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Should we forget the Smith Predictor?

Chriss Grimholt Sigurd Skogestad*

Abstract: The pi/pid controller is the most used controller in industry. However, for processes
with large time delays, the common belief is that pi and pid controllers have sluggish
performance, and that a Smith predictor or similar dead-time compensator can give much
improved performance. We claim in this paper that this is a myth. For a given robustness
level in terms of the peak sensitivity (Ms), we find that the performance improvement with the
Smith predictor is small even for a pure time delay process. For other first-order processes a
pid controller is generally better for a given robustness level. In addition, the Smith Predictor
is much more sensitive to time delay errors than pi and pid controllers.
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1. INTRODUCTION

We find time delays in most industrial processes G(s), see
Figure 1. Time delay is an important aspect to consider
when applying feedback control because it imposes serious
limitations on the performance (Skogestad and Postleth-
waite, 2005). For the controller K(s), we mostly use the
proportional-integral (pi) controller, which is the work-
horse of the process industry with more that 95% of all
control application being of this type (Åström et al., 1995).
For integrating processes with large time delays, pi control
is somewhat sluggish, and to impove performance we can
add derivative action, i.e. using pid control (Grimholt and
Skogestad, 2013).

An alternative to pid control, is to make use of a Smith
predictor (sp), also known as a dead time compensator,
(Smith, 1957). The sp uses a model of the process with-
out a time delay to predict the process output, and this
new process is controlled by a conventional controller, for
example, a pi controller. See Figure 2. The sp controller
has good setpoint response because it removes the in-
ternal delays from the closed-loop transfer function. One
drawback is that it has poor performance for input (load)
disturbances for processes with slow dynamics because
the original open-loop process poles remain unchanged.
However, this can be rectified by alternative designs, e.g.
see Normey-Rico and Camacho (2007).

(Kristiansson and Lennartson, 2001; Ingimundarson and
Hägglund, 2002; Larsson and Hägglund, 2012) have com-
pared the performance of pi, pid, and sp controllers. These
papers investigate performance for load disturbances for
a fixed robustness. Most of these papers conclude that
pid has better performance than sp, and our work further
confirms this.

In this paper, we examine the optimal performance-
robustness trade-off for a sp and compare it to the optimal
trade-off for pi and pid with the same robustness level. For
performance we consider an average integrated absolute
error (iae) performance of step disturbances at the process
input and output. The disturbance at the process output
is a special case of set-point response. Robustness is quan-
tified by the peak of the sensitivity and complimentary
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Fig. 1. Block diagram of the feedback control system. We
may treat an output disturbance (dy) as a special case
of setpoint change (ys)

sensitivity function (Ms and Mt). In addition, we consider
time delay robustness which is not captured by Ms and
Mt.

2. THE FEEDBACK SYSTEMS

We consider a range of first-order plus delay (fopd)
processes

G =
ke−θs

τs+ 1
= G◦e

−θs, (1)

where k, τ , and θ is the gain, time constant, and time
delay of the process, respectively. The process without
time delay is represented with G◦.

2.1 PID control

There are serveral different parametrizations of the pi
and pid controller. For optimization purposes, we use the
following linear parametrization

Kpi = kp + ki/s and Kpid = kp + ki/s+ kds, (2)

We can transform the controller (2) to the standard
parallel (“ideal”) pid controller,

Kparallel
pid = kc

(
1 +

1

τis
+ τds

)
(3)

by the following transformation

kc = kp, τi = kp/ki, and τd = kd/kp. (4)
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2.2 The Smith Predictor

In this paper we consider the “original” Smith predictor
controller

Ksp =
K◦(s)

1 +K◦(s)G◦(s)
(
1− e−θs

) (5)

where K◦ in the primary conventional controller, which
in this paper is a pi controllers, and G◦ and G are the
internal delay-free and delayed models, respectively. A
block diagram of the sp for the case where K◦ is a pi
controller is shown in Figure 2.

The main advantage of the sp is the potential excellent
septpoint response. However, because it is impossible to
eliminate the open-loop poles in the input disturbance
(load disturbance) transfer function, the “original” sp
has slow settling time for for input disturbances (load
disturbances). It is possible to improve this by using a
modified sp as discussed later.

3. QUANTIFYING THE OPTIMAL CONTROLLER

3.1 Performance

In this paper we choose to quantify performance in terms
of the iae,

iae =

∫ ∞

0

∣∣y(t)− ys(t)
∣∣ dt. (6)

To balance the servo/regulatory trade-off, we choose as
the performance index a weighted average of iae for a
step input disturbance du and step output dy,

J(p) = 0.5

(
iaedy(p)

iae◦dy
+

iaedu(p)

iae◦du

)
(7)

where iae◦dy and iae◦du are weighting factors, and p is the
controller parameters. In this paper, we select the two
weighting factors as the optimal iae values when using
pi control, for input and output disturbances, respectively
(as recommended by Boyd and Barratt (1991)). To ensure
robust reference pi controllers, they are required to have
Ms = 1.59 1 , and the resulting weighting factors are given
for four processes in Table 1.

It may be argued that a two-degree of freedom controller
with a setpoint filter can be used to enhance setpoint
performance, and thus we only need to consider input
disturbances. But note that although a change on the
1 For those that are curious about the origin of this specific value
Ms = 1.59, it is the resulting Ms value for a Simple Internal Model
Control (simc) tuned pi controller with τc = θ on first-order plus
time delay (foptd) process with τ ≤ 8θ.

kc Σ

1
τis+1

uΣ

−G◦(s)(1− e−θs)

Predictor

e

Fig. 2. Block digram of the sp controller, Ksp, when K◦ is
a pi controller.

output dy, is equivalent to a setpoint change ys for the
system in Figure 1, it is not affected by a setpoint filter.
Thus, we consider disturbance rejection which can only be
handled by the feedback controller K(s) (Figure 1).

3.2 Robustness

In this paper, we quantify robustness in terms of Mst,
defined as the largest value of Ms and Mt (Garpinger and
Hägglund, 2008),

Mst = max{Ms,Mt}. (8)

where Ms and Mt are the largest peaks of the sensitivity
S(s) and complimentary sensitivity T (s) functions, respec-
tively. Mathematically,

Ms = max
ω

∣∣S(jω)∣∣ =∥∥S(jω)∥∥∞ ,

Mt = max
ω

∣∣T (jω)∣∣ =∥∥T (jω)∥∥∞ ,

where‖·‖∞ is the H∞ norm (maximum peak as a function
of frequency), and the sensitivity transfer functions are
defined as

S(s) = 1/(1+G(s)K(s)) and T (s) = 1− S(s). (9)

For most stable processes, Ms ≥ Mt. For a given Ms we
are guaranteed the following gain margin (gm) and phase
margin (pm),

gm ≥ Ms

Ms − 1
and pm ≥ 2 arcsin

(
1

2Mt

)
≥ 1

Mt
.

(10)
For example, Ms = 1.6 guarantees gm ≥ 2.7 and pm ≥
36.4◦ = 0.64 rad. Another important robustness measure
is the delay margin (dm), (Åström and Hägglund, 2006),

dm =
pm

ωc
(11)

where ωc is the crossover frequency. Note that the units
for pm [rad] and ωc [rad/s] must be consistent. The delay
margin is the smallest change in time-delay that will cause
the closed-loop to becomes unstable. We will see for the
sp, that robustness in term of Mst does not guarantee
robustness in term of dm.

4. OPTIMAL CONTROLLER

For a given first-order plus delay process, the iae-optimal
pi, pid or sp controller are found for a specified robustness
level by solving the following optimization problem:

min
p

J(p) = 0.5

(
iaedy(p)

iae◦dy
+

iaedu(p)

iae◦du

)
(12)

subject to: Ms(p) ≤ Mub (13)

Mt(p) ≤ Mub (14)

where the two or three parameters in p are for a pi or
pid controller. Our Smith predictor controller always uses
a pi controller (two parameters in p, see Figure 2) For
more details on how to solve the optimization problem,
see Grimholt and Skogestad (2018). The problem is solved
repeatedly for different values of Mub. One of the bounds
in (13) or (14) will be active if there is a trade-off between
robustness and performance. This is the case for values of
Mub less than about 2 to 3.
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output dy, is equivalent to a setpoint change ys for the
system in Figure 1, it is not affected by a setpoint filter.
Thus, we consider disturbance rejection which can only be
handled by the feedback controller K(s) (Figure 1).

3.2 Robustness

In this paper, we quantify robustness in terms of Mst,
defined as the largest value of Ms and Mt (Garpinger and
Hägglund, 2008),

Mst = max{Ms,Mt}. (8)

where Ms and Mt are the largest peaks of the sensitivity
S(s) and complimentary sensitivity T (s) functions, respec-
tively. Mathematically,

Ms = max
ω

∣∣S(jω)∣∣ =∥∥S(jω)∥∥∞ ,

Mt = max
ω

∣∣T (jω)∣∣ =∥∥T (jω)∥∥∞ ,

where‖·‖∞ is the H∞ norm (maximum peak as a function
of frequency), and the sensitivity transfer functions are
defined as

S(s) = 1/(1+G(s)K(s)) and T (s) = 1− S(s). (9)

For most stable processes, Ms ≥ Mt. For a given Ms we
are guaranteed the following gain margin (gm) and phase
margin (pm),

gm ≥ Ms

Ms − 1
and pm ≥ 2 arcsin

(
1

2Mt

)
≥ 1

Mt
.

(10)
For example, Ms = 1.6 guarantees gm ≥ 2.7 and pm ≥
36.4◦ = 0.64 rad. Another important robustness measure
is the delay margin (dm), (Åström and Hägglund, 2006),

dm =
pm

ωc
(11)

where ωc is the crossover frequency. Note that the units
for pm [rad] and ωc [rad/s] must be consistent. The delay
margin is the smallest change in time-delay that will cause
the closed-loop to becomes unstable. We will see for the
sp, that robustness in term of Mst does not guarantee
robustness in term of dm.

4. OPTIMAL CONTROLLER

For a given first-order plus delay process, the iae-optimal
pi, pid or sp controller are found for a specified robustness
level by solving the following optimization problem:

min
p

J(p) = 0.5

(
iaedy(p)

iae◦dy
+

iaedu(p)

iae◦du

)
(12)

subject to: Ms(p) ≤ Mub (13)

Mt(p) ≤ Mub (14)

where the two or three parameters in p are for a pi or
pid controller. Our Smith predictor controller always uses
a pi controller (two parameters in p, see Figure 2) For
more details on how to solve the optimization problem,
see Grimholt and Skogestad (2018). The problem is solved
repeatedly for different values of Mub. One of the bounds
in (13) or (14) will be active if there is a trade-off between
robustness and performance. This is the case for values of
Mub less than about 2 to 3.
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Table 1. Cost function weights and optimal controllers with Mst = 1.59.

Weights in J Optimal pi Optimal sp

Process iae◦dy iae◦du Mst kc τi iaedy iaedu J kc τi iaedy iaedu J

e−s 1.61 1.61 1.59 0.20 0.32 1.61 1.61 1.00 0.73 0.32 1.45 1.45 0.90
e−s/(s+ 1) 2.07 2.02 1.59 0.54 1.10 2.08 2.04 1.01 1.37 0.93 1.69 1.68 0.83
e−s/(8s+ 1) 2.17 1.13 1.59 3.47 4.04 3.10 1.16 1.23 9.94 3.35 2.04 1.38 1.08
e−s/(20s+ 1) 2.17 0.60 1.59 8.42 5.16 3.67 0.61 1.36 22.7 3.31 2.34 1.12 1.47

iaedy and iaedu are for a unit step disturbance on output (y) and input (u), respectively.

5. OPTIMAL TRADE-OFF

In this section, we present the optimal iae-performance for
pi, pid and sp controllers as a function of the robustness
level Mst. We have considered four fopd process models,
defined in (1),

Pure time delay : τ/θ = 0
Balanced dynamics : τ/θ = 1
Lag dominant: τ/θ = 8
Close to integrating: τ/θ = 20

We have not included results for an integrating process
model because sp does not work for integrating processes.

5.1 Performance

In Figure 3, we show the Pareto optimal iae-performance
(J) as a function of robustness (Mst) for the four processes.

For the pure time delay process (top left), there is only
a small difference between the optimal pi/pid and sp
controllers. For very robust controllers with Mst = 1.1,
the improvement with sp is only 2%. For robust con-
trollers with Mst = 1.69, the improvement is 11%. This
small improvement is surprising, because sp was expected
to substancially improve performance for delay-dominant
proceesses.

Note that we write optimal “pi/pid” controller. This is
because for a pure time delay process there is no advantage
in using derivative action, so the optimal pid is a pi
controller. Note that the maximum value of Mst is 1.92 for
pi and pid control. Performance (J) actually gets worse if
Mst is increases beyond this value, and this region should
be avoided.

For balanced and lag dominant dynamics (top right and
bottom left in Figure 3), sp has somewhat better perfor-
mance than pi. For a robust controller with Mst = 1.69,
the sp has 23% and 17% improved performance, respec-
tively. However, the pid controller is even better, with 27%
and 33% improvement relative to the pi controller.

For a close to integrating process (bottom right Figure 3),
sp has worse performance than the pi controler. This is
because the “original” sp retains the large time constant
from the open-loop process model (Hägglund, 1996). For
a robust controller with Mst = 1.69, the sp controller has
-8% worse performance than pi. On the other side, the pid
controller has an improved performance of 35%.

In summary, if we consider performance for a given robust-
ness level in terms of Mst, the pid controller is better than
the sp with pi, except for a pure time delay process where

the potential improved performance is marginal, especially
for the interesting cases with Ms less than 1.6.

5.2 Delay margin (DM)

In the above discussion the trade-off between iae per-
formance and Mst robustness, we did not consider the
delay error which for sp is not captured by the Mst value
and which is actually the main disadvantage of the Smith
predictor. The delay margins corresponding to Figure 3 are
shown in Figure 4. For pi and pid control the delay margin
follows our Ms robustness measure quite smoothly. This is
not the case for the sp, which has a sudden and large drop
in dm for higher Mst values. For the four process models
in this paper, the drop in dm occurs at Mst equal to 1.63,
1.80, 1.82, and 1.84, respectively.

In pratice, this means that the the sp controller is unusable
for higher Mst values. Thus, the sp controller is actually
worse than what is shown in Figure 3.

6. DISCUSSION

6.1 Robustness

Palmor (1980) showed that a sp with very high gains
will have good gm and pm, but have arbitrary small dm.
This agrees with Figure 4. Thus, when designing a Smith
predictor using only the classical robustness margins (gm
and pm) you easily end up with an aggressive controller
with very small dm. Adam et al. (2000) showed that these
robustness toward error in time delay can be arbitrary
small and unsymmetrical, and this is further discussed
below.

Figure 5 shows for the fopd process

G(s) = e−s/(s+ 1) (15)

the loop function L for a sp synthesized with the imc
method (τi = τ) withMs = 1.81. The resulting L has three
crossover frequencies, and two regions with magnitude
larger than one. The closed-loop becomes unstable if the
Bode stability criteria is violated,∣∣L(ω)∣∣ < 1 for ω180, ω540, ω900, . . . , (16)

where ω180, ω540, and ω900 are the frequencies where the
phase is −180◦, −540◦, and −900◦ respectively. Note that
the first “sudden drops” in Figure 4 occurs when we get
|L| ≥ 1 at ω between ω180 and ω540, which makes ωc jump
to a higher frequency. Further jumps occur as as ωc jumps
to even higher frequencies (Gudin and Mirkin, 2007).

The two phase crossover frequencies ω180 and ω540 are
marked in Figure 5. From the Bode criterion, the system
becomes unstable if these frequencies move into the shaded
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Fig. 4. Delay Margins (dm) for the Pareto-optimal controllers in Figure 3.
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regions where the magnitude is larger than one, and these
frequencies shift with time delay error, ∆θ.

Since we can have |L| > 1 also for ω > ω180 with sp, a
sp with high gain can become unstable both for positive
and negative time delay errors. This is not the case for
pid which becomes unstable only for positive time delay
errors.

For example, for the system in Figure 5 which has a
nominal delay of 1, the system with sp becomes unstable
for time delays errors ∆θ in the intervals,

[−0.66,−0.45] , [0.48, 0.85] , and [1.38,∞) . (17)

Closed-loop responses for a sp and a pi controller tuned for
Mst = 1.81 for three values of ∆θ are shown in Figure 6.
We see that the Smith predictor may start to oscillate both
for negative (∆θ = −0.45) and positive time delay errors
(∆θ = 0.40).

One solution to deal with the problem of multiple instabil-
ity regions, is to limit the loop gain such that it is strictly
smaller than 1 at higher frequencies (Ingimundarson and
Hägglund, 2002), that is∣∣L(ω)∣∣ < 1 for ω > ωc. (18)

where ωc is the first crossover frequency. This will ensure
that the system only becomes unstable if the delay error
is ∆θ is positive, as is the case with pid. However, for
system with high loop gain where one of the peaks of L(ω)
is almost one, a small under-estimation of the process gain
can bring back the peaks.

Concerned about the conservatism of multiplicative bound
for time delay error Larsson and Hagglund (2009) pro-
posed the following robustness bounds,

Ms∆ = max
∆θ∈[∆θmin, ∆θmax]

∥∥S(s, ∆θ)
∥∥
∞ ≤ Mub

s∆ (19)

Mt∆
= max

∆θ∈[∆θmin, ∆θmax]

∥∥T (s, ∆θ)
∥∥
∞ ≤ Mub

t∆
(20)

which ensures a minimum gm and pm even for maximum
delay error.

Form this we can conclude that by ensuring sufficiently
small Ms and Mt peaks for sp, we get good robustness
against delay error. But this also means that sp will not
be able to achieve the lowest iae values in Figure 3.

6.2 Predictive PI

Another way of avoiding some of these limitations with
sp is to use a modified sp. The ppi controller (Hägglund,

10−1 100 101 102
10−1

100

101

100

|L(jω)| ω180 ω540

L = e−s

0.3s+1−e−s

Frequency, ω

M
a
g
n
it
u
d
e

Fig. 5. Bode plot of the sp loop function L = GKsp for
G(s) = e−s/(s+ 1) and Mst = 1.81.
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Fig. 7. Block digram of the Predictive PI (ppi) controller

1996) is a special case of the sp, where the parameters of
the internal model, k and τ , is parametrized in terms of the
controller parameters kc and τi. This is done by assuming a
fopd and using the lambda tuning method to express the
model parameters in term of the controller parameters.
As a result, the ppi controller only needs 3 parameters
to be specified, namely kc, τi, and θ, which is same as
the number of parameters needed for pid controller. The
delay-free part of the model, G◦, is reduced and the ppi
controller can be expressed as,

Kppi =
kc

(
1 + 1

τis

)

1 + 1
τis

(1− e−kθs)
, (21)

where kp, ki, and kθ are tuning parameters. The internal
controller delay can be treated as a fixed parameter kθ = θ
(normally done), or as a free parameter to additionally
improve performance. Because of the modification, the ppi
controller can achieve better disturbance rejection than
the sp because it can avoid the zero-pole cancellation be-
tween the controller and process. Also, the ppi controller,
unlike the sp, works for integrating processes because it
retains integral action for these processes. However, other-
wise performance compared to pid control is not improved
(Larsson and Hägglund, 2012)

6.3 Tuning of PID controlles

We find in this paper than a pid controller generally
outperformes a Smith predictor controller. This is in agree-
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ment with findings of Ingimundarson and Hägglund (2002)
who say that “the pid performs best over a large portion of
the area but it has been shown that it might be difficult to
obtain this optimal performance with manual tuning”. We
disagree with the last portion of this statement as we have
found that the simple “improved simc-tunings” give iae
performance close to the optimal in Figure 3 (Grimholt
and Skogestad, 2013). For the process in (1) the improved
simc-tunings for a cascade pid controller are (Grimholt
and Skogestad, 2013)

k̃c =
1

k

τ

τc + θ
, τ̃i = min

(
τ , 4(τc + θ)

)
, τ̃d = θ/3 (22)

These can be translated to the ideal parameters in (2) by
computing f = 1 + τ̃d/τ̃i and using,

kc = k̃cf, τi = τ̃if, τd = τ̃d/f (23)

By varying τc we can adjust the robustness. For example,
selecting τc = θ/2 gives Ms about 1.6.

For pi control we use the same rules, but set τd = 0 which
gives the original simc rules. In this case, selecting τc = θ
gives Ms about 1.6. Note that the simc pi controller for a
pure time delay process is an integrating controller which
gives poorer performance (but smoother response) than
the pi/pid controller in Figure 3.

7. CONCLUSION

For processes with large time delays, the common belief is
that pi and pid controllers have sluggish performance, and
that a Smith Predictor or similar can give much improved
performance.

We find in this paper that this is a myth. We study a wide
range of first-order plus delay processes, and we find that
with a fixed robustness in terms of the sensitivity function
(Ms-value), the potensial performance improvement is
small or nonexistent (Figure 3). In fact, a pid-controller
is in almost all cases significantly better than a sp plus
pi-controller. We think this is a fair comparison, because
the derivative action in the pid controllers adds a similar
complexity as the Smith predictor part.

The only exception is for a pure time delay process where
there is no benefit of derivative action so the optimal
pid is a pi controller. In this case, there is a very small
performance benefit is possible with a sp (Figure 3, upper
left), but this comes at the expense of a high sensitivity
to time delay errors when we want tight performance
(Figure 4). Thus, in practice the expected benefits of the
Smith predictor shown in Figure 3 cannot be achieved
because of time delay error. Actually, we find that the
Smith Predictors tuned for tight performance can have
arbitrary small margins to time delay errors (Figure 4).

There are modifications of the Smith predictor, which
can avoid some of the problems of the sp for integrating
processes, but still the performance is not better than
a pid controller with the same robustness. It has been
claimed that Smith predictor is easier to tune than a pid
controller, but we calim that this is not true. In summary,
we think that we can safely recommend to “forget the
Smith predictor”, and instead use a well-tuned pi or pid
controller.
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