post-rigor state (Figure 3). Perimortem handling stress initially produced 

fillets with lower color saturation (p<0.05), since the average C*ab values of anesthetized 

and exhausted fillets were 17.2 and 13.9, respectively (Table 3). After ice storage, the 

mean chroma of the anesthetized fillets was reduced to 15.1 (p<0.05). For the exhausted 

fillets, the opposite trend was observed, the chroma value increased to 15.9 during the 
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same period (p<0.05).  After storage for one week, the chroma was no longer different 

between the groups. 

 

 

Figure 7- Anesthetized and exhausted Atlantic salmon fillet hue (Hoab). Effects of perimortem 
handling stress (0 h), rigor mortis, and ice storage for 7 days (168 h). The mean values based on 
Minolta Chroma Meter readings of locations L1-L4 (Figure 1) are shown. Mean ± SEM (n=26 fillets). 

 

Figure 9 shows the Entire Color Index (ECI) based on the hue and chroma values. The 

color difference between the groups was most evident initially, i.e. the effect of 

perimortem handling stress seemed to be the single most important factor. The mean 

(locations 1-4) ECI value of anesthetized fillets was -7.0 as opposed to 12.9 for the 

exhausted fillets (p<0.05). For the anesthetized fillets, the ECI values increased during 

the pre-rigor period as the pH was gradually reduced. After rigor and ice storage, the 

effect of stress was no longer significant (p>0.05). The average ECI values of 

anesthetized and exhausted fillets were then 4.3 and 8.7, respectively. 

 

Taken together, the color variations as a result of either stress or ice storage were 

comparatively modest. Chroma, hue (Robb 2001) and ECI (Pavlidis and others 2006) are 

considered to represent the actual color of an object more accurately that the L* a* b* 

values alone since they simultaneously take both a* and b* (hue and chroma) or hue and 
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chroma (ECI) into account. Simply speaking, perimortem stress initially produced fillets 

with more vivid and saturated colors (red and yellow). After storage, the fillets were 

lighter. To get a visual impression of how individual variation in L* a* b* values affect 

the overall color perception of an object, refer to Wyszecki and Stiles (1982) and Sharma 

(2003).  

 

 

Figure 8- Anesthetized and exhausted Atlantic salmon fillet chroma (C*ab). Effects of perimortem 
handling stress (0 h), rigor mortis, and ice storage for 7 days (168 h). The mean values based on 
Minolta Chroma Meter readings of locations L1-L4 (Figure 1) are shown. Mean ± SEM (n=26 fillets). 

 

Our L*, a*, b*, Ho
ab, and C*

ab values were largely within the ranges typical of Atlantic 

salmon fillets, as reported by Skrede and Storebakken (1986), Christiansen and others 

(1995) and Rørå and others (1998). Comparison with other studies should, however, be 

done with care as Stien and others (2005, 2006) showed that determination of fish flesh 

color using different colorimetric instruments resulted in considerable variation in the  L* 

a* b* values. 
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By using correlation plots given by Christiansen and others (1995), the astaxanthin 

concentration in our fillets was estimated to be about 5 - 7 mg kg-1. Accordingly, based 

on our a* values, we could expect Roche Color Card readings between 14 to 15. 

 

 

Figure 9- Anesthetized and exhausted Atlantic salmon fillet Entire Color Index (ECI). Effects of 
perimortem handling stress (0 h), rigor mortis, and ice storage for 7 days (168 h). The mean values 
based on Minolta Chroma Meter readings of locations L1-L4 (Figure 1) are shown. Mean ± SEM (n = 
26 fillets). The early postmortem period  where the white muscle pH in anesthetized fish dropped 
significantly is indicated. Onset of rigor mortis for both groups are also indicated. 

 

 Indeed, this is similar to the values we obtained with our sensory panel (Table 3). For 

AQUI-STM anesthetized and electrostimulated rainbow trout, Robb and others (2000) also 

observed an initial drop in L* values before they gradually increased up to 75 h post 

mortem, when the experiment was terminated. Their anesthetized fillets exhibited 

significantly higher L* values during this period, whereas our L* values did not differ 

significantly between groups during the same period (Figure 4). Our anesthetized salmon 

fillets had higher initial (t = 0 h) and final (t = 168 h) hue values than the exhausted fillets 

(Figure 7). The anesthetized rainbow trout, on the other hand, exhibited significantly 

lower hue values throughout storage (75 h) as compared with the electro-stimulated fish. 
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For both our salmon (Figure 8) and the rainbow trout, the initial chroma values were 

highest in the case of anesthetized fish.  

 

Table 3 - Anesthetized and exhausted Atlantic salmon fillet color after ice storage for 7 
days. Roche color was determined by averaging fillet regions R1-R3 (computer vision 
method). The same fillets were also assessed by a sensory panel. 

Roche color  

R1 

Computer vision 

R2 

 

R3 

Sensory panelnsd 

 

 

SalmoFanTM 

Color Card 

 

29.7 ± 0.5a 

16.7 ± 0.4nsd 

Anesthetized 

30.2 ± 0.3a 

16.9 ± 0.8nsd 

 

30.1 ± 0.2a 

16.9 ± 0.5nsd 

 

27.0 ± 1.2 

15.0 ± 0.7 

 

SalmoFanTM 

Color Card 

 

28.0 ± 1.2b 

16.4 ± 0.7nsd 

Exhausted 

29.5 ± 0.5b 

16.6 ± 0.6nsd 

 

29.4 ± 0.5b 

16.5 ± 0.5nsd 

 

26.6 ± 1.1 

14.9 ± 0.8 
Mean ± SD (n = 22 - 24 fillets, sensory panel),’a’ and ‘b’ within each column denotes significant difference (p < 0.05) for 

 each Roche color scale. ‘ nsd’ = no significant difference (p > 0.05). 

 

After 70 - 80 h post mortem, this difference between groups was offset in the case of our 

salmon, whereas the chroma values for rainbow trout were always (> 10 h post mortem) 

lower than those of the electrostimulated trout. Kiessling and others (2004) compared 

AQUI-STM and carbon dioxide-anesthetized salmon fillets. After 5 days of ice storage, 

they found no significant difference between groups in terms of L* values (around 55), 

but they found significantly higher a* (mean CO2 vs. AQUI-STM: 27.1 vs. 26.4) and b* 

(22.6 vs. 22.0) values for the fish subjected to the carbon dioxide treatment. On the other 

hand, our corresponding values  from evaluation after 7 days post mortem showed higher 

L* values for the AQUI-STM-treated fish. Otherwise, we found lower a* values, but no 

difference in b* values for such fish (Figures 4 - 6). Reduced a* values due to 

antemortem handling stress have also been reported for Arctic char (Jittinandana and 

others 2003).  Skjervold and others (2001) compared the color of pre- and post rigor 

Atlantic salmon fillets. At Day 0, the Minolta L* values of prerigor fillets (45.7) were 

lower than post rigor fillets (50.2). Since the experiment was carried out at a fish 

processing plant, their fish most likely correspond to our exhausted fish. When evaluated 

at 5 - 6 days post mortem, the difference in L* values persisted and the a* and b* values 

of fillets cut pre rigor were significantly higher than those cut post rigor.  In another 
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study, rested and stressed Atlantic salmon fillets were compared 4 days post mortem. 

Apart from a higher mean L* value for the rested fish, no significant differences were 

observed in the case of the a*, b*, hue and chroma values (Roth and others 2006). 

 

Computer vision – CIE L*a*b* color space. Table 2 shows a comparison between 

color values obtained practically simultaneously at 0 and 168 h by the Minolta Chroma 

Meter and the computer vision method. The ECI values were practically identical with 

the chroma values and are therefore not shown in the table. While the L* values from the 

computer vision method were in the same range as those generated from the Minolta 

Chroma Meter, the a*, b*, Ho
ab, and C*ab values from the computer vision method were 

very different. Nevertheless, all of the values were within the range of CIE L*a*b* values 

obtained by other computer vision methods (Kane and others 2003; Marty-Mahe and 

others 2004; Yam and Papadakis 2004; Kim and others 2005). The Minolta Chroma 

Meter, with the probe in direct contact with the sample, uses a pulse of xenon light to 

illuminate the examination area (8 mm in diameter) and measures the light reflected from 

the sample. For the computer vision method, with no direct contact between fish/fillet and 

camera, once the RGB values are calibrated into device independent color data and 

mapped into CIEL*a*b values, the system provides consistent color readings regardless 

of the input or the output device such as digital camera, monitor, or scanner provided that 

the illumination is controllable (Yam and Papadakis 2004).  

 

At t = 0 h, all color parameters determined by the computer vision method were different 

(p < 0.05), that is, affected by perimortem struggling. After ice storage, all of the 

parameters remained different. According to the computer vision method, stress produced 

darker, less red and yellow fillets with lower hue and color saturation. These results are 

similar to those of the Minolta Chroma Meter method. After rigor and ice storage, on the 

other hand, the anesthetized fillets were less red and yellow, and they exhibited lower hue 

and chroma values than their exhausted counterparts. In both cases, the fillets exhibited 

higher L* values. We have no plausible explanation as to why the results from the 2 

methods differed only after ice storage. Perhaps the discrepancy can be related to the 
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different areas of color determination (Minolta: L1-L4 vs. Computer vision: whole fillet, 

Figure 1) for the methods.    

 

The mentioned values generated with the computer vision method differed from those 

obtained using the Minolta Chroma Meter. The range, low-to-high readings (∆), of L*,a* 

and b* were largely similar for both methods with ∆ values between 2 and 6. The higher 

a* and b* values obtained by the computer vision method seemed to describe the typical 

rather bright red-orange appearance of salmon fillets better than the Minolta instrument, 

since the comparatively low Minolta a* and b* values suggested that the fillets had a 

somewhat greyish appearance. This can probably be explained by the calibration of the 

computer vision system against a ColorChecker chart, while the Minolta Chroma Meter is 

primarily designed for flat, nontranslucent and diffuse surfaces. Altogether, we think that 

the computer vision system can operate in an on-line context where salmonid fillets are 

graded and sorted according to color. 

 

Computer vision and sensory panel  – Roche color scales 

 Table 3 shows a comparison between Roche color values obtained by the computer 

vision method and the sensory panel. The computer vision-based values (both Roche 

color scales) at the R1-R3 (Figure 1) regions did not differ (p>0.05). For both the 

SalmoFanTM and color card, the computer vision-based method consistently gave higher 

values with lower standard deviations than the values obtained by the sensory panel.  Due 

to the more detailed discrimination of color (15 shades), the Roche SalmoFan LinealTM 

readings were probably more precise than those determined with the color card (8 

shades). Therefore, only the SalmoFanTM readings determined by the computer vision 

method exhibited significantly different values (p<0.05) between anesthetized and 

exhausted fillets after ice storage for a week. 

 

Since the mean Roche SalmoFanTM values of exhausted fish were lower at 7 days post 

mortem, larger and significant differences between groups might well have occurred after 

a shorter storage period. Also, the color card might then have detected differences 

between groups. For instance, when fillet color was evaluated after 3 (Robb and others 
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2000) and 4 (Robb and Warriss 1997) days, AQUI-STM-anesthetized trout fillets 

exhibited 1 unit higher readings on the Roche Color Card scale than their counterparts 

that were subjected to high muscle activity before killing. Moreover, Atlantic salmon 

fillets cut pre-rigor exhibited significantly higher mean Roche SalmoFanTM values than 

fillets cut post-rigor at Day 0, 25.6 and 23.6, respectively.  Six days later, the groups were 

no longer different at 24.6 and 24.3 (Skjervold and others 2001).  

 

A summary of skin and fillet color changes – Comparison of analytical methods 

On skin, none of the initial stress-related changes (redness, yellowness and hue) could be 

detected after ice storage. In contrast, the initial difference between groups regarding 

yellowness and hue in the belly section lasted throughout ice storage. 

 

Both the Minolta Chroma Meter and computer vision method detected all stress-related 

changes in fillets initially (lightness, redness, yellowness, hue, chroma and ECI). After 

ice storage for a week, the number of significant (p<0.05) parameters were different 

between the 2 methods. The sensory panel did not detect differences in Roche color card 

scales when assessed after 7 days. The computer vision method detected a significant 

difference only in the case of the SalmoFanTM. Taken together, perimortem handling 

stress clearly affected skin and fillet color when color was assessed immediately after 

killing. For some color parameters, the difference in color between anesthetized and 

exhausted fish persisted throughout ice storage. However, since they could only be 

detected instrumentally, consumers would likely not be able to distinguish between the 2 

groups of fish after 1 week. In other words, the stress had largely been offset by storage 

time.   

 

The evaluation of fillet color by either sensory analysis (grading by trained inspectors 

using Roche color cards) or by manually-based instrumental methods had disadvantages 

compared with the computer vision method. The drawbacks of sensory analysis are that 

the method is slow, costly and subjective. The subjectivity and inconsistency of sensory 

evaluation probably derived from the physical limitations of the human eye to adequately 

perceive color (eye fatigue and lack of color memory). This may result in incorrect fillet 
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grading. Manually-based instrumental color analysis is objective, but still labor-intensive 

and not fast enough to cope with the required processing speed (such as 1 fillet per sec). 

Another typical limitation of such instruments is that they are based on direct contact 

with the fillet and that the obtained color values result from a small sample surface. In 

addition, the instrument is primarily designed for measurements of the color of flat, 

nontranslucent and diffuse surfaces, making it inappropriate for color measurements of 

fillets, since they are typically not flat or translucent. On the other hand, the computer 

vision method allows for fast, nondestructive and contact-free color assessments. 

Moreover, by using the computer vision method, we were able to evaluate the color of the 

entire area of the fish skin or fillet. In our study, the computer vision method generated 

smaller standard deviations (Table 3) than sensory evaluation, suggesting that greater 

robustness and consistency can be expected when using the computer vision method. 

Automated sorting of whole fish or fillets by color with the aid of computer vision and 

image processing was therefore considered as a method of choice for color grading in fish 

processing plants that deal with large volumes.   

 

Conclusions 
We have shown that when Atlantic salmon were exposed to two extremes of perimortem 

muscle activity, no exercise and exercise to exhaustion, significant changes in both initial 

skin and fillet color occurred. To some extent, some color parameters were detectable 

after ice storage for 7 days; however, these differences were relatively small and probably 

could not be spotted by consumers. With current commercial harvesting routines, at least 

some muscle activity will take place, and with less than ideal storage conditions, it seems 

unlikely that possible initial differences in skin and fillet color due to better harvesting 

routines would result in improved coloration of the product after 7 days of ice storage. 

However, previous studies have shown that differences can be detected after shorter 

storage times. Markedly transient color changes occurred during the pre-rigor phase and 

during the course of rigor mortis. This could be explained by the altered physical state of 

the myofibrils that affect light scattering properties as muscle/cell structure was affected 

by a drop in muscle-pH (glycolysis) and subsequently by rigor contractions. The 

computer vision method was considered to be at least as good as the Minolta Chroma 
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Meter for salmon grading and sorting purposes, and better than a sensory panel for 

assessing Roche color scales. For on-line purposes, the computer vision method was 

considered the method of choice. Notably, if filleting is done pre rigor, care should be 

exercised during color grading since transient color changes occur in the early 

postmortem period. As these changes are more pronounced than those occurring during 

ice storage, incorrect color grading of fillets may result.  
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ABSTRACT 

 
The present study describes the possibilities for using an on-line computer vision 

method for the detection of transient 2D and 3D changes in the geometry of a given 

product. The rigor contractions of unstressed and stressed fillets of Atlantic salmon 

(Salmo salar) and Atlantic cod (Gadus morhua) was used as a model system. Gradual 

changes in fillet shape and size (area, length, width and roundness) were recorded for 

7 and 3 d, respectively. Also, changes in fillet area and height (cross-section profiles) 

were tracked using a laser beam and a 3D digital camera. Another goal was to 

compare rigor developments of the two species of farmed fish, and whether 

perimortem stress affected the appearance of the fillets. Some significant changes 

were found between unstressed and stressed fillets during the course of rigor mortis as 

well as after ice storage (post rigor). However, the observed irreversible stress-related 

changes were small and would hardly mean anything for post-rigor fish processors or 

consumers. The cod were less stressed (as defined by muscle biochemistry) than the 

salmon after the two species had been subjected to similar stress bouts. Consequently, 

the difference between the rigor courses of unstressed and stressed fish was more 

extreme in case of salmon. However, the maximal whole fish rigor strength was 

judged to be about the same for both species.  Moreover, the reductions in fillet area 

and length, as well as the increases in width, were basically of similar magnitude for 

both species. In fact, the increases in fillet roundness and cross-section height were 

larger for the cod. We conclude that the computer vision method can be used 

effectively for automated tracking of changes in 2D and 3D shape and size of objects 

such as fish fillets during rigor mortis and ice storage. The method is rapid, 

nondestructive and contact-free and can therefore be regarded as suitable for industrial 

on-line purposes. 

 

 

Key words: Computer vision, fillet shape, rigor mortis, salmon, cod, handling stress 

 

 

 

 



 133

Introduction 
Due to the high labor costs prevailing in several countries, a higher degree of 

automation of processing lines is often desirable. In the fish processing industry, 

computer vision is beginning to gain the necessary maturity for online assessments of 

various attributes related to flesh quality. This can enable lower production costs 

through automation and higher product quality through a more consistent non-

destructive evaluation of the products (Strachan and Murray 1991; Strachan 1993; 

Stien and others 2005, 2006; Misimi and others 2006, 2007).  

 

 A certain raw material may change in shape and size during the early postmortem 

phase. The development of rigor mortis in meat and fish are familiar examples of this. 

Early onset of rigor mortis, as a result of perimortem handling stress, can occur while 

fish still are in processing line (Berg and others 1997). Processing of such fish should 

be avoided since this may have detrimental effects on fillet quality (Stroud 1968). 

Prerigor fillets have several properties that differ from their postrigor counterparts 

(Sørensen and others 1997; Rørå and others 2004; Kristoffersen and others 2006a). 

Mostly, these properties are considered favourable in terms of flesh quality (Skjervold 

and others 2001a, b; Stien and others 2005). The concept of prerigor filleting is 

therefore currently a goal for several salmon processors in Norway. With this situation 

as a backdrop, it is relevant to establish knowledge of the extent of the changes in 

fillet shape taking place shortly after slaughtering. 

 

At the time of death, the muscle is relaxed, limp and has an elastic structure. As the 

rigor process develops, the fish become gradually more hard and stiff. In stressed 

Atlantic salmon (Salmo salar), rigor onset occurs after only 2 - 4 h post mortem. If 

antemortem stress is avoided altogether, rigor onset is delayed for another 20-25 h 

(Erikson 2001a). Moreover, higher mechanical strength is observed in stressed fish 

muscle during rigor (Nakayama and others 1992). During the course of rigor, the 

fillets change their geometrical size and shape as they shrink in length (Connell 1990; 

Sørensen and others 1997). The degree of shrinkage is different depending on fish 

species and the way they are handled. Typical shrinkages of Atlantic cod (Gadus 

morhua) fillets range from approximately 7 % (Karl and others 1997) to 25% 

(Connell 1990). Skjervold and others (2001a) reported a 2.4 – 2.7 mm (8 -11 %) 
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reduction in fillet height after rigor was completed. Rigor contractions in excised 

rested and exercised chinook salmon (Oncorhyncus tshawytscha) muscle strips were 

studied by Jerrett and others (1998). They used a CCD camera connected to a time-

lapse video recorder to record the changes in sample length. Rigor contractions of 

Atlantic cod fillets were studied by Stien and others (2005). After about 29 h post 

mortem at 4oC, unstressed and stressed fillets had contracted 15 and 20 %, 

respectively. At a similar temperature, the rigor contractions in Atlantic salmon fillets 

were determined up to 5 d post mortem. Images were captured by a digital camera and 

the fillet contraction was determined by analyzing the images. The method was also 

employed to assess rigor contractions (shrinkage) in rainbow trout (Oncorhynchus 

mykiss) (Stien and others 2006) and Atlantic salmon Kiessling and others (2006) 

fillets. Furthermore, based on image analysis, rigor contractions (reduction in length) 

have been shown to be more severe in stressed (13.8 %) than in unstressed (5.4 - 11.2 

%) salmon fillets (Veiseth and others 2006). 

 

Rigor assessments can be carried out by using a variety of different methods based on 

various principles of detection (see Erikson 2001a). Computer vision and image 

processing has been used to study various aspects of the development of rigor mortis 

in fish. From images obtained during the course of rigor, the tail drop angle has been 

determined as the tail varies between a hanging-down (limp fish) and a horizontal 

(stiff fish) position (Azam and others 1990; Oliveira and others 2004). This basically 

represents an automation of the widely-used Rigor Index method (Bito and others 

1983).  

 

Since fillets undergo both changes in 2D size (length, width, area) (Sørensen and 

others 1997; Einen and others 2002) as well as in 3D (2D + height/area of cross-

section) (Skjervold and others 2001a), the main goal of our study was to develop a 

computer vision based method for automatic online evaluation of changes in both 2 

and 3 D geometry. By using the effects of extreme perimortem handling stress on 

muscle biochemistry as a model, similarly treated farmed unstressed and stressed 

Atlantic salmon and Atlantic cod were compared. Our specific goals were to assess 

changes in (1) fillet area, length, width and roundness, (2) area and height of different 

fillet cross-sections, and whether, (3) the 3D computer vision method was suited for 

online sorting applications according to differences in shape and size (volume), and 
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(4) the perimortem stress-affected differences in geometrical shape and size were 

irreversible and thus discernible from unstressed fillets at a time when the fillets 

would be available to the consumers. 

 

2. Materials and Methods 

 
Fish and fish sampling 

Two experiments were carried out with a lean (cod) and a fatty (salmon) fish species.  

 

Atlantic cod. Cod (weight: 2.0 ± 0.3 kg; fork length: 53 ± 3 cm, n = 61) fasted for 12 

days at 9oC were obtained from a fish farm located in Central Norway. The fish were 

netted from the cage and transferred to 2 tubs containing clean seawater (SW). A 

small boat transported the tubs for 5 min and the tubs were brought ashore. The fish 

were immediately netted into 3 transport tanks on a truck used for commercial 

transport of live fish. The tanks contained clean SW and they were oxygenated during 

the 3 h transport without water renewal to our laboratory. The fish densities were 32 - 

40 kg m-3. At arrival, the dissolved oxygen concentration (DO) showed that the SW 

(salinity 35 ppt) in all tanks was supersaturated (112, 202 and 270 %, respectively) 

and the pH ranged from 7.3 to 7.5 which indicated that carbon dioxide had 

accumulated during the transport. No mortality had occurred and the fish were calmly 

swimming around in the tanks. They were then transferred in SW-filled 1000-L tubs 

to 2 holding tanks (4000-L) where the fish, equally distributed among the tanks, were 

kept for 6 d without feeding at a fish density of about 18 kg m-3. SW from 80 m depth 

was pumped, sand-filtered, and circulated to the tanks at a rate of 5 m3 h-1. During the 

holding period, the water temperature, pH, carbon dioxide, and DO in both tanks were 

within the ranges of 8.7 - 9.2 oC, 7.9 - 8.0, 1.5 - 2.0 mg L-1, and 77 – 84 % saturation, 

respectively. 

 
At Day 0, when the experiment started, the water supply to one of the holding tanks 

was stopped and oxygen gas was added. A pre-defined amount of AQUI-STM (AQUI-

S Ltd, Lower Hutt, NZ) was added to give a final concentration of 30 mg L-1. After  

20 min, all fish were anesthetized.  No vigorous muscle activity took place during the 

treatment. However, after 45 min all fish were declared dead as judged from cessation 
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of gill movements and lack of response to stimuli. The six fish, allocated to the 

computer vision study, were lifted individually from the tank between 4.0 and 4.5 h 

after the anesthetic was added to the tank, that is, about 3.5 h post mortem.  The gill 

arches on one side of the fish were severed. With their head pointing downwards, they 

were then bled in air for 2 min. The glucose content was immediately determined in a 

sub-sample of the collected blood. Then the white muscle pH, twitches, body 

temperature, body weight and fork length were measured. About 2 g of epaxial 

muscle was excised for determination of the total water content. Subsequently, the 

fish were gutted, filleted and briefly washed under running tap water before the fillets 

were tagged and placed on ice in Styrofoam boxes. All 12 fillets were immediately 

subjected to analysis using the computer vision method for the next 4 days (t = 0, 5, 

16, 23, 33, 53 and 72 h post mortem). After each sampling time, the fillets were kept 

on ice in a cold room. Only the skin side of the fillet was in direct contact with ice. 

 

The fish in the other holding tank were stressed to exhaustion by chasing for 30 min. 

At the same time the water level in the tank was reduced to a height of about 10 cm. 

Six fish were then killed by a blow to the head within 30 min after the stress bout (the 

fish were not allowed to recover). Subsequently, they were treated as with the 

unstressed fish.  

 

The mean round weight and fork length of the unstressed and stressed subgroups of 

cod  that were filleted and used for the present rigor study were 2.2 ± 0.5 kg and 57 ± 

4 cm (n = 6), and 2.0 ± 0.4 kg and 54 ± 3 cm (n = 6), respectively. In addition, five 

other fish from each group were allocated for the assessment of whole fish rigor 

development. They were also ice stored and used for direct comparison with rigor 

development of fillets. The time post mortem for assessment of whole-fish rigor was 

synchronized with the computer vision-based assessment of rigor development in 

fillets. 

 

Atlantic salmon.  Salmon (fasted for 8 d), weighing 3.8 ± 1.1 kg with fork length 66 

± 6 cm (n = 40), were commercially farmed.  They were transported similarly as with 

the cod live by truck to our laboratory where they were kept under good water quality 

conditions for 5 d before they were slaughtered. As with the cod, one group was 

unstressed (AQUI-STM) and the other one was stressed to exhaustion before killing,  
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except that the fish were not bled. For more details on salmon experimental design, 

handling and assessments of stress, and the effects of handling stress and rigor on the 

skin and fillet color of the same fillets presented here, refer to Erikson and others (in 

press).  

 

Thirteen unstressed (round weight: 4.1 ± 0.9 kg; fork length: 67 ± 5 cm) and 12 

stressed (3.8 ± 1.3 kg; 66 ± 7 cm) salmon were used for the present study, i.e. 26 and 

22 fillets respectively were subjected to assessments of total length, area, width, 

height and roundness during the rigor mortis using the computer vision method. The 

mean white muscle total fat content of 10 other fish from the same batch was 11.5 ± 

3.1 % (Erikson and others, in press).  

 

The changes during the course of rigor mortis and ice storage were recorded at t = 0, 

11, 22, 27, 33, 45, 70 and 168 h post mortem using an experimental set-up as shown 

in Figure 1. A fillet was placed in the light-box and photographed one at a time before 

it was placed on ice once again. Seven other fish from the unstressed and stressed 

groups were, as with the cod, used for assessment of whole-fish rigor to be compared 

with simultaneous fillet rigor assessments using computer vision. 

 

Analytical methods 

 

White muscle pH, muscle twitches, body temperature and sensory assessment of 

rigor mortis 

Refer to Erikson and others (in press). 

 

White muscle total water content  

The water content in cod muscle was calculated after drying triplicates of 

approximately 2 g of muscle at 105 oC for 24 h. 

 

Development of the computer vision method 

The computer vision system and the flow chart of the steps of the computer vision 

algorithm are shown in Figure 1.  
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Figure 1-Block diagram of the computer vision system and image processing steps for (a) 2D-
tracking of fillet changes, and, (b) 3D-tracking of changes in fillet cross- section area and height 
profiles. For 2D-tracking a normal color camera was used, while for 3D-tracking, a multiscan 3D 
camera with a laser source was used. 

Image Acquisition 

The images of the cod fillets were captured using an image acquisition system using a 

digital color camera (Pixelink PL-A776, Ottawa, Canada) with a built-in flat-field 

correction at the resolution of 2048 x 1536 pixels (Pixelink PL-A770) (Figure 1a). 

The same computer vision setup was also used for in the salmon experiment, except 

that the camera (Pixelink A770, Ottawa, Canada) had the resolution of 1280 x 1024 

pixels. The images were stored in the computer for later evaluation without 

compression, in a bitmap file format (.bmp) and in three-dimensional RGB (red, green 

and blue) color space.  
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The fillets were illuminated in a light-box setup (Figure 1a). The size of the light-box 

(Waagan AS, Skodje, Norway) was 77 x 77 x 60 cm (length-width-height), and the 

light-box had an opening for placing of fillets. During the photographing of the fillets, 

this opening was closed to ensure uniform illumination conditions. In addition, the 

image acquisition took place in absence of ambient illumination (darkened 

laboratory). The light-box had a grey neutral color inside and used two fluorescent 

tubes (18W) with a color temperature greater than 5000 K and a Rendering Index 

greater than 95%. In this way, the illumination conditions in this box were controlled 

to give a uniform and diffuse illumination. A gray background was used for the 

salmon fillets, whereas a light blue background was used for the cod fillets. The 

camera was mounted and fixed on the upper part of the light-box, perpendicular to the 

field of view, at a vertical distance of 60 cm from the background were the fillet 

samples were placed during image acquisition. This distance was the same for all the 

photographed fillets. The camera and light-box was switched on at least 2 h before the 

experiment at the start day and were not switched off until the experiment was over. 

This was done to obtain stable camera and illumination conditions (Luo and others 

2006). 

 

After each fillet was photographed with a 2D camera, the fillets were sent to 3D 

scanning. This was done using a laser source (diode module, 635 nm, 5 mW, Edmund 

Optics, York, UK) and a high speed 3D digital camera Ranger Multiscan (Sick IVP 

AB, Linkøping, Sweden) (Figure 1b). The locations of the tracked cross-section 

profiles (A, B, C) were marked with push-pins on each side of the fillet to make it 

possible to scan the fillet at the exact same location at each sampling time (Figure 1b). 

Scanning with the laser beam was done in the absence of ambient illumination, 

resulting in the acquisition of thin profile lines (Figure 1b). 

  

 

Calibration of images 

Calibration of images was performed prior to further processing as described by 

Erikson and others, in press. 
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Pre-processing  

The calibrated images were filtered for possible noise with a low pass filter and 

averaged with a median filter. 

 

 

Figure 2-Gray-scale image of fish fillets; (b) Histogram; (c) Binary image after segmentation. 

 

Segmentation  

Segmentation of the fillets as a region of interest from the background was performed 

by global thresholding of the a*-channel for salmon and b*- channel for cod fillets 

(Figure 2). Since the backgrounds were of different spectral characteristics from the 

color of the fillets, this form of thresholding method provided an accurate 

segmentation of the fillets. The binary image BW(x, y) for both groups of fillets was 

defined as (Gonzales and others 2004): 
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By looking at the histogram (Figure 2b) it is seen that the choice of global 

thresholding was justified. The histogram shows that fillet and background pixels are 

grouped into 2 dominant modes that can be clearly partitioned. Finding a threshold T 

that separated these two modes can however result in the extraction of the fillet from 

the background. This was done automatically for each image by using the graythresh 

function in Matlab. With this function, any image pixel f(x,y)>T was classified as a 
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fillet pixel and was labeled as “1” (white), whereas all other pixels were classified as a 

background and were therefore labeled “0” (black) (Figure 2c). To ensure that only 

the fillet was segmented from the background, a set of morphological operations was 

performed consisting of open-close filtering. The opening operation was used to 

remove small details from the background, while closing was used to remove small 

details from the segmented fillet. For this set of operations, the ‘square’ structured 

element in Matlab was used. Subsequently, extraction of geometrical features was 

performed on the segmented fillet as a binary image. This process was mainly focused 

on the measurement of geometrical properties of fillets such as the size (area, length, 

width) and shape (roundness). All of the 2D geometric features were computed from 

the segmented binary images (Figure 2c). By putting an object with known 

dimensions (ruler) beside the fillets in the light-box, it was possible to find the 

relationship between the pixels and dimensions of fillets in mm. The expressions 

below provided these relationships for salmon (2) and cod (3). In these expressions, 

Lobject is the measured real-world length of the particular ruler in mm, while Lpixels is 

the length of the same object in pixels derived from the image data. 

[ ] [ ] mmmmmm
L
L

pixel
pixels

object 388.0
824
3201 ===  

(2)

 

[ ] [ ] mmmmmm
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pixels

object 381.0
760
2901 ===  

(3)

 

Ground truth  

To validate the accuracy of segmentation of fillets by the computer vision algorithm, a 

set of ground truth images was acquired by manual segmentation of fillets for the 

initial measurements at Day 0 and for the last measurements at Day 7. The manual 

segmentation was performed by using Adobe Photoshop 8.0 (Adobe, San Jose, CA, 

USA). In addition, a ruler was placed beside the fillet to be able to correlate the 

automatic computer vision measurements with those from manual segmentation. 
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Measurements of geometric features 

Area, length, width and roundness were measured on the segmented binary images of 

fillets. All size and shape descriptors of the fillet can be calculated from the 

definitions shown in Figure 3. The area was calculated simply as the number of binary 

fillet pixels (Gonzales and others 2004). The expression (Ohm 2004) used to calculate 

area in pixels is given by 

∑∑=
r c

crbArea ),(  (4)

 where ‘r’ is the number of rows and ‘c’ is the number of columns.  

 

Figure 3-Definition of 2D geometrical features from the bounding rectangle for the binary images 
of fillets, and location of cross-sections A, B and C on the fillet used for laser scanning (fillet 
height profiles). For repeated scanning of the same cross-section during storage, push-pins were 
placed on either side of the fillet. 

 
The length L of the fillet was calculated as the maximal fillet length of the bounding 

rectangle, while the width W, as the minimal length of this rectangle (Figure 3). 

During the experiments, we observed that the fillets were becoming slightly rounder 

as the rigor contractions progressed. Therefore, it was of interest to quantify the 

roundness of the fillets related to changes in overall shape for the different fillet 

species of fish and for unstressed and stressed fillets. The roundness, as a shape 

measure, was calculated by using the following expression (Ohm 2004; Umbaugh 

2005): 
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P
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where ‘A’ is the area and ‘P’ is perimeter of the fillet. The maximum value for 

roundness is 1 (corresponding to a perfect circle). For other irregular objects such as 

fillets, the roundness values are in the interval (0,1). The closer the value is to 1, the 

rounder the object is. 

 

Fillet cross-section area and height  

The area of the cross-section and the height of the fillets were obtained by scanning 

the cross-section at the line locations (A, B, C, Figure 3).  

 

If )(xf  is the function denoting the surface curve of the fillet cross section and a and  

b are the boundaries of fillet width at this cross section (Figure 7b), then the area of 

the cross section under the curve was calculated as: 

∑
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where xΔ  is the infinitesimal width of the profile. The fillet height was determined as 

the height of the profile curve. The maximum fillet height maxh is the point where the 

surface curve function of the fillet attains the highest value: 
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By scanning a cubical formed object of known real dimensions with a laser beam, it 

was possible to find the relationship between the profile height (Hprofile) and the real-

dimensions (Hobject) in mm: 

mmmm
H
H

unit
pixels

object 35.0
77
271 ===  

(8)

 

 

Statistics 

Means ± standard deviations (SD) are generally shown. The effects of treatment 

(unstressed vs stressed fish) and post mortem storage time on the geometrical features 
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of fillets were analyzed using a two-way analysis of variance (ANOVA). Where 

significance (p<0.05) was indicated, a Tukey post hoc test was run.  

 

 

 Results and Discussion 

 
Handling stress  

When early postmortem changes, such as rigor mortis, is studied and the different 

experimental groups have been subjected to various treatments, control and analysis 

of at least one parameter related to muscle energy metabolism (e.g. pH, 

phosphocreatine, ATP:IMP ratio) at the time of death is of paramount importance to 

clearly define experimental groups. This should also be done to rule out possible 

unintended effects of ante-mortem stress or erroneous sampling and analytical 

protocols. If such data are missing and a priori assumptions are made, the intended 

goals of the study could be masked or the wrong conclusions could be made. 

Unfortunately, these factors are occasionally encountered in the literature.  As we 

wanted to make sure we actually studied the extremes of rigor developments 

(anesthetized and exhausted muscles), the initial white muscle pH, was assessed in all 

cases (Table 1).  Our unstressed fish exhibited typical muscle pH values of rested 

salmon at pH 7.4-7.5 (Kieffer and others 1994) and cod at pH 7.3 (Stien and others, 

2005), although lower than pH 7.9 reported by Kristoffersen and others (2006b) in 

unstressed cod. In stressed fish our pH values (Table 1) were also typical, as Kieffer 

and others 1994 reported values of pH 6.7-6.8 in exhausted salmon, and both Stien 

and others (2005) and Kristoffersen and others (2006b) reported a value of pH 7.0 in 

stressed cod. Our mean pH value of the stressed cod was 0.2 units higher than with 

our salmon. A marked difference between species with respect to behavior during the 

similar stress bouts was observed. Cod, being a more sedate species, did not struggle 

to the same extent as the salmon did. Clearly, the cod showed considerable less 

stamina than the salmon. Perhaps this fact was also reflected in the twitch tester 

values (Table 1). The cod values were not different between treatments whereas the 

muscle twitches of salmon were less intense after the stress bout. For both species, the 

ultimate pH values were around 6.4. Thus, the current study was conducted under a 

similar drop in muscle pH (7.4 to 6.4) for both species. Also the rearing water 
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temperature (body temperature at death) was nearly similar. A slight tendency for 

higher body temperature in stressed fish was observed (Table 1), possibly due to the 

muscle work during the stress bout. The mean blood glucose values for both species 

did not differ between treatments. The values were elevated compared with typical 

resting levels (Waring and others 1992). Even though no vigorous muscle activity 

took place for neither fishes, the AQUI-STM treatment could nevertheless be expected 

to result in elevated blood glucose values (Wood and Wang 1999; Erikson and others 

in print). The prerigor white muscle water content (about 80 % cod) was not affected 

by handling stress (Table 1). 

Table 1 - Different stress parameters (blood glucose, initial pH and muscle 

twitches), initial body temperature, ultimate pH, and water contents in unstressed 

and stressed Atlantic cod  and Atlantic salmon.  

Parameters Unstressed 

Cod                     Salmon 

Stressed 

Cod                     Salmon 

Body temperature (oC)  9.0 ± 0.3 A          9.7 ± 0.1  9.4 ± 0.2 B           9.8 ± 0.1 

Blood glucose (mmol L-1) 5.8 ± 2.0           7.4 ± 2.5 7.3 ± 4.5           8.5 ± 2.0 

Twitch tester (range: 0-3) 2.7 ± 0.5           3.0 ± 0.0a 2.7 ± 0.5          2.1 ± 0.3b 

Initial  muscle-pH (0 h) 

Ultimate muscle-pH  

7.4 ± 0.2A             7.5 ± 0.1a  

 6.4 ± 0.1 (1)          6.5 ± 0.1   

6.9 ± 0.2B             6.7 ± 0.1b 

6.4 ± 0.2 (1)       6.4 ± 0.1   

Prerigor water content (%) 80.2 ± 2.8               NA 80.5 ± 1.4             NA 

Mean ± SD (cod: n = 6; salmon: n = 12 -13) of whole fish. (1) Mean pH determined in similarly treated 

cod from the same batches (n=23). Means within the same row and within same fish species with 

different letters (cod: A, B; salmon: a, b) are significantly different (p<0.05). NA = not analyzed 

 

To conclude this section, the stress levels of both fishes were clearly defined, and 

given the similar antemortem treatments, the near similar magnitudes of the stress 

parameters, body temperature and pH drop, the rigor courses of the two species were 

considered comparable.  
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Rigor mortis in whole fish 

As expected from the initial pH values, the stress bouts caused significantly different 

rigor development from the fish not subjected to high antemortem muscle activity. 

Although the same basic trends were observed for the rigor development of cod and 

salmon, the timing was different. The time to rigor onset for unstressed and stressed 

whole cod was at least 12 and 6 h, respectively (Figure 4 a, b). For unstressed salmon 

on the other hand, the prerigor period lasted about 30 h whereas for the stressed 

counterparts rigor started probably around 1-2 h post mortem. These extremes are 

slightly higher than what we have observed before in similarly treated salmon 

(Erikson 2001a). The peak rigor for unstressed and stressed cod occurred after about 

47 and 25 h,  respectively whereas the corresponding values for salmon were 45 and 9 

h. Practically identical rigor curves for farmed Atlantic cod exposed to pre-slaughter 

handling stress, as well as control fish, have been reported by Kristoffersen and others 

(2006b). They found that maximum rigor was reached after 20-24 h for stressed cod 

as opposed to 48 h for the control fish. Thus, when both species were subjected to 

AQUI-STM anesthesia, the peak rigor time was about similar even though the pre-rigor 

time was very different. When the fishes were subjected to a similar handling stress 

bout, the effect rigor development (as well as muscle pH and muscle twitches, Table 

1) in case of salmon seem to be much more severe. For unstressed cod, rigor was not 

fully completed after 95 h. In contrast, unstressed salmon was in the postrigor state 

after 60 h. For the stressed groups, rigor was completed after 70-90 h and 28 h post 

mortem in cod and salmon, respectively. Our results show that once rigor starts, 

salmon pass through rigor faster than the cod do. For both species and for salmon in 

particular, the rigor curves (peak values) suggested that the stiffness was somewhat 

higher in stressed fish.  
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Figure 4-Development of rigor mortis during ice storage of unstressed and stressed whole gutted 
(a) Atlantic salmon, and, (b) Atlantic cod. Mean ± SD. 

 

We had clearly produced and defined two fish groups representing the possible 

extremes in terms of handling stress for both cod and salmon and as defined by 

muscle biochemistry and rigor mortis. The next step was to evaluate by the computer 
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vision method the magnitude of possible stress-induced changes in size and shape 

changes of the fillets with respect to storage time on ice. 

 

Figure 5-(a) Visualization of changes of geometrical features of unstressed salmon fillets during 
rigor and ice storage for 7 d.  The fillet marked t = 0 h represents initial size and shape measured 
immediately after slaughter (Day 0), and the fillet marked t = 168 h denotes the size and shape of the 
same fillet at Day 7. Maximum rigor occurred after t =45 h. (b) Visualization of changes in size and 
shape of stressed cod fillets during rigor and ice storage for 3 d (t=72 h. The fillet marked t = 0 h is 
photographed immediately after slaughtering and maximum rigor occurred after t = 23 h. 

 

Changes in fillet appearance during rigor mortis 

The computer vision tracking of geometric features showed that area and length began 

to shrink immediately. The visualization of this shrinkage for unstressed salmon and 

stressed cod during the entire period of ice storage is depicted in Figure 5 a, b. In both 
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cases, the fillets shrank considerably before maximal rigor was attained. After peak 

rigor, only minor changes in fillet shape occurred during subsequent ice storage. 

 

Changes in fillet length and area  

Atlantic salmon - The stressed salmon fillets began to shrink earlier than their 

unstressed counterparts (Figure 6a), as could be expected from the biochemical 

measurements showing the energy status of stressed fish was more depleted (Table 1). 

For both levels of stress, significant shrinkage of both fillet area and length coincided 

with the time the whole fish were at their maximal rigor values, that is, 45-50 h 

(unstressed) and after 11 h (stressed) (Figure 4a). When the rigor stiffnesses decreased 

from their maximal values, the area and length of both unstressed and stressed fillets 

started to increase. However, the phenomenon was not fully reversible. At the end of 

ice storage (t = 168 h), significant (p<0.05) changes from the initial values (set to 100 

%) were registered in case of length and area. Compared with initial values, the mean 

irreversible reduction in the length of unstressed and stressed fillets were 10 and 7 %, 

respectively (p<0.05). A significant post rigor (168 h) difference was also observed 

between unstressed and stressed fillets (p<0.05). Compared with initial values, the 

maximum muscle contraction was about 14 % for both salmon fillet groups. This 

occurred after 11 and 45 h for stressed and unstressed fish, respectively.  

Correspondingly, after ice storage the mean fillet length had shortened irreversibly 8 

and 10 %. Sørensen and others (1997) and Einen and others (2002) also observed 

about 14-15 % muscle contraction at maximum rigor, while Skjervold and others 

(2001b) reported a final 8.6 % reduction in length.  

 

The maximum contraction of the fillet area, occurring at maximum rigor, was 

approximately 9 % for both stress levels. After ice storage (168 h), the mean area of 

our unstressed and stressed fillets were 6 and 3 % lower than their initial values 

(p<0.05). Peri-mortem stress produced significant differences in fillet areas (p<0.05). 
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Figure 6- Changes in percentage of different geometrical features: Shrinkage of area and length in 
(a) salmon and, (b) cod fillets. Changes in width and roundness of (c) salmon and (d) cod fillets. 
Changes in maximal height of fillet cross-section for (e) salmon and (f) cod. By the end of ice 
storage, different letter A and B denotes significant (p<0.05) between unstressed and stressed fillets, 
whereas different letter a or b denotes not significant (a: p>0.05) or significant (b: p<0.05) 
difference between initial (100%) and end values of either unstressed or stressed fish. Mean values 
are shown (salmon: n = 22 and 26; cod: n = 12). 

 
Atlantic cod - In case of the cod fillets, similar post mortem reductions in area and 

length took place (Figure 6b). Again, due to the effect of perimortem stress, fillet 

shrinkage was somewhat accelerated for the stressed group. Also, shrinkage of 

unstressed fillets started before rigor onset. Indeed, Honikel and others (1986) have 
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shown that shortening of sarcomeres also takes place in the prerigor phase. The 

maximum rigor contractions for whole cod occurred after about 23 and 45 h for the 

stressed and unstressed fish, respectively (Figure 4b). For the stressed fillets, the 

maximal shrinkage of area and length occurred after about 25 and 35 h, respectively. 

The corresponding values for the unstressed cod fillets were about 35 h for both 

parameters. After the whole fish rigor had peaked (Figure 4b), the mean cod fillet area 

and length also increased somewhat as measured after 72h.  The mean area shrinkage 

was maximally 11 % at peak rigor, whereas at 72 h shrinkage was reduced to about 7-

9 % of initial values for both fillet groups. The fillet areas were then not significantly 

different from their initial values, nor did perimortem handling stress produce 

different post rigor areas (p>0.05). 

On the other hand, reductions in mean fillet length, 18 % at full rigor, and 13 -14 % 

after 72 h, were significantly different from initial values in case of both fillet groups 

(p<0.05). However, perimortem stress did not have a significant effect on post rigor 

cod fillet length (p>0.05). It should be mentioned though that the post rigor changes in 

cod fillet geometry may not have been completed after 72 h since whole fish were not 

yet fully in the post-rigor state by this time (Figure 4b). Stien and others (2005) and 

Mørkøre (2006) also reported similar maximal length contractions of cod fillets, 

namely 15 - 20 % and 21 %, respectively. Moreover, Kristoffersen and others (2006 

a) reported that prerigor cod fillets were 12-13 % shorter than their postrigor 

counterparts.  

 

Changes in fillet width and roundness 

Fillet width and roundness for both fish species are shown in Figure 6 c, d.  

Atlantic salmon - As fillet length decreased during rigor, width on the contrary 

increased. For both unstressed and stressed salmon, the width increased gradually up 

to 6 % after about 45 and 10 h post mortem, respectively, corresponding with 

maximal rigor of whole fish (Figure 4a).  After 168 h, the mean increase relative to 

the initial values of 100 %, had dropped to 4 % (p< 0.05). This value resembles width 

increase in rainbow trout fillets as measured 20 h post mortem by Stien and others 

(2006). Fillet roundness increased faster for the stressed group than with the 

unstressed group. Again, the increases were clearly related to the gradual increases in 

rigor tensions, that is, up to the points were maximal rigor were attained. The further 

roundness increase up to 12 % of unstressed fillets after 168 h seems peculiar. We 
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have no plausible explanation of this phenomenon. Conversely, stressed fillet 

roundness had attained a mean increase of 7 % after 168 h. Thus, salmon fillet 

roundness had increased significantly (p<0.05) both due to perimortem handling 

stress, rigor mortis or ice storage. 

 

Atlantic cod - Perimortem stress did not affect the rate of increase in cod fillet width 

(Figure 6 d), that is, up to the point where the maximal whole fish rigor was attained 

(Figure 4b). When the experiment was terminated, the unstressed cod fillets had 

increased 8 % in width and they were significantly wider than their stressed 

counterparts where the relative increase was 4 %. Fillet roundness also increased 

according to increasing rigor tensions and as with the other geometrical parameters. 

Maximal increases for both fillet groups were 19-20 %, considerably higher than with 

the salmon. After 72 h, the relative roundness increase had been reduced to 17 %, 

significantly different (p<0.05) from initial values. However, perimortem handling 

stress did not induce permanent changes in cod fillet roundness (p>0.05).  

 

Changes in fillet cross-section area and maximum height  

While Figure 6 a-d are based on 2D assessments of geometrical features of the fillets, 

Figure 6 e, f are based on laser measurements of fillet height and the use of a 3D high 

speed camera. Examples of  changes in height profiles (cross-section A) of unstressed 

salmon and cod fillets as a function of  rigor and storage time is shown in Figure 7 a, 

b. For clarity, only 3 profiles are shown (pre rigor, maximal rigor, and post rigor). For 

both species, we can see that it was not only fillet height that was altered during rigor, 

but rather the overall shape of the cross-section changed their appearances. In both 

cases, the post rigor cross-section shapes of the fillets were intermediate between pre- 

and inrigor shapes. The maximum height obtained from the cross-section profiles 

(Figure 7 a, b) is plotted against storage time in Figure 6 e, f.  

 

Atlantic salmon - When comparing unstressed and stressed salmon fillets, the mean 

change in maximal fillet height of cross-section B was considerably larger than with 

cross-section A (Figure 6 e). After 168 h, at both cross-sections unstressed fillets were 
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however not significantly different from their initial values (p>0.05). 

 

Figure 7-(a) Changes in unstressed salmon fillet shape and size at cross-section A, resulting in 
area and height changes during rigor and ice storage. The selected profiles were obtained 
prerigor at Day 0 (t=0 h post mortem), at maximum rigor (Day 2, t=45 h), and after ice storage 
(Day 7,  t=168 h). (b) Visualization of similar changes in unstressed cod fillets at cross-section A:  
prerigor (Day 0, t= 0 h), at maximum rigor (Day 0, t=23 h), and postrigor after ice storage (Day 
3, t=72 h). The parameter hmax , and the interval [a  b] were used to calculate the area and height 
as defined by Equations (9) and (10). The hmax  is plotted against storage time in Figure 6 e, f. 
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For the stressed fillets, the maximal area of cross-section A and B were 12 and 18 % 

higher than initial values, respectively. At the end of ice storage, the stressed fillets at 

cross-section B and C were 15 % (4 mm) thinner, in average, than their unstressed 

counterparts (p<0.05). The cross-section area A in both groups of fillets was not 

significantly different from the initial value (p>0.05) at the end of ice storage. 

Regarding the values in mm of maximal height of the fillets, as defined in Figure 7b, 

when comparing pre- and postrigor fillets, the mean unstressed and stressed fillet 

heights at B decreased by 1 (p>0.05) and 5mm (p<0.05), respectively. At A location 

the height of the unstressed fillets in post-rigor was 2mm higher (p>0.05), while the 

height of the stressed fillets was lower for 4mm (p<0.05) in average. By comparison, 

a mean decrease of 2.4 mm was measured by Skjervold and others (2001a) when 

salmon fillet height was determined pre- and post rigor. Results of our study from 

three different scanning locations show that a different trend of contraction of the 

fillet was observed, as shown in Figure 6e.  

 

Atlantic cod - At cross-sections A and B, the cod fillets became about 14 -17 % 

thicker at maximal rigor compared with initial values (p<0.05). After 72 h post 

mortem, the mean maximal heights of both cross-sections were still greater, although 

not significantly so (p>0.05), than the corresponding initial values. Unstressed fillets 

were 5-8 % higher, whereas stressed fillets were 10-12 % higher. No significant 

differences were observed between unstressed and stressed fillet heights at none of 

cross-sections (p>0.05 %) (Table 2). 

 

Since data acquisition (Figure 6 e, f and Table 2) of cross-sections A, B and C on the 

same fillet occurred practically simultaneously, and since the cross-section shapes 

developed differently, it may be concluded that rigor development did not proceed 

uniformly over the whole fillet. This observation is in line with previous studies using 

other techniques to study rigor development (Jeacocke 1984; Berg and others 1997; 

Kiessling and others 2006; Stien and others 2006). The difference in the rate of 

contractions between the unstressed and the stressed fillets can be explained by 

different depletion rates of ATP in the muscle (Berg and others 1997; Erikson and 

others 1999). Another factor to consider is the drop in pH occurring before and after 

rigor onset. In Atlantic salmon, rigor starts at about pH 6.6 (Erikson and others, in 

press). This means that a considerable shrinkage of the protein matrix has already 
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occurred before rigor onset. Possibly, this was reflected particularly in case of the 

unstressed fillets where they contracted considerably during the prerigor period 

(Figure 6 a) which lasted about 30 h (Figure 4 a). 

 

Table 2 - Relative changes of cross-section (CS) area and height as measured at 

three Atlantic cod fillet locations (A, B and C, see Figure 3) using a laser source 

and a high speed 3D camera. 

Fillet Time post mortem (h) 

CS 0 5 16 23 33 53 72 

Unstressed 

Cross section area  ( %  change) 

A 

B 

C 

   100a 

  100a 

  100a 

104 ± 9 

106 ± 8 

113 ±23 

123 ± 12 

118 ± 10 

123 ±17 

124  ± 6b 

125 ± 11b 

128 ±18 

130 ± 6b 

125 ± 12b 

128 ± 19b 

127 ± 9b 

125 ± 10b 

126 ± 18 

115 ± 8 

113 ± 7 

119 ±17 

Maximal fillet height  (mm) 

A 

B 

C 

 24 ± 5 

19 ± 4 

15 ± 3 

24 ± 5 

20 ±3 

16 ± 3 

26 ± 6 

21 ± 3 

17 ± 3 

27 ± 5 

22 ± 4 

17 ± 3 

28 ± 6 

22 ± 4 

17 ± 4 

27 ± 5 

21 ± 4 

17 ± 3 

25 ± 6 

20 ± 4 

16 ± 3 

Stressed 

       Cross section area  (% change) 

A 

B 

C 

 100a 

 100a 

 100a 

112 ± 15 

110 ± 10 

112 ± 13 

122 ± 11b 

119 ± 12 

123 ± 14 

127 ± 7b 

 127 ±14b 

  124 ± 6b 

124  ±  9b 

131 ± 39b 

120 ± 9 

119 ± 5b 

122 ± 40 

116 ± 8 

126 ± 17b 

118 ± 13 

116 ± 12 

Maximal fillet height (mm) 

A 

B 

C 

     24 ± 4 

20 ± 2a 

14 ± 2a 

25 ± 4 

21 ± 2 

15 ± 2 

  27 ± 4 

  22 ±  3b 

  16 ± 4b 

27 ± 4 

22 ± 4 

16 ± 3X 

26 ± 4 

22 ± 3 

15 ± 3 

26 ± 4 

21 ± 3 

15 ± 2 

26 ± 5 

20 ± 3 

15 ± 3 

Mean ± SD (n = 12). In each row, b denotes significant difference (p<0.05) from the initial 
value (a). No significant differences were observed due to treatment (stress) (p>0.05).  
 

Table 2 summarizes the relative changes in unstressed and stressed cod fillet cross-

sections A, B and C. Although significant differences were observed during rigor, a 

significant difference (p<0.05) with respect to initial value was observed only in the 

area of the cross section A after 72 h. Height of the fillets, as defined in Figure 7b, in 

the unstressed fillets was not significantly different at neither of locations during the 

entire rigor process. In stressed fillets, no significant difference (p>0.05) in height 
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were observed at the end of ice storage with respect to initial value. In these fillets, the 

height was only temporary significantly different at B and C location after t=23h, 

where the height had increased for 2 mm in average. In general, although there was a 

tendency of increase of height (2mm in average) in both groups, at the end of ice 

storage, none of these changes were significantly different (p>0.05) neither with 

respect to their initial value nor treatment (stress). 

 

Comparison between fish species 

The cod fillets showed largely similar contraction patterns as with those of the salmon 

(Figure 6 a-f). Even though the cod were apparently less stressed (Table 1) and 

subsequently exhibited less difference between the rigor courses of unstressed and 

stressed fish (Figure 4 a, b), the reductions in fillet area and length, as well as the 

increases in width were basically of similar magnitude. Furthermore, the increases in 

fillet roundness and height were in fact larger for the cod. For both species, the 

changes in fillet geometry occurred faster in stressed fillets and this effect of 

perimortem stress was more pronounced for the salmon as could be expected from the 

more severe struggling of salmon during the stress bout (Table 1). The maximal 

whole fish rigor strength was judged about the same for both species (Figure 4 a, b) 

even though the salmon were more severely stressed.  It might be that compared with 

the lean cod, the high fat content in salmon white muscle, where a major fraction of 

the fat is located in the myosepta (Zhou and others 1995), has a dampening effect on 

rigor tensions. In turn, this might moderate the effects of perimortem stress on fillet 

shape. Perhaps this might also in part explain why gaping problems are often more 

severe in cod than in salmon.  

 

Fillet shape and marketing 

After ice storage, at a time the fillets would typically be available in the market, the 

fillets had several significantly different features regarding size and shape as 

compared with just after slaughtering.  Although there were also some significant 

differences due to perimortem handling stress, we think that those would hardly be 

noticeable by the consumers. 
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Evaluation of the computer vision system 

To check the fairness of the computer vision segmentation of fillets, it was necessary 

to validate the accuracy of the segmentation. This was performed by comparing the 

segmented images of the salmon fillets by the computer vision algorithm, at the 

beginning (t = 0 h) and the end (t = 168 h) of the ice storage, with the ground truth 

images of fillets segmented manually at similar sampling times. The correlations of 

fillet length and area as segmented with the computer vision method and as segmented 

manually were high. The comparison demonstrated that there were practically no 

deviations in the evaluation of both those two parameters ( r2 = 0.99). The small 

differences that may have existed would have only negligible effects on the 

geometrical features of the fillets. 

 

As for the image acquisition, the controlled illumination conditions (uniform and 

diffuse) and the built-in flat field correction of the camera made the image processing 

and segmentation of the images much easier. It is well-known that proper illumination 

is important for successful computer vision applications (Whelan and Molloy 2000; 

Zeuch 2000, Hardin 2004). We were not confronted with reflection problems during 

image acquisition. In addition, a high resolution digital camera (2048 x 1536 pixels) 

provided accurate mapping between fillets and their real-time dimensions. 

Segmentation of fillets was facilitated by using a suitable scene background (gray for 

salmon and light-blue for cod fillets) having different spectral characteristics from the 

fillets. It was observed that the segmentation was easier in the case of cod fillets due 

to the use of light-blue background suggesting this color can be used for conveyor 

belts in fish processing plants transporting the fish to on-line computer vision 

systems. In our study, we thus found no need to apply a more complex thresholding 

system than the one reported by Otsu (1979). Fast thresholding computation is known 

to play an important role in the improvement of the total performance of computer 

vision systems (Lin 2005). 

 

In addition to registration of size and shape changes in 2D and 3D, the proposed 

computer vision system has the ability to evaluate and classify the color of salmon 

skin or fillets from a single image (Misimi and others 2007, Erikson and others, in 

press). Therefore, the proposed computer vision system has the flexibility of choosing 

multiple-feature evaluation (color, size and shape, Figure 1) from a single image. 
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When it comes to the 3D measurements, the system determined fillet heights and 

provided cross section profiles of the fillets. Although the laser scanning and 

capturing of images using a high speed 3D multiscan camera was not performed under 

online conditions, there are no performance limitations for on-line usage.  

 

Until recently, the biggest limitations for online computer vision applications have 

been the high costs and low processing speed (Andreadis 2001). In this regard, the 

proposed computer vision system uses low-cost off-the-shelf components which make 

it possible for many to exploit its advantages without large expenses. In addition, the 

rapid development and emerging of CPUs and other peripherals with high 

computational speed has made it possible to be able to cope with almost any real-time 

requirement. 

 

Conclusions 
We have shown that when salmon and cod were exposed to two extremes of peri-

mortem stress and were subsequently stored on ice, significant changes in fillet 

length, area, roundness and cross-section height profiles were detected during storage. 

After ice storage of cod (72 h), only fillet width was still significantly affected by 

perimortem stress. In contrast, salmon fillets exhibited significantly different 

geometrical features after ice storage (168 h) regarding all parameters except from the 

width. Although there were several transient significant differences in fillet geometry 

due to perimortem stress, they were comparatively small and the stress effect on fillet 

shape would hardly be an issue for both post-rigor processors and for consumers by 

the time the fillets are normally marketed. If prerigor filleting and processing are 

attempted, it is important to realize that significant changes in fillet shape do in fact 

occur before a noticeable onset of rigor mortis can be spotted.  

 

The proposed nondestructive and contact-free computer vision system was capable of 

detecting changes in fillet length, area, width and roundness as well as in fillet height 

profiles and cross-section during the course of rigor and ice storage. The method 

showed a high sensitivity and it detected the characteristic features of the rigor 

developments of unstressed and stressed fish. Furthermore, the system is inexpensive 

since it can be implemented with off-the-shelf components and it may be feasible for 
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industrial purposes to assess possible transient 2D and 3D changes in the shape and 

size of different products occurring during processing. 
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Abstract 
In this study, we present a promising method of computer vision-based quality grading of 

whole Atlantic salmon (Salmo salar). It is shown that with the use of computer vision it is 

possible to differentiate between different quality grades of Atlantic salmon based on the 

external geometrical information contained in the fish images. Initially, before the image 

acquisition, the fish were subjectively graded and labeled into grading classes by a 

qualified human inspector in the fish plant. Prior to classification, the images of Atlantic 

salmon were segmented into binary images, and then feature extraction was performed on 

the geometrical parameters of the fish from the grading classes. The classification 

algorithm was a threshold-based classifier, which was designed using the linear 

discriminant analysis. The performance of the classifier was tested by using the leave-

one-out cross-validation method, and the classification results showed a good agreement 

between the classification done by human inspectors and by the computer vision. Overall, 

it is shown that computer vision can be used as a powerful tool to grade Atlantic salmon 

into quality grades in a fast and non-destructive manner by a relatively simple classifier 

algorithm. The low-cost of implementation of today’s advanced computer vision 

solutions makes this method feasible for industrial purposes in fish plants as it can 

replace manual labor, on which grading tasks still rely.  

 
Keywords: Computer vision, Atlantic salmon, grading, processing line 
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Introduction 
During the last two decades, the number of whitefish processing plants in Norway has 

diminished considerably for several reasons. In aquaculture, although the production 

volume of salmonids has increased tremendously over the same period of time, most of 

the fish are currently exported as raw material, i.e. gutted fresh or frozen fish. Fish 

processing is often not profitable particularly because of the high labor costs. For 

instance, for slaughtering of farmed salmonids, the needed manpower is typically 20-25 

persons per shift to process 40-100 tons of bled, gutted fish packed in ice. Strong 

competition from low-cost production and processing countries such as Chile, China and 

Poland, as well as high labor costs in Norway have forced many Norwegian fish 

processors to move their processing facilities to low-cost countries, such as the Baltic 

countries.  

 

High labor costs are predominantly due to the extensive use of the manual labor. A 

number of fish quality grading and processing tasks are still performed manually by 

human inspectors. Quality grading (external and internal) of whole Atlantic salmon, at 

the present, completely relies on manual labor. This grading is based mainly on some 

visual properties that represent important criteria for distributors and consumers in the 

fish markets. In Norway, 2 to 4 persons are necessary for whole Atlantic salmon quality 

grading, when biomasses between 80-120 tons (25.000 fish) are processed per shift (7h). 

In farmed Atlantic salmon processing plants, human inspectors stand beside the conveyor 

belt and perform grading into mainly the following quality classes: “Superior”, 

“Ordinary”, and “Production”. According to the Norwegian industrial standards for 

quality grading of farmed Atlantic salmon (NBS 10-01, 1999), the “Superior” grade has a 

streamlined shape and has no external blemishes, while the “Ordinary” grade may have 

an unsymmetrical shape or have a limited number of blemishes. At a typical farmed 

Atlantic salmon processing plant, if there are no specific problems with the fish, the 

Superior grade constitutes approximately 90-97% of the biomasses of fish that are 

processed (Michie 2001). The fish that do not fit into these grades are mainly graded as 

“Production”; fish with body deformities, mainly with a back-humpback and a short tail 

(Misimi and others 2006). According to the Norwegian regulations, the export of the 
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“Production” grade salmon is not allowed and it is mainly used as a raw material for 

processed products (Sørensen 2003). Fish that have too many blemishes, severe 

deformities, or sexually mature signs, are completely rejected from the processing.  

 

Reliance of quality grading of Atlantic salmon on manual labor incurs higher production 

costs and lower efficiency. Therefore, introduction of a higher degree of automation of 

various unit operations in fish plants, preferably at low investment costs, represents a 

common strategy within the fish industry today (Erikson and Misimi 2007, in press). 

With the automation of this operation, as well as other operations that still rely on manual 

labor, the productions costs would go down, the processing rate would be increased and a 

higher quality assurance of the end products would be introduced. 

  

In 1988, Arnarson and others (1988) reviewed and outlined a number of possibilities for 

implementing computer vision for automation and improving product quality in the fish 

processing sector. Gunnlaugsson (1997) also reviewed the benefits of applying vision as 

an intelligent form for fish processing. Even so, several unit operations in a fish 

processing line still rely on, at least in part, repetitive manual labor. In the meantime, 

computer vision has proven successful for online process control and inspection of food 

and agricultural products with applications ranging from simple automatic visual 

inspection to more complex vision control (Gunasekaran 2001; Brosnan and Sun 2004). 

In fish industry, despite the slow uptake, computer vision is beginning to gain the 

necessary maturity for quality evaluation applications (Strachan and Murray 1991; 

Strachan 1993; Strachan and Kell 1995; Stien and others 2005; Stien and others 2006; 

Misimi and others 2007). 

Although recently there have been a number of studies on fish species recognition 

(Strachan and Nesvadba 1990; Strachan 1994; Zion and others 1999; White and others 

2006; Zion and others 2007), there is still a gap to be filled concerning the quality grading 

of whole Atlantic salmon.  

 

The “Production” grade Atlantic salmon is easier to classify from the other two quality 

grades (Misimi and others 2006), since it comes usually with a deformed shape in the 
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form of mainly a humpback and a short tail. The algorithm for this classification is 

described by Misimi and others (2006). The distinction between the other two grades has 

been regarded as more difficult since between the “Superior” and “Ordinary” there is a 

larger similarity regarding shape and visual appearance. The “Production” grade salmon 

was very rare at the sampling day at the site. At the plant we were told that nowadays it 

occurred in negligible percentages and that most of the fish were graded as “Superior” 

and “Ordinary”, implying an improvement of fish quality in the farming stage.  

 

Therefore, in this work, the objective was to investigate the ability to differentiate 

between the “Superior” and “Ordinary” quality grading classes of Atlantic salmon by 

means of computer vision and pattern recognition techniques. Here, it was interesting to 

identify the features which can be used for external quality grade classification. The 

findings of this work can be important for eventual development of quality grading 

instrumental inspection systems for use in the fish industry. The computer vision system 

for quality grading consisted from an image acquisition light-box, camera, interfacing to 

PC and a personal computer, where the software was developed. Geometrical and 

dimensional properties of the fish samples were used as features during the classification. 

Linear discriminant analysis (LDA) was used for classification of fish samples and the 

performance of the classifier was investigated by comparing this classification with the 

one performed by a qualified human inspector. 

 

Materials and methods 
The fish 

Commercially farmed Atlantic salmon with a length 69.8 ± 7.6 cm (n=60) were sampled 

on site, at Salmar AS (Frøya, Norway) commercial fish processing plant, in April 2006. 

Fish quality grading at the site was performed by a trained human inspector, and the 

computer vision system that was installed temporary in the premises of the processing 

plant was used for acquisition of fish images.  

Sensory evaluation/grading 

The quality grade of the Atlantic salmon was descriptively evaluated by a trained human 

inspector, the chief human inspector for the shift, at the fish plant. The human inspector 
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labeled every sample of the Atlantic salmon with the appropriate quality grade based on 

external appearance, and elaborated the criteria upon which the particular labeling was 

based. This labeling was used as a ground truth. From the grading criteria, as explained 

by the human inspector, the Ordinary fish were thicker/broader in the back(posterior) part 

of the fish from point S to T (Figure 1), had a shorter tail than the Superior grade, and 

were more unsymmetrical. 

 

The computer vision system and the flow chart describing the specific functions of the 

image acquisition and classifier design are shown in Figure 2a. All the algorithms for 

image processing, color calibration, classification and testing were written in Matlab 7.3 

(Mathworks, Natick, Mass., U.S.A.) 

 

Figure 1-Definition of generated features for the subsequent feature extraction for classification. 
Points M and T are the points with the maximum and minimum width of fish respectively, while the 
point S is the width of the fish at the half of the distance from point M to T. 

 
Image Acquisition 

The images of Atlantic salmon for the computer vision grading were captured using an 

image acquisition system for a digital color camera (Pixelink PL-A776, Ottawa, Canada) 

with a built-in flat-field correction at the resolution of 2048x1536 pixels (Figure 2a). 
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Images were stored in the computer for later evaluation without compression, in a bitmap 

file format (.bmp) and in three-dimensional RGB (red, green and blue) color space. The 

processing was carried out in the captured images. The images were consequently 

downscaled to the resolution of 1024x967 for further processing.  

 

The fish were illuminated in a specially made light-box setup (Figure 2b). The light-box 

had 1 opening to allow the placing of fish into the light-box. This opening was closed 

when fish were photographed in order to cut out the interference from the ambient 

illumination. The light-box (F. Waagan AS, Skodje, Norway) had a grey neutral color 

inside and used two fluorescent tubes (18W) with a color temperature greater than 5000K 

and a Rendering Index (Ra) close to 95%, as recommended from Sandor and Schanda 

(2006). The color rendering index is a measure of the ability of a light source to 

reproduce the colors of various objects being lit by the source.  

 

Figure 2-a) The structure of the computer vision system for an image acquisition and the flow chart 
of the most important computer vision stages during the image analysis and the classifier design, b) 
the structure of the light-box, positioning of lamps, fish, and camera. 

 
The fluorescent tubes (60 cm) were arranged above the fish and at an angle of 45˚ with 

the fish (Figure 2b). In this way, the illumination conditions in this box were controlled to 
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give a relatively even and diffuse illumination. The built-in flat-field correction of the 

camera was used to compensate for eventual uneven illumination.  

The background of Atlantic salmon, in which they were placed during the image 

acquisition, was light-blue, similar to the color of conveyor belts some time used by fish 

processing plants. The camera was mounted and fixed on the upper part of the light-box, 

perpendicular to the field of view, at a vertical distance of 60 cm from the background 

were the fish samples were placed. The angle between the camera and the fluorescent 

tubes was approximately 45˚ (Figure 2b). The camera was connected to a PC through a 

fire wire interface adapter. The camera and the light-box were switched on at least 1 h 

before the experiment and were not switched off until the experiment was over. This was 

done to obtain stable camera and illumination conditions (Luo and others 2006).  

 

Calibration 

Calibration of images was performed after their acquisition. The aim of the calibration 

was to ensure that the images taken from the digital camera were true representation of 

the fish in the scene both when it comes to their real-world dimensions and color. Color 

calibration was performed using the Macbeth ColorChecker (Gretag-Macbeth Ltd., UK) 

with 24 patches (color squares) as described in (Erikson and Misimi 2007, in press). 

 

Pre-Processing and color conversion 

The calibrated color images were images in CIELab color space, according to the 

definitions given in Wyszecki and Stiles (2000), as described in (Erikson and Misimi 

2007, in press).  

 

Segmentation 

Segmentation of the fish, as a region of interest (Figure 3a, b), from the background was 

performed using the thresholding method. The threshold T=126 was found to be the most 

suitable one for the segmentation of Atlantic salmon. This threshold was the same for all 

the images, during the segmentation. Since the scene background of the fish was of 

different spectral characteristics from the color of fish, this form of thresholding provided 
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an accurate segmentation of the fish. The binary image BW(x, y) of the fish (Gonzales and 

others 2004) was defined as: 
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Figure 3-Image processing and segmentation of Atlantic salmon from background: a) Calibrated 
image of Atlantic salmon; b) Gray-level image; c) Segmentation (black and white image) from the 
background; d) Automatic rotation and cropping of the bw image for feature extraction. 

 

Subsequently, any image pixel f(x,y)>T was classified as a fish pixel and was labeled as 

“1” (white), while all the other pixels were classified as a background and were labeled 

“0” (black) (Figure 3c). To ensure that only the fish was segmented from the background, 
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a set of morphological operations was performed consisting of open-close filtering. 

Opening operation was used to remove small details from the background, while closing 

was used to remove small details from the segmented fish. For this set of operations, the 

‘square’ structured element in Matlab was used. All Atlantic salmon images were 

segmented from the background using this procedure, automatically as a batch of images. 

 

Rotation 

Even if the existing machinery in fish processing plants would perform the head - tail 

orientation of fish, the proposed method is also invariant to the orientation of fish. During 

the image acquisition stage, the fish was not oriented to lie along any of the xy axis of the 

background plane. Instead, the fish was placed at a random position, closing a random 

angle with the y-axis (Figure 3a). The algorithm took into account the angle of orientation 

and, after the image processing, all the fish were oriented in such a way that they closed a 

0˚ degree angle with the x-axis (Figure 3d). Additionally, the algorithm was capable of 

recognizing the tail part from the head by comparing the area on the front part, calculated 

from the maximum width in each direction, and the back of the fish (area on the front is 

larger than in the back). This resulted in a proper head-to-tail orientation similar to the 

one reported in Misimi and others (2006). An alternative method for head-to-tail 

orientation is also reported by Strachan (1993). 

 

Feature Extraction 

Subsequently, extraction of geometrical features was performed on the binary image of 

the segmented fish. This process was focused on the measurement of geometrical 

properties of fish such as the size (area, length, width) and shape (roundness). All of the 

2D-geometric features were computed from the segmented binary images (Figure 1). This 

process was important for identification of those geometrical properties that could be 

used for differentiation between the quality grading classes.  

Initially, a number of features (6) were generated aiming to choose only the non-

redundant and uncorrelated features. These features were further reduced to 4, consisting 

of the aspect ratio and the three other features as defined in equations (3), (4), (5). These 

features were seen as being among those possible features that do contain information 
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about the tail length and broadness in the posterior part of the fish. This is the justification 

for taking into consideration features as defined in equations (3), (4) and (5). At the end, 

the subset of features, consisting of only 3 features (Figure 1), was chosen for the purpose 

of classification. The aspect ratio was not a part of this subset, because this feature was 

highly correlated to the X2 feature in equation (4), meaning it was redundant information. 

The final 3-dimensional feature vector x: 
 

 [ ]321 ,, xxxx =  (2)

 

consisted of the following features: 
 

Max

t

W
Lx =1  

(3)

 
 

Max

LMin

W
WWx +

=2  

(4)

 
 

tLx =3  
(5)

 

The nature of these features can be understood by looking at the Figure 1. The length  is 

the length from the maximal width of fish , at location M, to the location T of the 

minimal width in the tail . The  is the width of the fish in the back part, at 

location S= /2. These features describe the geometrical measures of the back part of the 

fish, which is crucial for quality grading according to the sensory evaluation performed 

by the trained human inspector. 
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All of the geometrical measures which are used for the extraction of features defined in 

(3), (4) and (5) were calculated from the binary fish images. As recommended by 
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Theodoridis and Koutroumbas (2003), prior to the selection of the subset of features for 

the use in classifier design, we tested the discriminatory capability of all the generated 

features. The features that are not significantly different should be discarded, as they 

would only constitute an unnecessary computational burden. Therefore, for the generated 

features, we investigated whether the values they took for the different classes were 

significantly different (p<0.05). At the end, only those features with the richest 

discriminatory information between classes (lowest p-value), and were not correlated to 

each other were chosen. 

 

Classifier design 

The subset of the selected features was fed into the classifier and a classifier based on the 

LDA was chosen for the purpose of classification. 

 

LDA searches for those vectors in the underlying feature space that best discriminate 

among classes. Therefore, LDA seeks directions that are efficient for discrimination 

(Duda and others 2000). For all samples of the available classes are defined two measures 

in form of scatter matrices. The first one is the within-class scatter matrix, given by 
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where represents the ith sample of class j, j
ix jμ  is the mean of class j, c is the number of 

classes, while is the number of samples in each class j. The other scatter matrix is 

called between-class matrix given by  
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where μ  represents the mean of all classes. The goal with LDA is to maximize the 

between-class measure while minimizing the within-class measure. This can be done by 

maximizing the function J given by 
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The function w  which optimizes the J is given by 
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With this transformation, the classification is converted from an n-dimensional 

problem to 1-dimensional one. The optimal decision boundary for separation of classes is 

then: 
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Practically, this means that by training, from the set of 3-dimensional (3-features) 

samples , the classification problem was converted to 1-dimensional one by 

obtaining a scalar y which projects the samples into one line  

[ 321 ,, xxxx = ]

 

xwy T=  (12)

 

The purpose of training with LDA was to find and select the threshold t=y that maximizes 

the separability between classes, which was subsequently chosen as the decision class 

boundary. The classifier’s output were numbers 1 or 2, which are the class labels. This 

means that, upon the testing, the sample x from equation (2) was allocated to class 1-

‘Ordinary’ if it was to the left of the threshold (y(x)<t), otherwise it was allocated to class 

2-‘Superior’ (y(x)≥t). 
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Performance evaluation 

To evaluate the performance of the linear classifier based on the LDA, the leave-one-out 

cross-validation was used, a well-established technique for assessing the classification 

performance (Ripley 1996; Theodoridis and Koutroumbas 2003). Each fish sample in the 

dataset was left out in turn as a test sample, while the remaining (N-1) samples were used 

as the training data. This was repeated for each fish sample, meaning that the technique 

requires N repetitions of classifier trainings, for a dataset with a sample size of N. The 

total predicted accuracy of the classifier, used to measure the classification performance 

was defined as: 

N
NccaccuracyTotal =  (4)

where Ncc is the number of correct classifications while N is the total number of samples. 

 

Results and discussion 
Figure 4 is a graphical representation of the discrimination between classes as generated 

by LDA. Here, it is shown that classes are in different sides of the generated class 

decision boundary from training the classification algorithm with the LDA. The values of 

features for the respective salmon grading classes are shown in Table 1. 

 

Table 1- Feature values for different quality grading classes of Atlantic salmon.  

Feature Ordinary 

   

Superior 

   

Aspect Ratio* 2.4 ± 0.2a           3.2± 0.3b       

X1 1.0 ± 0.1a           1.13 ± 0.00b       

X2 1.2 ± 0.1a            1.6 ± 0.1b       

X3 334.5 ± 47a    466.6 ± 35.2b

*This feature is not taken into consideration in the final classifier design due to being highly correlated 

with feature X2. Values are shown as Mean ±SD (n=60). Different letter a, and b within rows indicates 

significant difference (p<0.05). 

 178



 

The classification results by LDA and cross validated by leave-one-out method are shown 

in Table 2. The classification accuracy obtained in this case was 91% for the used data 

set. By checking the labels from the sensory evaluation for the misclassified samples, we 

saw that the human inspector had graded two of the three misclassified “Ordinary” 

samples into their respective quality grade because they had a minor scale loss area. The 

differences in the geometry of these samples and the “Superior” grade were minor and 

our classifier was not able to quantify and differentiate them. The other fish, misclassified 

as “Superior” from our classifier, was classified as “Ordinary” from the human inspector 

because it was too long and had low condition factor (Misimi and others 2007) (large 

aspect ratio), even though it was rather symmetrical and not broad in the posterior part, 

which are normal characteristics of a “Superior” fish. Increasing the size of the dataset to 

include more fish with a large aspect ratio could solve this problem.  

 

When it comes to the feature selection, we found that the use of additional features 

(roundness, aspect ratio, area ratio) did not improve the classification accuracy. 

Therefore, the initial choice of the subset consisting only of three features was proven to 

be sufficient, because it contained the best discriminatory information for the given 

quality classes. Adding the aspect ratio (Table 1), for example, as the fourth feature did 

not improve the classification accuracy. In addition, this particular feature was highly 

correlated to the feature X2 and therefore it was left out.  

In our study, we did not use any color feature for discrimination, since no such feature 

was used in discrimination of grading classes from the qualified human inspector. 

However, the system has the ability to include color features if there is a need to do 

grading according to other aspects of fish quality such as the skin color (Schubring 2003, 

Erikson and others 2007)  
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Table 2 - Classification results as evaluated by the leave-one-out cross-validation for 

Atlantic salmon. 

Nr. of samples 

(Ground truth as labeled from 

human inspector) 

LDA 

Cross validation accuracy (%) 

Dataset 

Ordinary Superior Ordinary Superior TOTAL 

Atlantic salmon 26 34 

 

23 

 

32 

 

91 

 

 

Figure 4-Discrimination between two grading classes as generated from the Linear Discriminant 
Analysis based classifier. Red pixels are the Ordinary grade samples; Blue pixels are the Superior 
grade samples. 
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Image pre-processing and segmentation of Atlantic salmon, as a region of interest, from 

the images was optimal due to the acquisition of images under controlled illumination 

conditions. The segmentation was facilitated from using a background with different 

spectral characteristics (light-blue) compared to the spectral characteristics of the fish. 

This is in line with the recommendations in Mendoza and others (2006), since the 

segmentation of the region of the interest (Atlantic salmon) depends from the contrast 

between the fish sample and the background. Since the necessary contrast was provided 

by using a background with different spectral characteristics, there was no need for use of 

a more complex scheme of thresholding than the one we used in this study. As long as the 

desired features are easily extracted, it is always more favorable to use a simpler 

algorithm for segmentation, as it is known that a faster and simpler segmentation by 

thresholding can play an important role in improvement of the total performance of 

computer vision systems (Lin 2005). 

 

During the classifier design, the aim was to avoid the use of too many features, as well as 

proper utilization of image data. Using too many features, when having a limited data set 

available, can cause overfitting (Duda and others 2001). Overfitting means that, for a 

given sample size, the increase of the number of features would virtually improve the 

performance accuracy when designing the classifier, but practically would only degrade 

the classifier performance accuracy when dealing with newly unknown patterns. 

Nevertheless, in our study, adding 2 or 3 more features would still be optimal for our 

classifier, provided that the additional features improve the classification of accuracy 

(Heijden and others 2004). This is line with the previous studies regarding the maximal 

reasonable number of features when classifying food products. For instance, Mendoza 

and others (2004) report the use of 9 features for designing a classifier of bananas with an 

existing dataset of 49 samples. Panigrahi and others (2006) report the use of 6 to 10 

features for classification of beef spoilage over an average dataset of 58 beef samples. In 

our study, additional statistically significant features were left out as they did not greatly 

improve the classification accuracy. Their extraction and inclusion in the subset of 

features can, however, not be excluded if, with a larger dataset, it is shown that they 

improve the classification accuracy. 
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As for the performance evaluation of the classifier using the leave-one-out cross 

validation, for a dataset of the similar size which we have used in our experiment, the 

leave one out (LOO) cross validation is the most optimal form of performance evaluation 

(Ripley 1996; Rosemary Tate and others 2003). Although computationally complex, the 

LOO method gives almost an unbiased estimation of the classifier’s performance 

accuracy (Vapnik 1998; Theodoridis and Koutroumbas 2003).  

 

As for the dataset in this study, a larger sample size would be preferable but not always 

practical, and economical. Limitation to this sample size is partly due to the high cost of 

the experiments of this nature in the industry, and limitations that the industry sets for the 

number of the extracted fish samples from a batch. The main idea in the study was to 

prove if there can be made class discriminations between quality grades of Atlantic 

salmon by the means of computer vision. Since this is a supervised classification, the 

increase of sample size is dependent from labeling of fish samples by a qualified human 

inspector, in order to be able to take these samples into the training set. This can be done 

in the way it is described in the Figure 5. The knowledge database of labeled fish images, 

which are used for training of the classification algorithm, can be gradually increased if a 

human inspector manually labels/classifies the actual images of fish, acquired by the 

camera. As a result, occasional periodical training of the classifier using the renewed 

knowledge database can be done, resulting in the adjustment of the classification 

threshold.  
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Figure 5-Increase of the knowledge image database by manual grading/labeling of fish images from 
human inspectors for training the classification algorithm. 

 
Nevertheless, only a larger sample size does not necessary mean an improvement in 

classification accuracy. White and others (2006), for instance, found that increase of the 

size in the training sets did not lead to better classification scores for the different fish 

species. They report that, including an even distribution of the samples which belong to a 

certain class was an important factor in improving classification accuracy. In this regard, 

we have tried to have an even distribution of samples belonging to classes as much as 

possible. 

  

In this study, we only used fish slaughtered at the same processing plant, evaluated by the 

same inspector. The fish were farmed at the site, and sampled on the same day. 

Therefore, potential influence in the classification accuracy of fish farmed at different 

sites, and the effect of season has yet to be explored. White and others (2006), for 

example, conclude that it is to be expected a decrease of the classification accuracy if fish 

samples from more than one location and from different time of the year are included. In 
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this respect, it is realistic to expect that the increase of the dataset and inclusion of fish 

from different seasons, different fish farms, and graded by different quality inspectors 

may decrease the classification accuracy. It is however important to observe that a whole 

Atlantic salmon classification does not need to have a near-perfect classification, in order 

to be useful for the salmon processing industry (Mathiassen and others 2007). 

 

Since our classification was of a supervised type, it was observed that the consistency of 

the sensory evaluation was crucial for designing a good classifier. This becomes even 

more important, since human inspectors, despite some existing industrial standards for 

grading, may grade and label products in a way that is not according to the descriptions of 

industry standards (Sørensen 2003). Sørensen (2003) points out the tendency of the fish 

processors for a voluntary use of the industry standards for grading. Relying only on the 

existing industry standards, may also not be so reliable since these standards have not 

been revised since 1999, meaning there is a need for systematization and optimization of 

the grading criteria. The present situation opens up for abuse during manual grading as 

the majority of the salmon exporters seek to label their fish into the “Superior” class 

(Sørensen 2003), to maximize the profit. Computer vision as an automation technology 

for quality grading will therefore introduce a consistent way of quality grading. 

 

In classification issues, the issue of cost of misclassification that occurs must also be 

taken into consideration: 1) “Superior” salmon can be misclassified as an “Ordinary” 

grade or 2) the “Ordinary” salmon as a “Superior” grade. In the first case, the customers 

would, most probably, not mind the misclassification but it is the producer who will loose 

in value (costly type of classification error). In this regard, the designed algorithm may 

have flexibility for the decision boundary adjustment. It is to be expected that the 

automated quality grading will introduce a more consistent and objective grading vs 

manual grading. 

  

Conclusions 
Automation of manual grading of Atlantic salmon in processing plants has become a 

central issue in recent years, because of the continuous diminishing of the number of 
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processing plants in Norway due to high labor costs and increased production volume. 

The findings of this study show the potential of computer vision pattern recognition in 

grading whole Atlantic salmon. The method is able to grade with 91% accuracy the 

“Ordinary” and “Superior” grade, with the existing data set. Manual sensory grading 

done by a qualified human inspector was used as a reference data (ground truth). By the 

LDA computer vision algorithm it was possible to simulate the quality grading performed 

by human inspectors. Therefore, computer vision has the potential to enable fully 

automated quality grading of Atlantic salmon in processing plants. Further large scale 

tests and optimization of software/hardware, and an eventual 

systematization/optimization of quality grading criteria are necessary before the method 

can become viable for industrial and commercial use. 
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ABSTRACT 
 

The bleeding efficiency of anesthetized and exhausted Atlantic salmon was studied. 

Unbled fish were used as control groups for both treatments. Several analytical methods 

were used to evaluate color or residual blood contents of prerigor and smoked fillets. In 

all cases, the amount residual blood in the fillets was modest and blood was not 

considered a quality problem in terms of fillet appearance. Perimortem stress did not 

affect residual blood contents of the fillets. Only salting and smoking had a significant 

effect on filet color. The high bleeding efficiency for all groups was attributed to prerigor 

filleting allowing washing of the fillets before the blood had time to coagulate. In 

addition, a computer vision method was developed for automated blood inspection of the 

body cavity after gutting and washing. A classifier (‘no blood’ or ‘blood present’) based 

on linear discriminant analysis was tested and the classification accuracy was over 90% 

as evaluated with the leave-one-out method.  
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Introduction 

 
For large fish, adequate bleeding is considered necessary for good product quality. 

Otherwise, residual blood in fillets may lead to reduced visual acceptance of the product 

(Kelly, 1969; Tretsven and Patten, 1981; Huss, 1995; Connell, 1995). For instance, 

uniform white fillets are commonly desirable for whitefish. To avoid brown discoloration 

of pre rigor cut cod (Gadus morhua) fillets, appropriate bleeding procedures must be 

followed (Kelly and White, 1966). Residual blood (heme iron) can catalyse lipid 

oxidation during storage of fatty fish (Richards and Hultin, 2002). Iron degraded from the 

heme iron complex acts as a catalyst for the oxidized flavours in cooked meats (see 

Turhan and others, 2004). Accordingly, Tretsven and Patten (1981) demonstrated that 

bleeding of rainbow trout (Salmo gairdneri) lead to reduced rancidity as well as better 

appearance and odor when evaluated after storage for 8 mo at -18 oC. On the contrary, 

Porter and others (1992) did not find any differences in rancidity between unbled and 

bled sockeye salmon (Oncorhynchus nerka) after storage for up to 12 mo at –20 OC. 

Notably, they also found no difference between white muscle hemoglobin levels of 

unbled and bled fish.  

 

In the salmon industry, bloodspotting represents one of the major causes for fillet 

downgrading (Michie, 2001). Although bleeding affects the number of blood spots in 

smoked salmon, Robb and others (2003) concluded that other, unknown factors play a 

more important role. The visual effects of inadequate bleeding are particularly 

pronounced in salted and smoked products such as in smoked Atlantic salmon (Salmo 

salar) fillets (Robb and others 2003).  

 

Exsanguination of Atlantic salmon by severing gill arches followed by bleeding in a tank 

filled with seawater do not represent a major stress factor (as defined by muscle 

biochemistry) compared with substantial antemortem handling stress. In fact, the energy 

status of the muscle seemed to increase as a result of bleeding (Erikson and others 1999). 

Similarly, from an in vitro 31P NMR study of early post-mortem changes (up to 5 h post 
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mortem), bled loach (Cobitis biswae) maintained intramuscular levels of PCr, ATP and 

pH, whereas a decrease was observed for unbled fish (Chiba and others 1991) suggesting 

bleeding may delay rigor onset. This was indeed documented by Mochizuki and others 

(1998) who found that bleeding of unstressed horse mackerel (Trachrus japonicus) 

delayed the rate of the rigor mortis progress. Furthermore, bleeding of three pelagic 

species delayed, by slower degradation of pericellular collagen fibrils, muscle softening 

during chilled storage. On the other hand, bleeding did not effect muscle firmness of 

three species of demersal fish (Ando and others, 1996,1999).  

 

The total blood volume of different fishes has been stated as ranging from 1.5 - 3.0 % 

(Huss 1995) up to 5 - 7 % (Itazawa and others 1983) of the body weight. The latter range 

also covers the blood volumes of three salmonids (Smith, 1966). Only 20 % of the blood 

is located in muscular tissues and the rest is located in internal organs. Since the white 

muscle is rather poorly vascularized, it has been assumed that blood distribution is not 

much affected by exercise (Huss, 1995).  However, when rested fish are exposed 

stressors and they exhibit escape behavior, blood flow is gradually redistributed from the 

viscera to the locomotory muscles to meet the increased oxygen demand of the white 

muscles (Thorarensen and others 1993). Moreover, when fish are subjected to handling 

stress, the plasma clotting times is reduced, presumably due to the response of 

thrombocytes resulting from increased levels of blood catecholamines (Fujikata and 

Ikeda, 1985; Smit and Schoonbee, 1988; Ruis and Bayne, 1997). A 43 % decline in blood 

clotting times has been observed 10 to 60 min after a stress incident. Intravascular 

coagulation could be a consequence of this (Cassilas and Smith,1977).This finding alone 

suggests that perimortem stress might lead to poorer blood drainage. On the other hand, 

(Warriss and Wilkins, 1987) reported that stress during stunning normally promotes 

peripheral vasoconstriction through the action of catecholamines resulting in a minimum 

of blood amounts in muscular tissues.  A well-established fact is that a beating heart does 

not play a significant role for effective blood drainage (Huss and Asenjo, 1976; Warriss 

and Wilkins, 1987; Robb and others 2003; Roth and others 2005). Furthermore, it has 

been speculated that rigor contractions may force some blood in tissues back into large 

blood vessels in the backbone. In turn, this may produce less residual blood in muscle 
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tissues (Kelly, 1969; Huss 1995). For the salmon industry where the current goal is to 

promote good welfare and minimize handling stress, the latter factor would hardly be an 

issue since the prerigor period for rested salmon is at least 24 h (Erikson, 2001). By then, 

possible residual blood would have coagulated (Botta and others, 1986) making it 

difficult to remove. 

 

Fish can be bled in different ways, by severing gill arches, throat or caudal peduncle. In 

the Norwegian salmon industry, all gill arches on one side of the fish are normally cut. 

Commonly, the fish are then bled for 15 - 30 min in a refrigerated seawater (RSW) tank 

(0 – 5 oC) where they eventually die due to loss of blood. Alternatively, a method based 

on bleeding in air (head down) immediately after the fish are electrically or percussion 

stunned (killed) has been introduced in the industry. Yet another option is simply to send 

the fish directly after killing to the gutting machines to remove the viscera (containing 

most of the blood). Roth and others (2005) considered this method (‘direct gutting’) an 

adequate bleeding method based on sufficient removal of blood from the white muscle. 

However, in the salmon industry today, there is no consensus as to which is the optimal 

bleeding method and what are the optimal process variables (e.g. temperature) for 

efficient blood drainage. Jerrett and others (2000) estimated the mean freezing points of 

chinook salmon (O. tshawytscha) blood and white muscle as -0.8 oC, and -1.0 to -1.1 oC, 

respectively. This suggests that the water temperature in bleeding tanks should be higher 

than this to prevent the risk of freezing (immobilization of blood) in muscle tissues (in 

case of extended fish holding times in RSW bleeding tanks).  The viscosity of blood is 

greatest as the temperature approaches the freezing point. However, rainbow trout blood 

experiences relative small changes in the viscosity component of the vascular resistance 

as water temperatures change (Fletcher and Haedrich, 1987). Thus, it seems unlikely that 

blood viscosity might have a major effect on blood drainage. At low water temperatures, 

blood coagulation time is prolonged and the blood remains fluid up to about 30 min post 

mortem. After this, or even before, at higher storage temperatures, clotting takes place 

rapidly (Connell, 1995). In salmon however, it has been observed that blood can be fluid 

even longer, up to 1 h post mortem (Olsen and others, 2006). 
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We have over the years observed at most processing plants that the carbon dioxide 

stunned fish exhibit little swimming activity in the RSW bleeding tank before they 

eventually die. According to Robb and others (2003) and Roth and others (2005), muscle 

activity during bleeding is not important to facilitate adequate drainage of blood.  

Although there is some disagreement as to what is the best bleeding method (see Huss, 

1995), it seems clear that immediate bleeding of live fish after capture or stunning is 

more important than the actual bleeding method (Kelly, 1969; Huss and Asenjo, 1976; 

Valdimarsson and others, 1984; Botta and others, 1986; Warriss and Wilkins, 1987; Roth 

and others, 2005). Summing up, there are number of factors that may contribute to the 

efficiency of the bleeding as a unit operation. Some of these may be thought to increase 

the efficiency of blood drainage, whereas other factors may have the opposite effect. In 

the present study, we therefore wanted to elucidate the effect of perimortem handling 

stress where the fish were bled and not bled. We chose to do the experiment in a prerigor 

filleting context since this concept is currently a goal for several salmon processing 

companies. 

 

To reduce the high costs of labor, automation of fish processing lines is an issue in 

several high-cost countries. In the salmon industry in Norway, 2-3 workers are commonly 

necessary for manual quality grading and sorting of farmed salmonids, i.e. when 

biomasses between for example 80 -150 tons are processed per shift (7 h). For the quality 

grading, both external and internal attributes are inspected. Automated external grading 

of whole fish (weight class, skin blemishes, condition factor, sexual maturity, and 

backbone-related defects) after gutting and washing has been reported elsewhere (Misimi 

and others, 2006). Quality inspectors are also checking the body cavity for residual blood 

(particularly along the backbone) as well as melanin discolored areas. Large melanin 

flecks can cause downgrading, whereas residual blood in body cavity would normally 

imply re-washing.  

 

Since no standard method exists for assessment of residual blood in muscle-based foods, 

a common option for researchers has been to evaluate salmon fillets after they have been 
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salted and smoked. If present, residual blood will then be more clearly visible as dark 

blood spots or elongated vessels.  

 

Based on the issues reviewed above, our main goals in this study were to assess: (1) 

whether perimortem handling stress affected residual blood contents in salmon prerigor 

fillets, (2) the possibility of automated quality control of the body cavity for residual 

blood, and (3) the suitability of several analytical methods for determining residual blood 

in white muscle. 

 

Materials and Methods 
Fish 

Commercially farmed Atlantic salmon weighing 4.74 ± 0.71 kg with fork length 72 ± 3 

cm (n = 44) were netted from the sea cage (SW temperature 8 oC) and transferred to a 

1000-L tub. The fish had been fasted for 22 days. The tub was transported (< 5 min) by 

boat to the quay where the fish were netted and divided equally in three transport tanks 

on a truck. The tanks had just been filled with fresh SW. The fish were transported under 

constant oxygenation for 2.5 h to our laboratory at a fish density of about 52 kg m-3. 

Although the fish were calm by arrival, they seemed somewhat uneasy. Foaming was 

observed in all tanks. SW temperature, pH and dissolved oxygen (DO) in the tanks were 

5.6 oC, 6.7-6.8, and 360 % saturation, respectively. The low pH indicated elevated levels 

of carbon dioxide. This, together with the fact that the SW was heavily oxygen 

supersaturated, suggested that the fish had developed hypercapnia (Erikson and others, 

2006). The fish were netted individually from the truck and transferred in SW-filled 200-

L tubs (< 5 min) to two holding tanks (4000-L each). Twenty-two fish were kept in each 

tank corresponding to a fish density of 35 kg m-3. Fresh SW was pumped, sand-filtrated 

and circulated to the tanks at a rate of 5 m3 h-1. After 1 - 2 h, the fish regained normal 

swimming behavior and distributed themselves evenly in the water column. The SW 

temperature, pH and DO levels in both tanks were 9.2 oC, 7.93, and 80-90 % saturation 

throughout the 7 d the fish were kept the tanks. No food was offered during this period. 
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Experimental protocol and sampling of fish 

At the start of the experiment, the SW supply to one of the tanks was closed and oxygen 

gas was distributed to the tank using a diffuser. A predetermined amount of AQUI-STM 

was added to the tank corresponding to the recommended concentration of 17 ml L-1 for 

salmonids (AQUI-S Ltd., Lower Hutt, New Zealand).  After 8-10 min, some fish were 

seeking to the SW surface whereas others were swimming calmly upside down (Stage 3 

anesthesia - partial loss of equilibrium, Jolly and others, 1972). After 16 min, most fish 

were lying on the bottom of the tank, belly up (Stage 4 to 5 – Total or complete loss of 

equilibrium and reflex activity). No vigorous muscle activity took place. The DO levels 

increased from 90 to 121 % saturation over the same period. The first individual fish was 

then netted from the tank and subjected to bleeding and various assessments before the 

next fish was sampled. The last fish was sampled 2 h 23 min after sampling of the first 

one. Thirteen fish were bled by cutting all gill arches on one side of the head 

(Anesthetized and Bled group – AB). They were sampled between 51 and 116 min after 

all fish in the tank were regarded as fully anesthetized. As the gill arches on one side of 

the fish were severed and the fish were held head down over a bowl and the blood 

drained off was collected for the next 2 min before the blood was weighed (the blood 

flow practically ceased after < 1 min). Afterwards, the fish were immediately transferred 

and kept at 1oC in a tub containing stagnant SW and ice (CSW). Apparently, little blood 

was drained off in this tub. After 20 min, the dead fish were lifted out and a cut was then 

made with a scalpel between the sideline and the dorsal fin, where the initial white 

muscle-pH and body temperature were measured. Initial muscle twitches, fork length and 

weight were also recorded. Then the fish were gutted and the body cavity was washed for 

about 10 sec in running tap water (6 oC). Possible presence of residual blood in the body 

cavity was evaluated using computer vision. The fish were filleted pre rigor (skin on) and 

tagged. The fillets were washed again for 10 – 15 sec under running tap water to clean 

both surfaces (exposed muscle and skin side) from blood and various debris from gutting 

and filleting operations. We chose to leave the peritoneum on (Zone 3, Figure 1) since 

potential residual blood in vessels behind it would then become more clearly visible. 

Immediately after washing, the fillets were subjected to residual blood analysis using the 

CIELab color system by the Minolta Chroma Meter and computer vision. In addition, 
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transflectance spectral measurements of the fillet were carried out with a fiber-based 

grating spectrometer. The latter two methods measured color at the same 5 fillet locations 

(Figure 1) on both fillet sides After the measurements were completed, a muscle sample 

(about 5 g), corresponding to location L2 (Figure 1), was excised, frozen and stored at -

20 oC before chemical analysis of hemoglobin. The fillets were then placed on ice in 

styrofoam boxes for storage and transport to a commercial smokehouse. 

 

 

 

Figure 1- Color and residual blood in unbled and bled Atlantic salmon fillets were measured at 

different locations. Color was measured using the Minolta Chroma Meter at fillet locations L1-L5 

whereas the computer vision method determined whole fillet color. Transflectance spectroscopy and 

chemical analysis of hemoglobin iron were carried out at location L2. The measurements were 

carried out immediately after killing (prerigor) of anesthetized and exhausted fish. After smoking, 

occurrence of blood spots and elongated blood vessels were examined at zones Z1 - Z4 on the fillet 

surface and subsequently on horizontally sliced fillets. The peritoneum located in Zone 4 (including 

location L4) was not removed. 
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Six fish were not bled (Anesthetized and UnBled group - AUB). They were sampled 

between 0 - 60 min, as well as between 123 – 148 min, after full anesthesia was achieved. 

Afterwards, the fish were netted individually from the tank and killed by a blow to the 

head. Subsequently, they were treated as the AB group, except that they were not bled. 

 

In the other holding tank, the fish were chased to exhaustion for 30 min as the water level 

was gradually reduced to a height of about 15 cm. Thirteen fish assigned for bleeding 

were then transferred to a 300-L tank containing 34 ml L-1 AQUI-STM for rapid 

anesthesia (according to legislation in Norway, fish must be anesthetized before gill 

cutting takes place). To minimize fish holding times and potential death in the anesthetic 

bath, batches of three and three fish were transferred and sampled within the next 15 min. 

The fish (Exhausted and Bled, EB group) were then bled and treated like the AB group. 

Their Exhausted UnBled (EUB group) counterparts were post mortem treated as with the 

AUB group. The nine fish in this group were killed between 45 and 80 min after the 

initial stress bout. However, they were not allowed to recover during this period. No 

exhausted fish died before they were intentionally killed. 

 

Salting and smoking  

After ice storage for 6 days, the fillets were delivered to a commercial smokehouse where 

they were pickle salted for 24 h. A mixture of common household qualities of fine salt 

(72 % NaCl) and sugar (28 %) was lightly rubbed into the skin side of the fillet.  

Subsequently, some of the mixture was distributed over the flesh side before the fillets 

were placed (skin side down) in a tub. The fillets were piled up to a height of about 0.5 

m. No drainage of liquid took place. After salting, the fillets were suspended in a 

smoking oven and dried for 24 h in circulating air at 10 oC. Finally, the fillets were cold 

smoked for 4 h at about 28 oC in the fumes from beech chips. The smoked fillets were 

placed on ice in styrofoam boxes and brought back to our laboratory for evaluation of 

appearance (residual blood) and color (Minolta and computer vision) the next day. Four 

fillets were evaluated using the transflectance spectra method 3 d later. 
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Analytical methods 

All fish were subjected to similar analyses. Body and core temperatures, white muscle 

pH, muscle twitches and CIELab values by Minolta Chroma Meter CR-200 (Minolta, 

Osaka, Japan) were measured as described before (Erikson and Misimi 2007, in press)  

 

Computer vision, image processing and segmentation 

 

Image acquisition 

To ensure uniform illumination and avoid intrusion from ambient light, the fish or fillets 

were put in a lightbox (Waagan AS, Skodje, Norway). Avoidance of ambient illumination 

is critical for reproducible imaging (Shahin and Symons 2001). The light-box (Figure 2) 

had a grey neutral color inside and used two fluorescent tubes (18W) with a colour 

temperature of 5000K and Rendering Index greater than 95%. The color rendering index 

is a measure of the ability of a light source to reproduce the colors of various objects 

being lit by the source. For good color discrimination and an overall good quality of 

images, rendering index greater than 90 and color temperature of 5000K is preferred 

(Sandor and Schanda, 2006, Erikson and others in press).  

Images of the fish and fillets were captured using an image acquisition system for a 

digital camera (Figure 2). The fillet images were captured in the BMP file format with a 

digital camera (Pixelink A776, Ottawa, Canada) connected directly to the PC through a 

firewire interface with a resolution of 1280 x 1024 pixels. The fish body cavity images 

were obtained using a Nikon D70 digital camera (Nikon, Tokyo, Japan) in the JPG file 

format with a resolution of 3000 x 2000 pixels. The camera was mounted on the upper 

part of the light box, perpendicular to the field of view, at a vertical distance of 60 cm 

from the belly cavity of the fish or the fillet. To achieve stable illumination and camera 

conditions the light-box and camera were switched on at least one hour before the 

experiment and were not switched off until the experiment was over. 
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Figure 2- The computer vision system and the flow chart of computer vision operations based on 

images of salmon fillets/body cavities. 

 

Initially, the images of both fillets and belly cavities were color calibrated using the 

Macbeth ColorChecker with 24 color patches  as described in Erikson and others (in 

press) and the CIEXYZ values of these patches. The calibration process and the CIELab 

colour space of the images is described in Erikson and Misimi (2007, in press).  

 

The segmentation of the fish body cavity (Figure 3a) as a region of interest (ROI) was 

performed in Matlab (2007) Image Processing Toolbox 5.4 (Mathworks, Natick, MA, 

USA). The procedure was fully automatic. The ROI segmentation was done by 

generating a binary mask (Figure 3b) of the body cavity using thresholding in channel a. 

Since illumination was controlled and there was no interference from ambient light, 

global thresholding was used for segmentation of the body cavity from the background. 

This means that if f(x,y) is the original image from the scene, the binary image BW(x,y) 

was defined as 
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Figure 3- (a) A captured image of the body cavity of a bled fish, (b) mask generation, and (c) 

segmentation of the region of interest (body cavity). 

 

Pixels labelled 1 (white) corresponded to the body cavity, while pixels labelled 0 (black) 

corresponded to the background. T is the threshold which separates the body cavity from 

the background. Initially, the generated mask from the thresholding had some small 

holes, but by applying the morphological operations of dilation and erosion, the mask 

coincided with the ROI of the body cavity (Figure 3c). By masking the images in each 

gray-scale channel with the generated binary mask, the body cavity ROI was segmented. 

The same procedure was repeated for segmentation of fillets from their background.  
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In the present study, we did not develop a device for holding the belly open during image 

acquisition. Instead, we simply held the body cavity open manually. Such a device would 

of course be necessary for automated inspection of the body cavity.  

 

The color analysis of the fillets by computer vision consisted of calculating the average 

CIELab values for the entire fillet area (Zone 1-4, Figure 1).  

 

Classification of fish for automated inspection of body cavity 

Sensory evaluation of the body cavity with respect to presence of blood was done 

manually by labelling each fish either as ‘OK’ (no blood present) or ‘Wash’ (blood 

present). This labelling was used as a ground truth. Since the fish was washed manually, 

the badly washed fish had a considerable presence of blood in the body cavity. The fish 

that were properly washed had practically no blood in the body cavity, except for some 

very little spots of blood. In this way, the fish in the later group were assigned to the 

‘OK’ class, while the improperly washed fish in the ‘Wash’ class. Inadequate washing of 

fish is quite common in a real fish processing line, and we wanted to simulate these 

conditions in the experiment. 

 

In order to select the appropriate features for classification, a number of color-related 

features were initially extracted. They were the L (lightness), a (redness) and b 

(yellowness) values from the CIELab space, as well as the green (G) value from the RGB 

space. Color and intensity features in different color spaces are commonly used in 

classification applications of food products (Pedreschi and others 2004). As 

recommended by Theodoridis and Koutroumbas (2003), before selection of the best 

subset of features for use in the design of the classifier, we tested the discriminatory 

capability of the generated features. The features with less discriminatory capability were 

discarded, as they would only constitute an unnecessary computational burden (Pedreschi 

and others 2004). Therefore, for the generated features, we investigated whether the 

values they assigned the different classes were significantly different (Theodoridis and 

Koutroumbas 2003). After completing this procedure, 3 final features were selected: the 
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average G value, a and b values of the segmented body cavity region. This subset of the 

features was fed into the classifier.  

 

Classifier design was based on the Linear Discriminant Analysis (LDA) and was similar 

to the one reported by Misimi and others (2006). LDA searched for the vectors in the 

underlying feature space that best discriminated between the two selected classes (‘OK’ 

or ‘Wash’). Therefore, LDA seeks directions that are efficient for discrimination (Duda 

and others 2000). From the set of 3-dimensional (3-features) samples , the 

classification problem was converted to 1-dimensional one by obtaining a scalar y which 

projected the samples into one line. 

[ ]321 ,, xxxx =

 

xwy T=  (2)

 

where  
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Here, jμ  is the mean of class j, while Σ  is the covariance matrix. 

 

The purpose of LDA training was to find and select the threshold t = y that maximized 

the separability between classes. This was subsequently chosen as the decision class 

boundary. The classifier’s output were numbered 1 or 2 representing the class labels. This 

means that, upon testing, the test sample x in Equation (2) was allocated to Class 1 - ‘OK’  

if it was to the left of the threshold (y (x) < t). Otherwise, it was allocated to Class 2-

‘Wash’ (y (x) ≥ t). 

 

To evaluate the performance of the linear classifier based on the LDA, the leave-one-out 

cross-validation was used. This is a well-established technique for assessing the 

performance of a classifier (Ripley 1996; Theodoridis and Koutroumbas 2003). Each fish 
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sample in the data set was left out in turn as a test sample, while the remaining (N-1) 

samples were used as the training data. This was repeated for each fish sample, meaning 

that the technique required N repetitions of classifier trainings for a data set with a sample 

size of N. The total predicted accuracy of the classifier used to measure the classification 

performance was defined as: 

N
NccaccuracyePerformanc =  

(4)

where Ncc is the number of correct classifications while N is the total number of samples. 

 

Transflectance spectroscopy  

The objective was to detect and possibly quantify residual blood inside the fillets. Blood 

stains and melanin on the fillet surface can easily be detected with computer vision or 

reflectance spectroscopy, but detection of residual blood inside the fillet is not as 

straightforward. In the present study, a transflectance probe was tested. Light from a 100 

W halogen light source was coupled into a fiber bundle. A multimode optical fiber with 

diameter 200 μm was placed in contact with the fillet and a collection fibre probe was 

placed in proximity to the bundle. The distance between the bundle’s rim and collection 

fibre was 10 mm. Two collection fibres were used, each coupled into a spectrometer of 

slightly different ranges. Since we did not find a difference between the spectrometers, 

data from only one of them are reported here. Light from the source was absorbed, 

transmitted and scattered inside the fillet, and some of the light was coupled into the 

optical fiber. The fiber was coupled to a grating spectrometer (Ocean Optics S2000-UV-

VIS, Dunedin, FL, USA) with wavelength range 350 -1000 nm and a resolution of about 

1 nm. Since the detected light had interacted with the effective fillet volume (instead of 

mainly the fillet surface as would be the case with reflectance spectroscopy), presence of 

residual blood inside the fillet would be detected if the probe was placed directly above 

the fillet volume under study. The reference spectrum was a reflectance spectrum of a 

plate painted with barium. This basic method has been further developed to a non-contact 

NIR imaging scanner by Wold and others (2006) where the water content of cod was 

measured. The spectra acquired at fillet location L2 (Figure 1) together with the 

hemoglobin iron reference measurement described below were inputs to a partial least 
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squares regression (PLS), to find a possible relationship between spectra and hemoglobin 

content. Full cross-validation (leave-one-out) was used. The standard deviation, the 

correlation coefficient R2 of the models was calculated to evaluate the model. 

 

Hemoglobin iron 

Fillet location L2 (Figure 1) was excised and weighed (about 5 g) accurately after all 

other color-related measurements had been carried out. After frozen storage at –20 oC for 

28 d, heme iron was determined in acidified acetone muscle homogenates as described by 

Hornsey (1956) and (Clark and others, 1997). 

 

Visual assessment of residual blood in smoked fillets    

After the fillets had been salted and smoked at the smokehouse, the fillets were assessed 

visually, that is, whether residual blood was present. Basically, our assessments were 

carried out according to the salting, smoking and slicing method proposed by Robb and 

others (2003). Firstly, the fillet surface was evaluated by dividing the fillets in different 

zones (Z1-Z4, Figure 1). As already mentioned, the whitish peritoneum covering the 

anterior lower part of the fillet (Zone 3) was not removed during filleting. The following 

criteria for residual blood, either present as spots (circular) or threadlike vessels, were 

devised (length x vessel diameter): (a) Small: 1-4 x 1 mm, (b) Medium: 5-20 x 1-2 mm 

and, (c) Large: > 20 x 2 mm. In addition, we looked for large discolored areas (blood or 

melanin). The fillets were re-evaluated similarly after they were cut horizontally. Both 

fillet sides of each fish were assessed by four persons at our laboratory. The mean values 

are reported here. The fillet pH after smoking was 6.15 ± 0.07 (Mean ± SD; n = 13).  

 

Statistics 

 

Effect of treatments (perimortem stress, bleeding and smoking) on the measured variables 

were analyzed using a two-way ANOVA. Where significance (p<0.05) were indicated, a 

Tukey post hoc test was run. All results are reported as means ± SEM. 
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Results and  Discussion 
 

Effect of stress on bleeding 

 

The initial muscle-pH in the AUB and AB groups were, as expected, considerably higher 

(p<0.0001) than in the EUB and EB groups (Table 1). The stress-related values are 

typical for salmon after similar treatments (Erikson and Misimi 2007, in press). Bleeding 

did not have an effect on white muscle-pH (p>0.05), as could be expected since the fish 

hardly moved at all in the CSW bleeding tub. The muscle twitches (tail deflection) were 

clearly higher (p<0.0001) in the rested fish (AUB and AB groups) than in the exhausted 

fish (EUB, EU; Table 1) and as with the muscle-pH, bleeding did not have a significant 

effect on this parameter. Due to the low temperature in the bleeding tub, the body 

temperature immediately after bleeding was reduced by about 4oC (Table 1). Three fish 

in each group were used to verify the typical development of rigor mortis (Erikson, 2001; 

Erikson and Misimi 2007, in press) of anesthetized and exhausted fish (data not shown). 

As expected, the rigor onset of rested fish occurred after about 25 h post mortem, whereas 

rigor started after only 2 h in exhausted fish.  

 
Table 1 – The postharvest condition of the four experimental groups, anesthetized and exhausted 

Atlantic salmon, unbled and bled fish. 

Parameter Anesthetized 

  Unbled             Bled 

Exhausted 

   Unbled              Bled 

White muscle-pH 7.5 ± 0.0a        7.4 ± 0.0a   6.9 ± 0.1b      6.7 ± 0.0b 

Muscle twitches 3.0 ± 0.0a        2.7 ± 0.2a   1.4 ± 0.2b      0.9 ± 0.2b 

Body temperature (oC) 9.8 ± 0.1a        5.8 ± 0.41,b 10.0 ± 0.1a      5.7 ± 0.21,b 

Mean ± SEM; bled fish: n = 13, unbled fish: n = 9. In each row, different letter (a,b) indicates significant difference between 

treatments.  1After blood drainage for 2 min in air, the fish were subsequently bled in CSW (1 oC) for 20 min. 

 

Blood drainage and residual hem iron in prerigor fillets 

Table 2 shows the collected blood volumes from the AB and EB groups as well as the 

residual iron contents of the white muscle (location L2). The blood pressure in rested fish 

seemed initially much higher than in exhausted fish because just as the gill arches were 

severed, the blood squirted out of the anesthetized fish as opposed to the passive flowing 
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of blood from the exhausted fish. However, the collected blood volumes were not 

different (p>0.05). In both cases, the blood flow more or less ceased altogether after 1 - 2 

min (bleeding in air). Similar results, where most of the blood was drained off after 1 - 2 

min, have been observed during exsanguination of pigs, calves, sheep and chickens 

(Warriss and Wilkins, 1987). 

 

The weight of the blood drained off was 1.9 – 2.0 % of body weight and represented 

therefore a major fraction the total blood contents in fish (1.5 - 3.0 %) according to Huss 

(1995).  

 
Table 2 – The amount of blood drained from rested and exhausted Atlantic salmon during bleeding 

in air for 2 min (head down), and white muscle iron contents of unbled and bled prerigor fillets (fillet 

location L2, Figure 1, was analyzed). 

Parameter Anesthetized 

  Unbled                  Bled 

Exhausted 

   Unbled                Bled 

Blood weight (% of body weight)ns        NA             1.86 ± 0.07          NA                1.99 ± 0.12          

Residual iron (µg iron [g muscle]-1)ns 1.51 ± 0.22       1.55 ± 0.081   1.73 ± 0.13        1.76 ± 0.141  
Mean ± SEM (Blood weight: n = 13; iron content: n = 6 - 13); 1After blood drainage in air for 2min, the fish were subsequently 

transferred to CSW (1 oC) for 20 min; ns: No significant differences between groups (p>0.05); NA = not analyzed. 

 

Our mean residual heme iron (hemoglobin) values were not significantly different  

between treatments (p>0.05). This is in line with data presented by Porter and others 

(1992) as they did not find different levels of hemoglobin in unbled and bled salmon 

white muscle. Our mean heme iron values, ranging from 1.5 to 1.8 µg g-1, were largely 

similar to those determined in Atlantic cod (Gadus morhua) and mackerel (Scomber 

scombrus) white muscles (Gomez-Basauri and Regenstein, 1992), although they were 

lower than those reported with raw anchovies (Engraulis encrasicholus), 6.5 µg g-

1(Turhan and others, 2004). Olsen and others (2006) compared different killing methods 

and resulting residual blood levels in Atlantic salmon fillets. Their lowest hemoglobin 

value was 0.3 mg g-1 for fish killed by a blow to the head and gutted directly. Our 

corresponding values calculated as hemoglobin contents were similar at 0.2 - 0.3 mg g-1.  

 

 209



Figure 4 shows typical transflectance spectra of the white muscle (fillet location L2). 

Neither perimortem handling stress nor drainage of blood from the fish significantly 

affected the shape of the spectra. However, as shown in Figure 4, a consistent shift 

towards shorter wavelengths was observed after smoking. The fillet color of the smoked 

fillets had a more yellowish appearance (see below).  

 

Figure 4- Typical transflectance spectroscopy spectra of fresh unbled and bled Atlantic salmon (solid 

line), and after smoking (dashed line) of the same filet (location L2, Figure 1). Only smoking affected 

the shape of the spectra as can be seen as a shift towards shorter wavelengths. 

 

The PLS model of transflectance spectra predicted residual heme iron using three latent 

variables with a SD of 0.32, a correlation coefficient of 0.27 and an R2 of 0.06. For a 

model that constantly predicted the amount of heme iron as the mean value of the training 

data set, the SD was 0.33. Thus, the correlation between residual heme iron and 

transflectance spectra was poor. A better correlation may be achieved by reducing the 

distance between the fiber and the bundle from 10 to for example 5 mm, as light with 

wavelength shorter than 570 nm did not reach the fibers, either due to absorption or 
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scattering. Therefore, the absorption peaks of hemoglobin at 560 nm and of 

oxyhemoglobin at 540 nm were not visible. The second absorption peak of 

oxyhemoglobin at 580 nm was barely visible. It has been reported that blood hemoglobin 

levels as measured before slaughter correlated well with absorbance in the range of 500 - 

580 nm as determined in muscle 1 h post mortem. After 24 h though, the significant 

relationship no longer persisted. It was concluded that the post mortem changes in pH 

should be taken into account (Swatland 1985). Kelly and Little (1966) showed that the 

oxyhemoglobin content of cod is very dependent on pH as a sharp increase in the 

oxyhemoglobin fraction occurs from about pH 6.6 and above. Thus, the intensity of two 

hemoglobin peaks at about 540 and 580 nm were showed to be dependent on post 

mortem pH. By comparison, our measurements were carried out immediately after killing 

in the pH range of 7.5 - 6.7 (Table 1), and at pH 6.15 after smoking.  Taken together, if 

we had been able to detect light with shorter wavelengths than 570 nm, the timing post 

mortem as well as the prevailing pH range (oxyhemoglobin content) of the fresh fillets, 

would theoretically have made it possible to detect potential differences in blood 

contents. On the other hand, when considering the overlapping spectra (at higher 

wavelengths) of unbled and bled fish, it should be kept in mind  that the blood contents of 

unbled and bled muscles did not in fact differ (Table 2). Another factor to consider might 

be that after slaughter, the fish muscle gradually becomes less translucent (Stien and 

others 2005). It may be that blood inside the muscle will be more easily detectable shortly 

after killing, since the light-absorbing and light-reflecting properties change as  the 

muscle becomes opaque (Ozbay and others 2006). 

 

Body cavity inspection 

Presence of blood in the body cavity produced significantly (p<0.05) lower L values 

(lightness), as well as higher a (redness) and b (yellowness) values (Table 3). In addition, 

the G (green) channel of the RGB color space was also a signature feature since presence 

of blood contributed to lower G values (p<0.05). This is in accordance with data obtained 

from the detection of blood in cod fillets (Bengoetxea 1991).   
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We trained the LDA-based classification algorithm for the classification of salmon 

according to presence of blood in body cavities. The classification results by the LDA 

and cross-validation by leave-one-out methods are summarized in Table 4. The highest 

classification accuracy obtained was 92 % with the reported data set. Two out of 25 fish, 

one from each class, were misclassified. The misclassified samples were close to the 

decision boundary between the two classes, generated by the LDA classifier. Comparing 

the misclassified samples with the ground truth, the ‘OK’ fish classified as ‘Wash’  from 

our classifier in addition to having some small amount of blood, it also had a melanin 

fleck in the vicinity. We can not rule out the possibility that the melanin fleck has 

influenced misclassification. In the visible spectrum, blood spots and melanin flecks have 

similar appearance.  

 
Table 3 – CIELab and green (G) values of the RGB color space for two classes of Atlantic salmon: (i) 

without, or (ii) with blood in the body cavity (inspection by computer vision after gutting and 

washing). Features a, b and G were used for classification purposes. 

Feature Cavity without blood  (‘OK’) Cavity with blood (‘Wash’) 

L 42.05 ± 0.77b 36.3 ± 0.78a 

a 13.15 ± 0.97b 24.6 ± 0.98a 

b 8.6 ± 0.69b 18.0 ± 1.06a 

              G 91.4 ± 2.4b 68.3 ± 2.13a 
Mean ± SEM; fish with blood: n = 12, fish with no blood: n = 13. In each row, different letter (a,b) indicates significant difference 

between the classes.  

 

We originally aimed at developing a classifier also able to detect occasional melanin 

spots in the body cavity. However, it was not straightforward to make a clear distinction 

between melanin flecks and residual blood. Therefore, we recommend that sorting of 

flesh with melanin flecks is carried out after the fish have been filleted and washed 

(Mathiassen and others 2007) although this strategy would of course not be feasible when 

the fish are to be traded as a ’whole and gutted’ product. Melanin absorbs over a broad 

spectral range. The absorption smoothly drops from < 200 nm until it is almost 

completely attenuated for wavelengths > 700 nm. Thus, distinguishing between of blood 

and melanin might be difficult since their spectral ranges partly overlap. The redish color 
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of salmon fillets is due to the presence of the caroteinoids astaxanthin or 

canthastaxanthin. Carotenoids have generally a strong light absorption between 400-550 

nm. In particular, different astaxanthin isomers typically have absorbance maxima 

between 372 and 479 nm (Yuan and Chen 2004), that is, at a considerably lower 

absorption range than we have studied here. 

 
Table 4 – Classification performance for the classification of Atlantic salmon body cavities as 

evaluated by leave-one-out cross-validation method. 

No of samples as 

labeled manually 

LDA 

Cross-validation accuracy  

Data set 

Ok Wash Ok Wash TOTAL (%) 

Atlantic salmon body cavity 13 12 

 

12 

 

11 

 

92 

 

Results of the classification with computer vision (LDA) as compared with the manual classification (labeling). 
 

During the design of the classifier, one aim was to avoid using of too many features as a 

basis for the decision-making. Using too many features can cause overfitting (Duda and 

others 2001). Overfitting means that, for a given sample size, the increase of the number 

of features would virtually improve the performance accuracy when designing the 

classifier, but in practice, the classifier’s performance accuracy would in fact become 

lower when dealing with newly unknown samples.  

 

 In the present study, we show that classification of the body cavity using a simple 

classifier and a subset of only 3 features was sufficient to obtain correct classifications. 

The results (Table 4) showed that there was a good agreement between classification 

done by human inspectors and by the computer vision algorithm. The method has the 

potential for usage in fish processing plants in connection with sorting and grading.  

However, to be able to replace quality inspectors, the current method must be combined 

with automated inspection of external features (Misimi and others, 2006) and detection of 

possible melanin flecks (Mathiassen and others 2007). In addition, a device for keeping 

the belly of gutted and washed fish open during image acquisition would be necessary.  
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Notably, since the blood contents inside the fillet seemed to be little influenced by most 

of the potential factors outlined in the Introduction part, this suggests that the 

determination of residual blood in salmonids can be narrowed down to a simple detection 

of blood present on the surface of belly cavity only. 

 

Color assessment of fresh and smoked fillets  

Fillet color (L, a, b, chroma and hue) values as assessed pre rigor and after smoking are 

shown in Table 5. Unbled and bled anesthetized and exhausted fillets were compared 

using mean Minolta Chroma Meter readings and the computer vision method. The 

tabulated values of the two methods cannot be directly compared since the Minolta 

readings represent the average of locations L1 - L3 and L5 (Figure 1), whereas the 

computer vision-based values refers to whole fillets (including the whitish peritoneum in 

Zone 3, Figure 1). The Minolta values at each location were largely similar except for at 

location L4 (data not  included in Table 5) where the lightness (L) values were generally 

higher in the fresh fillets than after smoking. Moreover, at location L4, redness (a), 

yellowness (b) and chroma (C*
ab) were generally lower in fresh than in smoked fillets.  

 

After smoking, lightness, as measured with Minolta, increased (higher L values). Minolta 

generated values of redness (a), yellowness (b) and chroma (C*
ab) were generally higher 

in fresh than in smoked fillets (Table 3). A tendency (p<0.05 for AUB, AB, and EUB) for 

a decrease in hue (Ho
ab) was observed after smoking. The effect can be attributed to the 

presence of the peritoneum in Zone 3 (including location L4). Accordingly, this must be 

kept in mind when the computer vision data are considered. 

 

Except for the hue of fresh fillets, the computer vision color values were generally higher 

than those obtained with the Minolta Chroma Meter.  With both methods, no significant 

effects of either perimortem handling stress or bleeding were observed, since the majority 

of color parameters were not significantly different.  
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Table 5 – Color characteristics of anesthetized and exhausted Atlantic salmon fillets. Comparison 

between fresh and smoked unbled and bled fillets. Minolta Chroma Meter data are presented as the 

average of fillet locations L1-3 and L5 (Figure 1) whereas computer vision data are based on 

assessments of whole fillets. 

Parameter Anesthetized 

  Unbled                 Bled1 

Exhausted 

 Unbled                     Bled1 

Lightness (L*) 

Minolta  

Computer vision 

 

Minolta 

Computer vision 

                      Fresh 

38.7 ± 1.8X                    38.7 ± 0.8X 

42.8 ± 2.3a                    44.7 ± 0.8a              

                      Smoked 

40.0 ± 1.1X                     40.3 ± 1.0Y 

34.6 ± 2.85b                  37.2 ± 2.7b 

Fresh 

 37.2 ± 0.6X                      37.1 ± 0.9X 

 41.1 ± 2.2a                      41.9 ± 1.9a 

Smoked 

 41.4 ± 1.0Y                        41.4 ± 1.0Y 

 35.9 ± 1.8b                       35.6 ± 2.0b 

Redness (a*) 

Minolta 

Computer vision 

 

Minolta 

Computer vision 

Fresh 

15.5 ± 0.5X                     15.4 ± 0.4X     

37.7 ± 1.4a                     36.5 ± 1.3a 

Smoked 

11.0  ± 0.5Y                     11.5 ± 0.4Y 

33.3 ± 1.6b                      34.7 ± 1.3b 

Fresh 

 14.6 ± 0.5X                      13.4 ± 0.3X 

 36.2 ± 1.6a                      34.1 ± 0.9a 

Smoked 

12.0 ± 0.4Y                       11.7 ± 0.3Y 

34.2 ± 0.9b                       33.8 ± 1.4a 

Yellowness (b*) 

Minolta 

Computer vision 

 

Minolta 

Computer vision 

Fresh 

10.9 ± 0.7X                      11.7 ± 0.7X 

26.05 ± 1.1a                   25.75 ± 1.3a 

                        Smoked 

 6.6 ± 0.6Y                       6.9 ± 0.6Y 

25.9 ± 1.0a                     27.3 ± 1.2b 

Fresh 

  9.9 ± 0.6X                         7.9 ± 0.6X 

25.2 ± 1.4a                       23.5 ± 0.9a 

Smoked 

  7.2 ± 1.3Y                         7.0 ± 0.5Y 

26.6 ± 0.8a                       26.3 ± 1.2b 

Color saturation (C*ab) 

Minolta 

Computer vision 

 

Minolta 

Computer vision 

Fresh 

19.0 ± 0.8X                      19.4 ± 0.7X 

45.8 ± 1.7a                      44.7 ± 1.7a 

Smoked 

12.9 ± 0.6Y                      13.5 ± 0.6Y 

42.2 ± 1.8b                      44.2 ± 1.7a 

Fresh 

17.7 ± 0.7X                      15.6 ± 0.6X 

44.2 ± 2.1a                      41.4 ± 1.2a 

Smoked 

14.2 ± 0.7Y                       13.7 ± 0.4Y 

43.3 ± 1.2a                       42.8 ± 1.8a 

Hue (Ho
ab) 

Minolta 

Computer vision 

 

Minolta 

Computer vision 

Fresh 

34.8 ± 3.5X                     36.9 ± 1.3X 

32.9 ± 1.1a                     33.6 ± 1.3a 

Smoked 

30.4 ± 6.9Y                     30.1 ± 2.0Y 

35.4 ± 4.2b                     36.3 ± 1.2b 

Fresh 

33.7 ± 1.6X                        30.0 ± 0.3X 

33.5 ± 1.6a                       33.3 ± 1.1a    

Smoked 

30.2 ± 2.9Y                        30.9 ± 1.6X 

36.5 ± 0.8b                      36.01 ± 1.3b 

Mean ± SEM; Bled fish: n = 13, Unbled fish: n = 9. 1After blood drainage for 2 min in air, the fish were subsequently transferred to 

CSW (1 oC) for 20 min. Subscripts X,Y are reserved for the Minolta values, while a, b for computer vision values. 
 

When it comes to bleeding effect, no effect in the hue values in the anesthetized fresh 

fillets was observed, while in the smoked fillets the bleeding affects hue value. In the 
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exhausted fillets, bleeding didn’t not influence color neither in fresh nor smoked fillets. 

Only a significant effect in the chroma of fresh fillets was observed. Perimortem handling 

stress didn’t affect significantly the unbled groups of both fresh and smoked fillets. In the 

bled groups, hue values were not significantly affected neither in fresh or smoked fillets, 

only the chroma and lightness of fresh fillets was significantly different. 

 

On the other hand, when comparing fresh and smoked fillets, it is clear that salting and 

smoking produced lower a and C*ab values as assessed with both methods. Computer 

vision generated b values showed a tendency of increase (more yellowish) and were 

significantly affected (p<0.05) by smoking in the bled groups.  The hue (Ho
ab) values 

were also significantly affected by smoking (p <0.05). Smoked fillets showed higher hue 

values than their fresh counterparts, which is in contrast to Minolta hue values for the 

smoked fillets. Opposite effects of smoking on L values were observed when the two 

analytical methods are compared (Computer vision vs Minolta). This was probably due to 

the relative effect of darkening effect that smoking had on the peritoneum (Zone 3). 

 

The general differences between the two methods CIELab values can partly be related to 

the fact that the Minolta readings were obtained in direct contact with the flesh, the 

measurements were done in small area of 8mm, whereas with the computer vision 

method, the entire fillet area was subjected to color analysis (Erikson and Misimi 2007, in 

press). 

 

We did not find significant differences in hue, a or b values between unbled and bled 

fresh fillets. Only L and chroma C was affected significantly from the bleeding method. 

Presence of blood reduce yellowness in flesh and processed meats as have been observed 

as lower b and L values, as well as higher a values in unbled bullfrogs (Rana 

catesbeiana). However, the unbled frogs exhibited significantly higher hemoglobin levels 

than their bled counterparts (Ramos and others 2005).  By comparison, in our study of 

blood on the surface of the body cavity, we obtained considerably lower L values as well 

as higher a and b values in presence of blood (Table 3). 
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Salting and smoking, rather than handling stress and bleeding, induced the main effect on 

fillet color in our study. Our Minolta Chroma Meter assessments of color showed that 

smoked fillets were lighter (p<0.05). Only the bled anesthetized group was not affected 

significantly when it comes to lightness. Similar effects of smoking on salmon fillet color 

have been reported by Skrede and Storebakken, (1986), and Rørå and others (1998) with 

the exception of lower L values, whereas Mørkøre and others (2001) found lower L and a 

values, but higher b values in smoked salmon fillets. 

 

The computer vision generated color values for the smoked fillets show the opposite 

trend compared to Minolta values. While Minolta values suggest that fillets after smoking 

had lower b and hue values (p<0.05, more red), the computer color values show the 

opposite. The higher b and hue values after smoking show that, according to computer 

vision method, fillets became more yellowish. The latter is also supported by the 

spectrosopic measurements.  

 

Visual assessment of smoked fillets 

The smoked fillets generally had a good appearance with no large discolored areas. Only 

at Zone 1 (lateral line), a limited number of small (< 1 mm in diameter) and rather pale 

blood spots were visible on the fillet surface of all groups, with mean values < 3 and < 1 

for each unbled and bled fish (two fillets), respectively (Figure 5). Thus, perimortem 

handling stress did not affect the number of blood spots in the fillets. Correspondingly, in 

sliced fillets the pattern was the same although the mean numbers of blood spots were 

somewhat higher at ≤ 10 and < 4. The lower numbers observed on the surface were 

probably due to the effect of washing just after the fillets were cut pre rigor. The blood 

spots, located along the lateral line, are actually vessels filled with blood as shown in 

detail in photographs by Robb and others (2003). In our case, these vessels were 

predominantly empty. Also, the sliced smoked fillets were generally considered of good 

quality, with only minor traces of residual blood elsewhere (Zone 2 and 4) on the fillets.  
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Figure 5- Blood spot counts on smoked salmon fillet surfaces and in the same fillets after horizontal 

slicing. The effects of perimortem stress and bleeding were studied (AUB: anesthetized unbled; AB: 

anesthetized bled; EUB: exhausted unbled; EB: exhausted bled). Mean + SD (bled fish: n = 13 [26 

fillets], unbled fish: n = 6 [12 fillets]). The values represent the average number of small blood spots 

per fish (2 fillets) along the lateral line (Zone 1, Figure 1). 

 

For Zone 2 and 4, the mean number of visible blood vessels was < 1 per fish for all 

treatments, with no particular pattern regarding size (small, medium or large 

vessels/spots). For Zone 3 though, the corresponding number ranged from 3 to 9 per fish. 

These were both small spots as well as elongated blood-filled vessels. The reason for the 

higher numbers in this zone was most likely that the peritoneum was not removed during 

filleting. If it had been removed, the subsequent washing of the fillet surface would 

probably have washed away this blood easily and the result would probably have been 

similar to those at Zone 2 and 4. 
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Similar to our findings, Robb and others (2003) did not observe bloodspots in both 

unbled and bled fresh fillets. However, large numbers of bloodspots were observed after 

frozen storage or salting in different regions of the fillets. In the salted fillets, the mean 

number of blood spots along the midline were 2.1 of bled and 12.9 of unbled fish. After 

slicing, the corresponding numbers were 8.2 and 21.5 spots per fish. In both cases their 

values were somewhat higher than ours. When they evaluated different bleeding methods, 

the mean number of bloodspots were however considerably higher ranging from 12.4 

(four gills cut) to 34.7 (not bled) and 35.8 (throat cut). For fish bled immediately after 

killing, Roth and others (2005) also counted a mean blod spot number of about 1 per fish 

along the midline of smoked Atlantic salmon. This number increased significantly with 

an increasing delay between killing and bleeding. Similarly, the blod spot count of bled 

and smoked rainbow trout fillets was about 1. For unbled fish, number of blod spots 

ranged from 15 to 20. 

 

Conclusions 
Perimortem handling stress did not imply poor bleeding and more residual blood in 

prerigor-cut fillets. The slaughter procedure of unbled fish basically resembled what is 

referred to as ‘the direct gutting method’, that is, in commercial processing the fish are 

transferred to the gutting machines immediately after killing (without the bleeding step). 

This represents a quicker and less laborious alternative for blood removal. In accordance 

with other salmon data presented by Roth and others (2005) and Olsen and others (2006), 

our results also suggested that direct gutting was an adequate bleeding. It is important to 

realize that our fillets were cut pre rigor and that they were washed before the blood had 

time to coagulate. Had the fish been stored on ice and filleted post rigor, we cannot rule 

out that results might have been inferior to those presented here. On the other hand, Robb 

and others (2003) showed that when salmon were filleted immediately after slaughter, the 

fillets in their case had a substantial number of blood spots and the fillets were in fact not 

significantly different from unbled ones. 

 

Another interpretation of our data might be that the bleeding method is not important as 

long as a prerigor filleting strategy is highlighted. Prerigor filleting might therefore prove 
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an effective remedy for inadequate bleeding routines and inferior smoked fillet quality. 

To confirm this, more research is needed where pre and postrigor filleting strategies are 

compared. 

 

None of the analytical methods used to assess residual blood in white muscle could detect 

significant differences between groups.  If we assume this reflected  

the real situation, our data imply, at least for fish filleted pre rigor, that automated 

assessment of potentially poorly bled fish seems to be of little relevancy. Instead, the 

problem to be addressed for on-line purposes can then be simplified to merely detect 

residual blood on the surface of the flesh or in the body cavity. Our data suggest that the 

number of blod spots frequently encountered in processed fish can be reduced if fillets 

are cut pre rigor. 
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Abstract

In this paper, we describe a simple method for auto-
matic detection of melanin spots in Atlantic salmon fillets.
Melanin spots are visible dark spots that reduce the quality
grade of the fillets. Atlantic salmon processing lines have
several operations that involve manual quality evaluation
of fillets. One such operation is the inspection of fillets to
detect melanin spots. This inspection is labor intensive, and
therefore desirable to automate. Two simple computer vi-
sion algorithms for melanin spot detection are presented.
One algorithm operates on the red channel of RGB images
and the second algorithm uses linear discriminant analysis
(LDA) on all three RGB channels. A comparison between
these two algorithms shows that, for most detection rates,
using LDA gives a lower number of false-detections per fil-
let. We show that the melanin spot detection task can poten-
tially be automated using computer vision.

1 Introduction

As a part of a long-term strategy, the Norwegian fish

processing industry has set a goal of automating the fish

processing industry [13]. This is necessary in order to be

able to maintain competition, in the world market, with

countries that have low manual labor costs. Several oper-

ations in Atlantic salmon processing lines involve quality

evaluation of fillets and many of these operations are car-

ried out by human inspectors using their sense of vision [9].

One such operation is the detection of melanin spots in fil-

lets. The grading of ‘good’ fillets without melanin spots and

of ‘defective’ fillets with melanin spots is done manually in

today’s processing plants. This incurres high labor costs and

occasional mistakes in grading due to the repetitive nature

of the work. Therefore, the automation of this grading op-

eration is needed. Since the grading of fillets with melanin

spots is done visually by inspectors, a natural approach for

automation of this operation is to use computer vision.

Melanin spots are dark spots that reduce the quality

grade of the fillet and are the result of an inflammatory con-

dition most often induced by vaccination [4], [5]. Vaccina-

tion is necessary in order to protect fish in the growing phase

from certain diseases. Nevertheless, melanin spots occur as

a negative bi-effect of this vaccination.

Consumers associate any discoloration of fillets, in the

form of melanin spots, with lower quality. Therefore, the

presence of melanin spots in fillets reduces their quality and

consequently the fillet price. Fillets with melanin spots are

downgraded in the production line and such fillets are sent

to portion cutting as they can not be sold as whole fillets.

Melanin spots are present in a substantial percentage of

fillets. In typical Norwegian processing plants, 8-20% of all

fillets have melanin spots, and this result in 4% of the entire

production being discarded. It has also been reported [14]

that the presence of melanin spots in the muscle tissue of

Atlantic salmon can cause up to 30% loss in some process-

ing plants as the part of the muscle containing melanin spot

is discarded.

Computer vision has recently achieved the necessary

level of maturity for being used in food and fish processing

applications [2], [7], [9], [8], [11]. The advances in camera

technology and the continuous increase in CPU speed over

the past years have made computer vision a natural choice

when designing automated quality evaluation applications.

A simple computer vision method for automatic detec-

tion of melanin spots in Atlantic salmon fillets is presented.

We have compared two algorithms, one using the R-channel

of RGB images and a second using the LDA-transformed

RGB images. For most detection rates, using LDA gives

a lower number of falsely detected melanin spots per fillet.

The falsely detected melanin spots appear to be caused by

two factors: 1. uneven illumination, 2. blood, viscera and

fin remnants near the belly flap. The first factor can be reme-
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died by improved illumination, and the second by trimming

the belly flap of the fillets before melanin spot inspection.

This work shows that the melanin spot detection task can

potentially be automated using computer vision.

2 Materials and Methods

Atlantic salmon fillets (n=37) were collected from the

processing line of Salmar AS fish processing plant in Hitra,

Norway, in April 2006. From the overall number of fil-

lets, 16 fillets were ‘good’ and melanin-free, while 21 had

melanin spots and were classified by human inspectors as

‘defective’.

Figure 1. Atlantic salmon fillet with melanin

spot defect. The melanin spot occurs due to

vaccination of the salmon in its anterior part

(left in this image). Melanin spots do not oc-

cur to the right of the indicated boundary.

Due to vaccination of the fish in a certain body region

(close to the neck), melanin spots appear mainly on the front

part of the fillet, from the dorsal fin towards the head. The

region where melanin spots appear is usually in the anterior

part of fillet, to the left of the boundary in figure 1.

2.1 Image Acquisition

Images of fillets were captured using a digital color cam-

era (figure 2). In order to ensure a uniform illumination,

without intrusion from ambient light, the fillets were put in

a light box. The light box had a gray neutral color inside

and two fluorescent tubes (18W) with a color temperature

of 5000K and color rendering index greater than 95%. The

exposure time of the camera was long enough to avoid the

variation in light intensity due to the mains frequency. For

a good color discrimination, a color rendering index greater

than 90 and color temperature of 5000K is preferred [12].

The built-in flat-field correction of the camera (PixeLink

A776) was used to compensate for uneven illumination.

In order to accurately represent the color of the fillets,

a color calibration of the images was performed. This was

done using a Macbeth ColorChecker with 24 patches.

Figure 2. A cross-section view of the light box

that was used for image acquisition.

2.2 Feature Extraction

Firstly, the ground truth set of images was generated by

inspecting the images from the dataset. For this purpose, all

images were manually segmented into regions belonging to

three categories: background, fillet and melanin spots. Seg-

mentation of the melanin spots in the ground truth set of im-

ages was done such that the boundaries between fillet and

melanin spots were estimated as precisely as it was possible

by manual inspection. Nevertheless, the boundary marking

should be regarded as approximate, since we were more in-

terested in region spot detection than in accurately locating

the boundary between the melanin spot and the fillet mus-

cle.

By separating the fillet RGB image into R, G and B

channels, it was apparent that the single channel that best

enhances the melanin spots is the R channel (figure 3).

Melanin spots were only barely visible in the G or B chan-

nel. Using one color channel is required if using a mono-

chrome camera, and thus we investigated using the R-

channel as a feature to determine whether it is sufficient to

use a monochrome camera in an automatic melanin spot de-

tector.

In addition to using the R-channel, we investigated ap-

plying, to the RGB images, the optimal linear transform

that separates melanin spots from spotless areas of the fillet.

Linear discriminant analysis (LDA) searches for those vec-

tors in the underlying space that best discriminate among

classes. It is generally believed that LDA outperforms PCA

[1], [6], [10], because while PCA seeks directions that are

efficient for data representation, LDA seeks directions that

are efficient for discrimination [3].

In the two class case, with an assumed equal a priori

probability of each class occurring, the linear transform that
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Figure 3. The red, green and blue channels

of the color image. Melanin spots are most

visible in the red channel.

optimally separates two classes is

= wTx (1)

where

w = ( 1 + 2)
1
( 1 2)

T

and where 1 and 2 are the class covariance matrices and

1 and 2 the class mean vectors.

2.3 Melanin Spot Detector

We developed two melanin spot detectors. They differ

only in the feature images used. The two feature images

are:

1. The R-channel

2. The two-class LDA-transformed RGB

Both feature images have only one channel, and the same

melanin spot detection algorithm was applied to both fea-

ture images.

The algorithm is illustrated in figure 4. The first step

of the algorithm was to threshold the feature image with a

threshold 0. In section 3 we describe how the threshold

is varied in order to evaluate the detector performance of a

large range of detection rates and number of falsely detected

melanin spots per fillet.

Figure 4. Flow chart describing the different

stages in the melanin spot detector.

After thresholding, the binary image was filtered with a

median filter that has a radius equivalent to 3 mm on the fil-

let. This median filter removes noise and merges smaller re-

gions to simplify the subsequent detection of melanin spots.

Next, the median filtered images were segmented into con-

nected regions. Regions in the 25% posterior part (tail) were

removed for two reasons: 1. Melanin spots do not occur in

the tail part, 2. the tail contains brown fat that is similar to

melanin in color, which might confuse the detector. In addi-

tion to this, we removed regions with an area less than that

of a disk with radius 5 mm. Any remaining regions after

this processing were classified as being melanin spots.

3 Results and Discussion

We compared the performance of the two detectors pre-

sented in this paper. For each detector we varied the thresh-

old and computed the melanin spot detection rate and the

average number of falsely detected melanin spots per fil-

let, which can be seen in figure 5. The detection rate was
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computed by applying the detector to the 21 images of ‘de-

fective’ fillets, and the number of false detections per fillet

was computed by applying the detector to the 16 images of

‘good’ fillets.
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Figure 5. Percentage of melanin spots that

are correctly detected, versus percentage

of non-defective fillets with falsely detected

melanin spots.

For most detection rates, using LDA gives a lower num-

ber of falsely detected melanin spots per fillet. At a detec-

tion rate of 93%, using the LDA features, the correctly de-

tected melanin spots and falsely detected melanin spots are

illustrated in figure 6 and figure 7, respectively. The algo-

rithm detects most melanin spots, and clearly locates them.

Spots that are not detected, such as the spot in the upper

left corner of Fig. 6, are small and weak. At a detection

rate of 93%, there are a large number of falsely detected

melanin spots. Such falsely detected spots are found in ap-

proximately 75% of the spotless fillets. This high number

seems at first disconcerting. However, the falsely detected

melanin spots appear to be caused by two major factors: 1.

uneven illumination, 2. blood, viscera and fin remnants near

the belly flap. The first factor can be remedied by improved

illumination, and the second by trimming the belly flap of

the fillets before melanin spot inspection. We suggest that

these two factors be addressed in future work.

Apparently, judging from the images in figure 1 and fig-

ure 3, detecting melanin spots is a trivial and simple prob-

lem. Studying a larger number of melanin spots, we see that

they have varying size, shape, location and intensity. This

can be seen in figure 6. This variation makes the detection

of these spots a challenging problem to solve. Further chal-

lenges are posed by the need for even illumination and re-

moval of objects that have a similar appearance to melanin

spots, such as seen in figure 7.

The fact that we have chosen simplistic detectors could

Figure 6. Detected melanin spots using the

LDA features, at a detection rate of 93%.

The upper left image shows an example of a

melanin spot that was not detected.

be criticized. On the other hand, simple detectors are more

robust with respect to overtraining. Overtraining can be a

problem when designing complex classifiers or detectors

and evaluating their performance on small data sets. In our

case, the data set consisted of 21 images of ‘defective’ fil-

lets and 16 images of ‘good’ fillets. Ideally, the data set

should have been much larger in order to improve the detec-

tor evaluation. With such a small data set, it was important

to properly utilize the images during detector development

and evaluation. While developing the detectors we tested

them on two images, one of a ‘good’ fillet and one of a

‘defective’ fillet. These two images were also included in

the data set used for evaluating the detectors. It is possible

that better detectors could have been developed if we had

repeatedly tested and modified them on the entire data set.

Due to the small data set used while developing the de-
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tectors, we consider their performance to be a lower bound

on the melanin spot detection performance that is possible

to achieve using computer vision. We therefore consider it

important to continue refinement and development of this

computer vision application.

It is important to observe that a melanin spot detector

does not need near-perfect detection rates and false-alarm

rates, in order to be useful in the salmon processing plants.

At high detection rates, where almost many melanin spots

are detected and all large spots are detected, even a false-

alarm rate of 25% will be useful. At such a false-alarm rate,

the number of fillets that need to be inspected by humans is

reduced to one fourth of all fillets.

Judging from the results in this paper, we believe that

computer vision has the potential to enable fully automated

melanin spot detection in Atlantic salmon processing plants.

4 Conclusion

An important inspection task in Atlantic salmon process-

ing plants is the detection of melanin spots in fillets. Ths is

done manually today and is labor intensive and thus costly.

It is therefore desirable to automate this inspection. To-

wards this end, we have presented two computer vision

based melanin spot detectors. The performance of these

detectors indicate that a computer vision system has the po-

tential to automate the detection of melanin spots in Atlantic

salmon fillets.
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Figure 7. Falsely detected melanin spots us-

ing the LDA features, at a detection rate of

93%. The top two rows illustrate false de-

tections due to uneven illumination, and the

bottom three rows illustrate false detections

due to blood, viscera and fin remnants on the

belly flap.
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