Local initiation conditions for water autoionization
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The pH of liquid water is determined by the infrequent process in
which water molecules split into short-lived hydroxide and hydro-
nium ions. This reaction is difficult to probe experimentally and chal-
lenging to simulate. One of the open questions is whether the local
water structure around a slightly stretched OH bond is actually initi-
ating the eventual breakage of this bond or that this event is driven
by a global electric field fluctuation. Here, we have investigated the
self-ionization of water at room temperature by rare event ab initio
molecular dynamics and obtained autoionization rates and activation
energies in good agreement with experiments. Based on the analy-
sis of thousands of molecular trajectories, we identified a couple of
local order parameters and show that if a bond stretch occurs when
all these parameters are around their ideal range, the chance for the
first dissociation step (double proton jump) increases from 107 till
0.4. Understanding these initiation triggers might ultimately allow
the steering of chemical reactions.

autoionization | water | rare events | machine learning

mong all possible chemical reactions that occur in wa-

ter, the most fundamental is the water dissociation re-
action (1) which is of major importance in many areas of
chemistry and biology (2). Water plays an important role as
a universal solvent for a wide variety of chemical processes
and can act both as an acid and as a base. In aqueous so-
lution, water will self ionize and form hydroxide (OH™) and
hydronium (H3O%) ions which take on Eigen or Zundel-like
structures (2-6). Experiments show that the mean lifetime
for an individual molecule before undergoing autoionization
is about 11 hours (7, 8).

The autoionization event has not been directly probed by
experiments and the dissociation rate is obtained using the
water dissociation equilibrium constant and the rate for the
much faster recombination reaction, see e.g. (7, 8). The ex-
perimental challenges make the autoionization event a perti-
nent target for computer simulations for which previous con-
strained ab initio simulations have given important informa-
tion about the mechanism (9-11). However, the use of con-
straints leads to a loss of the spontaneous dynamics of the
system and the selection of a reaction coordinate that accu-
rately measures the progress of the reaction is challenging.
These limitations can be avoided by path sampling methods
such as transition path sampling (TPS) (12) or replica ex-
change transition interface sampling (RETIS) (13, 14) which
are specifically designed for sampling rare events without al-
tering the dynamics while less influenced by the choice of the
order parameter (15). Geissler et al. (16) applied TPS with
ab initio molecular dynamics (MD) to simulate just 10 un-
correlated autoionization events and demonstrated that the
mechanism involves transfer of protons along a hydrogen bond
wire with concomitant breaking of the wire. In their work, lo-
cal solvent properties (e.g. ion coordination numbers and the
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presence of specific hydrogen bonds) were used to interpret
the destabilization that leads to ionization. The absence of
clear visually observable correlations lead to the conclusion
that the destabilization is caused by rare electric field fluc-
tuations which arises primarily from long-range electrostatic
interactions, and thus, that local order parameters is not suit-
able to describe the event. Hassanali et al. (17) studied the
reverse recombination reaction (i.e. neutralization of ionized
water molecules) with standard ab initio MD and reported
that this event takes place by a collective compression of the
water wire bridging the ions, followed by a triple concerted
proton jump. The OH™ ion which is neutralized remains in
a hyper-coordinated state and Hassanali et al. hypothesized
that it could serve, together with the compression of the wire,
as a nucleation site for autoionization. This view opposes the
statement of Geissler et al. (16) that the dissociation event is
primarily triggered by non-local structural fluctuations. We
note that concerted proton transfers and collective compres-
sion of water wires have also been observed for the recombi-
nation of a weak base in water (18).

Both these studies give important information about the
autoionization mechanism, though they do not unambigu-
ously reveal the conditions that need to accompany a bond
stretch fluctuation in order to initiate the reaction. In this
work, we aim to tackle this ambiguity and quantitatively iden-
tify initiation conditions for water autoionization. Simulating
the dissociation events may not be sufficient as the apparent
initiation conditions observed in trajectories that lead to dis-
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sociation may also be present in trajectories with an initial
bond stretch but still fail to dissociate. Also non-reactive
or “almost reactive” trajectories contain important informa-
tion as these allow for identification of effective initiation con-
ditions that really matter; those that discriminate between
reactive and nonreactive trajectories. To collect this informa-
tion, we applied the RETIS method and harvested reactive
and non-reactive trajectories which we analyzed using the re-
cently developed predictive power method (19) and we built
a predictive machine learning model (20). This allowed us to
quantitatively examine the importance of local order parame-
ters and initiation conditions for water autoionization. Based
on this analysis we will identify important initiation triggers
and calculate the full rate of dissociation.

Results and discussion

The autoionization event was investigated using ab initio
RETIS simulations as described in the methods section. For
the RETIS simulations, we used a relatively simple geometric
distance order parameter, A, as illustrated in Fig. 1: When
the system consists of only H2O species, A is the largest cova-
lent O—H bond distance, and when the system contains OH™
and H3O™ species, ) is taken as the shortest distance between
the oxygen in OH™ and the hydrogen atoms in H3O". In the
following, we will refer to the oxygen atom used for the order
parameter as O*. The type of species (OH™, HoO or H30™)
were identified by allocating to each hydrogen a single bond
connecting it to the closest oxygen. We note that the def-
inition of the order parameter does not require a threshold
for defining a chemical bond nor does it constrain the order
parameter to specific water molecules for the duration of the
simulation. This means that we compute the rate of dissoci-
ation of any water molecule in the system instead of a single
targeted O—H bond or water molecule.

From our RETIS simulations, the water dissociation rate
constant, kp, can be obtained as the product of a flux, fa,
and a (conditional) probability, Pa(An]|Xo),

kp = fa x Pa(An|Xo). [1]

Here, Ao and An are interfaces defining the initial (A < Ag)
and final (A > An) states and Pa(An|Xo) is the probabil-
ity of reaching the final state before (possibly) re-entering
the initial state, given that the initial interface Ao has been
crossed. The flux, fa, is a measure of the frequency of
crossings with Ag. Since we consider the dissociation of any
water molecule in our system, we have normalized fa by
the number of water molecules present. Typically, for rare
events, the crossing probability is very small and in practice,
Pa(An]|Ao) is calculated by first positioning several more inter-
faces Ao < A1 < ... < Ay between the initial and final state.
The overall crossing probability is then obtained as a product
of several (history dependent) conditional probabilities (14).
The conditional probabilities are calculated in a separate path
ensemble simulation where the [i*] path ensemble defines the
collection of paths crossing A;. The number and location of
the interfaces alter the efficiency of the method, but not the
results.

In the present case, we placed the final interface beyond
the maximum distance obtainable in our system. All trajec-
tories were thus propagated until the system contained only
H2O species again. Separated ions may still recombine fast

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

(within a few femtoseconds) even if the separation is large (16)
and this observation was confirmed in our analysis (see SI
Appendix, Fig. S1). To better identify and distinguish the
metastable ionized states, we have used path re-weighting (21)
to project the crossing probability on an alternative order pa-
rameter, \’, which equals the trajectory length (in femtosec-
onds).

In Fig. 1, we show the calculated crossing probability from
our simulations as a function of the order parameter. In prin-
ciple, there are two potential mechanisms which lead to an
increase of the reaction coordinate A after the first proton
jump. The ionic species can separate further by another pro-
ton jump, the so-called Grotthuss mechanism, reassigning the
hydronium- or hydroxide-ion to another oxygen and causing
a sudden discontinuous increase in the reaction coordinate. A
second possible mechanism keeps the first ionic species intact
and let them move away from each other by diffusion, yield-
ing a more gradual increase of the reaction coordinate. Based
on the completely flat intermediate plateau region between
1.5 and 3.2 A, we can conclude that only the first mecha-
nism is effective. For A > 3 A, we consider )\’ as the order
parameter and we have used a threshold of A > 1 ps as a
criterion to identify a stable dissociation event. This choice
is rather arbitrary since there is not a clear separation of
timescales for the reverse recombination reaction which would
result into another flat plateau region of the crossing proba-
bility. With a threshold of 1 ps, the crossing probability is
Pa =4.0 x 107°. Combined with the initial flux, calculated
to be fa = 2.9 x 1073 fs~! in our simulations, the result-
ing dissociation constant is kp = fa X Pa = 1.1 x 1072 g7 L.
An alternative rate constant not requiring any time thresh-
old can be defined by counting the trajectories that undergo
a hydrogen swap, i.e. in the last frame some of the water
molecules have swapped their protons. The rationale behind
this definition is that the proton swap must imply a signif-
icant reorganization of the hydrogen bond network so that
the reverse reaction can be considered as an independent re-
combination reaction. Vice versa, the forward reaction has
established a quasi-stable state since it is not followed-up by
a correlated reverse reaction. This definition yields a rate of
kp =0.16 s

Comparing with experimentally determined dissociation
constants at 25°C (kp = 2.5 x 107° s7' (7) and kp =
2.04 x 1075 57! (8)) we overestimate the rate constant by
a factor 500 (though the simulated rate will drop and gets
closer to the experimental rate if a larger threshold is chosen).
Considering all factors that play a role in the accuracy (sta-
tistical error, functional, small system size, purely classical
treatment of protons, the time threshold value) the deviation
with experiments is satisfactory and comparable to other den-
sity functional theory studies. Depending on the functionals
considered in the ab initio calculation, energy barriers may
be in error by 10-20 kJ/mol (22) which at room temperature
would already correspond to a factor 55-3000 difference be-
tween experimental and theoretical rate constants. Still, den-
sity functional theory generally manages to reproduce trends
and mechanistic information in reasonable agreement with ex-
periments (23).

We have also calculated the average energy of the gener-
ated trajectories as shown as a function of the order parameter
in Fig. 1. The energy is expected to converge to the activation
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energy as can be derived from the temperature derivative of
the rate constant (24, 25). We note that this activation energy
gives a more direct comparison to experiments than free en-
ergy barriers which depend on the choice of order parameter.
The activation energy obtained from the average energy of
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Fig. 1. The order parameter and the probability for water autoionization. (Panel A
and B) Definition of the order parameter (X, dashed line), taken as the largest co-
valent O—H distance in the system when no ionic species are present (panel A) or
as the shortest distance between the OH™ oxygen atom and the hydrogen atoms in
H30% when ionic species are present (panel B). A hydrogen bond wire with 4 mem-
bers is shown with red (oxygen) and white (hydrogen) spheres and the distances
|OH|1, |OH|2, |OH|3 are also indicated. These distances are used to investigate
the possible concerted motion of hydrogen atoms along the wire. (Panel C) The
crossing probability (P4) and average energy of trajectories ((E)) as a function
of the order parameter. The (black) dashed line is calculated using an alternative
definition of the order parameter (\’) where the trajectory length (in fs) defines the
order parameter for A\ > 3 A. The horizontal dot-dashed line is the crossing proba-
bility (4.0 x 10_15) obtained for long paths (A" > 1 ps). The activation energy is
equal to the plateau value of the average energy which approaches 17.8 kcal/mol.
The shaded area (1.15 < A < 2.0) is the domain used for the predictive power
analysis.

the accepted paths is approximately 17.8 kcal/mol. For com-
parison, an Arrhenius plot of the experimental data of Natzle
and Moore (8) results in an activation energy of approximately
17.3 kcal/mol while Eigen and Maeyer reported an activation
energy between 15.5-16.5 kcal/mol (7). The deviation with
our result is lower than the typical error margin mentioned
above and the fact that the experimental activation barriers
are lower than our simulation result, despite having lower rate
constants, is rather remarkable. Since experimental data on
this topic are at least 3 decades old, we hope that our find-
ing will encourage future experimental investigations on the
dissociation reaction.

Path sampling methods generate reactive (and nonreac-
tive) trajectories which can be used to discover possible mech-
anisms and initiation conditions. In order to characterize
these conditions, we have considered additional collective vari-
ables, which we label £ = (£1,&2,...). In principle, these &;’s
can be functions of all positions and momenta in the system,
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and they do not necessarily have simple physical interpreta-
tions. Since the ability to form hydrogen bonds is one of the
characteristic features of water (26) and since previous com-
putational studies have demonstrated the relevance of the hy-
drogen bond wire connecting the ionized species (16, 17), we
have focused on a set of relatively simple collective variables
which quantify the hydrogen bond network and the distortion
from tetrahedral geometry.

The first collective variable we consider is the length of the
hydrogen bond wire bridging the ion species. Our aim is to
predict the outcome of initiated trajectories and in particular
the initiation conditions for reactive events. Thus, we cannot
define the hydrogen bond wires as connecting the ionic species,
since this is one of the outcomes we wish to predict. For a
single trajectory, we define the hydrogen bond wire as the
shortest wire containing the O*-specie and i — 1 other water
species at the first point in time when X is greater than a
given threshold value, s = 1.15 A. Typically, this threshold
is reached within 3-6 fs in our trajectories. This defines a
wire containing ¢ water species which length, w;, is obtained
as the sum of the O—O distances of consecutive members.

In addition, we have considered the following 4 collective
variables which describe the local structure surrounding the
O*-specie: (i) The number of hydrogen bonds accepted, na,
(ii) and donated, na, by the water specie containing O*, (iii)
the tetrahedral order parameter, ¢, obtained using the angles
defined by O™ and its four nearest oxygen atoms (27, 28) (by
the definition ¢ = 1 for a perfect tetrahedral structure and
q # 1 otherwise), and (iv) an angle order parameter, gcos,
defined as the smallest of the cosine of the two internal angles
in the wire. We refer to the methods section for additional
information on these collective variables.

After defining the extra £’s, we analyzed the trajectories
using the predictive power method (19). This method begins
by classifying the trajectories as reactive or nonreactive based
on two thresholds A" and \° defined such that A" > \¢ > ).
A trajectory is considered reactive if it reaches the specified
A", otherwise it is considered nonreactive. At the first crossing
point with A°, we record the &’s and form two distributions
using the reactive/nonreactive classification: " (¢); the
fraction of \°-passing trajectories that cross A\ at a point &
and reach A", and uAC’Ar(f); the fraction of \°-passing trajec-
tories that cross A\ at a point & but fail to reach \". These
two distributions give information on the relation between the
additional order parameters and the reactivity. For instance,
if uxc’kr(f) = 0, it could be that £ is inaccessible, but if we
can cross A° at £, the trajectory will be reactive. To quantify
the importance of the different £’s, we calculate the predictive
ability, 7'2‘6’Ar, defined as, (19)

TACN 1 / A OuN N (€
A PaN ) | PN (€) (€

such that 1 > ’7‘2C’>‘r > Pa(AT|X°). If the collective variables
do not correlate with reactivity the lower limit is attained but
if the &’s are relevant for the reaction, Tj‘c’kr > Pa(AT|X°).
We use the ratio TXC’AI/PA (A']A®) > 1 to measure how much
the predictive ability is increased when considering the extra
&’s, compared to using the crossing probability alone. We
note that the definition in Eq. (2) shows that if the overlap
of the two distributions is small, then the predictive ability
increases.

¢, [2]
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We first investigated the lengths of hydrogen bond wires
containing 3, 4 and 5 water molecules. Comparing the predic-
tive abilities for these collective variables (respectively, ws, wa,
ws) we find that ws and ws are more correlated with reactiv-
ity and that w4 is more relevant for larger A™ (see SI Appendix,
Fig. S2). Thus, we will in the following focus on wires contain-
ing 4 water molecules. For the water wires, we observe that
when the ionic species are separated by at least two water
molecules, the ionic state survives for a longer time compared
to cases where they are separated by just one water molecule.
This implies that (at least) three proton transfer events have
occurred. We have monitored the distances of the initially co-
valent O—H bonds, and show these for the first (JOH]|1 ), second
(JOHJ2) and third (|OH|3) transferred proton in Fig. 2. As can
be expected from Grotthuss mechanism (29, 30), the initial
autoionization event is followed by several proton transfers
in which the ionic species separate along the wire. Figure 2
shows that this can happen both in a concerted and stepwise
way: the transfer of the first and second proton occurs almost
exclusively in a concerted way, while the transfer of the third
proton (if it occurs) can happen stepwise or concertedly. This
is also reflected in the waiting time between these events (see
SI Appendix, Fig. S3): the waiting time distribution between
the second and third proton transfer is broader compared to
the first and second transfer. To investigate the stability of
the wires, we have also calculated the hydrogen bond wire in
time-reversed trajectories (see SI Appendix, Fig. S4). We find
that trajectories are indeed starting and ending with a con-
tracted wire (w4 < 7.6 A) as reported by Hassanali et al. (17),
but at the end these wires do not necessarily contain the same
oxygen atoms. This might occur due to an actual breakage of
the hydrogen bond wire or by a lesser disruption (for example
by a shift of the selection of 4 consecutive oxygens within a
5-membered wire). The majority of the longer trajectories re-
form via another wire, but there is still a significant number
of long trajectories (> 1 ps) for which the recombination is
exactly the same as the dissociation path. This contradicts
the hypothesis (16) that a breakage of the wire is a necessary
condition to reach a metastable state. Also, visual inspection
shows that relatively long trajectories exist in which the hy-
drogen bond wire remains intact except for some very short
on/off fluctuations in the hydrogen bonds. We find the above
mentioned hypothesis therefore difficult to defend. Reversely,
we can also examine whether an actual breakage always leads
to a long-lived metastable state. For this we adapt again the
assumption that all trajectories with a hydrogen swap neces-
sarily imply an indisputable breakage of the hydrogen bond
wire. SI Appendix, Fig. S5, shows that trajectories with a
proton swap are on average longer, but can still be relatively
short (35 fs).

Comparing the additional collective variables (see SI Ap-
pendix, Figs. S6 and S7) we find that ng is less relevant than
the other variables and we will not consider it further. The
other collective variables are more correlated with reactivity
and in Fig. 3-panel A, we show the predictive ability for some
of their combinations. In Fig. 3-panel B we show 7—2‘6’” as
function of A < 2 A for A° = 1.16 A compared to the crossing
probability using several combinations of the collective vari-
ables. These figure shows that we can increase the predictive
ability by a factor 107 compared to the crossing probability.
‘We note that since the crossing probability is small in this
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case, with a 7'2‘L”\r ~ 0.4 we cannot perfectly predict the out-
come. This indicates that there are other collective variables
important for the description, possibly even non-local ones,
as suggested by Geissler et al. (16). Also, we should stress
that here we are focusing only on the first concerted-jump
step of the reaction in which the order parameter increases
from 1.16 A to 2.0 A. As is clear from Fig. 1-panel C the vast
majority of trajectories reaching A = 2.0 A will not lead to
long-lived metastable states. Predicting this from the very
first snapshot seems yet a step too far since it depends on
collisions between water molecules after many MD steps far
away from the initially stretched OH bond.

Inspecting the initiation conditions in more detail, we in-
vestigate the reactive and nonreactive distributions A €3}
and v (€) in Fig. 4 for A° = 1.16 A and A" = 2.0 A. Here,
we examine all dissociation events, even the ones that recom-
bine quickly and show the distributions for §& = (w4, na) in
Fig. 4-panel A (see SI Appendix, Fig. S8 for the distributions
for £ = (w4,q) and & = (w4, geos)). Along the wa coordinate
we observe a clear separation of the two distributions which
indicates that trajectories crossing \° = 1.16 A have a larger
probability of being reactive for shorter wires (smaller wy).
This supports the hypothesis of a “compressed” wire as an
important condition for autoionization, as first suggested by
Hassanali et al. (17). Along the n. coordinate we observe
a higher probability for reactivity for wires in which O* is
hyper-coordinated. Still, the chance of not being reactive is
larger at any point (w4, n,) in this figure (r***" (¢) would not
be visible if it hadn’t been normalized). For example if i)
7.15 < w4 < 7.6 and at the same time n, = 3 the probability
for a reactive event is 3.6-10~°, which is small but still a factor
58 larger than the chance to be reactive from a random point
at A°. In a more extreme case, if ii) ws < 7.3 and simulta-
neously n, = 4, the chance increases to 0.15. The predictive
ability 7—2 SA provides a weighted average of these chances
in which the weights are proportional to the relevance (19);
since of all reactive trajectories 45 % of the trajectories cross
A€ in the region i) and only 0.6 % in the ii), the latter will
have 75 times lower weight.

If we consider the g coordinate we observe that PN s
shifted towards lower ¢ values compared to u)‘c’”, which indi-
cates that a distortion from a tetrahedral arrangement around
the dissociating water specie may also initiate the event. This
finding is somewhat surprising as in some other aqueous phase
chemical reactions the opposite effect was found (31). Similar
conclusions can be drawn for the distribution of £ = (w4, geos)-
Here, there is a peak along the ¢cos coordinate for the reac-
tive distribution closer to a linear arrangement of the water
molecules. In Fig. 4-panel B we show representative snapshot,
obtained early (after 3 fs) in a reactive trajectory. Overall the
results shown in Fig. 3 report that a compression of the water
wire (as measured by w4) and hyper-coordination (measured
by na) or distortion (measured by g and gcos) are necessary
initiation conditions for autoionization. However, these are
not sufficient conditions as shown by the values of TAA A in
Fig. 3-panel B: still 60% of the trajectories starting off within
the ideal £ parameter range fail to establish a concerted pro-
ton jump.

Machine learning (ML) applied to path sampling data (33,
34) is a promising approach to find important collective vari-
ables that can easily be missed by human intuition. In order
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Using all trajectories in the final path ensemble, densities for |OH|-|OH|2 and |OH|;

-|OH|3 has been obtained (leftmost column). The right-most column show the density

when considering trajectories with a length ¢pam > 60 fs. All trajectories were collected from the final path ensemble.

to explore this possibility, we built ML models for predicting
the outcome of trajectories given the state of the water system
early in the trajectories. We focus on the same range as in the
predictive power analyis and we use the state of the system,
when a A > 1.15 A is first attained, to predict the outcome.
We utilized several ML techniques in which every odd path
ensemble was included in the calibration and the even path
ensembles were used for the test set. An alternative split in
which the data within each path ensemble were evenly divided
in two gave similar results. Moreover, as heavily skewed dis-
tributions are difficult to treat with ML, we further omitted
the reweighting of the datasets with the statistical weights
of the corresponding path ensembles. Yet, we applied the
ML techniques as a qualitative approach to find new parame-
ters that could be tested quantitatively within the predictive
power method (19).

In addition, to avoid a potential risk of over-interpretation
we opted to restrict the complexity of the ML decision pro-
cess and imposed a maximum of 4 order parameters when
computing ﬁc’)‘r. For instance, excellent predictive perfor-
mances (> 90%) were obtained using the ensemble based gra-
dient boosting machines (35, 36). However, the interpretation
of the model is problematic since an ensemble of 100-150 deep
decision trees (added in a sequence) are used. Although the
performance is improved, the chance of overfitting with ac-
cidental correlations increases. We have therefore restricted
ourselves to the single tree based decision models based on
classification and regression decision trees (20) (CART). The
restriction to 4 order parameters for the Tg‘c’)‘r function is
based on similar reasons. Adding more parameters gives more
sparse matrices representing the reaction/nonreactive distri-
butions, and, as a result, numerical integration for computing
the overlap between these distributions becomes very sensi-
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tive to the bin-size and could underestimate the overlap due
to bins being empty by insufficient statistics.

We considered 138 collective variables consisting of oxygen-
oxygen distances, oxygen-hydrogen distances for initially
bound water molecules, all angles formed by O* and its 4
closest oxygen neighbors, and the Steinhardt order parame-
ters of order 3, 4, and 6 (32) (see also the methods section
for more details). In addition, the order parameters already
considered were added. Fig. 5-A shows the resulting decision
tree. Remarkably, of all the input parameters, the w4 parame-
ter is both on the top of decision tree and the most important
variable as measured by the reduction in the classification
error attributed to each variable at each split in the decision
tree (37) (see also SI Appendix, Fig. S9). Also the tetrahedral
ordering and the number of accepted hydrogen bonds appear
in decision tree. To describe the first effect, the ML approach
prioritized the Steinhardt g4 order parameter above the sim-
ilar ¢ parameter previously used by us. Some distances that
also appear in the decision tree like das, the distance between
O* and its 25th closest oxygen, are most likely due to acciden-
tal correlations caused by the limited size of the dataset. This
is verified by inspecting the importance of this variable: das
does not appear among the 20 most important variables, (see
SI Appendix, Fig. S9) and, in fact, other similar variables
(e.g d2a) are ranked higher, albeit with low importance. A
more important and intuitively sound parameter that is sug-
gested by the ML approach is A2, the OH distance between
the oxygen closest to O* and its hydrogen with the largest
intramolecular bond. Recomputing the predictive ability us-
ing parameters from the ML tree (see Fig. 5-B) did not yield
higher performances than the combination wa, ¢, na, and gcos,
but should be conceived as equally good considering statisti-
cal uncertainties.
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Fig. 3. Increasing the predictive power for water autoionization by considering additional collective variables. (Panel A) The predictive power (ch’*r[f]) relative to the
crossing probability (P 4 (A"|A°)) using additional collective variables: hydrogen bond wire length (€ = wa4), the orientation order parameter (¢ = q), the angular order
parameter (§ = qcos) and the number of hydrogen bonds accepted (£ = n4) by the O’\-specie. (Panel B) The predictive power and the crossing probability as a function of
A" for \° = 1.16 A and different combinations of collective variables. Due to the threshold criterion for defining the wires (see the main text), the probability is shifted so that

Pa=1forx < 1.15A.

Conclusions

We have investigated the autoionization of water at room
temperature using an unconstrained ab initio rare event sim-
ulation method. Our simulations sample reactive events
that happen on the time scale of minutes and we have
demonstrated that autoionization can be initiated by hyper-
coordination of a stretched OH bond, compression and align-
ment of a hydrogen bond wire and distortion from a tetra-
hedral arrangement. Hence, we showed that the local order
parameters can be used to predict the self-ionization event,
though it requires a combination of several conditions.

Due to the multiple correlated factors that influence the
water autoionization, we therefore, combined our analysis
method with ML techniques which identified additional pa-
rameters not considered before, in particular the O—H stretch
of the oxygen closest to O*. Even though the ML result
did not outperform the level of predictiveness by the human
effort based on intuition, visual inspection of many molecu-
lar movies, and intensive trial-and-error approaches, the ML
approach found all previously identified parameters very ef-
ficiently and, in addition, revealed some equally important
parameters that were overlooked. We therefore believe that
ML applied to path sampling has a great potential especially
since data limitations will become less of an issue in the future
due to the further expected increase of high-performance com-
puting, a better parallelization scheme of sampling unequal
trajectory-length path ensembles, and the use of more effi-
cient Monte Carlo (MC) path generating moves (38). It would
therefore be promising to apply the same method to other
aqueous phase chemistry studies which so-far have mainly
been based on biased-dynamics (31, 39).

The fundamental understanding of reaction triggers that
can be gathered by this approach could open up new avenues
of practical applications. For instance, even if not all identi-
fied parameters correlating with reactivity will necessarily im-
ply causal correlation, it is plausible that an intelligent manip-
ulation of their equilibrium distribution via electric fields (40)
or inclusion of additives might lead to new catalytic ways to
steer reactions, and in particular water dissociation.
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Appendices. Additional results are available in the SI associ-
ated with the paper.

Materials and Methods

Simulation methods. The MD simulations required by the RETIS
algorithm (14) were performed with the Born Oppenheimer MD
capabilities of the CP2K program package (41). We used a BLYP
functional with a DZVP-MOLOPT (42) basis set and a plane-wave
cutoff of 280 Ry. The BLYP functional gives a reasonable descrip-
tion of the structure and dynamics of liquid water (43, 44) and
the absence of dispersion corrections (45) is likely of minor impor-
tance for ion-water interactions where the dominant interactions
are mainly electrostatic. However, we note that the BLYP func-
tional is known to give an over-structured description of liquid wa-
ter with a low diffusion coefficient (46). Previous studies on the
recombination mechanism for water (17, 47) and for weak bases in
water (18) has however found that the collective compression of the
hydrogen bond wire and the motion of the protons are reproduced
with different choices of the functional and basis set.

The initial system consisted of 32 water molecules placed in a
cubic simulation box of 9.85 x 9.85 x 9.85 A3. All MD simulations
were carried out under constant energy (NVE) dynamics, with a
time step of 0.5 fs and periodic boundaries.

The transition region was divided into 20 path ensembles by po-
sitioning RETIS interfaces at A = {1.07, 1.10, 1.13, 1.16, 1.19, 1.22,
1.25, 1.28, 1.31, 1.34, 1.39 1.43, 1.48, 1.52, 1.56, 1.80, 2.00, 2.50,
2.90, 3.29} A. In addition, a final interface was placed at A = oo
such that all trajectories were propagated until they reached the
pure water state again. After generating an initial path for each
path ensemble (this was done by repeatedly modifying the mo-
menta of the particles and evolving the system forward in time
until valid paths were obtained) the RETIS algorithm either at-
tempts to swap paths between different path ensembles or generate
new trajectories by the so-called shooting or the time-reversal move.
In our simulations the probability of performing a swapping move
was set to 50% while the probabilities of the two other moves were
both set to 25%. New velocities for the shooting move were drawn
from a Maxwell-Boltzmann distribution corresponding to an aver-
age temperature of 300 K.

We performed 24,000 MC moves for each path ensemble using
the RETIS algorithm. This generated between 8000 and 18,000
distinct trajectories in each path ensemble. The length of the tra-
jectories range from 13.5 fs to 1365 fs and we disregarded the first
400 trajectories in our analysis.
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Fig. 4. Initiation conditions and local collective variables. (Panel A) Reactive (r*c)‘r(g)) and nonreactive (u”*”(g)) distributions for &€ = {wa4,na} and \° = 1.16 A
and A" = 2.0 A. For visualization purposes, the depicted distributions are normalized (implying magnification of 107 for r)‘c>>‘r(§)). The top and right insets show the
one-dimensional projections of the distributions. A clear separation of the two distributions can be seen along the w4 coordinate indicating that reactive trajectories are more
compressed compared to nonreactive trajectories. In addition, the oxygen atom used in the order parameter calculation (O*) accepts on average a larger number of hydrogen
bonds in reactive trajectories, compared to nonreactive trajectories. (Panel B) lllustrative snapshot from a reactive trajectory where 0 is shown in blue. The 4 surrounding
oxygen atoms which is used for the calculation of the tetrahedral order parameter g are shown in orange. The water wire is highlighted with a yellow line (and gray transparent
spheres) and the angle parameter gqos is indicated. In this snapshot, the water wire is compressed, g exhibit deviation from a tetrahedral structure, gcos indicate that three
oxygen atoms are lining up in the wire and o* accepts three hydrogen bonds and donates one (shown with green lines).

Analysis of trajectories. Crossing probabilities along the reaction
coordinate \ were computed by matching the results of the different
path ensembles. Projection of the crossing probability along X’ was
obtained using the reweighting scheme of Rogal et al. for the path
ensembles in the transition interface sampling framework (21).

For trajectories harvested with the RETIS algorithm we have
calculated additional collective variables: the hydrogen bond wire
length (w;), the number of hydrogen bond donors (nq) and accep-
tors (na), the orientation order parameter (¢) and the angle formed
by O* and its closest oxygen neighbors (gcos). Using the first con-
figuration in each trajectory, hydrogen atoms were assigned to the
closest oxygen atom and this defined the initial HoO molecules.
Then, the hydrogen bond network was obtained for each configu-
ration in the trajectory. Hydrogen bonds were identified using the
criteria of Luzar and Chandler (48) and all (shortest) hydrogen
bond connections between all pairs of water molecules were deter-
mined using the Floyd-Warshall algorithm (49). This allowed us to
represent the hydrogen bond structure as a graph. Next the oxygen
atom (O*) used in the definition of the order parameter was identi-
fied. With no OH™ present, this is the oxygen atom for which the
covalent O-H distance is largest and when we have OH™ present in
the system this is the OH™ oxygen atom. After identifying O, we
obtained the number of hydrogen bonds accepted (n,) and donated
(na) by the water specie containing it. The relevant hydrogen bond
wire was obtained using the following criteria: (i) The wire should
contain the oxygen atom used for the order parameter (identified
as explained above) when the order parameter first crossed 1.15 A,
(ii) the wire should contain ¢ water species, (iii) the wire should
be the shortest of the wires where two criteria (i) and (ii) are met.
The length of the wire was defined as the sum of the O-O distances
of consecutive molecules in the wire.

The orientation order parameter measures the distortion from
a tetrahedral orientation of four water molecules around a central
molecule and is defined by (27, 28)

3 3 4 1 2
=123 3 (convu+ )

j=1 k=j+1

(3]

Here, v;1 is the angle formed by the central oxygen and its four
nearest oxygen neighbors. For a perfect tetrahedral orientation
q =1 and it is ¢ # 1 otherwise. The angle order parameter, gcos,
was obtained directly as gcos = min(cos a, cos 3) where o and 3 are
the two internal angles in the wire.
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After calculating these additional collective variables, we ana-
lyzed the trajectories using the methodology of van Erp et al. (19).
For the analysis we used 100 sub-interfaces both for A" and A° for
the range 0 < A/ A < 6.4. The histograms in the collective vari-
able space was constructed using 20 bins for 4.0 < w3/A < 7.0,
7.0 < wyg/A < 9.6, 9.0 < ws/A < 12, 20 bins for 0 < ¢ < 1, 25
bins for —1 < gecos < 1 while the bins (mid points) were placed at
—0.5,0.5,1.5,...,6.5 for both n, and ng.

The classification models were constructed using classification
and regression decision trees (20) (CART) available within the
R (50) software package. The mean of sensitivity and specificity
was used as the classifier performance measure (51).

For the CART models we considered several sets of collective
variables and we obtained these variables at the frame in the tra-
jectories where the order parameter first crossed 1.15 A. The tra-
jectories were classified as reactive if they reached a A > 2 and
as nonreactive otherwise. The first set of collective variables con-
sisted of all 4560 atom-atom separations in the system, which gave
a model in which the oxygen-oxygen distances were most impor-
tant. This model did not lend itself to an easy interpretation and
we next considered several models with a reduced number of collec-
tive variables.

In the best performing model (performance measure for training
0.89 and for testing 0.88) we considered 138 collective variables:
all oxygen-hydrogen distances for initially bound water molecules,
all oxygen-oxygen distances involving O™, the averaged distances
between O* and its i = {2,3,...,31} oxygen neighbors, the cosine
of all angles formed by O* and its 4 closest oxygen neighbors, all the
collective variables considered in the predictive power analysis and
the Steinhardt order parameters of order 3. 4 and 6 (32). When
performing the predictive power analysis for the collective variables
used by the CART analysis we used 20 bins in the range [0.7,2.0]
for oxygen-hydrogen distances, 20 bins in the range [1.0,4.2] for
oxygen-oxygen distances and for angles and the Steinhardt order
parameters we used similar bins as for gcos and g given above.
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Fig. 5. Results from the machine learning analysis. (Panel A) Classification and regression tree for predicting the outcome of initiated trajectories. Here, we have considered
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