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Abstract. Word embedding, which encodes words into vectors, is an
important starting point in natural language processing and commonly
used in many text-based machine learning tasks. However, in most cur-
rent word embedding approaches, the similarity in embedding space is
not optimized in the learning. In this paper we propose a novel neighbor
embedding method which directly learns an embedding simplex where
the similarities between the mapped words are optimal in terms of min-
imal discrepancy to the input neighborhoods. Our method is built upon
two-step random walks between words via topics and thus able to better
reveal the topics among the words. Experiment results indicate that our
method, compared with another existing word embedding approach, is
more favorable for various queries.

Keywords: Nonnegative matrix factorization, Word embedding, Clus-
ter analysis, Doubly stochastic

1 Introduction

In recent years machine learning (ML) that involves text data has found many
real-world applications [6,11,13]. Each data item in these applications is a se-
quence of words and other tokens. Originally each word is represented by its
ID. However, this is not suitable for machine learning, where most common ML
algorithms admit vectors as their input. One-hot encoding is inefficient when the
vocabulary is large. Therefore word embedding which finds a low-dimensional
vectorial representation of words is a fundamental starting point.

A good word embedding method should respect the relations among the
words. It is commonly to learn an embedding vector space where the neighbor-
hoods of the words are approximately preserved. Two typical approaches include
Word2Vec [8] which maximizes the likelihood of each word given their neighbors
(or in the reversed way) and GloVe which minimizes a weighted squared loss
between the input and output pairwise relations. Some variants of Word2Vec
and GloVe have been proposed subsequently [12,5,3].

However, embeddings learned by the above approaches may not provide op-
timal similarities between the words. After the word vectors are obtained, their
pairwise similarities require external measures such as cosine similarity, which
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can be suboptimal because the learning objective involves non-normalized word
vectors. Moreover, the negative sampling trick in Word2Vec provides only an
approximating surrogate. Theoretically it remains unknown whether the ad hoc
choice of negative distribution guarantees that the original CBOW or Skip-Gram
objectives are optimized or not.

In this paper we present a new nonnegative matrix factorization (NMF)
method and apply it to learn vectorial representation of words. Our method fac-
torizes the doubly stochastically constrained approximating matrix. In this way
we directly optimize over the normalized word vectors and provide their optimal
similarities in the embedding space in terms of least approximation discrepancy.
Unlike Word2Vec, our method does not require extra stochastic approximation
tricks or assumptions on negative distributions. We test our method on two
popularly used text data sets and compare it with the Word2Vec results. Our
results indicate that the proposed method is often more favorable for various
k-nearest-neighbor queries.

The remaining of the paper is organized as follows. In Section 2 we review
the word embedding problem and two existing embedding methods. Next we
present our new NMF method and show how to apply it to learn probabilistic
representation of words in Section 3. Our optimization algorithm is presented in
Section 4. Experimental setting and results are presented in Section 5. Then in
Section 6 we conclude the work and discuss some future directions.

2 Brief Review of Previous Word Embedding Methods

A text corpus can be treated as a sequence of words and some other tokens such
as punctuations. Originally each word is represented by their id in the vocabu-
lary. Because many modern machine learning methods admit vectors as input,
conventionally the word ids are converted into their one-hot encodings. That
is, the i-th word in the N -sized vocabulary is represented by an N -dimensional
vector with the i-entry is 1 and the others are zeros. Obviously, such one-hot
encoding is inefficient when N is large. A low-dimensional (r-dim with r � N)
vector encoding, called word embedding, is needed for more efficient learning
tasks.

Word embeddings should respect the proximity of words in the original se-
quence. A common requirement is that if two words often appear nearby, their
mapped points in the embedding space should be close. On the other hand, if
two words seldom co-occur in the same neighborhood, they should be placed
distantly in the embedding.

One way to implement the above requirement is to maximize the likelihood
of a language model. For example, the Word2Vec Skip-Gram method finds the
vectors {wt}Nt=1 of the words which maximizes

L({wt}Nt=1) =
1

T

T∑
t=1

∑
j∈N (t)

logP (wordj |wordt) , (1)
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where N (t) is the neighborhood of location t and the conditional likelihood is
defined as

P (wordj |wordt) =
exp

(
wT

j wt

)∑N
i=1 exp

(
wT

i wt

) (2)

Another approach is to approximately preserve the probability that a word
appears in the neighborhood of another word. For example, GloVe implements
the approximation by minimizing a weighted squared loss [9], assuming log-
normal noise in the observed neighboring frequencies.

3 Low-Rank Doubly Stochastic Matrix Decomposition

Although Word2Vec and GloVe are widely used, they do not provide a metric
in the embedding space for retrieval. Cosine similarity as a conventional choice
in natural language processing is often used to calculate, for example, k-nearest
neighbors of a query in the embedding space. However, the cosine similarities
between words are not optimized during the embedding learning. Therefore the
retrieval based on such an external metric may not respect the original data
distribution.

We observe that the mismatch arises mainly because the word vectors are
not normalized in the learning objective, but they are normalized in the metric
for retrieval. To overcome this problem we propose to use a new learning objec-
tive which explicitly involves the normalized word vectors. First, we employ the
doubly stochasticity constraint to normalize the similarities in the embedding
space, which enforces that each row or column of the output similarity matrix
has unitary sum. This means each word in the embedding space has equal total
similarity and denoises the imbalanced effect in the input space. Second, we find
a low-rank nonnegative matrix which factorizes the doubly stochastic matrix,
which significantly reduces the dimensionality of word vectors. Our optimiza-
tion is based on multiplicative updates which are widely used in nonnegative
matrix factorization (see Section 4).

Let W be the word embedding matrix (rows as word vector codes). It has
been shown that the above factorization problem can be reformulated as follows
(see Theorem 1 in [14]):

minimize
W≥0

J (W ) = D(S||Ŝ) (3)

subject to Ŝij =

r∑
k=1

WikWjk∑
vWvk

, (4)

r∑
k=1

Wik = 1, i = 1 . . . , N. (5)

Here D() is an information divergence measuring the discrepancy between be-

tween the input and output proximities S and Ŝ. We adopt the Kullback-Leibler
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divergence

D(S||Ŝ) =

N∑
i=1

N∑
j=1

(
Sij log

Sij

Ŝij

− Sij + Ŝij

)
(6)

because it accounts for Poisson noise and thus better for sparsity in S.
The doubly stochastic similarity matrix Ŝ in embedding space provides a

probabilistic interpretation. Let Wik = P (topick|wordi), the probability of as-
signing the ith data object to the kth topic. Without preference to any particu-
lar word, we impose a uniform prior P (wordj) = 1/N over the words. With this
prior, we can compute by the Bayes’ formula

P (wordj |topick) =
P (topick|wordj)P (wordj)∑N

v=1 P (topick|wordv)P (wordv)
(7)

=
P (topick|wordj)∑N
v=1 P (topick|wordv)

. (8)

Then we can see that

Ŝij =

r∑
k=1

WikWjk∑N
v=1Wvk

(9)

=

r∑
k=1

P (topick|wordj)∑N
v=1 P (topick|wordv)

P (topick|wordi) (10)

=

r∑
k=1

P (wordj |topick)P (topick|wordi) (11)

=P (wordj |wordi). (12)

That is, if we define a bipartite graph with the words and topics as graph nodes,
Ŝij is the probability that the ith word node reaches the jth word node via a

topic node (see Figure 1). It is easy to verify that Ŝij = Ŝji. Therefore the output

similarity matrix Ŝ is doubly stochastic.

4 Optimization

We implement the optimization in Eqs. 3 to 5 by multiplicative updates. To
minimize an objective J over a nonnegative matrix W , we first calculate the
gradient and separate it into two nonnegative parts (∇+

ik ≥ 0 and ∇−ik ≥ 0):

∇ik
def
=

∂J
∂Wik

= ∇+
ik −∇

−
ik. (13)

Usually the separation can easily be identified from the gradient. Then the al-
gorithm iteratively applies a multiplicative update rule

Wik ←Wik
∇−ik
∇+

ik

(14)
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Fig. 1. Word-Topic bipartite graph for N words and r topics (r < N). The arrows
show a Word-Topic-Word random walk path, which starts at the ith word node and
ends at the jth word node via the kth topic node.

until convergence. Such algorithms have several attractive properties, as they
naturally maintain the positivity of W and do not require extra effort to tune
learning step size. For a variety of NMF problems, such multiplicative updates
monotonically decrease J after each iteration and therefore W can converge to
a stationary point [15].

We cannot directly apply the above multiplicative fixed-point algorithm to
the proposed learning objective because there are probability constraints on the
W rows. Projecting the W rows to the probability simplex after each iteration
would often lead to poor local minima in practice.

Instead, we employ a relaxing strategy [18] to handle the probability con-
straint. We first introduce Lagrangian multipliers {λi}Ni=1 for the constraints:

L(W,λ) = J (W ) +
∑
i

λi

(
r∑

k=1

Wik − 1

)
. (15)

This suggests a preliminary multiplicative update rule for W :

W ′ik = Wik
∇−ik − λi
∇+

ik

, (16)
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where

∂J
∂W

=
[(
WTZW

)
kk
s−2k

]︸ ︷︷ ︸
∇+

ik

−
[
2 (ZW )ik s

−1
k

]︸ ︷︷ ︸
∇−

ik

, (17)

with Zij = Sij/Ŝij and sk =
∑N

v=1Wvk. Imposing
∑

kW
′
ik = 1 and isolating λi,

we obtain

λi =
bi − 1

ai
, (18)

where

ai =

r∑
l=1

Wil

∇+
il

, and , bi =

r∑
l=1

Wil
∇−il
∇+

il

. (19)

Putting this λ back in Eq. 16, we obtain

Wik ←Wik
∇−ikai + 1− bi
∇+

ikai
. (20)

To maintain the positivity of W , we add bi to both the numerator and denom-
inator, which does not change the fixed point and gives the ultimate update
rule:

Wik ←Wik
∇−ikai + 1

∇+
ikai + bi

. (21)

The above calculation steps are summarized in Algorithm 1. In implementation,
one does not need to construct the whole matrix Ŝ. The ratio Zij = Sij/Ŝij only
requires calculation on the non-zero entries of S.

The above algorithm obeys a monotonicity guarantee provided by the fol-
lowing theorem.

Theorem 1 Denote Wnew the updated matrix after each iteration of Algorithm
1. It holds that L(Wnew, λ) ≤ L(W,λ) with λi = (bi − 1)/ai.

The proof follows the Majorization-Minimization procedure [4,15,16] and is a di-
rect corollary of Theorem 2 in [14]. The theorem shows that Algorithm 1 jointly
minimizes the approximation error and drives the rows of W towards the prob-
ability simplex. The Lagrangian multipliers are adaptively and automatically
selected by the algorithm, without extra human tuning effort. The quantities bi
are the row sums of the unconstrained multiplicative learning result, while the
quantities ai balance between the gradient learning force and the probability
simplex attraction. Besides convenience, we find that this relaxation strategy
works more robustly than the brute-force projection after each iteration.
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Algorithm 1 Optimization algorithm of our method

Input: input similarity matrix S, number of topics r, positive initial guess of W .
Output: word embedding matrix W (rows as word vectors).
repeat

Ŝij =

r∑
k=1

WikWjk∑
v Wvk

Zij = Sij/Ŝij

sk =
∑N

v=1 Wvk

∇−
ik = 2 (ZW )ik s

−1
k

∇+
ik =

(
WTZW

)
kk

s−2
k

ai =

r∑
l=1

Wil

∇+
il

, bi =

r∑
l=1

Wil
∇−

il

∇+
il

Wik ←Wik
∇−

ikai + 1

∇+
ikai + bi

until W converges under the given tolerance

5 Experiments

To compare the performance of our method with Word2Vec, we train word em-
beddings on two publicly available datasets and then construct k-nearest neigh-
bor tables for specific word queries. Finally, we perform qualitative analysis on
these tables and show that our method is better at capturing semantic relation
between the words. The codes used in the experiments are available online1.

Both training datasets used during the experiments represent a collection of
English Wikipedia articles. The first dataset is WikiText-2 [7], which consists of
2.5M tokens with 33K words in the vocabulary. We also include text8 dataset2,
which is almost 7 times larger than WikiText-2 and consists of 17M tokens and
254K words in the vocabulary. During the experiments, we used only top 20K
most frequent words for both datasets.

For fair comparison, we followed the same default setting in the original ver-
sion of Word2Vec3. Both methods are trained on the same set of vocabulary
words, the word embedding dimension is set to 200 and the size of word neigh-
borhood equals to 8.

The results for WikiText-2 dataset are presented in Table 1. We can see that
sometimes word neighbors produced by Word2Vec are not close semantically to
the query words, whereas our method was able to produce much better results.
For example, for the word “asteroid” the proposed method produces words like
“planets”, “orbit” and “spacecraft”, which are all related to cosmos, whereas

1 https://users.aalto.fi/~sedovd1/Matrix_decomp_WE/
2 http://mattmahoney.net/dc/textdata.html
3 https://github.com/tmikolov/word2vec

https://users.aalto.fi/~sedovd1/Matrix_decomp_WE/
http://mattmahoney.net/dc/textdata.html
https://github.com/tmikolov/word2vec
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Table 1. Seven nearest neighbors for WikiText-2 dataset using: (top) our method and
(bottom) Word2Vec.

word neighbors

camera footage, shots, shooting, screen, shoot, setting, showing
zoo gorillas, bars, spiders, exhibit, Pattycake, sharing, lowland
literature literary, poets, languages, language, writings, tradition, references
moon observations, observation, Venus, solar, transit, measurements, atmosphere
coin coins, dollar, dollars, Mint, purchase, fund, costs
leather silk, cloth, wrapped, manufactured, mud, synthetic, mills
cold warm, heat, exposed, hot, winter, falling, dry
spring winter, summer, kept, fall, brief, Over, arrival
queen ruler, mentions, kings, supreme, throne, kingdom, succession
asteroid planets, probe, orbit, spacecraft, NASA, Solar, orbits

word neighbors

camera reggae, synthesizers, backup, retro, boots, carriage, bouncing
zoo griffin, Avis, Reader, headpiece, earthworks, Sleat, Owl
literature Kannada, writings, Fu, tradition, poets, Vaishnava, historical
moon skeletal, reactivity, equilibrium, sodium, spectral, infrared, triangular
coin dollar, convention, solution, price, potential, program, annular
leather twigs, pipes, longitudinal, bags, triangular, tapered, gum
cold curved, snow, reaches, beak, rough, bars, loop
spring autumn, 1900s, 1940s, 1880s, 1870s, 2000s, 1800s
queen Blanche, Wentworth, diplomat, bodyguard, mathematician, relates, prince
asteroid molecule, insect, orientation, isotope, triangle, undirected, flash

Word2Vec yields words like “molecule”, “insect” and “orientation” that share
very little in common. Moreover, it shows that the performance of Word2Vec
can be quite poor for small datasets.

Table 2 shows the results for text8 dataset. We can see that the increase in
text corpus size helps to obtain more meaningful embeddings. However, Word2Vec
tends to produce rather rare and specific neighbors for the query words, whereas
our method produces more common words. For example in case of Word2Vec,
the closest neighbors to the word “dracula” are “stoker” and “bram”, which
constitute the name of the author, who wrote the corresponding novel, as well
as “lugosi” and “bela”, which are related to the name of the actor portraying
Dracula. On the other hand, by using our method, the close neighbors consist of
the words “frankenstein” and “godzilla”. These three words constitute the group
of the iconic horror movie monsters and are well associated with each other.

6 Conclusion

We have proposed a new word embedding method which is based on low-rank
decomposition of doubly stochastic similarity matrix in the embedding space.
Unlike previous approaches, our method provides not only the low-dimensional
word vectors but also their pairwise similarity metric for subsequent applications
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Table 2. Seven nearest neighbors for text8 dataset using: (top) our method and
(bottom) Word2Vec.

word neighbors

green blue, red, white, yellow, black, color, brown
airport railway, rail, downtown, airlines, traffic, train, metropolitan
celebrity interviews, credits, kids, favorite, talent, joy, charity
microsoft windows, operating, apple, mac, os, dos, macintosh
ancient greek, middle, historical, pre, latin, medieval, tradition
byzantine emperors, dynasty, ottoman, conquered, constantinople, conquest, rulers
roman empire, church, catholic, holy, eastern, christian, ancient
dinosaur dinosaurs, prehistoric, fossils, habitat, insect, specimen, elephants
dracula frankenstein, vampire, noir, adaptations, godzilla, cyberpunk, horror
godzilla sequel, monsters, monster, adventure, anime, horror, robot

word neighbors

green shade, lantern, purple, onion, violet, herring, panther
airport heathrow, ferry, destinations, monorail, airline, flights, hub
celebrity britney, quiz, vh, listings, portrayals, futurama, syndicated
microsoft novell, xp, excel, hypercard, borland, netscape, macromedia
ancient hellenistic, etruscan, sumerian, vedic, mycenaean, phoenician, hellenic
byzantine achaemenid, seleucid, assyrian, justinian, hittite, heraclius, frankish
roman byzantine, frankish, aztec, claudian, gaius, aurelius, seleucid
dinosaur mammal, reptiles, lizard, dodo, zebra, bipedal, skeleton
dracula stoker, bram, vampire, lugosi, bela, poirot, remake
godzilla lugosi, toho, miniseries, bela, remake, akira, highlander

such as retrieval. The resulting similarities are explicitly optimized in terms of
least Kullback-Leibler divergence to the input similarity matrix. We have pro-
posed an optimization algorithm based on multiplicative updates for minimizing
the presented cost function. Experiment results have shown that our method
works better for two selected text corpora compared to the state-of-the-art word
embedding method in terms of providing more meaningful k-nearest neighbors
in the embedding space.

There are several future directions. In this work we have used a batch-
mode optimization algorithm, which could be replaced by using distributed and
stochastic learning techniques, for example co-distillation [1], towards a more
scalable and more efficient method. We could also incorporate Bayesian treat-
ment of the embedding vectors, for example, using Dirichlet priors [10,14] and
automatic rank determination [17]. Moreover, the discrepancy between input
and output proximity matrices could be replaced by other learnable information
divergence [2]. In addition, our methods is ready to be applied in other domains,
for example, finding the embedding vectors of k-mers in DNA sequences.
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