
On Local Refinement in Isogeometric
Analysis
A comparative study on Classical

Hierarchical, Truncated Hierarchical and LR

B-splines

Filippo Remonato

Master of Science in Mathematics (for international students)

Supervisor: Trond Kvamsdal, MATH
Co-supervisor: Kjetil Andre Johannessen, MATH

Department of Mathematical Sciences

Submission date: June 2014

Norwegian University of Science and Technology

Preface

This Master Thesis is the final assignment for the International Master Programme
(MSc) in Mathematics. While an effort has been made to present the topics in a self-
contained way, the reader is expected to have some prior knowledge in the Finite Element
Method.

An extract of this work has been submitted for publication to the journal Computer
Methods in Applied Mechanics and Engineering, for the Isogeometric Special Issue. The
results contained in this work have also been presented at the IGA2014 conference, held
at the University of Texas at Austin on January 8-10, 2014.

I would like to acknowledge here the support, supervision, and guidance of Trond
Kvamsdal, professor at the Norwegian University of Science and Technology - NTNU, as
well as the collaboration I had with Kjetil André Johannessen, PhD student at NTNU,
which helped me a great deal with several hours of discussions and suggestions, from the
reference papers to read to the code development in Matlab and the interpretation of the
results we obtained. Lastly, I would like to thank my parents for having always supported
me in my choices, and especially in this wonderful Norwegian adventure.

i

Abstract

Smooth spline functions such as B-splines and NURBS are already an established
technology in the field of computer-aided design (CAD) and have in recent years been
given a lot of attention from the computer-aided engineering (CAE) community. The
advantages of local refinement are obvious for anyone working in either field, and as such,
several approaches have been proposed. Three strategies are the Classical Hierarchical
B-splines, the Truncated Hierarchical B-splines and the Locally Refined B-splines. We
will in this paper present these three frameworks and highlight similarities and differences
between them. In particular, we will look at the function space they span and the support
of the basis functions. We will then analyse the corresponding stiffness and mass matrices
in terms of sparsity patterns and conditioning numbers. We show that the basis in general
do not span the same space, and that conditioning numbers are comparable. Moreover we
show that the weighting needed by the Classical Hierarchical basis to maintain partition
of unity has extreme implications on the conditioning numbers.

iii

Contents

0 Introduction 1
0.1 Isogeometric Analysis: motivations and aim 2
0.2 Aim and outline of the paper . 4

1 Finite Element Theory 5
1.1 Sobolev and Hilbert spaces . 5
1.2 Poisson Problem . 7

1.2.1 Galerkin approach . 9
1.2.2 Minimization problem . 11

1.3 Least Squares fitting . 12
1.4 Helmholtz Equation . 13

2 CAD Geometry 15
2.1 Bezier Curves . 15

2.1.1 de Casteljau Algorithm . 15
2.1.2 Bernstein’s Polynomials basis . 17
2.1.3 Degree Elevation . 18
2.1.4 Problems . 19

2.2 B-Spline Curves . 20
2.2.1 The Knots Vector and the Basis Functions 20
2.2.2 Base Regularity on non-uniform open knot vectors 22
2.2.3 Derivatives of B-spline basis functions 23
2.2.4 Curve and Mesh construction . 26
2.2.5 Mesh and Basis refinement . 27
2.2.6 B-Splines and Bezier curves . 30
2.2.7 Higher Dimensions: Tensor Product Basis 30

3 Local Refinement techniques 31
3.1 Notation and common definitions . 31
3.2 Hierarchical B-Splines . 33

3.2.1 Introduction and general idea . 33
3.2.2 The Classical Hierarchical Basis . 35
3.2.3 The Truncated Hierarchical Basis 38

3.3 LR B-splines . 40

4 Results 45
4.1 Qualitative analysis . 45

4.1.1 Different functions . 45
4.1.2 Different spaces . 46

v

4.1.3 Different refinement strategies . 47
4.1.4 Different admissible meshes . 49

4.2 Quantitative analysis . 49
4.2.1 Representation of Truncated functions 49
4.2.2 1D examples . 51
4.2.3 2D Example: Central Refinement 57
4.2.4 2D Example: Diagonal Refinement 62

5 Future work 67

6 Conclusions 71

Bibliography 73

vi

0

Introduction

Isogeometric Analysis (IGA) is a relatively recent technique for the discretization and
solution of Partial Differential Equations (PDE), presented for the first time by Hughes,
Cottrell and Bazilev in [14].

At the present day, most of industry-made objects are designed through the use of
Computer Aided Design (CAD). These techniques use particular geometrical functions to
graphically represent objects; the most used being the NURBS functions, an extension
of the B-splines. One of the main features of the Isogeometric methods is to provide an
exact representation of the geometry of the object of the analysis; this is done through
the so-called isoparametric approach, which consists in using the same CAD functions
used to generate the object for the analysis of the object itself. In this way, the exact
representation of the object is guaranteed since the very first mesh, independently of the
characteristic size h of the mesh’s elements, and successively maintained at each stage of
mesh refinement.

B-splines and NURBS function spaces contain, as a special case, the space of piecewise
polynomial functions used by the classical Finite Element Methods (FEM). Due to this,
Isogeometric Analysis can be seen as a generalization of the FEM methods by the use of
functions with high regularity. This increased smoothness in the basis functions yields
important advantages, as shown in [4].

With both FEM and IGA methods a partial differential equation is solved via a
Galerkin’s approach, which consists in the construction of suitable function spaces within
which to search for the solution. The main difference between those methods lies in
the different basis functions chosen to both calculate the numerical solution as well as
constructing the mesh on the physical domain. FEM methods use piecewise polynomial
functions for the function space, and polygonal mesh elements, like triangles (2D) or
tetrahedra (3D). IGA methods use, as we said, CAD functions like NURBS or B-splines
for both the function space and the mesh. This allows for the construction of elements
with curved edges and consequently an exact representation of the geometry of the object,
which was created using the same functions.

Since their introduction, IGA methods have evolved in different directions and several
different basis functions have been proposed, as well as refinement schemes. In particular,
in the last few years there has been an increasing attention of the scientific community
for local refinement techniques. The wide number of publications and conferences on
IGA shows how these new methods are raising a strong interest in both the design and
egineering/numerical analysis community, in particular for the possibility of a tighter
interaction between the two fields.

2 0.1 Isogeometric Analysis: motivations and aim

0.1 Isogeometric Analysis: motivations and aim

The Finite Element analysis for engineering started in the 1950-1960 and was used
mainly in the aerospace industry, which in those years was experiencing a fast expansion.
At the end of the ’60s the first commercial softwares for analysis were produced and, as a
consequence, the finite element methods spread also in other scientific areas. As of today,
they are considered the standard in most mathematical analysis required by the industry.

Despite the fact that geometry is the structure underlying analysis, CAD graphics
were developed later, in the 1970. This is probably the main reason why the geometrical
representations of the objects are so different between the FEM and CAD communities.
It is a generally accepted fact that the invention of modern computer graphics comes
from the works of two French automotive engineers, Pierre Bezier (Renault) and Paul de
Faget de Casteljau (Citroën). Bezier in 1966 presented his technique for the construction
of curves and surfaces based on the use of Bernstein’s polynomials. De Casteljau already
developed similar techniques in 1959, but his works were not published. The term ’spline’
instead was used the first time in 1946, in a work by Schoenberg, which explained how
they could be used to approximate shapes and functions. During the ’70s a large number
of publications gave a strong impulse to the CAD geometry, in particular the PhD thesis
of Reisenfeld regarding B-splines (1972) and the one of Verspille which presented NURBS
(1975).

Today most of the objects produced by the industry are designed through the use of
softwares based on CAD geometry: think for example of the famous AutoCAD, or Maya;
or more specific softwares like Rhino or Catia, developed by Boeing and considered the
state-of-the-art for engineering. Design blueprints have long since stopped being drawings
on paper, and became large CAD files. Executing a mathematical simulation on these
projects requires the conversion from the CAD geometry description to one suitable for
analysis purposes, the mesh creation and then the computation using a finite element
method. This process is all but straightforward, and engineering projects are becoming
each day more and more complex. On the other hand, the design process itself depends
on a variety of mathematical analysis results and simulations; it is therefore inevitable
and essential a continuous flow of data between the CAD world and the FEA one. The
main problem is, indeed, that analysis-suitable models are not made directly by the CAD
geometry with which the object is designed, and this causes major consequences on the
communication process between the two technologies. This process has been analysed by
Ted Blacker, of Sandia National Laboratories; the results are presented in Figure 1.

As we can see, just the creation of an analysis-suitable geometry uses 60% of the
total time of the process; 20% is used by mesh construction and manipulation, and only
the last 20% is used on actual analysis. This situation seems to be very common in
today’s industry and there is a strong desire for a change. For example, in the automotive
industry a mesh for an entire vehicle takes around four months of computation time, while
during the development stages the design is updated almost every day. This impractical
difference in the times is one of the main causes of the small use of mathematical analysis
as a tool to optimize the design process.

The increasing complexity of the industrial projects and engineering techniques are
now more than ever pressing for faster analysis results, which can be used to optimize
each stage of the design process. In addition, we note that the mesh generated by the
classical finite elements procedure is only an approximation of the original CAD geometry,
which we view as the exact model to represent. This difference, however small, can cause

0.1 Isogeometric Analysis: motivations and aim 3

Geometry

Decomposition

Analysis Solid Model

Creation and/or Edit

Meshing

Mesh Manipulation

Assign Model

Parameters

Assemble Simulation

Model

Run Simulation

Post-process

Results4%

21%

32%

14%

8%

6%

4%

5%

6%

Design Solid Model

Creation and/or Edit

Figure 1: Results of the study on the time used by each phase of the analysis process at Sandia National
Laboratories.

severe problems of accuracy in the numerical solution, especially for particularly unstable
problems.

To overcome the above problems a shift is therefore necessary, from the classical finite
elements methods to an analysis based on the same geometry and functions used to design
the objects. This is the foundation point of Isogeometric Analysis. The main aims of this
technique are to be able to retrieve the meshes directly from the CAD representations;
to have an exact description of the geometry regardless of how coarse the mesh is, and
then to simplify the refinement processes in both the mesh and the functions basis used
for analysis.

A fundamental constraint of traditional NURBS is that they are tensor product and
lack the potential for local refinement. The need for local refinement have always been
an issue, and several proposed solutions to local refinement have been derived such as T-
splines [27],[26], Hierarchical B-splines [9],[18], Truncated Hierarchical B-splines [11] and
Locally Refined B-splines [6]. The use of these techniques in CAD allows for more freedom
since it is often enough that a forward mapping exist and can be efficiently manipulated
or evaluated. With their applications into isogeometric analysis [1], [7], [23], [29], [28],
[2], [24], and [15] came new requirements of the basis. Linear independence [25], stability
[12] and partition of unity [11] became center topics of research as isogeometric analysis
is impractical or sometimes impossible without these properties. The research is ongoing
for most of these basis and the community has yet to settle on a single technology which
encompass every desired property without restrictions on the mesh.

With many different technologies addressing the same problem of local refinement,
it is to be expected that there is overlap. We hope to shed some light on this topic by
presenting some of these spline families, highlighting similarities and differences between
them. In particular we will be looking at the Classical and Truncated Hierarchical, and
the Locally Refined B-splines.

4 0.2 Aim and outline of the paper

0.2 Aim and outline of the paper

We have organized this paper as follows:
Chapter 1, which is an excerpt from [22], provides an introduction to the Finite El-

ement Theory. After a very brief presentation of Sobolev and Hilbert spaces, to settle
the notation used in he rest of the paper, we present three classical problems where
the Galerkin’s approach is used: The Poisson problem, the Least Squares approximation
problem, and Helmholtz equation. The Poisson problem is the standard model problem
for elliptic partial differential equations. The procedure to derive its weak formulation
and the corresponding discrete formulation and solution is described in detail. The Least
Squares problem and the Helmholtz equation are presented more briefly, since several of
the steps have already been explained in the Poisson case.

Chapter 2, also an excerpt from [22], presents an introduction to the geometry of CAD
functions. First Bezier curves are introduced, which are the foundation upon which more
complex objects, like B-splines and NURBS, are constructed. We then present the general
theory of B-splines and also provide a short overview of the three standard refinement
methods that B-splines come naturally equipped with: h-refinement, p-refinement and
k-refinement.

Chapter 3 presents three state-of-the-art local refinement frameworks that have the
potential to become the standard in the field: Classical Hierarchical, Truncated Hierar-
chical and LR B-splines. The refinement strategies presented in the previous chapter have
the disadvantage of being global, in the sense that the refinement will affect large portions
of the mesh (in case of h-refinement) or all basis functions (in case of p-refinement). The
strategies presented here, instead, allow for a local refinement of the mesh. We start by
fixing the notation for the rest of the paper and then proceed to present the Classical
Hierarchical B-splines. The general idea is that the basis of functions defined on a mesh
can be constituted of several different “levels”, which provide different resolutions where
needed. Unfortunately, this technique results in several functions having support over the
same element, and consequently a denser stiffness or mass matrix. To solve this prob-
lem, the Truncated Hierarchical B-splines were introduced. We then finish this chapter
by presenting the LR B-splines technology, the last of the local refinement schemes we
considered.

Chapter 4 present the results we obtained, both from a qualitative (more theoretical)
and from a quantitative (more numerical) perspective. We will show that there are several
differences between the three approaches presented in Chapter 3, and provide numerical
examples.

Chapter 5 presents some more interesting results we have found during our tests,
but for which more research is required in order to fully understand their meaning and
consequences.

We conclude this paper by giving our conclusions upon our results in Chapter 6.

1

Finite Element Theory

In this chapter, which is an excerpt from [22], is presented an introduction to the
Finite Element theory. A thorough dissertation can be found in many good sources like
[16, 21, 3, 13].

While the finite element method can be applied to a variety of problems, we will focus
mainly on Boundary Value problems. The boundary value problems, or BVP, are one
of the two main classes of problems that appear in the solution of differential equations,
both ordinary and partial (the other class is the Initial value problems).

From a mechanical point of view we can imagine both categories as representing physi-
cal systems of which one wants to know the configuration or their evolution in time. BVP
describe problems where some conditions on the boundary of the domain are known, and
one wants to know the configuration assumed by the system: think for example of an
elastic rope fixed at two ends. The position of the ends of the rope is known, and we
want to know which shape the rope will assume due to the gravitational forces acting
oh it. IVP instead prescribe not only some boundary conditions but also some initial
conditions, and then the evolution of the system in time is the unknown. For example we
can consider a metal bar placed in a certain position in space and we also know the initial
temperature distribution inside the bar. If we then apply a heat source we are interested
in studying the evolution of the temperature inside the bar as time passes.

From a mathematical point of view these problems are described as a relation between
the the unknown function u and its derivatives which is of the form F(x, u, ux1, ux2, . . .) =
0. One then wants to know which function u satisfies this equation. Typically a solution,
if it exists, is not unique. Indeed, most of the times if a solution exists, then there are
infinite solutions. The application of the prescribed conditions, whether initial or on the
boundary, is required to obtain a unique solution.

Several methods to solve these kind of problems have been developed; we will in this
chapter present the Galerkin Method, and also give a brief glimpse on the solution as a
minimization problem. Galerkin’s method is considered the standard approach for finite
elements methods and is based on rewriting a problem (D) in a more “relaxed” form,
called variational or weak form, (V). We will prove that under appropriate conditions
these two formulations are equivalent.

1.1 Sobolev and Hilbert spaces

The solution of boundary value problems, an in particular the variational formulation,
make use of functions belonging to Sobolev and Hilbert spaces. We give here a short

6 1.1 Sobolev and Hilbert spaces

introduction to these spaces; we will start recalling some concepts from Linear Algebra,
and then define the Hilbert space L2 and the Sobolev spaces Wm,p of which the space H1

is a special case. A detailed dissertation on normed and Hilbert spaces can be found in
[19].

Let V be a linear space, we say that L is a linear form on V if L : V −→ R and is
linear, i.e.

L(αv + βu) = αL(v) + βL(u) ∀α, β ∈ R
We say that a(· , ·) is a bilinear form on V × V if a : V × V −→ R and is linear in

both arguments. In particular, a bilinear form is said to be symmetric if

a(u, v) = a(v, u) ∀u, v ∈ V

A bilinear symmetric form is called an inner product on V if

a(v, v) > 0 ∀ v ∈ V, v 6= 0

The norm ‖ · ‖ associated with an inner product is given by

‖v‖ = (a(v, v))1/2 ∀ v ∈ V

moreover, the Cauchy-Schwartz Inequality holds:

|a(u, v)| 6 ‖u‖ ‖v‖ ∀u, v ∈ V

We then say that a space V is complete respect to the norm ‖ · ‖ if all Cauchy sequences
in V converge respect to that norm.

Definition 1. Let V be a normed linear space, i.e. a linear space with a norm induced
by an inner product. V is called a Hilbert Space if it is complete.

Let now I be a bounded domain. The set

L2(I) = {v : I→R |
∫
I
v2 dx <∞} (1.1)

is the space of square-integrable functions. L2 is a Hilbert space with the inner product
defined as

(u, v) =

∫
I

uv dx

The corresponding norm is called L2-norm and is given by

‖v‖L2 =

(∫
I

v2 dx

)1/2

The above can be generalized for an arbitrary p by defining

Lp(I) = {v : I→R |
∫
I
|v|p dx <∞}

with the associated norm
‖v‖Lp =

(∫
I

|v|p dx

)1/p

We now want to define the Sobolev Spaces. We introduce a notation called multi-
index which simplifies the expressions we will need. We will call multi-index vector a
vector α = (α1 . . . αn) ∈ Nn. Let v be a function defined on I, then we can write its
derivatives as

Dα v(x) =
∂|α|v(x)

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

1.2 Poisson Problem 7

Definition 2. Let m ∈ N. The Sobolev Space Wm,p is defined as

Wm,p(I) = {v ∈ Lp(I) | Dαv ∈ Lp(I) ∀α : |α| 6 m} (1.2)

where |α| =
∑n

k=1 αk.

A Sobolev Space Wm,p is then a subset of Lp made by all the functions whose deriva-
tives are also in Lp. On Wm,p it is possible to define the inner product as

(u, v)Wm,p =
∑
|α|6m

∫
I

DαuDαv dx (1.3)

with the associated norm

‖v‖Wm,p =

∑
|α|6m

∫
I

|Dαv|p dx

1/p

(1.4)

By choosing p = 2 and m = 1 we obtain the space W 1,2 which is generally indicated
with H1. We will see that this space is the natural setting to define many of the variational
problems we will face in the next sections. From (1.2) we can write

H1(I) = {u ∈ L2(I) | Dαu ∈ L2(I) ∀α : |α| 6 1} (1.5)

and from (1.3) and (1.4) we have the inner product and norm on H1:

(u, v)H1 =

∫
I

(uv +∇u · ∇v) dx (1.6)

‖u‖H1 =

(∫
I

(u2 + |∇u|2) dx

)1/2

(1.7)

We will often need to consider a subset of H1, indicated with H1
0 and defined as

H1
0 (I) = {u ∈ H1(I) | u = 0 su ∂I} = 0 (1.8)

with the same inner product and norm as in H1.

1.2 Poisson Problem

We will now illustrate the Finite Element Method applying it to the Poisson Prob-
lem, following the approach given in [4]. The exposition of the Poisson problem will
be performed with an abundance of details, while Sections 1.3 and 1.4 will synthetically
present the Least Squares problem and the Helmholtz equation, since many steps will be
fundamentally the same.

Poisson equation is the classical model problem for Elliptic PDEs. It arises in several
engineering problems like elastic membranes or magnetic fields and also appears as an
important part of more complicated problems like Navier-Stokes. Given a domain Ω ⊂ R2

and a continuous function f : Ω→ R, we want to find a function u : Ω→ R such that

−∆u = f in Ω (1.9)

8 1.2 Poisson Problem

and satisfies certain prescribed conditions on the boundary of the domain Γ = ∂Ω.
With the common notation used in these situations, the general Poisson Problem can

be expressed as
∆u+ f = 0 in Ω

u = g on ΓD

∇u · n̂ = h on ΓN

(D)

where n̂ is the outward normal vector, Ω is the domain in which the problem is defined and
ΓD and ΓN form a partition of the boundary of Ω. The conditions u = g and ∇u · n̂ = h
are called Dirichlet condition and Neumann condition, respectively. The problem written
as in (D) is called strong formulation of the Poisson problem.

A very useful formula in this setting is the following Green’s Formula:∫
Ω

∇v · ∇w dx =

∫
Γ

v ∇w · n̂ ds−
∫

Ω

v∆w dx (1.10)

And we define the space of possible solutions

S = {u | u ∈ H1(Ω), u|ΓD
= g} (1.11)

along with the space of test functions :

V = {w | w ∈ H1(Ω), w|ΓD
= 0} (1.12)

At this point we are ready to derive the variational formulation of the Poisson problem.
We start by multiplying the equation of problem (D) with a generic test function w ∈ V
and then integrate over the whole domain to obtain∫

Ω

w∆u dx+

∫
Ω

wf dx = 0

we can now use equation (1.10) on the first integral to obtain∫
Γ

w ∇u · n̂ ds−
∫

Ω

∇w · ∇u dx+

∫
Ω

wf dx = 0 (1.13)

due to the linearity of the integral respect to the integration domain, we can split the
second term in (1.13) in the two parts on ΓD and ΓN . Since w = 0 on ΓD, that integral
vanishes, and we derive the weak formulation:

Find u ∈ S such that ∀w ∈ V :∫
Ω

∇w∇u dx =

∫
Ω

wf dx+

∫
ΓN

w h ds (1.14)

Defining

a(w, u) =

∫
Ω

∇w · ∇u dx

L(w) =

∫
Ω

wf dx+

∫
ΓN

w h ds

we can write (1.14) in the compact form

a(w, u) = L(w) ∀w ∈ V (V)

1.2 Poisson Problem 9

We see that a(· , ·) is a symmetric positive definite bilinear form while L(·) is a linear
functional. It’s important to note that, while the problem in the strong form D required
u to have defined second derivatives, the variational formulation V requires only the first
derivatives of u to be square-integrable. Due to this relaxation in the requirements on u,
the variational formulation is often called weak formulation.

Due to the way the variational formulation is constructed, it is clear that if u is a
solution of D, then it is also a solution of V. Clearly, the converse is true only if the weak
solution has enough regularity.

1.2.1 Galerkin approach

The Galerkin approach consist of defining proper finite-dimensional subspaces of S
and V . These subspaces, called Sh and Vh are linked to the isoparametric base we’re
using and they are such that

Sh ⊂ S
Vh ⊂ V

dimSh, dimVh <∞

We can further characterize the space Sh observing that given gh ∈ Sh such that
gh|ΓD

= g, for each uh ∈ Sh there exist a (unique) vh ∈ Vh such that

uh = vh + gh (1.15)

Where g is called a lifting function. We note that observation is not true for any possible
function g. For many different functions g what is stated above holds, but there are also
a number of cases where we cannot achieve an “exact” equality and we will have to use
an approximation of g. A thorough discussion of this, however, is out of the scope of this
thesis. For our purposes it’s sufficient to assume that the above statement holds.

Using the Galerkin approach the problem can now be formulated as:
Find uh = vh + gh, with vh ∈ Vh, such that ∀wh ∈ Vh

a(wh, uh) = L(wh) (VG)

Using the bilinearity of a(· , ·) we can then write

a(wh, vh) = L(wh)− a(wh, gh) (1.16)

We note that the right side of the equation involves only known quantities while the
unknown, now vh, is contained only in the left side.

As in classical finite elements, the finite-dimensional nature of the Galerkin approach
allows us to write our problem as a system of algebraic equations.

Let {N1 . . . Nnnp} be the basis functions1 defined on the parametric space Ω̂, where
nnp is the total (global) number of basis functions. We then define Sh as

Sh = span{N1 . . . Nnnp}

i.e., the space of all possible functions defined as a linear combination of the basis func-
tions.

1In our case these are the B-Spline basis functions, which are presented in Chapter 2. For now, it is
sufficient to think of some generic functions constituting a basis.

10 1.2 Poisson Problem

As we have seen in the CAD section, many of these functions are zero on the boundary
of the domain. We can assume a numbering neq < nnp for these functions, such that

Ni|ΓD
= 0 ∀ i = 1 . . . neq

We can then expand all function in Vh in terms of the basis functions: for any vh ∈ Vh,
we can write

vh =

neq∑
j=1

uj Nj (1.17)

In principle we could do the same for gh. With the observation given above we know
that the first neq coefficients have no effect on the value of gh on the boundary, we can
then set g1 = g2 = . . . = gneq = 0 and write

gh =

nnp∑
i=neq+1

giNi (1.18)

From (1.15) we have that any uh ∈ Sh can then be written as

uh =

neq∑
j=1

uj Nj + gh (1.19)

Since in (1.15) the only unknown was vh, we see that now the unknowns are the
coefficients dj. Lastly, we recall that (VG) must be satisfied for all test functions wh ∈ Vh.
We can achieve this by systematically selecting

wh = Ni for i = 1 . . . neq

Substituting the above expressions into (1.16) we have that

a

(
Ni ,

neq∑
j=1

uj Nj

)
= L (Ni)− a (Ni , gh)

must hold ∀ i = 1 . . . neq. Using the linearity of a and L we derive

neq∑
i=1

a(Ni, Nj)uj = L(Ni)− a(Ni, gh) ∀ i = 1 . . . neq (1.20)

Defining

Ai,j = a(Ni, Nj)

bi = L(Ni)− a(Ni, gh)

for i, j = 1 . . . neq and the corresponding matrix and vectors

A = [Ai,j]

b = [bi]

u = [ui]

1.2 Poisson Problem 11

we see that equation (1.20) can be written as the system of algebraic equations

Au = b (1.21)

Solving this system we obtain the coefficients vector u and we can then write the
solution of (VG) as

uh =

Neq∑
j=1

uj Nj +

nnp∑
i=neq+1

giNi (1.22)

Due to historical reasons, the matrix A is called Stiffness Matrix, and the vector b is
called Load Vector.

1.2.2 Minimization problem

We will now show how problem (V) is naturally associated with a minimization prob-
lem (M). Given a linear functional F : H1 −→ R defined as

F (w) =
1

2
a(w,w)− L(w)

we want to find the function u that minimizes F , i.e. such that

F (u) 6 F (w) ∀w ∈ V (M)

We now prove the equivalence of the problem in the weak form and the minimization
problem. Let u be a solution of (V), and let w be a generic test function. Letting v = w−u
we have that v ∈ H1 and w = u+ v, therefore the following holds:

F (w) = F (u+ v) =
1

2
a(u+ v, u+ v)− L(u+ v)

=
1

2
a(u, u) +

1

2
a(v, v) + a(u, v)− L(u)− L(v)

=
1

2
a(u, u)− L(u) +

1

2
a(v, v)

> F (u)

Since this inequality holds for every test function w, we have that u is the minimizer of
F and therefore a solution of (M).

Viceversa, let now u be a solution of (M); then ∀ε > 0 we have that

F (u) 6 F (u+ ε w) ∀w ∈ V

therefore the function

g(ε) = F (u+ ε w) =
1

2
a(u+ ε w, u+ ε w)− L(u+ ε w)

=
1

2
a(u, u) +

ε2

2
a(w,w) + ε a(u,w)− L(u)− ε L(w)

has a minimum for ε = 0. In the minimum point the first derivative of g must vanish,
therefore we have

g′(0) = a(u,w)− L(w) = 0

12 1.3 Least Squares fitting

hence u is a solution of the variational problem (V). Such a solution is unique: if we let
u1 and u2 be two distinct solutions of (V) then it must be

a(u1, w) = L(w)
∀w ∈ V (1.23)

a(u2, w) = L(w)

Since both u1 and u2 must satisfy the same boundary conditions, we can choose w =
u1 − u2. We can then subtract the two equation in (1.23) from each other. Since the
measure of Γ is zero, we obtain ∫

Ω

(∇u1 −∇u2)2 = 0

⇒ ∇u1 −∇u2 = 0 in Ω ⇒ ∇(u1 − u2) = 0 in Ω ⇒ u1 − u2 = cost in Ω

where Ω is the closure of Ω. Again, from the boundary conditions we know that u1 = g =
u2 on ΓD and so u1 − u2 = 0 on ΓD. From this follows that u1 − u2 = 0 in Ω, and so the
two solutions coincide.

To summarize the above, we have shown that a solution of the problem (D) is also
a solution of the variational formulation (V), which is equivalent to the minimization
problem (M). Symbolically we have

(D) ⇒ (V) ⇔ (M)

1.3 Least Squares fitting

Performing a least-square fit of a surface is a problem often encountered in a geomet-
rical setting. In this case, given a smooth continuous function f : Ω→ R we are searching
for a function uh ∈ Vh such that ‖uh − f‖L2 is as small as possible.

It is possible to show that the solution uh is the L2-projection of f and

uh = argmin
u∈Vh
‖u− f‖L2 ⇐⇒

∫
Ω

uh vh dA =

∫
Ω

f vh dA ∀vh ∈ Vh

Note that in this case the value of f on ∂Ω is known, therefore the constraint are of
Dirichlet-type.

Applying the same procedure as in the Poisson’s equation case we are able to write
the problem as searching for the solution of a linear system of equations

Mu = b

where now the matrix M is called Mass Matrix and is defined as

Mi,j =

∫
Ω

NiNj dA (1.24)

The load vector b is given by

bi =

∫
Ω

f Ni dA

1.4 Helmholtz Equation 13

1.4 Helmholtz Equation

Helmholtz equation often arises in problems involving waves; in particular it is the
time-independent version of the wave equation and is written as

∆u+ k2 u = f (1.25)

The solution u of Helmholtz equation represents the amplitude configuration of the wave
in space, and k is the wavenumber.

It is easy now to see that the first term in (1.25) is the Laplacian operator we already
encountered in the Poisson equation, while the second term is, besides the constant k,
the same as in the least-squares fitting problem. Applying the same procedure as in the
previous cases we are therefore able to rewrite the problem as searching for solutions of
the linear system of equations

Au+ k2Mu = b ⇒
(
A+ k2M

)
u = b

As we have seen with the above examples, the matrices A and M play an important
role in the solution of partial differential equations using a Galerkin approach. Simple
elliptic problems may use only the stiffness matrix A; simple geometrical problems may
use only the mass matrix M ; while more complex or time-dependant problems use both.

The space Vh can be defined using several different types of basis functions. This choice
is of great importance as it will dictate the properties of the solution space. Different types
of basis functions will yield different system matrices and consequently this will affect the
convergence speed of numerical methods. For this reason, we will look at the impact
the different basis functions presented in section 3 have on some important numerical
properties of such matrices: conditioning number, bandwidth, and sparsity.

2

CAD Geometry

In this chapter, which is an excerpt from [22], we will synthetically present the main
elements of the geometry used in CAD graphics. A more in-depth dissertation can be
found in [8]. We will start by describing Bezier Curves, which are at the foundation of
most of modern Computer Aided Design software. Since their introduction in 1966 by
Pierre Bezier, they have completely shaped modern computer graphic thanks to their
flexibility and simplicity. Bezier Curves provide an intuitive way to modify the shape of
the curve, done through the use of control points.

Next, we will present the B-spline Curves following the approach given in [4]. B-spline
curves are a generalization of Bezier curves which allow to solve some of their problems.
We will also present in this chapter the three standard techniques for global refinement
that B-splines naturally possess, namely the h-refinement, the p-refinement and the k-
refinement. The techniques for local refinement, that will constitute the subject of our
analysis, are presented in Chapter 3.

2.1 Bezier Curves

Bezier Curves are functions P (t) : [0, 1] −→ Rn. They are piecewise polynomial para-
metric curves and are completely defined by the Control Points. The control points are an
ordered sequence {P0 . . . Pk} of k+ 1 points, where each Pi ∈ Rn and k is the polynomial
degree of the curve. They are the most important part in the definition of a Bezier curve
since they define the relationship between the parametric space and Rn, and are used
to actively modify the geometry of the curve. This means that once the control points
are chosen, the shape of the curve is completely defined by their position. The so called
Control Poligon is obtained by linear interpolation of successive control points. We will
also denote with P k

i (t) the curve of degree k originating from the control point Pi.

2.1.1 de Casteljau Algorithm

Given the polynomial degree and the control polygon, we can define the curve by a
recursion on k as follows:

k = 1

Consider all couples of successive control points {Pi, Pi+1}, i=0 . . . k−1. Each
couple defines a curve P 1

i , which is the straight line segment from Pi to Pi+1,

16 2.1 Bezier Curves

given by
P 1
i (t) = (1− t)Pi + t Pi+1

k = 2
The curve of degree 2 is defined by linear interpolation of the curves of degree
1 defined by two successive couples of control points.

P 2
i (t) = (1− t)P 1

i (t) + t P 1
i+1(t)

This means that, given t ∈ [0, 1], the segment from P 1
i (t) to P 1

i+1(t) is tangent
to the quadratic curve in the point P 2

i (t).

We can generalize this last observation, stating that a Bezier curve of degree k is given
by the envelope of the segments passing through the points of the curves of degree k − 1
evaluated with the same parameter value. Applying this procedure we get that the curve
of degree k defined by the control points {P0 . . . Pk} is given by

P k
0 (t) = (1− t)P k−1

0 + t P k−1
1 (2.1)

Figure 2.1 illustrates the de Casteljau’s Algorithm for a curve of degree 3.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

P
0

P
1

P
2

P
3

(a)

P
0

P
1

P
2

P
3

P
0

1
P
1

1
P
2

1

P
0

2
P
1

2

P
0

3

(b)

Figure 2.1: (a) In blue, the cubic Bezier curve defined by P0 = [0, 0], P1 = [3, 2], P2 = [2, 3], P3 = [0, 3],
in pink the respective quadratic curves. The segments are drawn for t = 0.6. (b) Diagram
showing the various steps of the algorithm.

The construction of a Bezier curve through the de Casteljau’s algorithm allows to
recognise two important properties of these curves: the first is that the support of a Bezier
curve is completely contained in the convex hull1 defined by the control polygon. This is
due to the fact that at each step of the algorithm, the points we get are lying on segments
connecting curves with a lower polynomial degree. The second important property is

1The convex hull is defined by picking two consecutive control points, and considering the line passing
through them; if all other control points are lying in the same semiplane respect to that line, then the
segment between those two points is an edge of the convex hull, else we discard that line. This procedure
is repeated for every couple of consecutive points; the collection of segments obtained in this way forms
the convex hull, which is the smallest convex set containing all control points.

2.1 Bezier Curves 17

called subdivision property : given a parameter value t, the point P k
0 (t) subdivides the

curve in two arches, and these arches are again Bezier curves. In Figure 2.1, the light-
blue point subdivides the curve in two arches, each of which is a Bezier curve defined by
the green control points. As a consequence, the original Bezier curve is contained in the
union of the two convex hulls pertaining to the two arches, which is much smaller than the
original convex hull. This feature is widely used in CAD geometry to determine possible
intersections between curves.

2.1.2 Bernstein’s Polynomials basis

Let’s now take, for example, a cubic Bezier curve defined as in (2.1). We can expand
the lower-degree curves recursively and reach an expression based only on the control
points:

P 3
0 (t) = (1− t)3P0 + 3 (1− t)2 t P1 + 3 (1− t) t2P2 + t3P3

We note that the control point’s coefficients are given by the expansion of ((1− t)+ t)3

and therefore their sum is always equal to 1 (this is another of they key property of Bezier
curves). We can exploit this to derive a more compact notation for the curve.

Definition 3. Given the degree k of the curve, we can define the Bernstein’s Polynomials
as

Bk
i (t) =

(
k

i

)
(1− t)k−i t i (2.2)

The k + 1 Bernstein’s polynomials Bk
0 , . . . , B

k
k form a basis for the space of Bezier

curves of degree k.
This is not the only choice available: we could also use different basis, like the standard

base for polynomials spaces, but the reason of using Bernstein’s polynomials reside in their
numerical stability and the fact that, as we have seen, they are naturally associated to
these kind of curves [8].

We now have a very compact expression for a Bezier’s curve of degree k:

P k
0 (t) =

k∑
i=0

Bk
i (t)Pi (2.3)

Figure 2.2 shows the Bernstein’s polynomials creating the base of the cubic Bezier
curves space.

We now list some of the main properties of Bezier curves:

Control of starting and ending point As we can see from Figure 2.2, generally a
Bezier curve does not interpolate any of the control points, except the first and last one:
evaluating the curve for t = 0 yields

P k
0 (0) =

k∑
i=0

Bk
i (0)Pi = P0

and similarly when evaluating the curve for t = 1.

Invertibility It’s easy to see that Bk
i (t) = Bk

k−i(1 − t)∀i. This means that the curves
defined by the two control polygons {P0, P1 . . . Pk} and {Pk, Pk−1 . . . P0} have exactly the
same support, but different (opposite) parametrization.

18 2.1 Bezier Curves

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
B

0
3

B
1
3 B

2
3

B
3
3

Figure 2.2: Bernstein’s polynomials cubic base.

Partition of unity As we have seen, the Bernstein’s polynomials are given by the
expansion of terms like ((1− t) + t)k. This obviously means that

k∑
i=0

Bk
i (t) = 1 ∀ t ∈ [0, 1]

Therefore we say that the Bernstein’s polynomials form a partition of unity. This is
one of the most important features of Bezier curves and it is the key of their success in
computer graphics: imagine we want to transform the curve with an affine transformation
like x = Ax+ c. Applying the transformation directly to the curve yields:

P (t) = AP (t) + c

(2.3)

↓
=

k∑
i=0

Bk
i (t)APi + c

If instead we apply the affine transformation to the control points, i.e. Pi 7−→ APi + c,
we get

P (t) =
k∑
i=0

Bk
i (t)(APi + c) =

k∑
i=0

Bk
i (t)APi +

k∑
i=0

Bk
i (t)

1

c

Which is exactly the same result we had before. If we want to modify a Bezier curve with
an affine transformation it’s therefore sufficient to modify only the control points, and
this allows us to avoid the high computational cost of applying the transformation to the
full curve support.

Convex Hull As we pointed out before, a Bezier curve is fully contained in the convex
hull defined by its control points. This is because at each step of the de Casteljau’s
algorithm the evaluated curve points lie on segments that connect lower-order curves and
the lowest possible order is always 1, which refers to the straight lines between the control
points.

2.1.3 Degree Elevation

An important feature of Bezier curves is that it is possible to increase the polynomial
degree of the curve while maintaining its shape. From a geometric point of view, this is

2.1 Bezier Curves 19

useful when we want to “glue together” curves with different polynomial degree in order to
achieve high regularity in the connection point. From a numerical-analysis point of view,
this means that we can enrich the basis functions space without altering the geometry of
the curve.

Say we have a curve defined by the control points {P0, . . . Pk} and we want to increase
the polynomial degree from k to k + 1. This means that we will have to define a new set
of control points {Q0, . . . Qk+1} such that

k∑
i=0

Bk
i (t)Pi =

k+1∑
j=0

Bk+1
j (t)Qj ∀ t

To achieve this, we multiply the right hand side by (1− t+ t) and get:(
k∑
i=0

Bk
i (t)Pi

)
(1− t+ t) =

k∑
i=0

(
k

i

)
(1− t)k+1−i t iPi +

k∑
i=0

(
k

i

)
(1− t)k−i t i+1Pi (2.4)

And we want this to be =
k+1∑
j=0

(
k

j

)
(1− t)k+1−j t jQj

Now we need to set the coefficients of the same order terms to be equal:(
k

j

)
Qj =

(
k

j

)
Pj +

(
k

j − 1

)
Pj−1

Multiplying both sides by
(k−j)! (j−1)!

k!
we have:

k + 1

(k+1−j) j
Qj =

1

j
Pj +

1

k+1−j
Pj−1

and from this we finally get

Qj =

(
1− j

k + 1

)
Pj +

(
j

k + 1

)
Pj−1 (2.5)

Equation (2.5) gives us the new set of control points that defines a curve of degree
k+ 1 but with the same shape as the old curve. Figure 2.3 shows this procedure, used to
increase the curve’s degree from 3 to 4.

2.1.4 Problems

As we have seen, the Bezier curves have many good and interesting properties. They
have, however, two main problems: first, there is no local control on the shape of the curve.
If we move even one of the control points, in fact, all the curve will be modified. Second,
they are not optimal in describing complicated geometries that will require a curve with
a very high polynomial degree and, therefore, many control points and computational
effort. An example of this is figure 2.4: to create the spiral we needed a Bezier curve of
degree 29.

20 2.2 B-Spline Curves

0 1 2 3
-0.5

0

0.5

1

1.5

(a)

0 1 2 3
-0.5

0

0.5

1

1.5

(b)

Figure 2.3: (a) Curve of degree 3 defined by four control points. (b) The new curve of degree 4. The
new control points are calculated using equation (2.5).

0 5 10 15 20 25 30
0

5

10

15

20

25

Figure 2.4: A spiral arc. To obtain this we used 30 control points.

2.2 B-Spline Curves

B-Spline curves can be seen as a generalization of the Bezier curves, of which they
attempt to fix some of the problems. More specifically, B-Spline curves allows for local
deformation of the curves and they do not need many control points in order to achieve
a high polynomial degree.

2.2.1 The Knots Vector and the Basis Functions

As for the Bezier curves, B-Splines also require a set of control points {B1 . . . Bn}, but
one great advantage is that now the polynomial degree p of the curve is no longer fixed
by the number of control points used.

Instead, the polynomial degree and the number of control points relate to the so-called
knot vector in the following way: given n control points and the polynomial degree p of
the curve, the Knots Vector is a non-decreasing sequence of coordinates in the parameter
space of form Ξ = {ξ1, ξ2 . . . ξn+p+1} where ξi ∈ R is a knot. The knot vector is said to be
uniform if the knots are equally spaced, non-uniform otherwise.

An extremely important feature is the possibility to “collapse” some knots to the same
value, i.e. to have repeated values in the knots vector. If the first and last knot value

2.2 B-Spline Curves 21

have multiplicity p+ 1 then the knot vector is said to be open.
In the following, in order to ease notation, a knot with multiplicity mi will be written

as ξmi
i . It is clear that we do not intend a power elevation.
As we will see, the multiplicity of a knot determines crucial properties of the basis

functions and therefore affects directly the shape of the curve. In particular, the regularity
of the basis functions decreases as the multiplicity of the knot increases.

Once we have chosen the knot vector Ξ, the polynomial degree p and the number n
of the control points we intend to use, the functions {N1,p . . . Nn,p} form a base for the
B-Spline curves space of degree p. These functions are defined recursively on p as follows:

p = 0:

Ni,0(ξ) =

{
1 if ξi 6 ξ < ξi+1

0 otherwise
(2.6)

p > 0:

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2.7)

This procedure in knows as the de Boor-Cox Recursion. Figure 2.5 shows the linear
and quadratic base functions defined on the uniform knot vector Ξ = {0, 1, 2, 3, 4, 5}.

0 1 2 3 4 5
0

1
N

1,1
N

2,1
N

3,1

(a)

0 1 2 3 4 5
0

1 N
1,2

N
2,2

N
3,2

(b)

Figure 2.5: (a) Basis functions of degree 1 defined on the knot vector {0, 1, 2, 3, 4, 5}. (b) Basis functions
of degree 2 defined on the same knot vector.

We now make several remarks on the properties of these basis functions.
First, it’s interesting to note that the the basis functions of degree p = 0 (the constants

defined in (2.6)) and p = 1 are exactly the same as those used in classical Finite Elements.
Quadratic basis functions, on the other hand, differ from the classical FEM ones: instead
of distinguishing between the central and edge nodes, they are all the same and simply
translated on the knot vector. This behaviour is maintained also for higher polynomial
degrees.

As we can see, another feature is that for uniform, non-open knot vectors the functions
does not form a partition of unity on the full parametric space, but only on a restricted
portion of it. Specifically we have

n∑
i=1

Ni,p(ξ) = 1 ξ ∈ [ξp, ξn] (2.8)

This is a typical feature when working with uniform know vector. We will discuss this in
deeper detail in the next sections.

Another major feature to note is that each basis function of degree p have p − 1
continuous derivatives across element boundaries, i.e. across knots. This property is one
of the main distinctive features of Isogeometric Analysis and have extremely important
implications from a numerical point of view.

22 2.2 B-Spline Curves

Another thing worth mentioning is that these functions are always non-negative on
the entire parameter space, quite a difference compared to the classical finite element
functions as this implies that the entries in the mass matrix will always be positive.

Lastly, each function of degree p acts on p + 2 knot values (or p + 1 knot spans),
therefore high-order basis functions will be non-zero over much larger portions of the
domain compared to the classical finite element functions. However, this feature does not
influence the bandwidth of the system matrices as each basis function shares support with
only 2p different functions, exactly the same as in the classical finite element case [4, p.
22].

We underline, for sake of clarity, that the basis functions are of degree p in a “piecewise”
sense: from one knot value to the next one, while they will have regularity p−mi across
a knot value of multiplicity mi, as we will see in the next section.

2.2.2 Base Regularity on non-uniform open knot vectors

Open knot vectors are standard in CAD graphics. In 1D the functions base defined
on an open knot vector is interpolatory2 in the first and last knot, but normally it will
not interpolate the internal knots. This is one of the differences between B-Spline basis
and Finite Element lagrangian basis. Another consequence of using open knot vectors is
that the edge of a B-spline object in dimension d is itself a B-spline object in dimension
d− 1. For example, the edge of a B-spline surface (d = 2) is a B-spline curve (d = 1).

0,0,0 1 2 3 4 5,5,5
0

1

Figure 2.6: Quadratic B-Spline basis on the open knot vector Ξ = [03, 1, 2, 3, 4, 53]. The basis is inter-
polatory the first and last knot values.

Non-uniform vectors are particularly useful when we need to describe curves with low-
regularity points, such as angular points or cusps (think, for instance, to a car’s chassis).
This diminished regularity is achieved repeating knot values.

Figure 2.7 shows the functions of the cubic B-Spline base defined on the knot vector
Ξ = [04, 1, 2, 33, 4, 52, 64]. The base is C p−mi across knot values, where mi is the mul-
tiplicity of that knot value and p is the polynomial degree of the functions. When the
multiplicity equals the degree of the base, as for ξ = 3, the base is C0 and it’s interpo-
latory. When the multiplicity is p + 1, as for the first and last knot values, the base is
“C−1”, meaning that it becomes discontinuous, therefore creating the curves edges. The
knot value ξ = 5 have a multiplicity of 2, which means that the base is C1 across that
knot. In all other knot values the regularity is the maximum possible, namely C2.

2The base, by itself, does not interpolate anything of course. What we mean is: when a knot have
multiplicity equal or greater than the curve’s degree, all basis functions will vanish at that point, except
one that will take value 1, hence the curve will interpolate the corresponding control point.

2.2 B-Spline Curves 23

0,0,0,0 1 2 3,3,3 4 5,5 6,6,6,6
0

1

Figure 2.7: Cubic B-Spline basis on the open knot vector Ξ = [04, 1, 2, 33, 4, 52, 64]. The basis’ regularity
is strictly connected to knot’s multiplicity.

2.2.3 Derivatives of B-spline basis functions

Thanks to the recursive definition given in (2.6)-(2.7), the derivatives of the basis
functions can also be expressed in terms of lower-order basis functions.

Given a base of degree p defined on the knot vector Ξ, the derivative of the i-th basis
function is given by

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2.9)

Proof. It’s useful to explicitly write the basis functions involved in the derivative formula:
from (2.7) we have

Ni,p−1 =
ξ − ξi

ξi+p−1 − ξi
Ni, p−2

A

+
ξi+p − ξ
ξi+p − ξi+1

Ni+1, p−2

B

Ni+1,p−1 =
ξ − ξi+1

ξi+p − ξi+1

Ni+1, p−2

C

+
ξi+p+1 − ξ
ξi+p+1 − ξi+2

Ni+2, p−2

D

(2.10)

We will prove the formula by induction on p:

p = 0

In this case we have

Ni,0(ξ) =

{
1 if ξi 6 ξ < ξi+1

0 otherwise

Therefore the derivative is always null, in accordance with (2.9) for p = 0.

p−1 p

d

dξ
Ni,p(ξ) =

d

dξ

[
ξ − ξi
ξi+p − ξi

Ni, p−1 +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1, p+1

]

=
1

ξi+p − ξi
Ni, p−1 +

ξ − ξi
ξi+p − ξi

d

dξ
Ni, p−1

− 1

ξi+p+1 − ξi
Ni+1, p−1 +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

d

dξ
Ni+1, p−1

24 2.2 B-Spline Curves

We now apply the inductive hypothesis to the derivatives of the functions of degree p− 1,
in this way we have:

=
1

ξi+p − ξi
Ni, p−1

+
ξ − ξi
ξi+p − ξi

[
p− 1

ξi+p−1 − ξi
Ni, p−2 −

p− 1

ξi+p − ξi+1

Ni+1, p−2

]

− 1

ξi+p+1 − ξi+1

Ni+1, p−1

+
ξi+p+1 − ξ
ξi+p+1 − ξi+1

[
p− 1

ξi+p − ξi+1

Ni+1, p−2 −
p− 1

ξi+p+1 − ξi+2

Ni+2, p−2

]

We now do the multiplications ordering the numerators and denominators in order to
form some pieces of (2.10):

=
1

ξi+p − ξi
Ni, p−1 +

p− 1

ξi+p − ξi
· ξ − ξi
ξi+p − ξi

Ni, p−2

A

− p− 1

ξi+p − ξi
· ξ − ξi
ξi+p − ξi+1

Ni+1, p−2

− 1

ξi+p+1 − ξi+1

Ni+1, p−1 −
p− 1

ξi+p+1 − ξi+1

· ξi+p+1 − ξ
ξi+p+1 − ξi+2

Ni+2, p−2

D

+
p− 1

ξi+p+1 − ξi+1

· ξi+p+1 − ξ
ξi+p − ξi+1

Ni+1, p−2

and we then sum the remaining coefficients:

=
1

ξi+p − ξi
Ni, p−1 +

p− 1

ξi+p − ξi
· A

+

[
p− 1

ξi+p+1 − ξi+1

· ξi+p+1 − ξ
ξi+p − ξi+1

− p− 1

ξi+p − ξi
· ξ − ξi
ξi+p − ξi+1

]
Ni+1, p−2

− 1

ξi+p+1 − ξi+1

Ni+1, p−1 −
p− 1

ξi+p+1 − ξi+1

·D = (∗)

We now have to verify that the terms in parenthesis can be written in the right way, in
order to form the missing parts of (2.10); we therefore have to check that:

2.2 B-Spline Curves 25

p− 1

ξi+p+1 − ξi+1

· ξi+p+1 − ξ
ξi+p − ξi+1

− p− 1

ξi+p − ξi
· ξ − ξi
ξi+p − ξi+1

| | ?

p− 1

ξi+p − ξi
coefficient

of A

· ξi+p − ξ
ξi+p − ξi+1

missing part
of B

− p− 1

ξi+p+1 − ξi+1

coefficient
of D

· ξ − ξi+1

ξi+p − ξi+1

missing part
of C

The equality indeed holds, its sufficient to sum all the terms with same coefficient to have:

p− 1

ξi+p+1 − ξi+1

[
ξi+p+1 − ξ
ξi+p − ξi+1

+
ξ − ξi+1

ξi+p − ξi+1

]
=

p− 1

ξi+p − ξi

[
ξi+p − ξ
ξi+p − ξi+1

+
ξ − ξi

ξi+p − ξi+1

]
1

ξi+p+1 − ξi+1

[
ξi+p+1 − ξi+1

ξi+p − ξi+1

]
=

1

ξi+p − ξi

[
ξi+p − ξi
ξi+p − ξi+1

]
1

ξi+p − ξi+1

=
1

ξi+p − ξi+1

We can therefore rewrite the terms in the square brackets of our formula to obtain:

(∗) =
1

ξi+p − ξi
Ni, p−1 +

p− 1

ξi+p − ξi
· A

+

[
p− 1

ξi+p − ξi
ξi+p − ξ

ξi+p − ξi+ 1

coeff. of B

− p− 1

ξi+p+1 − ξi+1

ξ − ξi+1

ξi+p − ξi+1

coeff. of C

]
Ni+1, p−2

− 1

ξi+p+1 − ξi+1

Ni+1, p−1 −
p− 1

ξi+p+1 − ξi+1

·D

=
1

ξi+p − ξi
Ni, p−1 +

p− 1

ξi+p − ξi
[A+B]

− 1

ξi+p+1 − ξi+1

Ni+1, p−1 −
p− 1

ξi+p+1 − ξi+1

[C +D]

=
p

ξi+p − ξi
Ni, p−1 −

p

ξi+p+1 − ξi+1

Ni+1, p−1

�

Higher-order derivatives can be calculated further differentiating both terms in (2.9).
The k-th order derivative can be generally expressed as

dk

dξk
Ni,p(ξ) =

p !

(p− k) !

k∑
j=0

αk,j Ni+j,p−k(ξ) (2.11)

26 2.2 B-Spline Curves

where the coefficients αk,j are given by

α0,0 = 1

αk,j =
αk−1,j − αk−1,j−1

ξi+p+1−k+j − ξi+j
j = 1 . . . k − 1

where it’s assumed αa,b = 0 if b > a or b < 0.
It’s worth noting that the denominators of some coefficients can be zero when a knot

value is repeated, in these cases the coefficient is defined to be equal to zero.

2.2.4 Curve and Mesh construction

Exactly as the Bezier curves, B-Splines can also be expressed as a linear combination
of the basis functions with the control points.

As we noted before, the polynomial degree of the curve no longer depends on the
number of control points, therefore in order to define a B-Spline curve we use the following
procedure: we first need to define the n control points {B1 . . . Bn}, where Bi ∈ Rd.
We then have to fix the polynomial degree p of the basis and assign the knot values
{ξ1 . . . ξm} such that m = n+ p+ 1. We then apply (2.6) - (2.7) to get the basis functions
{N1,p . . . Nn,p}. The B-Spline curve is the linear combination of these functions with the
control points:

C(ξ) =
n∑
i=1

Ni,pBi (2.12)

Clearly, the curve inherits most of the properties of the base, the most important being
the regularity degree.

0 2 4 6

0

1

2

3

4

5

6

(a)

0 2 4 6

0

1

2

3

4

5

6

(b)

Figure 2.8: Example of piecewise quadratic B-Spline curve. (a) The curve and the control polygon.
(b) The knot values images partition the curve into elements, generating the mesh. Basis
functions and knot vector are the same as in fig. 2.6.

Figure 2.8 shows a quadratic B-Spline curve defined using the same base as in Figure
2.6. In 2.8a it is shown the control polygon. As we can see the curve interpolates only
the first and last control point. In Figure 2.8b we have plotted the images of the knot
values. As we can see, the knot values partition the curve into the elements. This concept
is crucial as it is the way meshes are generated in the Isogeometric setting: they are the

2.2 B-Spline Curves 27

images of knot values under the geometrical mapping defined by the control points and
the basis functions.

0 2 4 6 8 10

2

3

4

5

6

7

8

(a)

0 2 4 6 8 10

2

3

4

5

6

7

8

(b)

Figure 2.9: Example of piecewise cubic B-Spline curve.

A much more flexible behaviour is obtained using a non-uniform knot vector. Figure
2.9 shows a cubic curve defined using the same basis functions as in Figure 2.7.

As we can see, the curve now interpolates the first and last control points as usual
(given the open knot vector), but also interpolates the sixth control point, corresponding
to the repeated knot value ξ = 3, whose multiplicity equals the polynomial degree of the
curve. The curve, moreover, is clearly C0 in that point. We also note that the curve is
tangent to the control polygon in correspondence of the repeated knot value ξ = 5. Again,
we note that the images of the knot values partition the curve into elements, generating
the mesh.

An important difference between the classic finite element meshes and the B-Spline
meshes we have illustrated here is that in the latter case the parametric space extends
over the full object and not over the single element only. In fact, in classic finite elements
methods the parametric space (or reference element) is mapped to each physical element
by a different mapping. On the opposite, using B-Splines we have only one mapping that
“covers” the full physical domain. The parameter space is partitioned in intervals by the
knot values and each interval corresponds to an element in the physical domain. This
situation is illustrated in figure 2.10 taken from [4].

2.2.5 Mesh and Basis refinement

B-Splines geometries offer several different techniques to refine the mesh or the func-
tion spaces: the control over the basis’ regularity together with the possibility of inserting
new knot values or increasing the polynomials degree offer a wider array of choices com-
pared to the classical finite element framework. We present here the three standard
refinement techniques: knot insertion (h-refinement), degree elevation (p-refinement) and
the combination of the two (k-refinement). Please note that these techniques exploit the
natural tensor-product structure of B-spines in dimensions higher than 1. Due to this, if
we for example insert one knot value in one parametric direction, the meshline generated
by that knot will extend through the full mesh. This means that these techniques, while
very useful to understand the concept of refinement in the B-spline setting, are applicable

28 2.2 B-Spline Curves

Figure 2.10: Up: In classical finite elements methods, the reference element is mapped to each physical
element via a different mapping. Down: Using B-Splines only one mapping is necessary.
Elements boundaries are generated by the knot values.

only to perform a global refinement. A local refinement is also possible, and in many cases
desirable. We will present several such techniques in Chapter 3.

2.2.5.1 Knot insertion

The first technique to refine the mesh consists of inserting new knot values while
keeping the basis’ order fixed. This technique can be considered the equivalent of the
FEM h-refinement. We present here the process of insertion for one new knot value, the
ideas however can be further generalized to the multi-insertion case.

The aim is to extend the knot vector, going from Ξ = {ξ1 . . . ξn+p+1} to the new vector
Ξ = {ξ1 . . . ξk, ξ, ξk+1 . . . ξn+p+1}, ξ being the new knot value. The new basis functions
are constructed using (2.6) - (2.7) with the new knot vector Ξ.

Once the new knot values are defined, we need to update the control polygon as well,
in order to maintain the curve’s geometry. In analogy with what we have already seen for
the curves, the new control polygon {B1 . . . Bn+1} is defined with a linear combination of
the old n control points:

Bi = αiBi + (1− αi)Bi−1 i = 1 . . . n+ 1 (2.13)

where we now have

αi =

1 1 6 i 6 k − p
ξ−ξi

ξi+p−ξi k − p+ 1 6 i 6 k

0 k + 1 6 i 6 n+ 1

(2.14)

In order to insert more then one new knot value it’s sufficient to repeat the application
of (2.13) - (2.14).

2.2 B-Spline Curves 29

It’s interesting to note that with this technique it’s possible to increase the multiplicity
of a knot value; as we have seen this will affect the regularity of the basis functions but,
thanks to how the new control points are set, the continuity of the curve will remain
unchanged.

The Knot insertion have clear analogies with the finite elements’ h-refinement, as it
allows to subdivide elements into smaller ones; it differs, however, in the number of new
basis functions that are introduced (here we have only one new function for each new
unique knot value) and in the regularity of basis functions across element boundaries. On
the other hand, he possibility of increasing the multiplicity of existing knot values have
no counterpart in classical finite element analysis.

2.2.5.2 Degree elevation

Another refinement technique consist in increasing the polynomial degree of the basis
functions without introducing new (unique) knot values. This process can be seen as the
isogeometric equivalent of p-refinement.

It is important to note however that an increase in the basis’ degree must be associated
with a corresponding increase in each knot’s multiplicity, in order to maintain the basis’
regularity across knot values.

The procedure is as follows: the B-Spline curve is first subdivided into many Bezier
curves, using the knot-insertion procedure to increase the multiplicity of all internal knot
values until it equals the polynomial degree of the curve. At this point it’s possible to
increase the polynomial degree of each Bezier curve we obtained, as explained in section
2.1.3, doing so the new control points are generated. Once this is done we can remove the
extra knot values until we have a knot vector that is exactly the same as the original one,
but with all values’ multiplicity increased by one (or more, if the polynomial degree has
been increased more then by one). At the end of this procedure we will have obtained
a new contro polygon and a new knot vector that can be used to define the new basis
functions.

This technique have much in common with the classical p-refinement but the main
difference is that it can be applied on basis functions with any kind of regularity, while
the original p-refinement requires the basis to be C0. Of course, if the original B-Spline
curve is already C0 across knot values, the two techniques are exactly the same.

2.2.5.3 k-refinement

The greater flexibility of the degree elevation technique for B-Splines permits to com-
bine the procedure with knots insertions leading to a refinement technique that have no
counterpart in classical finite elements: the k-refinement.

This technique exploit the fact that knot insertion and degree elevation procedures
are non-commutative: if a new, unique knot value ξ is inserted in a curve of polynomial
degree p, the new resulting base will have p − 1 continuous derivatives across that knot
value. If we now increase the curve’s degree to q, the new base will still have only p − 1
continuous derivatives across ξ, despite being now of degree q. This is because during
degree elevation the multiplicity of each knot is increased in oder to maintain the basis’
regularity.

On the opposite, if we first elevate the curve to degree q and then we insert the new
knot value ξ, the new resulting base will now have q − 1 continuous derivatives. This
latter procedure is referred to as k-refinement.

30 2.2 B-Spline Curves

k-refinement is potentially a superior approach to high-precision analysis compared to
classical h- or p-refinement [4, p. 43-44].

2.2.6 B-Splines and Bezier curves

We now comment a little more in detail the connection between B-Spline curves and
Bezier curves, and we do this with an example: consider a cubic B-Spline curve defined
with four control points B1, B2, B3, B4, on the knot vector Ξ = {0, 0, 0, 0, 1, 1, 1, 1}. This
knot vector allows us to have a curve parametrized on [0, 1] exactly as the Bezier curves.

Using (2.6) - (2.7) it’s easy to verify that the basis functions are

N1,3 = (1− ξ)3 N2,3 = 3 ξ (1− ξ)2

N3,3 = 3 ξ2(1− ξ) N4,3 = ξ3

which are exactly the Bernstein’s polynomials of degree 3 defined in (2.2).

2.2.7 Higher Dimensions: Tensor Product Basis

A very convenient feature of CAD geometries is that multi-dimensional basis functions
are obtained from the 1D basis functions via tensor-product.

To define a B-Spline surface we will therefore need a set of points {Bi,j} where
i = 1 . . . n, j = 1 . . .m, called control net. Assigned the polynomials degrees p and q corre-
sponding to the two physical dimensions and the relative knot vectors Ξ = {ξ1 . . . ξn+p+1}
and H = {η1 . . . ηm+q+1}, the B-Spline surface is defined as

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j (2.15)

where Ni,p and Mj,q are the one-dimensional basis functions defined on knot vectors Ξ
and H respectively.

Many of the properties of a B-Spline surface follows directly from its definition using
a tensor-product form, in particular the basis functions

Φi,j; p,q(ξ, η) = Ni,p(ξ)Mj,q(η)

are a partition of unity on [ξ1, ξn+p+1] × [η1, ηm+q+1] and the regularity degree in one
direction depends on the regularity of the corresponding base.

It’s worth noting that the basis functions written like Φi,j; p,q use a local indexing.
In many numerical applications it’s useful to have also a global indexing of the form
Φ1,Φ2, The local-to-global relation between indices is something that depends on
both the situation we are facing and the programmer’s preferences.

The same procedure can be generalized when we define 3D B-Spline objects: we will
now need three polynomial degrees p, q and r, and their respective knot vectors Ξ, H and
Z; the B-Spline solid is then defined as

S(ξ, η, ζ) =
n∑
i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Bi,j,k (2.16)

where the set of points {Bi,j,k} is called control lattice.

3

Local Refinement techniques

In this chapter we present the theory of the three classes of spline functions we consid-
ered: Classical Hierarchical, Truncated Hierarchical and LR B-splines. An effort has been
made in order to unify the different concepts under a common framework of notations, to
ease both the understanding and the comparison of the different technologies. We have
included only the essentials and we refer the interested reader to the papers on which we
based our studies for an in-depth introduction and details [6, 11, 15, 28].

3.1 Notation and common definitions

The Hierarchical (both Classical and Truncated) and the LR B-splines methodologies
use quite different points of view when considering meshes and refinements. As such,
different notations have been developed in the corresponding publications. We will from
now on use the following notation when we will need to address mesh-related quantities:

• ε for meshlines;

• Ω for domains, i.e. regions of the mesh (excluding mesh lines);

• V for full tensor product meshes;

• M for general meshes.

In particular, the Hierarchical setting focuses more on regions of the mesh and their
underlying full tensor product meshes. For these reasons, Ω and V are often used in this
context. The LR B-splines setting instead focuses more on meshlines and meshes as a
whole. To provide a formal description of these different point of views we can write that
a mesh M is seen as

M =
⋃
l

(Ωl ∩ V l) in the Hierarchical setting

M =
⋃
i

εi in the LR B-splines setting

where the index l denotes the Hierarchical level and i runs over all meshlines.
The notation we will use for basis functions is the following:

• N ∈ N for uniform tensor product basis functions.

32 3.1 Notation and common definitions

• B ∈ B for tensor product basis functions (possibly non-uniform).

• H ∈ H for Classical Hierarchical basis functions.

• T ∈ T for Truncated Hierarchical basis functions.

• L ∈ L for LR B-splines basis functions.

Of course, there exist cases where for some indices Ni = Bi = Hi = Ti = Li, but we hope
the different notation will ease the understanding of the technologies.

We have from elementary spline theory that a knot vector is a nondecreasing sequence
of coordinates in the parameter space of the form Ξ = [ξ1, ξ2, . . . , ξn+p+1], where each
ξi ∈ R is called a knot. If the knot values are equidistant the knot vector is called
uniform, and non-uniform otherwise. If the first and last knots have multiplicity p+1, the
knot vector is called open. A knot vector comprising of n+p+1 knot values will generate n
univariate linearly independent basis functions of degree p. We will focus our analysis on
B-splines built from uniform, non-open knot vectors. It is however important to remind
that, with some additional work, is possible to generalize the same numerical tests using
open or non-uniform knot vectors.

Definition 4. Given a knot vector Ξ = [ξ1, ξ2, . . . , ξn+p+1] and a polynomial degree p, the
n univariate basis functions B1,p, . . . , Bn,p are recursively defined in the following way:

p = 0:

Bi,0(ξ) =

{
1 for ξi 6 ξ < ξi+1

0 otherwise
(3.1)

p > 0:

Bi,p(ξ) =
ξ − ξi
ξi+p − ξi

Bi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ) (3.2)

The above definition is known as the Cox-de Boor recursion formula. From this defini-
tion it follows that each basis function depends only on p+2 knot values. For instance, for
p=2 the knot vectors Ξ = [0, 1, 2, 3, 4, 5] will generate three basis functions corresponding
to the local knot vectors Ξ1 = [0, 1, 2, 3], Ξ2 = [1, 2, 3, 4], and Ξ3 = [2, 3, 4, 5]. Due to this,
we will often refer to the basis functions using their local knot vectors. The notation will
also be adjusted on a case-to-case basis depending on what we need to emphasize, and
we will use Bi = BΞi

to keep track of the local knot vector on which the function is built.

From the univariate basis functions it is possible to define multivariate functions using
the tensor product structure of B-splines:

Definition 5. A n-variate B-spline B(ξ) of degrees p = [p1, p2, . . . , pn] is a separable
function B : Rn −→ R defined as:

BΞ(ξ) =
n∏
i=1

BΞi
(ξi)

where Ξi ∈ Rpi+1 is the local knot vector for the univariate basis function of degree pi
along the i-th parametric dimension.

3.2 Hierarchical B-Splines 33

Note that the polynomial degree is implicitly defined by the number of knots in the
local knot vectors. In the bivariate setting, it is customary to denote the two parametric
coordinates as ξ and η, and the corresponding polynomial orders as p and q. We denote
a tensor product basis B = {B1, B2, . . . , Bn} as a basis of functions defined on a tensor
product mesh.

In the following we will construct the mesh such that the actual domain will be the
unit square, i.e. the initial tensor product basis will form a partition of unity on Ω0 =
[0, 1] × [0, 1]. Since we will use uniform knot vectors, we will need to extend the mesh
beyond Ω0 trough the use of a ghost domain G. In this way the full parametric domain
will be given by G ∪ Ω0.

We will represent bivariate basis functions on the same plot through the use of anchors.
A common choice for the coordinates of the anchor are the Greville abscissae. The Greville
abscissae (ξ̄, η̄) corresponding to a basis function are defined as

ξ̄ =
1

p

p∑
j=2

ξj, η̄ =
1

q

q∑
j=2

ηj (3.3)

where ξj and ηj are the knot values in the local knot vector. One drawback of Greville
abscissae, however, is that they work nicely only if the function under consideration
has a rectangular support, like normal B-splines. As we will see, it is very natural for
Truncated Hierarchical B-splines to have non-rectangular support. In this case we will
use area-averaged coordinates defined as

ξ̄ =

∑
i:Ei∈suppT

Ai ξ
c
i∑

i:Ei∈suppT

Ai
, η̄ =

∑
i:Ei∈suppT

Ai η
c
i∑

i:Ei∈suppT

Ai
(3.4)

where the sum runs over all elements Ei in the support of the function, (ξci , η
c
i) are the

coordinates of the centre of the element Ei and Ai is its area. The weighting by the area
ensures that each element contributes in the right way to the resulting coordinate of the
anchor. This method of calculating the coordinates returns the same result as the normal
Greville abscissae in the case of rectangular support, while it allows to see the difference
when the support is non-rectangular.

3.2 Hierarchical B-Splines

The application of the Hierarchical framework in Isogeometric Analysis is very well
explained by Vuong et al. in [28], and Giannelli et al. in [11]. We will look at how an
admissible mesh is constructed, and how the construction procedure defines a sequence
of nested bounded domains linked to the different Hierarchical levels.

3.2.1 Introduction and general idea

The basic idea underlying Hierarchical B-splines is very simple, yet results in a good
and flexible method to locally refine the mesh. A one-dimensional example for quadratic
basis functions is illustrated in Figure 3.1: one portion of the initial level 0 mesh is selected
for refinement. The coarse basis functions contained in that area are substituted by finer
basis functions, and we thus obtain the Hierarchical basis.

34 3.2 Hierarchical B-Splines

(a) The coarse mesh with the initial basis
(level 0)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

(b) The fine-scale basis (level 1)

0 1 2 2.5 3 3.5 4 4.5 5 6 7 8
0

0.5

1

(c) The Hierarchical basis, constructed as a suitable
combination of the coarse and fine scale basis func-
tions

Figure 3.1: Hierarchical Basis: Construction of a univariate basis using quadratic basis functions.
The highlighted area is selected for refinement, and the coarse functions contained therein
are substituted by finer basis functions.

As we can see from Figure 3.1 this basis does not constitute a partition of unity. This
property is however easily recovered by weighting the functions appropriately (see Figure
3.2). In this case it is important to note that the region selected for refinement must
contain at least the support of one coarse basis function. If this condition is not met, the
weights associated with the finer basis functions will all be zero, and therefore no change
will happen in the basis [28].

0 1 2 2.5 3 3.5 4 4.5 5 6 7 8
0

0.5

1

Figure 3.2: Hierarchical Basis: Weighting the fine scale functions appropriately ensures partition of
unity for ξ ∈ [2, 6].

Figure 3.3 presents the Hierarchical approach on a simple 2D example with biquadratic
basis functions. When a selected area of the mesh is refined, the knot spans are halved
in each direction and this introduces one new level in the hierarchy. The basis functions
from the previous level that are contained in the refined region are then substituted by the
corresponding finer basis functions defined on the new knot spans. As in the univariate
case, an appropriate weighting of the functions can be used to recover the partition of
unity.

In the following we will focus mainly on the two dimensional case, and several examples
will be presented.

3.2 Hierarchical B-Splines 35

Meshes

Tensor Product

Basis

Hierarchical

Basis

Figure 3.3: 2D Hierarchical Basis: Example using biquadratic basis functions. Upper row: A
two-step refinement is applied to the initial mesh. Middle row: The tensor-product basis
defined on the finest knot span available. From here we select the appropriate basis functions
to include in the Hierarchical basis. Lower row: The actual Hierarchical basis defined on
the refined mesh above. At each step, the basis functions from the previous level that are
contained in the refined region are substituted by the finer ones. The anchors are positioned
using Greville Abscissae.

3.2.2 The Classical Hierarchical Basis

The construction of the mesh on which the Hierarchical basis is defined is a direct
application of the idea presented above: starting from an initial, uniform tensor product
mesh V 0, some areas are selected for refinement. Once the areas have been selected,
several new meshlines are introduced, halving the knot spans of the local knot vectors
of all the functions contained therein. Of course, the selected areas must satisfy some
rules in order to produce an admissible mesh. We will for now be general in order to
understand the procedure, and we will state those rules in a few lines.

A mesh constructed in such a way defines a sequence of M+1 nested bounded domains

ΩM ⊆ ΩM−1 ⊆ . . . ⊆ Ω0

where M is the total number of new levels introduced in the mesh. To each level l is
associated an underlying tensor product basis N l, defined on a tensor mesh V l. In the
following we will consider the support of each function as restricted to the domain Ω0, i.e.
supp f = {x : f(x) 6= 0 ∧ x ∈ Ω0}.

As shown in Figure 3.4, at each level l = 1 . . .M the boundary of Ωl may be aligned
with the meshlines of V l or V l−1. These situations are called weak condition and strong
condition respectively. While it is possible to work assuming just the satisfaction of the
weak condition, it may lead to some cases where all the weights associated to finer basis
functions are zero. Another point that we need to consider is that we need to replace

36 3.2 Hierarchical B-Splines

the coarse basis functions with finer ones, so if the area to be refined is smaller than the
support of a coarse basis function, the weights associated to the finer basis functions will
again be zero. Due to this, the areas we select for refinement must satisfy some additional
constraints. To avoid these kind of problems and have a correspondence between the
mesh and the basis we give the following definition [28, p. 3560] :

Definition 6. In the Hierarchical setting, we will call a mesh admissible if at all levels
the area selected for refinement satisfies the strong condition on domain boundaries and
Ωl is defined as the union of the supports of previous-level basis functions N ∈ N l−1.

(a) Strong condition on do-
main boundaries. The
boundary of Ωl+1 is
aligned with the knot
lines of V l.

(b) Weak condition on do-
main boundaries. The
boundary of Ωl+1 is
aligned with the knot
lines of V l+1.

Figure 3.4: Hierarchical setting: Different conditions on the domain boundaries.

A smart choice when it comes to substituting coarse basis functions with finer ones is
exploiting the subdivision property of B-splines. A univariate B-spline NΞ defined on the
knot vector Ξ = [ξ1, ξ2 . . . ξp+2] can be expressed as a linear combination of scaled copies
of itself through the following formula [23, 30] :

NΞ(ξ) =

p+2∑
i=1

2−p
(
p+ 1

i− 1

)
NΞ(2ξ − ξi) (3.5)

Note that NΞ(2ξ − ξi) = NΞi
where the new knot vector Ξi is constructed from Ξ

halving al the knot spans and taking p+2 subsequent knots. For example, for a quadratic
basis function defined on Ξ = [0, 1, 2, 3] we would have

Ξ1 = [0, 0.5, 1, 1.5] Ξ2 = [0.5, 1, 1.5, 2]

Ξ3 = [1, 1.5, 2, 2.5] Ξ4 = [1.5, 2, 2.5, 3]

The relation given in Equation (3.5) is at the core of the Hierarchical refinement: It
tells us which functions of level l + 1 we need to include in the basis when removing
functions from level l, thus ensuring the nestedness of the Hierarchical spaces, and, if one
wants to utilize the weighted basis, also explicitly gives the correct coefficients needed
to maintain the partition of unity. Note that we will not use the weighted basis in the
numerical examples of Section 4; this is to be consistent with the definitions given in the
papers we used as references, [11, 15, 28].

3.2 Hierarchical B-Splines 37

Once an existing function is subdivided using Equation (3.5), we need to check if any
of the components is already present in the list of basis functions. If a component is not
present, we add it to the list; if it is then we move to the next component and repeat the
check. Note that if we want to utilize the weighted basis and a component is present in
the list of functions, we would need to update its weight by adding the new coefficient.

The extension to the bivariate case is straightforward: Each bivariate basis function
is a tensor product of two univariate ones. We then apply Equation (3.5) to each of them
and then construct all the resulting bivariate components via the usual tensor product.

Given the conditions for the selection of areas to refine stated above, Equation (3.5)
allows for a more intuitive understanding of how the Hierarchical refinement works: When
we refine a certain region of the mesh of level l, instead of considering the full tensor
product basis of level l+ 1 and selecting the correct functions from there, we can now see
it as just substituting the old level l functions with their corresponding components in
level l + 1. This point of view is interesting because it shifts the attention from refining
elements to refining functions.

We are now ready to construct the Hierarchical basis:

Definition 7. The Hierarchical B-spline basis H is recursively constructed as follows:

1. Initialization: H0 = {N ∈ N 0 : suppN 6= ∅}

2. Recursive case: Hl+1 = Hl+1
A ∪Hl+1

B for l = 0, . . . ,M − 1, where

Hl+1
A = {N : N ∈ Hl, suppN * Ωl+1}

Hl+1
B = {N : N ∈ N l+1, suppN ⊆ Ωl+1}

3. H = HM

Note that the above definition does not include the weights. The recursive definition
ensures that we always select the correct functions to include in the basis. The first step
initializes the Hierarchical basis with all the relevant functions of the underlying tensor
product basis N 0. The recursive procedure then updates the basis by removing the coarse
functions contained inside the refined region and including the finer ones substituting
them.

Figure 3.5 presents some of the basis functions defined on the same mesh used in
Figure 3.3. In the Classical Hierarchical case, all the functions have rectangular support
since they are plain tensor product of univariate functions.

As a result of the definition, the Classical Hierarchical B-spline basis and the associated
spaces have the following properties, as proved in [28]:

• The functions in H are linearly independent.

• The spaces spanned by the basis are nested, i.e. spanHl ⊆ spanHl+1.

We stress that without weighting the functions the Classical Hierarchical basis does
not constitute a partition of unity.

38 3.2 Hierarchical B-Splines

Figure 3.5: Classical Hierarchical Basis: Some of the biquadratic basis functions defined on the
same mesh used in Figure 3.3. For each function, on the left is presented a top view of the
evaluation plot and on the right the elements constituting its actual support.

3.2.3 The Truncated Hierarchical Basis

While the Hierarchical B-splines presented above provide good flexibility and allow for
localized refinement, the number of overlapping basis functions can increase very rapidly
with the introduction of new levels. This happens because the large support of the coarse
basis functions may overlap with the support of several fine-scale ones. See for example in
Figure 3.5, where the top-right function, defined at level 0, overlaps with all the fine-scale
functions in level 2.

This behaviour has a negative impact on the formation and solution of linear system
of algebraic equation associated to the solution of the discrete (finite element) varia-
tional problem: A higher number of overlaps means we need to perform more functions
evaluations and add more elements in the system matrices. This on one side increases
the assembly time required to build such matrices, and on the other side it affects the
sparsity, spectrum, and conditioning number of the matrices, with consequences on the
performance of iterative solvers. In order to address these problems, a new basis for the
Hierarchical space was proposed in [11]. The key idea is that we can appropriately trun-
cate the coarse basis functions, thus reducing their support and significantly decreasing
the number of overlaps.

The truncation of a basis function is defined as follows:

Definition 8. Let T be a basis function defined at level l, and let

T =
∑

j :Nj∈N l+1

αj Nj

be its representation respect to the fine-scale basis associated to level l+1. The truncation

3.2 Hierarchical B-Splines 39

of T respect to N l+1 and Ωl+1 is defined as

trunc l+1 T =
∑

j :Nj∈N l+1,

suppNj*Ωl+1

αj Nj (3.6)

It is clear that the coefficients αj depend not only on the component Nj they refer to,
but also on the function T considered. We omitted the explicit dependance to ease the
notation.

The Truncated Hierarchical basis is then defined as follows [11] :

Definition 9. The Truncated Hierarchical B-spline basis T is recursively constructed as
follows:

1. Initialization: T 0 = H0

2. Recursive case: T l+1 = T l+1
A ∪ T l+1

B for l = 0, . . . ,M − 1, where

T l+1
A = {trunc l+1 T : T ∈ T l ∧ suppN * Ωl+1}

T l+1
B = Hl+1

B

3. T = T M

Note that the representation of T in terms of next-level functions is easily obtained
through Equation (3.5). The truncation mechanism removes all those components of
T that are explicitly included in the basis by the recursive step of the definition. This
procedure appropriately shrinks the support of all functions that cross over multiple levels
in the mesh, effectively reducing the number of overlaps. Also note that the way of
expressing the truncation as given in Equation (3.6) is what we will call an additive
representation. It is also possible to use a subtractive representation, expressing the
truncation as

trunc l+1 T = T −
∑

j :Nj∈N l+1,

suppNj⊆Ωl+1

αj Nj (3.7)

Both these representations have advantages and disadvantages which are discussed in
Section 4.

Figure 3.6 shows the Truncated Hierarchical basis constructed on the same mesh as
in Figure 3.1. Note that no weights are needed to maintain the partition of unity.

0 1 2 2.5 3 3.5 4 4.5 5 6 7 8
0

0.5

1

Figure 3.6: Truncated Hierarchical Basis: The quadratic basis on the same mesh as in Figure 3.1.
Partition of unity is automatically achieved by the truncation procedure.

Figure 3.7 presents the same basis functions as in Figure 3.5 with the truncation
procedure applied. As we can see, the support of each Truncated function is modified
in order to reduce the number of overlaps with finer levels. This, however, makes some
functions lose the rectangular shape of their support.

The Truncated Hierarchical basis naturally inherits the properties of the Classical
Hierarchical basis, and also adds some more. In particular:

40 3.3 LR B-splines

Figure 3.7: 2D Truncated Hierarchical basis: The biquadratic basis constructed on the same mesh,
and the corresponding functions, as in Figure 3.5. For each function, on the left is presented
a top view of the evaluation plot and on the right the elements constituting its actual
support.

• The functions in T are linearly independent.

• The spaces are nested, i.e. spanT l ⊆ spanT l+1.

• The basis maintains partition of unity (without needs for weights).

In addition, if we consider the Classical Hierarchical basis H defined on the same mesh
as T , then:

• The cardinality of the basis is the same: |H| = |T |.

• The spaces spanned are the same: spanH = spanT .

Proofs for the above can be found in [11].

3.3 LR B-splines

LR B-splines were recently proposed by Dokken et al. in [6] and later applied to
Isogeometric Analysis by Johannessen et al. in [15]. We report here some of the theory
contained in those papers, while taking a different approach that focuses on clarity and
ease of understanding.

LR B-splines differentiate themselves from the Hierarchical cases in the way the re-
finement is applied: while Hierarchical functions rely on the subdivision rule given in
Equation (3.5) and generate up to p + 2 new functions from each original B-spline, LR

3.3 LR B-splines 41

B-splines use the knot insertion procedure, inserting one knot at a time and splitting old
B-splines into 2 new ones. The fact the the knots are inserted one at a time is crucial,
especially in the bivariate setting: We will show that even when inserting the same knot
values as produced by the subdivision rule, the resulting refined B-spline basis may be
different.

LR B-splines are locally refined in the same way the standard tensor-product B-splines
are. From basic spline theory we know that it is possible to perform knot insertion
to enrich the spline space while leaving the geometry description unchanged. In the
univariate case, if we want to insert the knot ξ̂ between the knots ξi−1 and ξi we have

BΞ(ξ) = α1BΞ1(ξ) + α2BΞ2(ξ) (3.8)

where

α1 =

{
ξ̂−ξ1

ξp+1−ξ1 ξ1 6 ξ̂ 6 ξp+1

1 ξp+1 6 ξ̂ 6 ξp+2

(3.9)

α2 =

{
1 ξ1 6 ξ̂ 6 ξ2

ξp+2−ξ̂
ξp+2−ξ2 ξ2 6 ξ̂ 6 ξp+2

and the knot vectors are

Ξ = [ξ1, ξ2 . . . ξi−1, ξi . . . ξp+1, ξp+2]

Ξ1 = [ξ1, ξ2 . . . ξi−1, ξ̂, ξi . . . ξp+1]

Ξ2 = [ξ2 . . . ξi−1, ξ̂, ξi . . . ξp+1, ξp+2]

As we can see, inserting one knot splits the original B-spline into two new B-splines
described by the local knot vectors Ξ1 and Ξ2. The weights α1 and α2 are needed to
maintain partition of unity. Figure 3.8 shows some examples of the application of Equation
(3.8).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ξ = [0, 1 , 3/2, 2]

Ξ = [1 , 3/2, 2, 3]

Ξ = [0, 1 , 2, 3]

� ��� � ��� � ��� � ��� �
�

���

���

���

���

���

���

��	

 ���������� ����� �

 ��� �������������

 ������ ��������

� ��� � ��� � ��� � ��� �
�

���

���

���

���

���

���

��	

 ���������������� �

 ��� ��������������

 ������������ ��

Figure 3.8: LR B-splines: Examples of knot insertion for ξ̂ = 3
2 . Dashed lines: The original functions.

Colors: The new functions resulting from the splitting.

In the bivariate case, functions are refined one parametric direction at a time. In this
case we obtain:

BΞ(ξ, η) = BΞ(ξ)BH(η)

= (α1BΞ1(ξ) + α2BΞ2(ξ)) BH(η) (3.10)

= α1BΞ1(ξ, η) + α2BΞ2(ξ, η)

In the following we will call meshline extension all mesh-altering actions like inserting
a new meshline, prolonging existing meshlines (possibly connecting two existing ones)
or increasing the multiplicity of meshlines. When a new meshline extension is inserted,
we need to know which basis functions are affected by it. For this purpose, we give the
following definition:

42 3.3 LR B-splines

Definition 10. A meshline ε is said to traverse the support of a function B[ξ1...ξp1+2;η1...ηp2+2]

if

• ε is a horizontal line ε = [ξ∗1 , ξ
∗
2]× η∗ such that

ξ∗1 6 ξ1, ξp1+2 6 ξ∗2 , η1 6 η∗ 6 ηp2+2

• ε is a vertical line ε = ξ∗ × [η∗1, η
∗
2] such that

ξ1 6 ξ∗ 6 ξp1+2, η∗1 6 η1, ηp2+2 6 η∗2

In particular, a horizontal line is said to traverse the interior of B[ξ1...ξp1+2;η1...ηp2+2] if
η1 < η∗ < ηp2+2 and traverse the edge if η∗ = η1 or η∗ = ηp2+2. Similarly, a vertical
line is said to traverse the interior if ξ1 < ξ∗ < ξp1+2 and traverse the edge if ξ∗ = ξ1 or
ξ∗ = ξp1+2.

Figure 3.9 shows some examples of lines traversing the support of a basis function.

(a) Line traversing
the interior of B

(b) Line traversing
the interior of B

(c) Line traversing the
edge of B

(d) Line neither
traversing the
edge nor the
interior of B

Figure 3.9: LR B-splines: Examples of lines traversing the support of a basis function.

When a meshline extension is applied, the refinement process is composed of two steps:

1. Split any function which support is traversed by the new meshline.

2. For all new functions, check if their support is traversed by any existing meshline,
and split again if this happens.

In step 1 we test all current functions against one meshline. In step 2 we test all newly
created functions against all existing meshlines. Note that when the meshline extension
is an actual elongation, possibly connecting two separate existing meshlines, we will use
the full length of the resulting line to test the functions for splitting. When a function is
flagged for splitting, this is performed through the use of Equations (3.9) and (3.10).

In view of the above, we can give the following two definitions:

Definition 11. In the LR B-splines setting, an admissible mesh is any mesh which can
be obtained by a sequence of meshline extensions starting from an initial tensor product
mesh. Each extension must cause at least one basis function to be split, and the meshlines
must end at existing knot values (they cannot stop at the centre of an element). All tensor
product meshes are admissible.

Definition 12. An LR B-spline is a function which results from the application of the
refinement scheme and Equations (3.8)-(3.9). All tensor product B-splines are LR B-
splines.

3.3 LR B-splines 43

Figure 3.10 shows the 1D LR B-splines basis defined on the same mesh as in the
previous examples at Figures 3.1, 3.2, and 3.6. Note that in the univariate setting the
LR B-spline refinement coincide with the normal knot insertion. In this case all the
weights sum up to 1 and so the LR B-splie basis is the normal B-splines basis originating
from the non-uniform knot vector Ξ = [0, 1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8], and automatically
maintains partition of unity. Also note that in the general LR B-spline setting the notion
of levels is not as present as in the Hierarchical setting; we can however define the level of
an LR B-spline function using the maximum knotspan contained in its local knot vector.

0 1 2 2.5 3 3.5 4 4.5 5 6 7 8
0

1

Figure 3.10: LR B-plines: The basis constructed on the same mesh as in figures 3.1, 3.2, and 3.6.

For a thorough example in the bivariate case we refer the reader to [15, p. 481-483].
Given an initial tensor product mesh M0, a sequence of meshline extensions {εi}ni=1

and corresponding admissible meshesMi = {Mi−1∪εi} and LR B-splines Li, the following
properties hold [6, 15]:

• The spaces are nested: spanLi ⊆ spanLi+1.

• The LR B-splines defined on a mesh are not affected by the order in which the
meshline extensions have been inserted, i.e. if M and M̂ are two identical LR B-
splines meshes that differ only for the order in which the meshlines extensions have
been applied, then the resulting LR B-splines functions are the same.

• The LR B-splines form a partition of unity.

Note that, as of today, no formal proof for the linear independence of the LR B-
splines functions has been given. This is mostly due to the fact that the single-line
insertion mechanism used in this setting allows for several different types of refinement
strategies, and the particular choice naturally affects the spline space. Indeed, in some
cases it may happen that the resulting set of LR B-splines is linearly dependant; however,
there are also several ways to recover the linear independency as proposed in [6, 15]. The
linear independence of LR B-splines depending on the type of refinement strategy used is
currently object of research.

In all our examples we will use the Structured Mesh refinement presented in [15]. This
strategy focuses on refining functions, instead of elements. The idea of refining elements
is indeed a legacy from the Finite Element methodology. Using the Structured Mesh
approach, one instead selects which basis functions to refine. This can be done through
the use of custom-built criteria, just as one would do in an adaptive refinement scheme.
The idea proposed in [15] is to compute the error pertaining to each basis function as

‖e‖2
suppBi

=
∑

K∈suppBi

‖e‖2
K (3.11)

i.e. we define the B-spline error as the sum of the normal error ‖e‖ measured in the
energy norm over all elements in the support of Bi. Once the functions to be refined are
identified, we proceed to insert several knot lines in both directions, halving the knot spans

44 3.3 LR B-splines

of the largest supported knot interval. Note that the Structured Mesh strategy will yield
the same results on the mesh as the subdivision rule used in the Hierarchical setting. This
means that all meshes which are admissible in the Hierarchical setting, i.e. they satisfy
the conditions of Definition 6, are also admissible in the LR B-splines setting and can be
obtained using the Structured Mesh refinement. For this reason we have always used this
approach for our examples, as it provides a better ground for comparison.

Figure 3.11: LR B-splines: The biquadratic basis constructed on the same mesh, and the correspond-
ing functions, as in Figure 3.5 and 3.7. For each function, on the left is presented a top
view of the evaluation plot and on the right the elements constituting its actual support.

4

Results

We present here the results of our analysis on the different type of basis functions
outlined in Section 3. The Qualitative analysis sections collects results regarding the
mathematical properties of the various basis, many of which were already briefly listed in
the corresponding sections. The Quantitative analysis section focuses on implementation
and numerical quantities and discusses the properties of the stiffness and mass matrices
generated using the different splines functions.

4.1 Qualitative analysis

We would like to start pointing out that, under normal mesh refinement iterations
(i.e. excluding special constructed cases), on the qualitative level all the three classes of
splines give comparable results. However, there are some interesting distinctive features
that are worth to be mentioned.

4.1.1 Different functions

The functions included in the Classical Hierarchical, Truncated Hierarchical, and LR
B-splines sets are fundamentally different: Classical Hierarchical functions (Definition 7)
are standard uniform tensor product B-splines; Truncated Hierarchical functions (Defini-
tions 8 and 9) are generally a linear combination of uniform tensor product B-splines; LR
B-splines functions (Equation (3.8) and Definition 12) are non-uniform tensor product
B-splines. With the notation introduced at page 31 we have that the general functions
H ∈ H, T ∈ T , and L ∈ L can be written as

H = N

T =
∑

αiNi

L = αB

for appropriate indices i and weights α.

Figure 4.1 shows the Classical Hierarchical, Truncated Hierarchical and LR B-splines
basis for the knot vector Ξ = [0, 1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8]. Note that on the uniform
vector [0 : 8] all three families of functions would be exactly the same. In the Classical
Hierarchical case, partition of unity is not preserved. In the Truncated Hierarchical case

46 4.1 Qualitative analysis

0 1 2 2.5 3 3.5 4 4.5 5 6 7 8
0

0.5

1

(a) Classical Hierarchical

0 1 2 2.5 3 3.5 4 4.5 5 6 7 8
0

0.5

1

(b) Truncated Hierarchical

0 1 2 2.5 3 3.5 4 4.5 5 6 7 8
0

1

(c) LR B-splines

Figure 4.1: Qualitative analysis: The different quadratic bases constructed using the same knot
vector.

this is achieved automatically by the truncation procedure, which removes some com-
ponents from the old-level functions. The LR B-splines are instead directly defined on
non-uniform knot vectors, and also use weights to maintain partition of unity.

Figure 4.2 shows a comparison of the support for some of the basis functions presented
in the Figures 3.5, 3.7, and 3.11.

4.1.2 Different spaces

Perhaps the most important and interesting difference is that for some meshes the
Hierarchical basis and the LR B-splines set span different spaces. One such example is
given in figure 4.3.

The central function appearing in the Classical and Truncated Hierarchical setting
corresponds to two distinct functions in the LR B-splines set. This is due to the way the
refinement works in the LR B-splines setting: As we can see there is one new meshline
which completely traverses the support of the central function. When this meshline is
inserted, it triggers the LR B-splines refinement algorithm which splits the original B-
spline into two new ones as expected. This does not happen in the Hierarchical framework,
which leaves the function unchanged in the classic case or appropriately reduces its support
in the Truncated case.

Mourrain [20] presented a formula for the maximum dimension of the space of piecewise
polynomials with given continuity on a mesh: given a planar mesh with F faces (the
elements), H horizontal and V vertical internal edges and P vertices, the maximum
dimension of the space of bivariate piecewise polynomials of degrees (p, q) with continuity
(k, l) along element edges is given by

S = (p+ 1) (q + 1)F − (p+ 1) (l + 1)H − (q + 1) (k + 1)V + (k + 1) (l + 1)P + h (4.1)

4.1 Qualitative analysis 47

(a) Left Column:
Classical Hierarchical

(b) Centre Column:
Truncated Hierarchi-
cal

(c) Right Column:
LR B-splines

Figure 4.2: Qualitative analysis - Different Functions: The support of corresponding biquadratic
basis functions in the three spline families presented in the Figures 3.5, 3.7, and 3.11.

where h is the homology factor of the mesh, which is equal to zero for all the refinement
schemes used here. To the best knowledge of the authors there is no formal proof that the
Classical Hierarchical, Truncated Hierarchical or LR B-splines actually span the entire
space.

4.1.3 Different refinement strategies

Hierarchical functions rely on Equation (3.5) to apply the refinement. This procedure
halves the local knot vectors of the function and replaces the original B-spline with up to
p+ 2 new functions in the univariate case, or (p+ 2)(q + 2) in the bivariate case.

LR B-splines use the knot insertion given in Equation (3.8), which introduces two
new B-splines functions. This procedure allows for more flexibility in the refinement
approach as there are no prescriptions on the number or positions of the new knots. In
addition to the Structured Mesh strategy, already presented in Section 3, in [15] two
other different refinement strategies are proposed: Minimum Span and Full Span. While
all these strategies insert the meshlines so that they halve the knotspans, this is not a
requirement as the use of non-uniform knot vectors is already built-in in the definitions
of LR B-splines.

The Minimum Span strategy aim is to keep the refinement as localized as possible.
Once an element is marked for refinement, a cross is inserted through its centre and the
meshlines are made to be as short as possible, while still splitting at least one function.

In the Full Span strategy the idea is to split all B-splines with support on a selected

48 4.1 Qualitative analysis

(a) Classical Hierarchical (b) Truncated Hierarchical

(c) LR B-splines, first function (d) LR B-splines, second function

Figure 4.3: Qualitative analysis - Different spaces: An example of mesh on which the biquadratic
Hierarchical bases span different spaces than the LR B-splines basis. The central level
0 function in the Hierarchical cases corresponds to two distinct functions in the LR B-
splines basis. Both the Hierarchical bases are constituted of 55 functions; the LR B-splines
basis contains 56 functions. The highlighted area is the support of the selected function,
represented with a square as anchor symbol. The anchors are placed as described at page
33.

element. This is done inserting two meshlines in a cross through the centre of the element.
The new meshlines will have to span from the minimum to the maximum knot values of
all functions with support on the marked element in both parametric direction. This
strategy makes sure that all B-splines with support on the marked element are treated
equally, but on the other hand this results in an extension of the refinement away from
the selected element, in particular for high polynomial degrees.

A common drawback of both the Full and Minimum Span is that some elements will be
traversed by only one meshline and therefore will be split into two rectangular elements,
effectively doubling their aspect ratio.

While the possibility of applying other refinement strategies is allowed by the defi-
nitions and the theory of LR B-splines, some may lead to linearly dependant sets. The
research in these cases is still ongoing and, as of today, the Structured Mesh is the best
candidate for a stable refinement algorithm.

4.2 Quantitative analysis 49

��			

���

�

�

�

�

�

���

(a) Minimum Span

��			

���

�

�

�

�

�

���

(b) Full Span (only two functions
are shown)

��			

���

�

�

�

�

�

���

(c) Structured Mesh

Figure 4.4: Qualitative analysis: Different types of refinement strategies using LR B-splines.

4.1.4 Different admissible meshes

A direct consequence of the various refinement approaches available with LR B-splines
is that some meshes which are legal in a LR setting cannot be reproduced using Hier-
archical splines. On the other hand, LR B-splines are not capable of achieving some
configurations of the weak conditions on domain boundaries available in the Hierarchical
framework. For an example see Figure 3.4b. In that case, the meshlines of Ω1 are stopping
in the centre of the elements, a behaviour that is disallowed by the LR definitions.

Another difference is that LR B-splines are currently defined starting from a global
tensor-product mesh, i.e. only on rectangular parametric domains. Conversely, Hierar-
chical B-splines can be defined on non-rectangular parametric domains.

Meshes that are defined on a rectangular domain and also satisfy the conditions of
Definition 6 are admissible in both the Hierarchical and LR B-splines framework.

4.2 Quantitative analysis

Here, we first discuss details related to different representation of Truncated Hierar-
chical basis, and then present the numerical results obtained for different meshes and
polynomial degrees,

4.2.1 Representation of Truncated functions

As we briefly mentioned earlier, Truncated Hierarchical B-splines can be represented
in an additive or subtractive fashion; we restate Equations (3.6) and (3.7) for reading
convenience:

trunc l+1 T =
∑

j :Nj∈N l+1,

suppNj*Ωl+1

αj Nj Additive representation (4.2)

trunc l+1 T = T −
∑

j :Nj∈N l+1,

suppNj⊆Ωl+1

αj Nj Subtractive representation (4.3)

50 4.2 Quantitative analysis

where Nj are the components of T with respect to the finer level basis functions and αj
the corresponding weights as given by Equation (3.5).

When implementing the code we found that choosing one representation over the other
yield important consequences. In a typical finite element code one has to deal with two
important aspects: determining which basis functions are active over a given element,
and then evaluating such functions.

To address the former a convenient way to retrieve or store the support of the functions
is essential. In the case of B-splines this is generally easy since the support is identified
with the local knot vectors. When the B-spline is a standard tensor product, and the
support is therefore rectangular, this becomes even easier since one only needs to check
the starting and ending points of the local knot vectors. As we have seen, however,
Truncated Hierarchical functions do not always have rectangular support, hence we need
a representation that allows for an easy way to retrieve it. The subtractive representation
(4.3) is unfortunately not very helpful in this sense: the fact that a given component
is subtracted does not automatically guarantee that the function itself vanishes in that
area. Given an element E ∈ suppT we should check if all possible components on that
element are removed in order to know if truncT has support on E or not. The additive
representation (4.2), on the other hand, is much more convenient: We can simply loop
over all components and check if any of them has support on E.

To address the latter point we need an efficient way to evaluate basis functions. This
is even more important in an Isogeometric setting: Since the Cox-de Boor algorithm is
a typical bottleneck of the code, we would like to perform as few basis evaluations as
possible. In this case the additive representation (4.2) is not efficient. In a biquadratic
case a representation in terms of next-level basis functions comprises of 16 fine-scale
functions. This number clearly increases when increasing the polynomial degree: 25 for
bicubic functions, 36 for biquartic etc. In addition, an additive representation may require
to store the function in terms of the finest-available scale, which would greatly increase
the amount of components needed; let’s assume, for simplicity, that this is not the case.
To give an example, look at the biquadratic basis functions of Figure 3.7. For each of
the Truncated Hierarchical basis functions only 4 components are removed. This means
that in an additive representation we would still need to evaluate 12 fine-scale functions
in order to compute the value of the B-spline we are interested in. In a subtractive
representation we would need to evaluate only 5 functions: The original tensor product
B-spline and the 4 components we need to subtract.

To summarize, we have the following:

• An additive representation (4.2) is useful when determining the support but not
efficient in the function evaluation process;

• A subtractive representation (4.3) does not allow to easily identify the support of
the function but is more efficient in its evaluation.

The above discussions are overall considerations: The disadvantages of the representa-
tions might be accounted for by programming the algorithm in a smart efficient way. On
the other hand, this is still something that needs to be taken into consideration. For an
in-depth discussion on the implementation of Truncated Hierarchical B-splines we refer
to [17].

4.2 Quantitative analysis 51

4.2.2 1D examples

We now present the results obtained in various 1D examples. We performed several
experiments for polynomial degrees p = 2, 3, 4, and 5. In each case we started from a
uniform, non-open knot vector Ξ0 = [0, 1 . . . 5 p+ 1] and successively applied 6 refinement
steps, always refining the central basis function. Note that for odd polynomial degrees a
central function always exists, while for even-degree normally there are two functions near
the knot vector centre. In this case we chose to always refine the rightmost one. Figure
4.5 shows as examples the first two refinement iterations for p = 2 and p = 3.

8 9 10 117 8 9 106 7 8 95 6 7 84 5 6 73 4 5 62 3 4 51 2 3 40 1 2 3

(a) Initial knot vector

5.5 6 6.5 75 5.5 6 6.54.55 5.5 64 4.55 5.5

(b) First refinement iteration (c) Second refinement iteration

12 13 14 15 1611 12 13 14 1510 11 12 13 149 10 11 12 138 9 10 11 127 8 9 10 116 7 8 9 105 6 7 8 94 5 6 7 83 4 5 6 72 3 4 5 61 2 3 4 50 1 2 3 4

(d) Initial knot vector

88.599.5107.588.599.577.588.596.577.588.566.577.58

(e) First refinement iteration (f) Second refinement iteration

Figure 4.5: 1D Central Refinement: The first three steps of the refinement process in the cases
p = 2 (above) and p = 3 (below). When two functions are equally close to the centre, the
rightmost one is selected for refinement.

For each refinement iteration we constructed the stiffness matrix A and the mass ma-
trixM using the Classical Hierarchical, Truncated Hierarchical and LR B-splines functions
defined using the same knot vector. We then analysed some important numerical prop-
erties of these matrices, namely the sparsity pattern, the conditioning number, and the
spectrum. Note that in the univariate case the LR B-splines basis coincides with the
standard non-uniform B-splines generated via knot insertion.

Sparsity Figure 4.6 shows the sparsity patterns of the stiffness matrix at the last refine-
ment iteration after a reordering using the Cuthill-McKee Algorithm [5] has been applied.
The top row corresponds to p = 2, while to bottom row corresponds to p = 5.

As expected the Classical Hierarchical basis functions produce the densest stiffness
matrices. This is normal since the support of coarse-level functions remains unaffected by
the refinement in neighbouring regions. The values for all polynomial degrees are collected
in Table 4.1.

p Hier. Trunc. LR H/T H/LR
2 393 183 129 215% 305%
3 803 315 247 255% 325%
4 1257 629 403 200% 312%
5 1919 853 597 225% 321%

Table 4.1: 1D Central Refinement: Number of non-zero elements in the stiffness matrix at the last
(6th) refinement iteration. The last two columns present the ratios, rounded to the nearest
percentage point.

Conditioning Numbers The conditioning number of the stiffness and mass matrices
can be significantly influenced by the way the boundary conditions are imposed. In order

52 4.2 Quantitative analysis

0 5 10 15 20 25

0

5

10

15

20

25

nz = 393

(a) Classical Hierarchical, p = 2

0 5 10 15 20 25

0

5

10

15

20

25

nz = 183

(b) Truncated Hierarchical, p = 2

0 5 10 15 20 25

0

5

10

15

20

25

nz = 129

(c) LR B-splines, p = 2

0 10 20 30 40 50

0

10

20

30

40

50

nz = 1919

(d) Classical Hierarchical, p = 5

0 10 20 30 40 50

0

10

20

30

40

50

nz = 853

(e) Truncated Hierarchical, p = 5

0 10 20 30 40 50

0

10

20

30

40

50

nz = 597

(f) LR B-splines, p = 5

Figure 4.6: 1D Central Refinement: Examples of sparsity patterns of the stiffness matrices at the
last(6th) refinement iteration. The Cuthill-McKee Algorithm has been applied to optimize
the bandwidth. Top: p = 2. Bottom: p = 5.

to avoid any such effect we decided to look at the “pure” conditioning numbers, i.e. before
any imposition of the boundary conditions. As is well known, with just pure Neumann
boundary conditions the stiffness matrix is singular; the conditioning number can then be
defined as the ratio between the largest eigenvalue and the smallest non-zero one. This
means that for either the stiffness matrix A or the mass matrix M , given the ordered set
of their eigenvalues [λ1, λ2 . . . λN] we define

cond(A) =
λN
λ2

(4.4)

cond(M) =
λN
λ1

Figure 4.7 shows the plots for the conditioning numbers of both the stiffness and
mass matrices for each polynomial degree considered. While all values are quite close to
each other, and always remained in the same order of magnitude for our experiments,
it is interesting to note that the Truncated Hierarchical and LR B-splines perform very
similarly.

Looking at the plots for the stiffness matrix we can see that, with the exception of the
lowest degree, i.e. p = 2, the conditioning numbers are ordered as

cond(AT) < cond(ALR) < cond(AH)

4.2 Quantitative analysis 53

while for the mass matrix we always have

cond(MLR) < cond(MT) < cond(MH)

where the subscripts indicates the basis functions used.
We can also see that the conditioning numbers of the stiffness matrices are increasing

with each refinement iteration, while the conditioning numbers for the mass matrices for
p = 4 and 5 are bounded from above and below by a constant. This behaviour was
already presented by Gahalaut and Tomar in [10], although that result is proven for
uniform refinement only.

The Tables 4.2 and 4.3 present the numerical data for p = 2 and p = 3, respectively.

Stiffness Matrix

Iter. 0 1 2 3 4 5 6
Hier. 12.7425 28.0291 55.7519 111.4035 222.7908 445.5791 891.158
Trunc. 12.7425 25.8255 52.0501 105.3161 213.368 432.4906 876.3622
LR 12.7425 27.2848 55.6005 112.6381 228.1518 462.2306 936.1914

Mass Matrix

Iter. 0 1 2 3 4 5 6
Hier. 46.7947 52.5238 65.8931 116.2265 225.4839 448.1175 894.9733
Trunc. 46.7947 41.5164 42.6706 45.6839 88.2484 176.373 352.7153
LR 46.7947 38.0372 38.4295 38.5944 67.7769 135.5371 271.0706

Table 4.2: 1D Central Refinement: The conditioning numbers for p = 2 throughout the mesh
refinement. Stiffness Matrix above, Mass Matrix below.

Stiffness Matrix

Iter. 0 1 2 3 4 5 6
Hier. 37.5856 81.2603 162.2944 324.6481 649.3102 1298.6220 2597.2442
Trunc. 37.5856 74.0527 148.1500 296.3336 592.6853 1185.3798 2370.7641
LR 37.5856 75.1932 150.6787 301.4619 602.9764 1205.9794 2411.9722

Mass Matrix

Iter. 0 1 2 3 4 5 6
Hier. 1405.224 1553.052 1585.284 1590.567 1591.561 2238.165 4476.303
Trunc. 1405.224 1292.261 1296.807 1297.363 1297.472 1297.603 2201.907
LR 1405.224 1190.168 1191.548 1191.797 1191.817 1191.819 1191.819

Table 4.3: 1D Central Refinement: The conditioning numbers for p = 3 throughout the mesh
refinement. Stiffness Matrix above, Mass Matrix below.

Spectrum Figure 4.8 shows the spectra of the stiffness and mass matrices for p = 2
at the sixth refinement iteration. The eigenvalues of the stiffness matrix are spread over
a large interval, while the eigenvalues of the mass matrix are much more clustered. In
all cases the eigenvalues tend to be denser near the origin, but there is no substantial
difference between the various basis functions.

54 4.2 Quantitative analysis

Increasing the polynomial degree has different consequences on the eigenvalues of the
stiffness and mass matrices: While the large eigenvalues of the stiffness matrix are reduced,
those of the mass matrix are increased. The values of the smallest eigenvalues are instead
reduced in all cases, as we would expect by the increase in the conditioning numbers.
We noted, however, that only a small number of outliers quickly approaches zero, while
the other smallest eigenvalues are still reduced but not as fast. In particular, for the
Classicalal and Truncated Hierarchical basis functions the smallest eigenvalues seems to
decrease faster than those associated with LR B-splines. Figure 4.9 shows the spectra of
the stiffness and mass matrices produced with basis functions of degree p = 5.

4.2 Quantitative analysis 55

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

1000

iterations

C
on

di
tio

ni
ng

 N
um

be
r

Stiffness Matrix, P=2

Hier.
Truncated
LR

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

iterations

C
on

di
tio

ni
ng

 N
um

be
r

Mass Matrix, P=2

Hier.
Truncated
LR

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

iterations

C
on

di
tio

ni
ng

 N
um

be
r

Stiffness Matrix, P=3

Hier.
Truncated
LR

0 1 2 3 4 5 6
1000

1500

2000

2500

3000

3500

4000

4500

iterations

C
on

di
tio

ni
ng

 N
um

be
r

Mass Matrix, P=3

Hier.
Truncated
LR

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7
x 10

4

iterations

C
on

di
tio

ni
ng

 N
um

be
r

Stiffness Matrix, P=4

Hier.
Truncated
LR

0 1 2 3 4 5 6
5.5

6

6.5

7

7.5

8

8.5
x 10

4

iterations

C
on

di
tio

ni
ng

 N
um

be
r

Mass Matrix, P=4

Hier.
Truncated
LR

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
x 10

6

iterations

C
on

di
tio

ni
ng

 N
um

be
r

Stiffness Matrix, P=5

Hier.
Truncated
LR

0 1 2 3 4 5 6
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6
x 10

6

iterations

C
on

di
tio

ni
ng

 N
um

be
r

Mass Matrix, P=5

Hier.
Truncated
LR

Figure 4.7: 1D Central Refinement: Graphs of the conditioning numbers of stiffness matrices (left
column) and mass matrices (right column) from p = 2 (top) to p = 5 (bottom).

56 4.2 Quantitative analysis

0 20 40 60 80 100

LR

Truncated

Hier.

eig(A), P=2
0 0.2 0.4 0.6 0.8 1

LR

Truncated

Hier.

eig(M), P=2

10
−1

10
0

10
1

10
2

LR

Truncated

Hier.

eig(A), P=2
10

−3
10

−2
10

−1
10

0

LR

Truncated

Hier.

eig(M), P=2

Figure 4.8: 1D Central Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass Matrix
(right) for p = 2 at the last refinement iteration. The plots are shown on a linear scale (top)
and logarithmic scale (bottom). The zero eigenvalue of the Stiffness Matrix is omitted.

0 10 20 30 40 50

LR

Truncated

Hier.

eig(A), P=5
0 0.2 0.4 0.6 0.8 1 1.2

LR

Truncated

Hier.

eig(M), P=5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

LR

Truncated

Hier.

eig(A), P=5
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

0

LR

Truncated

Hier.

eig(M), P=5

Figure 4.9: 1D Central Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass Matrix
(right) for p = 5 at the last refinement iteration. The plots are shown on a linear scale (top)
and logarithmic scale (bottom). The zero eigenvalue of the Stiffness Matrix is omitted.

4.2 Quantitative analysis 57

4.2.3 2D Example: Central Refinement

The first of the 2D examples we present is the natural extension of the 1D cases consid-
ered above. Starting from a uniform tensor-product mesh, we performed five refinement
iterations where at each step the central basis function was selected for refinement. Ex-
periments were conducted for p = 2, 3, 4. As in the previous cases, for even polynomial
degrees usually none of the basis functions is perfectly in the centre of the mesh; when
this happened we chose to refine the lower-left function. Depending on the polynomial
degree we also adjusted the knot vectors to have a ghost domain such that the initial
tensor product basis constitutes a partition of unity in Ω0 = [0, 1] × [0, 1]. Figure 4.10
shows the first three steps of the refinement process for p = 2 and p = 3.

0 0.5 1

0

0.5

1

Ω0

(a) Initial Mesh

0 0.5 1

0

0.5

1

Ω0 Ω1

(b) First refinement iteration

0 0.5 1

0

0.5

1

Ω0 Ω1 Ω2

(c) Second refinement iteration

0 0.5 1

0

0.5

1

Ω0

(d) Initial Mesh

0 0.5 1

0

0.5

1

Ω0 Ω1

(e) First refinement iteration

0 0.5 1

0

0.5

1

Ω0 Ω1 Ω2

(f) Second refinement iteration

Figure 4.10: 2D Central Refinement: The first three steps of the refinement process in the cases
p = 2 (above) and p = 3 (below). When four functions are equally close to the centre, the
lower-left one is selected for refinement.

As in the previous examples, we constructed the stiffness and mass matrices using
Classical Hierarchical, Truncated Hierarchical and LR B-splines basis functions on the
same meshes, and compared their numerical properties.

Sparsity Figure 4.11 shows the sparsity pattern of the stiffness matrices after the fifth
refinement iteration for biquadratic and biquartic basis functions. All results are reported
in Table 4.4.

As expected the Classical Hierarchical basis produces significantly denser matrices due
to the higher number of overlaps. While it may seem that the improvement gained by

58 4.2 Quantitative analysis

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

220

nz = 8403

(a) Classical Hierarchical, p = 2

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

220

nz = 6079

(b) Truncated Hierarchical, p = 2

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

220

nz = 6711

(c) LR B-splines, p = 2

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 47913

(d) Classical Hierarchical, p = 4

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 36943

(e) Truncated Hierarchical, p = 4

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 40839

(f) LR B-splines, p = 4

Figure 4.11: 2D Central Refinement: The sparsity patterns of the stiffness matrices at the last
(5th) refinement iteration. The Cuthill-McKee Algorithm has been applied to optimize
the bandwidth. Top: p = 2. Bottom: p = 4.

using the Truncated basis is less than in the 1D case, we have to take into consideration
that the refined region is very small.

Conditioning Numbers Figure 4.12 shows the plots of the conditioning numbers of
the stiffness and mass matrices produced by the refinement procedure described above.
As we can see, the conditioning numbers for the mass matrices are bounded for the higher
degrees.

Tables 4.5 and 4.6 contain the numerical values of the conditioning numbers for p = 2
and 3, respectively.

p Hier. Trunc. LR H/T H/LR
2 8403 6079 6711 138% 125%
3 23625 14909 18909 158% 125%
4 47913 36943 40839 130% 117%

Table 4.4: 2D Central Refinement: Number of non-zero elements in the stiffness matrices at the last
(5th) refinement iteration. The last two columns present the ratios, rounded to the nearest
percentage point.

4.2 Quantitative analysis 59

Stiffness Matrix

Iter. 0 1 2 3 4 5
Hier. 83.6793 125.4868 142.641 152.964 159.1009 162.9791
Trunc. 83.6793 94.7517 99.6748 102.4115 103.8121 104.6173
LR 83.6793 91.0205 91.0144 91.0061 91.006 91.0105

Mass Matrix

Iter. 0 1 2 3 4 5
Hier. 2.241e+03 2.245e+03 2.245e+03 2.245e+03 5.808e+03 2.323e+04
Trunc. 2.241e+03 2.155e+03 2.154e+03 2.154e+03 5.554e+03 2.221e+04
LR 2.241e+03 2.153e+03 2.152e+03 5.981e+03 3.245e+04 1.757e+05

Table 4.5: 2D Central Refinement: The conditioning numbers for p = 2 in the various iterations of
the central refinement. Stiffness Matrix above, Mass Matrix below.

Stiffness Matrix

Iter. 0 1 2 3 4 5
Hier. 2.323e+04 3.410e+04 3.792e+04 3.960e+04 4.043e+04 4.088e+04
Trunc. 2.323e+04 2.714e+04 2.977e+04 3.112e+04 3.186e+04 3.231e+04
LR 2.323e+04 2.416e+04 2.421e+04 2.421e+04 2.421e+04 2.421e+04

Mass Matrix

Iter. 0 1 2 3 4 5
Hier. 1.975e+06 2.016e+06 2.019e+06 2.019e+06 2.019e+06 2.019e+06
Trunc. 1.975e+06 1.837e+06 1.837e+06 1.837e+06 1.837e+06 1.837e+06
LR 1.975e+06 1.836e+06 1.836e+06 1.836e+06 1.836e+06 1.836e+06

Table 4.6: 2D Central Refinement: The conditioning numbers for p = 3 in the various iterations of
the central refinement. Stiffness Matrix above, Mass Matrix below.

Spectrum Figure 4.13 shows the spectra of the matrices obtained from the last refine-
ment iteration using biquadratic basis functions. While there is no substantial difference
in the eigenvalue distribution produced by the three refinement methodologies, we can
see how the smallest eigenvalue of the mass matrix coming from LR B-splines functions
is lower than its Hierarchical counterparts. This explains the higher conditioning number
for LR B-splines than the Hierarchical refinement schemes.

Increasing the polynomial degree to p = 4 compacts the spectrum, reducing the lower
eigenvalues but also the higher ones. As in the univariate case, the smallest eigenvalues
are outliers and assume almost the exact same value for all three families of splines; the
difference in the magnitude of the conditioning numbers is therefore dictated by the values
of the greatest eigenvalues.

60 4.2 Quantitative analysis

0 1 2 3 4 5
80

90

100

110

120

130

140

150

160

170

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Stiffness Matrix, P=2

Hier.
Truncated
LR

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18
x 10

4

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Mass Matrix, P=2

Hier.
Truncated
LR

0 1 2 3 4 5
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
x 10

4

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Stiffness Matrix, P=3

Hier.
Truncated
LR

0 1 2 3 4 5
1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96

1.98

2

2.02
x 10

6

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Mass Matrix, P=3

Hier.
Truncated
LR

0 1 2 3 4 5
2.5

3

3.5

4

4.5

5

5.5
x 10

7

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Stiffness Matrix, P=4

Hier.
Truncated
LR

0 1 2 3 4 5
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5
x 10

9

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Mass Matrix, P=4

Hier.
Truncated
LR

Figure 4.12: 2D Central Refinement: Graphs of the conditioning numbers of stiffness matrices (left
column) and mass matrices (right column) for the bivariate central refinement. p = 2
(top), p = 3 (middle), and p = 4 (bottom).

4.2 Quantitative analysis 61

0 0.5 1 1.5 2 2.5 3

LR

Truncated

Hier.

eig(A), P=2
0 0.002 0.004 0.006 0.008 0.01

LR

Truncated

Hier.

eig(M), P=2

10
−1

10
0

LR

Truncated

Hier.

eig(A), P=2
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2

LR

Truncated

Hier.

eig(M), P=2

Figure 4.13: 2D Central Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass Matrix
(right) for p = 2 at the last (5th) iteration of the central refinement, bivariate case. The
plots are shown on a linear scale (top) and logarithmic scale (bottom). The zero eigenvalue
of the Stiffness Matrix is omitted.

0 0.5 1 1.5

LR

Truncated

Hier.

eig(A), P=4
0 0.002 0.004 0.006 0.008 0.01

LR

Truncated

Hier.

eig(M), P=4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

LR

Truncated

Hier.

eig(A), P=4
10

−10
10

−9
10

−8
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2

LR

Truncated

Hier.

eig(M), P=4

Figure 4.14: 2D Central Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass Matrix
(right) for p = 4 at the last iteration of the central refinement, bivariate case. The plots
are shown on a linear scale (top) and logarithmic scale (bottom). The zero eigenvalue of
the Stiffness Matrix is omitted.

62 4.2 Quantitative analysis

4.2.4 2D Example: Diagonal Refinement

We present here the results obtained applying a diagonal refinement. This configura-
tion is a classical benchmark often used in publications and, since the refinement area is
quite large, it provides a different point of view respect to the central refinement illustrated
before.

Starting from the usual uniform tensor product mesh, we applied four refinement
iterations where we refine at each step all the basis functions along the diagonal. As in
the centre refinement case, we considered the polynomial degrees p = 2, 3, and 4. Again,
the ghost domain was adjusted in order for the first tensor product basis to constitutes a
partition of unity in Ω0. Figure 4.15 shows the first three meshes in the biquadratic and
bicubic cases. Note that we refined also a portion of the ghost domain: This was done
in order to avoid having T-joints on the boundary of Ω0. The integration, however, was
carried out only for the elements inside Ω0, as in the previous cases.

0 0.5 1

0

0.5

1

Ω0

(a) Initial Mesh

0 0.5 1

0

0.5

1

Ω0

(b) First refinement iteration

0 0.5 1

0

0.5

1

Ω0

(c) Second refinement iteration

0 0.5 1

0

0.5

1

Ω0

(d) Initial Mesh

0 0.5 1

0

0.5

1

Ω0

(e) First refinement iteration

0 0.5 1

0

0.5

1

Ω0

(f) Second refinement iteration

Figure 4.15: 2D Diagonal Refinement: The first three steps of the refinement process in the cases
p = 2 (above) and p = 3 (below).

Sparsity Due to the extension of the refinement region, and the number of overlapping
zones, we expected to see quite a difference in the sparsity pattern of the matrices produced
by the different spline technologies. Figure 4.16 presents the sparsity patterns for p = 2
and p = 4. The results are presented in Table 4.7.

As we can see, due to the larger refined area the use of Truncated Hierarchical or LR

4.2 Quantitative analysis 63

0 200 400 600 800 1000 1200 1400 1600 1800

0

200

400

600

800

1000

1200

1400

1600

1800

nz = 116366

(a) Classical Hierarchical, p = 2

0 200 400 600 800 1000 1200 1400 1600 1800

0

200

400

600

800

1000

1200

1400

1600

1800

nz = 61330

(b) Truncated Hierarchical, p = 2

0 200 400 600 800 1000 1200 1400 1600 1800

0

200

400

600

800

1000

1200

1400

1600

1800

nz = 53558

(c) LR B-splines, p = 2

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

nz = 628862

(d) Classical Hierarchical, p = 4

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

nz = 356042

(e) Truncated Hierarchical, p = 4

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

nz = 287594

(f) LR B-splines, p = 4

Figure 4.16: 2D Diagonal Refinement: The sparsity patterns of the stiffness matrices at the last
refinement iteration for the 2D diagonal refinement. The Cuthill-McKee Algorithm has
been applied to optimize the bandwidth. Top: p = 2. Bottom: p = 4.

B-splines basis functions has a huge impact on the sparsity of the matrices: The Classical
Hierarchical basis produces almost twice as many non-zero elements as the Truncated
basis, and more than twice those of the LR B-splines basis. It also seems that increasing
the polynomial degree somewhat reduces the advantage of the Truncated basis, while the
LR B-splines basis maintains the same ratio.

Conditioning Numbers Figure 4.17 shows the conditioning numbers of the stiffness
and mass matrices obtained for this diagonal example. The numerical values of the
conditioning numbers for the stiffness and mass matrices are presented in Table 4.8 for
the biquadratic case, and Table 4.9 for the bicubic case.

p Hier. Trunc. LR H/T H/LR
2 116366 61330 53558 190% 217%
3 304671 164039 140047 186% 218%
4 628862 356042 287594 177% 219%

Table 4.7: 2D Diagonal Refinement: Number of non-zero elements in the stiffness matrices at the
last refinement iteration of the bivariate diagonal refinement. The last two columns present
the ratios, rounded to the nearest percent point.

64 4.2 Quantitative analysis

Stiffness Matrix

Iter. 0 1 2 3 4
Hier. 83.6793 139.708 169.439 225.641 318.5089
Trunc. 83.6793 97.8692 173.2625 371.711 772.2455
LR 83.6793 95.6921 163.0508 346.4521 716.4894

Mass Matrix

Iter. 0 1 2 3 4
Hier. 2.241e+03 8.783e+03 3.511e+04 1.404e+05 5.617e+05
Trunc. 2.241e+03 8.187e+03 3.275e+04 1.310e+05 5.240e+05
LR 2.241e+03 8.161e+03 3.264e+04 1.306e+05 5.223e+05

Table 4.8: 2D Diagonal Refinement: The conditioning numbers for p = 2 in the various iterations
of the diagonal refinement. Stiffness Matrix above, Mass Matrix below.

Stiffness Matrix

Iter. 0 1 2 3 4
Hier. 2.323e+04 3.661e+04 4.366e+04 4.588e+04 4.675e+04
Trunc. 2.323e+04 2.666e+04 2.840e+04 2.927e+04 2.977e+04
LR 2.323e+04 2.522e+04 2.569e+04 2.581e+04 2.585e+04

Mass Matrix

Iter. 0 1 2 3 4
Hier. 1.975e+06 7.885e+06 3.160e+07 1.264e+08 5.057e+08
Trunc. 1.975e+06 6.876e+06 2.750e+07 1.100e+08 4.400e+08
LR 1.975e+06 6.753e+06 2.701e+07 1.080e+08 4.321e+08

Table 4.9: 2D Diagonal Refinement: The conditioning numbers for p = 3 in the various iterations
of the diagonal refinement. Stiffness Matrix above, Mass Matrix below.

Spectrum Figures 4.18 and 4.19 present the spectrum of the stiffness and mass matrices
in the cases p = 2 and 4, respectively. As before, the magnitude of the smallest eigenvalues
is the same for all three types of basis functions considered. The value of the conditioning
numbers depends therefore from the values of the highest eigenvalues, which is typically
greater for the Classical Hierarchical functions.

4.2 Quantitative analysis 65

0 1 2 3 4
0

100

200

300

400

500

600

700

800

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Stiffness Matrix, P=2

Hier.
Truncated
LR

0 1 2 3 4
0

1

2

3

4

5

6
x 10

5

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Mass Matrix, P=2

Hier.
Truncated
LR

0 1 2 3 4
2

2.5

3

3.5

4

4.5

5
x 10

4

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Stiffness Matrix, P=3

Hier.
Truncated
LR

0 1 2 3 4
0

1

2

3

4

5

6
x 10

8

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Mass Matrix, P=3

Hier.
Truncated
LR

0 1 2 3 4
2.5

3

3.5

4

4.5

5

5.5
x 10

7

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Stiffness Matrix, P=4

Hier.
Truncated
LR

0 1 2 3 4
0

2

4

6

8

10

12

14
x 10

11

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Mass Matrix, P=4

Hier.
Truncated
LR

Figure 4.17: 2D Diagonal Refinement: Graphs of the conditioning numbers of stiffness matrices (left
column) and mass matrices (right column) for the bivariate diagonal refinement. p = 2
(top), p = 3 (middle), and p = 4 (bottom).

66 4.2 Quantitative analysis

0 0.5 1 1.5 2 2.5 3

LR

Truncated

Hier.

eig(A), P=2
0 0.002 0.004 0.006 0.008 0.01

LR

Truncated

Hier.

eig(M), P=2

10
−2

10
−1

10
0

LR

Truncated

Hier.

eig(A), P=2
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2

LR

Truncated

Hier.

eig(M), P=2

Figure 4.18: 2D Diagonal Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass
Matrix (right) for p = 2 at the last iteration of the diagonal refinement. The plots are
shown on a linear scale (top) and logarithmic scale (bottom). The zero eigenvalue of the
Stiffness Matrix is omitted.

0 0.5 1 1.5

LR

Truncated

Hier.

eig(A), P=4
0 0.002 0.004 0.006 0.008 0.01

LR

Truncated

Hier.

eig(M), P=4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

LR

Truncated

Hier.

eig(A), P=4
10

−14
10

−12
10

−10
10

−8
10

−6
10

−4
10

−2

LR

Truncated

Hier.

eig(M), P=4

Figure 4.19: 2D Diagonal Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass
Matrix (right) for p = 4 at the last iteration of the diagonal refinement. The plots are
shown on a linear scale (top) and logarithmic scale (bottom). The zero eigenvalue of the
Stiffness Matrix is omitted.

5

Future work

One of the main drawbacks of the Classical Hierarchical basis described in Definition
(7) is that it does not preserve partition of unity. This is a very important property of the
basis functions used in Isogeometric Analysis as it is linked to the stability of the basis,
seen as a relationship between a spline function f and its control points, [12]; moreover,
it is also needed for consistency i.e. the need to be able to represent a constant in order
to cover the nil space of the corresponding bilinear operator (the same as rigid body
translations in elasticity). Due to this, it is normally preferred to use basis functions that
maintain partition of unity at all stages of refinement.

As briefly stated in Chapter 3, one can easily recover the partition of unity of the
Hierarchical basis by weighting the functions appropriately through the use of Equation
(3.5). Doing this, however, led to some peculiar results in our experiments. Figure 5.1
shows the same conditioning numbers as in the last row of Figure 4.7, the 1D cases with
central refinement where we have included also the data of the Weighted Hierarchical
basis. Figure 5.2 shows the corresponding spectrum for this case. Please note that the
line corresponding to the Classical Hierarchical basis is now light-blue, while the deep-blue
is the Weighted Hierarchical basis.

For a 2D example, Figure 5.3 shows the same data of the bivariate central refinement
presented in Figure 4.12 for the case p = 3. We have included also the data for the
weighted Hierarchical basis.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
x 10

6

iterations

C
on

di
tio

ni
ng

 N
um

be
r

Stiffness Matrix, P=5

w. Hier.
Truncated
LR
Hier.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

9

iterations

C
on

di
tio

ni
ng

 N
um

be
r

Mass Matrix, P=5

w. Hier.
Truncated
LR
Hier.

Figure 5.1: The same plot as in the last row of Figure 4.7, the 1D example with centre refinement. Here
we included also the data for the Weighted Hierarchical basis, which preserves partition of
unity.

As we can see, the Weighted Hierarchical basis has a drastically different behaviour

67

68

0 10 20 30 40 50

Hier.

LR

Truncated

w. Hier.

eig(A), P=5
0 0.2 0.4 0.6 0.8 1 1.2

Hier.

LR

Truncated

w. Hier.

eig(M), P=5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Hier.

LR

Truncated

w. Hier.

eig(A), P=5
10

−9
10

−8
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

0

Hier.

LR

Truncated

w. Hier.

eig(A), P=5

Figure 5.2: The spectrum corresponding to the 1D centre refinement with p = 5 previously presented
in Figure 4.7. We have included also the spectrum for the Weighted Hierarchical basis.

respect to any of the other spline families considered in this paper, and more research is
likely needed.

Another point we would like to investigate more is the strange behaviour we encoun-
tered in the numerical examples presented in Section 4 for the polynomial degrees p = 2.
In almost every case, the pattern which emerged from the experiments is that Truncated
Hierarchical and LR B-splines basis are very similar in performance and in particular the
general trend for the conditioning number of a matrix X seems to be

cond(XLR) 6 cond(XT) < cond(XH)

except for the p = 2 cases. We currently do not have a good argument as to why this is
happening; a more careful analysis is probably required.

69

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18
x 10

5

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Stiffness Matrix, P=3

w. Hier.
Truncated
LR
Hier.

0 1 2 3 4 5
0

2

4

6

8

10

12
x 10

9

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Mass Matrix, P=3

w. Hier.
Truncated
LR
Hier.

0 1 2 3 4 5
10

4

10
5

10
6

10
7

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Stiffness Matrix, P=3

w. Hier.
Truncated
LR
Hier.

0 1 2 3 4 5
10

6

10
7

10
8

10
9

10
10

10
11

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Mass Matrix, P=3

w. Hier.
Truncated
LR
Hier.

Figure 5.3: Conditioning numbers for the 2D central refinement example presented in Figure 4.12, case
p = 3. We have included also the data for the Weighted Hierarchical Basis.

6

Conclusions

In this paper we have analysed the Classical Hierarchical, Truncated Hierarchical
and LR B-splines basis on both a qualitative (more theoretical) and quantitative (more
numerical) level. Regarding the qualitative differences we believe that the most important
points are:

• The Classical Hierarchical basis does not constitute a partition of unity;

• For some meshes, the basis generated by the Hierarchical B-splines and the struc-
tured mesh LR B-spline refinement does indeed produce different function spaces;

• The Hierarchical and LR B-splines frameworks have different admissible meshes;

• While LR B-splines allow for more flexibility regarding the choice of refinement
strategies, a formal proof for the linear independence of the resulting set of functions
is still lacking.

The difference in the functions spaces is perhaps the most important point. Since both
hierarchal and Truncated B-splines span the same space they are both resulting in the
same discrete finite element solution, meaning that the differences in the basis functions
are going to affect only the number of operations required to get to a certain precision.
For LR B-splines versus Hierarchical B-splines, the situation becomes a bit more nuanced
as the discrete solution itself can be different.

For the quantitative case we presented several numerical examples which have shown
that there is a substantial difference between the three spline families especially for what
concerns the sparsity pattern of the matrices. The Classical Hierarchical basis always
produced the densest matrices, while those produced by the Truncated Hierarchical and
LR B-splines were much more sparse. In particular, it seems that when the refinement
region affects only a small portion of the mesh, the Truncated basis yields the best results
regarding sparsity; if instead the refinement covers a large portion of the mesh, then the
LR B-splines basis produces the most sparse matrices.

When it comes to the conditioning numbers, no clear and defined pattern emerged,
and the results seemed very dependant on several factors: the dimension of the problem
(1D vs 2D), the matrix considered (Stiffness Matrix vs Mass Matrix) and the polynomial
degree. In particular, in the univariate setting we had, for the stiffness matrix,

cond(AT) < cond(ALR) < cond(AH)

72

while for the mass matrix we had

cond(MLR) < cond(MT) < cond(MH)

In the bivariate setting things are not so definite, but with the exclusion of the
quadratic cases we had

cond(ALR) < cond(AT) < cond(AH)

for the stiffness matrix, and

cond(MLR) ≈ cond(MT) < cond(MH)

for the mass matrix
On a general level we can say that the Classical Hierarchical basis performed worse

than the Truncated or the LR one, while these last two frameworks yielded very similar
results. Therefore, we conclude that for any application where sparsity or conditioning
numbers are important quantities, one of these two refinement schemes are to be preferred.

Bibliography

[1] Y. Bazilevs, L. Beirao de Veiga, J.A. Cottrell, T.J.R. Hughes, and G. Sangalli. Isoge-
ometric analysis: approximation, stability and error estimates for h-refined meshes.
Mathematical Models and Methods in Applied Sciences, 16:1031–1090, 2006.

[2] P. B. Bornemann and F. Cirak. A subdivision-based implementation of the hierar-
chical b-spline finite element method. Computer Methods in Applied Mechanics and
Engineering, 2012.

[3] S. Brenner and L. R. Scott. The mathematical theory of finite element methods.
Springer, 2005.

[4] J.A. Cottrell, T.J.R. Hughes, and Y. Bazilevs. Isogeometric Analysis, Toward Inte-
gration of CAD and FEA. Wiley, 2009.

[5] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices.
In Proceedings of the 1969 24th National Conference, ACM ’69, pages 157–172, New
York, NY, USA, 1969. ACM.

[6] T. Dokken, T. Lyche, and K.F. Pettersen. Polynomial splines over locally refined
box-partitions. Comput. Aided Geom. Des., 30(3):331–356, March 2013.

[7] M. R. Dörfel, B. Jüttler, and B. Simeon. Adaptive isogeometric analysis by local h-
refinement with T-splines. Computer Methods in Applied Mechanics and Engineering,
199(5-8):264 – 275, 2010.

[8] G. Farin. Curves and Surfaces for CAGD. Academic Press, 1990.

[9] D.R. Forsey and R.H. Bartels. Hierarchical B-spline refinement. ACM SIGGRAPH
Computer Graphics, 22(4):205–212, 1988.

[10] K.P.S. Gahalaut and S.K. Tomar. Condition number estimates for matrices arising
in the isogeometric discretizations. Technical Report 23, RICAM, 2012.

[11] C. Giannelli, B. Jüttler, and H. Speleers. THB-splines: The truncated basis for
hierarchical splines. Computer Aided Geometric Design, 29(7):485 – 498, 2012.

[12] C. Giannelli, B. Jüttler, and H. Speleers. Strongly stable bases for adaptively refined
multilevel spline spaces. Advances in Computational Mathematics, 40:459–490, 2014.

[13] T.J.R. Hughes. The finite element method: linear static and dynamic finite element
analysis. Prentice-hall, 1987.

73

74 BIBLIOGRAPHY

[14] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite ele-
ments, NURBS, exact geometry and mesh refinement. Computer Methods in Applied
Mechanics and Engineering, 194(39-41):4135–4195, 2005.

[15] K. J. Johannessen, T. Kvamsdal, and T. Dokken. Isogeometric analysis using LR
B-splines. Computer Methods in Applied Mechanics and Engineering, 269:471–514,
2014.

[16] Claes Johnson. Numerical solutions of partial differential equations by the finite
element method. Dover Publications, 2009.

[17] G. Kiss, C. Giannelli, and B. Jüttler. Algorithms and data structures for truncated
hierarchical bsplines. Technical Report 14, Johannes Kepler University, 2012.

[18] R. Kraft. Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwendun-
gen. PhD thesis, Stuttgart, 1998.

[19] E. Kreyszig. Introductory Functional Analysis with Applications. Wiley, 1989.

[20] B. Mourrain. On the dimension of spline spaces on planar T-subdivisions. Arxiv
preprint arXiv:1011.1752, November 2010.

[21] Alfio Quarteroni. Numerical models for differential problems. Springer, 2008.

[22] F. Remonato. Analisi isogeometrica per equazioni alle derivate parziali ellittiche.
Bachelor thesis, Universitá degli Studi di Milano, 2012.

[23] D. Schillinger, L. Dedé, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, and T.J.R.
Hughes. An isogeometric design-through-analysis methodology based on adaptive
hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD
surfaces. Computer Methods in Applied Mechanics and Engineering, 249 - 252(0):116
– 150, 2012.

[24] D. Schillinger and E. Rank. An unfitted hp-adaptive finite element method based on
hierarchical B-splines for interface problems of complex geometry. Computer Methods
in Applied Mechanics and Engineering, 200(47 - 48):3358 – 3380, 2011.

[25] M. A. Scott, X. Li, T. W. Sederberg, and T. J. R. Hughes. Local refinement of
analysis-suitable T-splines. Computer Methods in Applied Mechanics and Engineer-
ing, 213:206–222, 2012.

[26] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, and T. Ly-
che. T-spline simplification and local refinement. ACM Transactions on Graphics,
23(3):276–283, 2004.

[27] T.W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-NURCCs.
ACM Transactions on Graphics, 22(3):477–484, 2003.

[28] A.V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon. A hierarchical approach to
adaptive local refinement in isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering, 200(49-52):3554–3567, 2011.

[29] P. Wang, J. Xu, J. Deng, and F. Chen. Adaptive isogeometric analysis using rational
PHT-splines. Computer-Aided Design, 43:1438–1448, 2011.

BIBLIOGRAPHY 75

[30] J. Warren and H. Weimer. Subdivision Methods for Geometric Design. Morgan
Kaufmann Publishers, 2002.

