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Abstract
The aim of this thesis is to solve option pricing models efficiently by using spectral
methods. The option pricing models that will be solved are the Black-Scholes model
and Heston’s stochastic volatility model. We will restrict us to pricing European put
options.

We derive the partial differential equations governing the two models and their
corresponding weak formulations. The models are then solved using both the spectral
Galerkin method and a polynomial collocation method. The numerical solutions are
compared to the exact solution. The exact solution is also used to study the numerical
convergence. We compare the results from the two numerical methods, and look at the
time consumptions of the different methods. Analysis of the methods are also given.
This includes coercivity, continuity, stability and convergence estimates.

For Black-Scholes equation, we study both the original equation and the log trans-
formed equation, and we also compare the results to a solution obtained by using a
finite element method solver.
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Sammendrag
Målet med denne oppgaven er å løse opsjonsprisingsproblemer effektivt ved å bruke
spektralmetoder. Vi fokuserer på to ulike opsjonsprisingsmodeller, Black-Scholes mod-
ell og Hestons stokastiske volatilitetsmodell. Vi fokuserer på å prise europeiske sal-
gsopsjoner.

Vi utleder modellens partielle differensialligninger og de tilhørende svake formu-
leringene. Deretter løses ligningene ved å bruke en spektral Galerkinmetode og en
polynombasert kollokasjonsmetode. De numeriske løsningnene sammelignes med den
eksakte løsningen. Denne brukes også til å studere numerisk konvergens. Resultatene
fra de to numeriske metodene sammenlignes og tidsbruk diskuteres. Vi gir også en anal-
yse av metodene med koersivitets-, kontinuitets-, stabiliets- og konvergensestimater.

For Black-Scholes ligning ser vi på både den orginale ligningen og en log-transformert
ligning. De numeriske resultatene sammenlignes også med løsningen av ligningen fun-
net ved å bruke en endelig elementmetode.
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Chapter 1

Introduction

1.1 Background
In this thesis, we will be studying two option pricing models which can be used to price
vanilla European put options. European options are options which can be exercised
only at maturity. Vanilla options are the simplest types of options, and they do not
include any complex financial structures. We will asume that the underlying asset of
the options are stocks. With this assumption, a put option is a contract giving the
owner the right to sell the stock at a specific date (the maturity) for a specified amount
of money (the strike price K). The spot price is the current price of the stock, denoted
by S. A European put option will only be exercised if S ≤ K.

The financial market is assumed to be arbitrage free, meaning that there should
not be any possibilities of making risk-free profits. This should hold for options as well,
therefore the option must be priced so that this assumption is fulfilled. We also have
these two bounds on the price of the put option [15, p 193]:

• The price of an option can not be negative.
• A put option can not be worth more than the strike price K.

The most popular option pricing model is the Black-Scholes model. The model
was published by Fischer Black and Myron Scholes in [3]. It models a fincancial
market where currencies, bonds and derivatives can be traded. The market is assumed
to contain both risky and risk-free assets. The Black-Scholes model is based on the
following assumptions:

• The stock does not pay dividens.
• The riskless rate of return is constant.
• The log returns of the stock price follows a Wiener process with positive drift

and constant volatility.
• There are no transaction costs when selling or buying stocks.
• One can borrow any amount of money at the risk-free rate.
• One can buy or sell any amount of the stock.

Some of these assumptions does not hold in practice. One issue is that there are
transaction costs, but the most important issue is that the volatility is not constant. It
can be constant over short periods of time, but in the long run the volatility depends on
both the strike price and the expiry date. One way to avoid this problem is to assume

1



2 CHAPTER 1. INTRODUCTION

that the volatility is a stochastic function, which is the foundation for the stochastic
volatility models. Heston’s stochastic volatility model is the most commonly used of
these models.

The option pricing models are most commonly solved by using finite differences. In
the spesialization project, the Heston stochastic volatility model was solved by using
the finite element method. In this thesis, we want to explore the possibility of solving
the problems more efficiently by using spectral methods.

1.2 Overview of the thesis
Chapter 2 is devoted to the option pricing models we will use. Section 2.1 concerns
Black-Scholes model, where we derive the model, state the analytical solution, discuss
boundary conditions and derive the weak formulation. The same topics are covered for
Heston’s stochastic volatility model in section 2.2.

In chapter 3, we give an introduction to the spectral methods that we will use in
this thesis, the spectral Galerkin method and a polynomial collocation method. We
also test the methods on the heat equation. The spectral method is new to the author,
so this is to learn how to use the method on an easy problem.

Chapter 4 is devoted to solving Black-Scholes model using both the spectral Galerkin
method and polynomial collocation. For both methods, we derive the spectral approxi-
mation, give numerical results and analysis of the method. Numerical results are given
both in terms of S and x, and both convergence and running time is considered. We
compare the results to a solution obtained by using finite element methods.

In chapter 5, we try to solve Heston’s stochastic volatility model using the spectral
Galerkin method and a polynomial collocation method. As in chapter 4, we give the
spectral approximation, numerical results and analysis of the method.

Finally, we discuss some problems with the method and draw conclusions in chapter
6, before we give some thoughts about future work on the topic.



Chapter 2

Option pricing models

2.1 Black-Scholes model

2.1.1 Derivation of the model
The derivation of Black-Scholes model is easily found in literature, for example in [15,
chapter 8]. The model holds when the market is arbitrage free and complete. Arbitrage
free means that there does not exist any risk-free possibilities of earning money, and
complete means that all objects in the market can be reconstructed by a replicating
portfolio. The model also assumes that the market consists of both risky assets and
riskless assets. Riskless assets are typically bank acounts, called bonds.

There are many different approaches to derive the model, we have chosen the PDE
approach as in [15, chapter 8.A]. We start by assuming that the stock price S follows
a geometric Brownian motion

dSt = µStdt+ σSdWt, S0 > 0 (2.1)

where µ is a constant which represents the positive drift, σ is the constant volatility
and W is a Wiener process. The subscript t means that the equation is evulated at
time t. We define V as the value of the option, and assume that the value is a function
of St and t. If we drop the subscript t and use Itô’s Lemma (see A.1) on V = V (S, t),
we get

dV =
(
µS

∂V

∂S
+ ∂V

∂t
+ 1

2σ
2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW. (2.2)

We want to eliminate the Wiener process from the equation. To obtain this, we
create a portfolio Π consisting of a short position in V and a fixed amount ∆ of S. A
short position means that the portfolio will earn money if the market or stock price
goes down. At time t, the value of the portfolio will be

Π = −V + ∆S. (2.3)

At time t0, the portfolio has value Π0. Because the market is assumed to be arbitrage
free, the portfolio has differential

dΠ = −dV + ∆dS. (2.4)

If we substitute equations (2.1) and (2.2) into (2.4), we get

3



4 CHAPTER 2. OPTION PRICING MODELS

dΠ = −
(
µS

∂V

∂S
+ ∂V

∂t
+ 1

2σ
2S2∂

2V

∂S2

)
dt− σS∂V

∂S
dW + ∆µSdt+ ∆σSdW.

We observe that if we choose ∆ = ∂V
∂S

, the Wiener process cancels out, which is what
we wanted to obtain by creating the portfolio. In addition, terms with µ disappears as
well. Note that the ∆ is still fixed at time t. We are then left with

dΠ = −
(
∂V

∂t
+ 1

2σ
2S2∂

2V

∂S2

)
dt. (2.5)

We observe that the change dΠ of the portfolio is deterministic. If we use the fact that
the market is arbitrage free and the assumptions of the market given in section 1.1,
we know that the same amount of money as Π should grow with the risk-free interest
rate. At time t, the value should be Π = Π0e

−r(t0−t). From this, we obtain the relation

dΠ = rΠdt

which is valid with our assumptions on the market. We have two expressions for
dΠ, and they must be equal because the market is arbitrage free. If we use this and
substitute for the definition of the portfolio in equation (2.3) and equation (2.5), we
get

−
(
∂V

∂t
+ 1

2σ
2S2∂

2V

∂S2

)
dt = r

(
−V + ∂V

∂S
S

)
dt.

By rearranging and dropping dt, we get the Black-Scholes partial differential equation,
or simply Black-Scholes equation:

∂V

∂t
+ 1

2σ
2S2∂

2V

∂S2 + rS
∂V

∂S
− rV = 0, (2.6)

which is valid when

S > 0, 0 ≤ t ≤ T.

The initial condition of the problem is the pay-off function at time t = T . For a put,
this is

V (S, T ) = max(K − S, 0). (2.7)

Note that this means that the equation is backwards in time, starting at t = T .

2.1.2 Black-Scholes formula
There exist expressions for the analytical solution of Black-Scholes equation for both
European put and call options. The formula can be found in for example [15, chapter
8.2], and we have the following formula for the option price of a European put:

V BS = Ke−rTN(−d2)− SN(−d1), (2.8)
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where N(·) is the distribution function of the normal distribution,

d1 =
ln(S/K) + (r + 1

2σ
2)T

σ
√
T

and
d2 =

ln(S/K) + (r − 1
2σ

2)T
σ
√
T

= d1 − σ
√
T .

The formula will be used to test the numerical methods in chapter 4.

2.1.3 Boundary conditions
We will solve equation (2.6) for a European put option. For this, we need boundary
conditions in addition to the inital condition (2.7). When S = 0, we have an exact value
for the option price, which is the strike price K discounted for the time to maturity:

V (0, t) = Ke−r(T−t) 0 ≤ t ≤ T. (2.9)
This boundary condition is derived by looking at K−S, which is the payoff at maturity
if the option was free. When S << K, we have K − S ≈ K and it is very likely that
the option will be exercised with pay-off K. Therefore, this should be the price of the
option. However, when we move backwards in time from maturity, we have to discount
the value to the present value. This gives the boundary condition given, where T − t
is the time to maturity.

When we have S >> K, the probability of S becoming less than K is very small.
This means that the possibility of having K − S > 0 is also small. Therefore, the
option price goes to zero as the spot price goes to ∞, and we have

V (∞, t) = 0 0 ≤ t ≤ T. (2.10)

2.1.4 Log transformation
A log transformation of S can be performed in order to get rid of the S-dependency in
(2.6). This will give us an equation without variable coefficients and is often performed
in order to obtain an easier equation to work with. The log transformation is also the
first step of transforming Black-Scholes equation into the heat equation. We start by
introducing the variable x = ln(S). Then we have

∂V

∂S
= ∂V

∂x

∂x

∂S
= 1
S

∂V

∂x
∂2V

∂S2 = ∂

∂S

(
∂V

∂S

)
= ∂V

∂x

∂

∂S

( 1
S

)
+ 1
S

∂

∂S

(
∂V

∂x

)
= − 1

S2
∂V

∂x
+ 1
S2
∂2V

∂x2 .

If we insert this into (2.6) and denote v(x, t) = V (ex, t), we get

vt + 1
2σ

2vxx + (r − 1
2σ

2)vx − rv = 0. (2.11)

The spatial domain is now transformed from S ≥ 0 to −∞ < x < ∞. We will
denote the transformed domain Ω̃. The initial condition (2.7) and boundary conditions
(2.9) and (2.10) are transformed to
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v(x, T ) = max{K − ex, 0}, x ∈ (−∞,∞),
v(−∞, t) = Ke−r(T−t), 0 ≤ t ≤ T

and
v(∞, t) = 0, 0 ≤ t ≤ T.

2.1.5 Transformation to the heat equation
The Black-Scholes equation (2.6) is a parabolic PDE which can be transformed to the
heat equation. We will use this equation to learn how to solve problems using spectral
methods in chapter 3.

As for the derivation of the Black-Scholes model, the transformation is easily found
in literature. Here, we use the notation and transformations in [20, chapter 4]. We
start by performing a log-transformation of S and a transformation of the time variable
t:

S = Kex, t = T − τ

σ2/2 .

If we then introduce the variable w̃ = 1
K
V , we have

w̃(x, τ) = 1
K
V

(
Kex, T − τ

σ2/2

)
.

The domain of w̃ is −∞ < x < ∞ and 0 ≤ τ ≤ σ2

2 T . The transformation of t has
made the equation forward in time.

If we insert the new variables into equation (2.6) and apply the chain rule, we get

w̃τ = w̃xx +
(

r

σ2/2 − 1
)
w̃x −

r

σ2/2w̃.

To shorten the expression, we define

κ = r

σ2/2
and write

w̃τ = w̃xx + (κ− 1) w̃x − κw̃. (2.12)
To obtain the heat equation, we need to transform w̃ to a new variable w in a way

such that the terms with wx and w disappear. This can be obtained by introducing

γ = 1
2(κ− 1) and β = 1

2(κ+ 1) = γ + 1

and define
w̃(x, τ) = e−γx−β

2τw(x, τ).
Now, we can calculate the partial derivatives in terms of w

w̃τ = e−γx−β
2τ (−β2w + wτ ),

w̃x = e−γx−β
2τ (−γw + wx),

w̃xx = e−γx−β
2τ (γ2w − 2γwx + wxx).
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Inserting these expressions into equation (2.12), we get

e−γx−β
2τ (−β2w + wτ ) = e−γx−β

2τ (2γ(−γw + wx) + γ2w − 2γwx + wxx − κw).

The exponential term cancels out and we have

wτ = wxx + (−2γ + 2γ)wx + (β2 + γ2 − 2γ2 − κ)w.
By using β2 = (γ + 1)2 = γ2 + κ, both the wx and w terms disappear, and we are left
with

wτ = wxx,

which is the dimensionless heat equation.
After the transformation, the boundary conditions are

w(−∞, τ) = e−κτ · eγx+β2τ and w(∞, τ) = 0.

The initial condition in equation (2.7) must also be transformed:

w(x, 0) = 1
K
eγxV (Kex, T )

= 1
K
eγxmax(K −Kex, 0)

= max(eγx − e(γ+1)x, 0).

Together with the transformed boundary conditions, we have a well-posed problem.
As for equation (2.6), we have a closed-form solution to the transformed problem,

see for example [20, chapter 4]. For a put, this is given by

u(x, τ) = eγx+γ2τΦ
(
−x+ 2τγ√

2π

)
− eβx+β2τΦ

(
−x+ 2τβ√

2π

)
,

where Φ is a distribution function defined by

Φ(ζ) =
∫ ζ

−∞
φ(η)dη = 1√

2π

∫ ζ

−∞
e−η

2/2dη.

The closed-form solution to Black-Scholes equation given in equation (2.8) can be
derived from the closed-form solution defined above by transforming the variables back
to the original variables.

2.1.6 Weak formulation of Black-Scholes equation
When we use the spectral Galerkin method, the weak form of the equation is needed.
Therefore, we will derive the weak formulation for both the original equation (2.6) and
the log transformed equation (2.11).

We start with equation (2.6), and multiply with a test function ϕ ∈ X and integrate
over the domain Ω:∫

Ω
Vtϕ+

∫
Ω

1
2σ

2S2VSSϕ+
∫

Ω
rSVSϕ−

∫
Ω
rV ϕ = 0.
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By using integration by parts on the second integral in the above equation, we obtain∫
Ω

1
2σ

2S2VSSϕ = −
∫

Ω

1
2σ

2S2VSϕS −
∫

Ω
σ2SVSϕ.

We have chosen ϕ(0) = ϕ(∞) = 0, which is a reasonable choice when we have Dirichlet
boundary conditions. We now have∫

Ω
Vtϕ−

∫
Ω

1
2σ

2S2VSϕS −
∫

Ω
(σ2 − r)SVSϕ−

∫
Ω
rV ϕ = 0. (2.13)

We will use the following notation

a(V, ϕ) = −
∫

Ω

1
2σ

2S2VSϕS −
∫

Ω
(σ2 − r)SVSϕ−

∫
Ω
rV ϕ (2.14)

and

d

dt
(V, ϕ) =

∫
Ω
Vtϕ. (2.15)

The weak formulation of the problem can now be stated as

Find V ∈ W such that d
dt

(V, ϕ) + a(V, ϕ) = 0 for all ϕ ∈ X.

The spaces X and W are defined as

X = {ϕ ∈ L2(Ω) : S∂ϕ
∂S
∈ L2(Ω), ϕ(0) = ϕ(S) = 0}

and
W = {V ∈ L2(Ω) : ∂V

∂t
, S
∂ϕ

∂S
∈ L2(Ω)}.

Next, we will give a similar weak formulation for the transformed problem in equa-
tion (2.11). As earlier, we start by multiplying the equation by a test function ϕ and
itegrate over the domain:∫

Ω̃
vtϕ+

∫
Ω̃

1
2σ

2vxxϕ+
∫

Ω̃
(r − 1

2σ
2)vxϕ−

∫
Ω̃
rvϕ = 0.

Agian, we apply integration by parts on the second integral and obtain∫
Ω̃
vtϕ−

∫
Ω̃

1
2σ

2vxϕx +
∫

Ω̃
(r − 1

2σ
2)vxϕ−

∫
Ω̃
rvϕ = 0,

where we have used that ϕ(±∞) = 0.
The weak formulation can again be stated as

Find v ∈ W̃ such that d
dt

(v, ϕ) + ã(v, ϕ) = 0 for all ϕ ∈ X̃.

Now,
ã(v, ϕ) = −

∫
Ω̃

1
2σ

2vxϕx +
∫

Ω̃
(r − 1

2σ
2)vxϕ−

∫
Ω̃
rvϕ, (2.16)

d

dt
(v, ϕ) =

∫
Ω̃
vtϕ, (2.17)

X̃ = {ϕ ∈ L2(Ω̃) : ∂ϕ
∂x
∈ L2(Ω̃), ϕ(−∞) = ϕ(∞) = 0} = H1

0 (Ω̃)
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and
W̃ = {v ∈ L2(Ω̃) : ∂v

∂t
,
∂v

∂x
∈ L2(Ω̃)}.

2.2 Heston’s stochastic volatility model

2.2.1 Derivation of the model
Heston’s stochastic volatility model was introduced by Steven Heston in 1993 in [9].
The main difference from Black-Scholes equation is that the volatility v is assumed to
be a stochastic process. Hence, the option price U also depends on v: U = U(v, S, t).
We will derive the model here. The derivation can be found in [13].

Heston starts by assuming that the spot price S can be described by the stochastic
differential equation

dSt = µStdt+√vtStdW1,t,

where Wi represents a Wiener process and v is the volatility. The subscript t de-
notes evaluation at time t, but as for the derivation of Black-Scholes, we drop the
subscripts. The volatility is assumed to follow an Ornstein-Uhlenbeck process. This
is a stochastic process that drifts toward its mean with a constant rate. More details
about Ornstein-Uhlenbeck processes can be found in [11]. Heston uses the following
Ornstein-Uhlenbeck process

d
√
v = −β

√
vdt+ δdW2.

The two Wiener processes W1 and W2 have correlation ρ. If we apply Ito’s lemma
(A.1) to the stochastic process with F (u) = u2 and u =

√
v(t), we obtain

dv = (δ2 − 2βv)dt+ 2δ
√
vdW2.

It is possible to write this as the Cox, Ingersoll and Ross square-root process in [5]

dv = κ(θ − v)dt+ σ
√
vdW2.

Now, κ is the mean reversion rate, θ is the long term variance and σ is the volatility
of volatility.

For the rest of the derivation, we follow [13]. We create a replicating portfolio Π
constisting of one option U , ∆ of S and Φ of the option Y . The portfolio is assumed to
be self-financing, and we assume that both U and Y are functions of v, S and t. The
value of the portfolio is the sum of the contributions,

Π = U + ∆S + ΦY.

The portfolio has differential

dΠ = dU + ∆dS + ΦdY + d∆S + dΦY,

but because the portfolio is self-financing, we have −d∆S = dΦY , so the differential is

dΠ = dU + ∆dS + ΦdY. (2.18)
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Next, we use Ito’s lemma (A.1) on the expression for dU and dY , giving

dU = ∂U

∂t
dt+ ∂U

∂v
dv + ∂U

∂S
dS + 1

2v
(
S2∂

2U

∂S2 + σ2∂
2U

∂v2

)
dt+ ρσvS

∂2U

∂v∂S
dt

for dU and similar for dY . Inserting this into (2.18) gives

dΠ =
(
∂U

∂t
+ 1

2v
(
S2∂

2U

∂S2 + σ2∂
2U

∂v2

)
dt+ ρσvS

∂2U

∂v∂S

)
dt

+ ∂U

∂v
dv + ∂U

∂S
dS + ∆dS + Φ∂Y

∂v
dv + Φ∂Y

∂S
dS (2.19)

+ Φ
(
∂Y

∂t
+ 1

2v
(
S2∂

2Y

∂S2 + σ2∂
2Y

∂v2

)
dt+ ρσvS

∂2Y

∂v∂S

)
dt.

The terms constisting dS and dv must be eliminated from the expression in order
to create a risk-free portfolio. This is because the expressions for dS and dv involve
Brownian motions, and thus involves randomness. Eliminating the terms gives

∂U

∂S
+ Φ∂Y

∂S
+ ∆ = 0 and ∂U

∂v
+ Φ∂Y

∂v
= 0,

which yields

∆ = −∂U
∂S
− Φ∂Y

∂S
and Φ = −

∂U
∂v
∂Y
∂v

. (2.20)

Now, we have a risk-free portfolio because it is hedged against movements in the stock
and the volatility. This means that the portfolio again must earn the risk-free interest
rate because of the assumption that the market is arbitrage free. Therefore, we again
obtain the relation

dΠ = rΠdt, (2.21)
where r is the risk-free interest rate.

Next, we note that we can write equation (2.19) on the form dΠ = C(U) + ΦD(Y ),
where C depends only on U and D only on Y. Combining this with equation (2.21)
and the expressions in (2.20) gives

C(U)−
∂U
∂v
∂Y
∂v

D(Y ) = r

(
U + (

∂U
∂v
∂Y
∂v

∂Y

∂S
− ∂U

∂S
)S −

∂U
∂v
∂Y
∂v

Y

)
.

By rearranging this, we get

C(U)− rU + rS ∂U
∂S

∂U
∂v

=
D(Y )− rY + rS ∂Y

∂S
∂Y
∂v

. (2.22)

We observe that the left side only depends on U and the right hand side only depends
on Y , thus we can write each side as a function f dependent of v, S and t. Heston
chose this function to be

f(v, S, t) = −κ(θ − v) + λ̃(v, S, t),
where λ̃(v, S, t) represents the price of volatility risk. This is by Heston chosen to be
λv, for some constant λ. Combining this with the left side of equation (2.22) and the
expression for C(U) from equation (2.19), we get
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Ut + 1
2vS

2∂
2U

∂S2 + ρσSv
∂2U

∂v∂S
+ 1

2vσ
2∂

2U

∂v2 − rU + rS
∂U

∂S
= (−κ(θ − v) + λv)∂U

∂v
.

This gives the following PDE for Heston’s stochastic volatility model:

Ut + 1
2σ

2vUvv + ρσvSUvS + 1
2vS

2USS + (κ(θ − v)− λv)Uv + rSUS − rU = 0, (2.23)

which is valid for S ≥ 0, v ≥ 0 and 0 ≤ t ≤ T . The problem has an initial condition
at t = T , for a European put option this is

U(v, S, T ) = max(K − S, 0).

This is the pay-off function for the option at maturity. As Black-Scholes equation, this
equation is backwards in time.

By introducing the notation

E = 1
2v
[
σ2 ρσS
ρσS S2

]
,

f =
[
κ(θ − v)− λv − 1

2ρσv −
1
2σ

2

rS − 1
2ρσS − vS

]
and ∇ =

[
∂
∂v
∂
∂S

]
,

we can write equation (2.23) as

Ut +∇ · E∇U + f · ∇U − rU = 0. (2.24)

2.2.2 Closed-form solution

There exists a closed-form solution for Heston’s stochastic volatility model as well. For
a European put, this is given by [9]

U(v, S, t) = Ke−rtΠ1 − Se−qtΠ2, (2.25)

where

Π1 = 1
2 −

1
π

∫ ∞
0

Re
(
e−iw lnKψ(ω)

iω

)
dω,

Π1 = 1
2 −

1
π

∫ ∞
0

Re
(
e−iw lnKψ(ω − i)

iωψ(−i)

)
dω

and
ψ(ω) = E

[
eiω lnS(T )

]
.

Here, q is the dividend yield.
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Figure 2.1: The solution domain for Heston’s stochastic volatility model.

2.2.3 Boundary conditions
In order to solve the problem, we must choose a reasonable domain. The domain
we will use is shown in figure 2.1. There are different boundary conditions on each
of the boundaries, and also different possible choices for boundary conditions at each
boundary. We start with the boundary conditions from [16], which are

• Γ1 S = 0: U(v, 0, t) = Ke−r(T−t),
• Γ2 v = vmax: U(vmax, S, t) = Ke−r(T−t),
• Γ3 S = Smax: US(v, Smax, t) = 0 and
• Γ4 v = vmin: Equation (2.23) holds when v = vmin.

On Γ1, we have a Dirichlet boundary condition. This condition gives the present value
of the strike price K at maturity. The boundary condition is derived in the same
manner as (2.9).

The condition on Γ2 is also a Dirichlet condition. This condition is valid when vmax
is large, but in our case vmax is not large enough to make this boundary conition valid.
If we study the solution close to this boundary, we see that the boundary is an outflow
boundary for reasonable choices of constants, as argued for in [19]. Therefore, we will
replace the boundary condition with a natural boundary condition, and redefine the
boundary condition to

Γ2 : E∇U(vmax, S, t) · −→n = 0.

The third boundary condition is a Neumann condition saying that the solution
does not change in the S-direction along Γ3. For implementations, it is easier to use a
natural boundary condition instead. Therefore, we replace it with

Γ3 : E∇U(v, Smax, t) · −→n = 0,

which essentially says that there is no change in either direction.
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On the last boundary, there is no boundary condition. By looking at the character-
istics of the equation, we observe that they all point out of the domain. This tells us
that we don’t need any extra information at the boundary. This is valid when vmin = 0,
and we don’t have diffusion at this boundary. However, we will see later that the spec-
tral Galerkin method is not continuous when vmin = 0. Therefore, we must adjust the
lower bound on v to some value ε > 0. When we do this, diffusion will be present at
the boundary. All though small, it still makes the argument of characteristics invalid.
Thus, we need a boundary condition here as well. We choose

Γ4 : E∇U(vmin, S, t) · −→n = 0.

This condition will be valid when vmin = 0 as well, because E(v = 0) = 0.

2.2.4 Transformation
As for Black-Scholes equation, we can introduce a log transformation of S and trans-
form equation (2.23). Here, we write x = ln(S/K) and u(v, x, t) = U(v, ln(S/K), t).
The transformed equation becomes

ut + 1
2σ

2vuvv + ρσvuvx + 1
2vuxx + (κ(θ − v)− λv)uv + (r − 1

2v)ux − ru = 0,

with initial condition
u(v, x, T ) = max(K −Kex, 0).

We will see later in the thesis that the log transformation introduces an error to the
solution of Black-Scholes equation. Therefore, we will only be working with the original
equation for Heston’s stochastic volatility model, equation (2.23).

2.2.5 Weak formulation
We start by multiplying equation (2.24) by a test function ϕ ∈ X and integrate over
the domain: ∫

Ω
Utϕ+

∫
Ω

(∇ · E∇U)ϕ+
∫

Ω
f · ∇Uϕ+

∫
Ω
rUϕ = 0.

We use integration by parts on the second integral to obtain∫
Ω

(∇ · E∇U)ϕ = −
∫

Ω
E∇U · ∇ϕ+

∫
∂Ω
E∇U · −→n ϕ,

so we have∫
Ω
Utϕ−

∫
Ω
E∇U · ∇ϕ+

∫
∂Ω
E∇U · −→n ϕ+

∫
Ω
f · ∇Uϕ−

∫
Ω
rUϕ = 0.

The boundary integral will disapper on Γ2, Γ3 and Γ4 due to the boundary conditions
given. On Γ1, we have a Dirichlet boundary condition. If we define ϕ such that
they disappear at the Dirichlet boundary, the boundary integral becomes zero at this
boundary as well. We are left with∫

Ω
Utϕ−

∫
Ω
E∇U · ∇ϕ+

∫
Ω
f · ∇Uϕ−

∫
Ω
rUϕ = 0.
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The weak formulation of the problem can now be stated as

Find U ∈ W such that d
dt

(U,ϕ) + â(U,ϕ) = 0 for all ϕ ∈ X,

where
â(U,ϕ) = −

∫
Ω
E∇U · ∇ϕ+

∫
Ω
f · ∇Uϕ−

∫
Ω
rUϕ. (2.26)

The spaces are defined as

X = {ϕ ∈ W0 : ϕ = 0 on Γ1},

W0 = {ϕ : ‖ϕ‖∗ ≤ ∞}

and
W = {ϕ ∈ W0 : ϕ satisfies the boundary condition on Γ1}.

The norm
‖ϕ‖2

∗ =
∫

Ω
E∇ϕ · ∇ϕ+

∫
Ω

(r + 1
2∇ · f)ϕ2 (2.27)

comes from
(U,ϕ)∗ =

∫
Ω
E∇U · ∇ϕ+

∫
Ω

(r + 1
2∇ · f)Uϕ.

Note that we can always create an inner product from this by adding λc(U,ϕ)L2(Ω) to
(U,ϕ)∗. In order for this to be an inner product, we must have

λc + r + 1
2∇ · f ≥ 0,

which is easily fulfilled by choosing a large enough λc. In the analysis of the spectral
Galerkin method, we will use this inner product with λc = 1/h.



Chapter 3

Introduction to spectral methods

In this chapter, we will give an introduction to the spectral methods we will use in this
thesis. We will also test the methods on the heat equation. This is because the spectral
method is new to the author, and an easy problem is good for practice in how to use
the method. The lecture notes for the course MA8502 Numerical solution of partial
differential equations have been of good use in learning about spectral methods. The
lecture notes are written by Einar Rønquist. In addition, the books [4], [10] and [14]
have been useful.

Spectral methods are a class of methods for solving partial differential equations.
The class of methods are based on basis functions with global support. Spectral meth-
ods are not very flexible in terms of domains, but they have very good convergence,
especially when we have smooth solutions.

There are many different types of spectral methods. In this thesis, we will look at
a spectral Galerkin method and a polynomial collocation method.

3.1 The spectral Galerkin method
The spectral Galerkin method is based on the weak formulation of a problem. We
are seeking solutions w ∈ W of some problem on the form d

dt
(w, v) + a(w, v) = (f, v),

∀v ∈ W , and the solutions should be represented by some expansion of polynomials. It
is therefore convinient to use basis functions which are polynomials as well. There are
many possible choices for polynomials, common choices include Fourier series, Lagrange
polynomials and Chebyshev polynomials. For this thesis we have chosen to use the
Lagrange polynomials `j(x) as basis functions. They are given by

`j(x) =
N∏

i=0,i 6=j

x− xi
xj − xi

,

for some set of points {xj}. The Lagrangian polynomials have the property `j(xi) = δij,
which is illustrated in figure 3.1. This property is very important for the spectral
Galerkin method, and will be used a lot.

Using this basis, we can represent the solution space W by

W = span{`0, `1, . . . , `N}

The integrals in the bilinear form will be evaluated by quadrature. As for the basis
functions, there are many possible choices for quadrature. Different types of Gauss

15
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Figure 3.1: The Lagrangian polynomial of order 10 with i = 3.

quadrature is common. We use the Gauss-Lobatto-Legendre quadrature (or simply
GLL quadrature), with the corresponding nodes ξj and weights ρj. The nodes are the
N + 1 zeros of (1− ξ2)L′N(ξ), where LN(ξ) are the Legendre polynomials. The weights
are

ρj = 1
N(N + 1)

1
LN(ξj)2 , 0 ≤ j ≤ N.

With this notation, we can approximate an integral on [−1, 1] by
∫ 1

−1
f(x)dx ≈

N∑
α=0

ραf(ξα).

This quadrature is exact for f(x) ∈ P2N−1([−1, 1]). An example of the quadrature
nodes is given in figure 3.2. We observe that the nodes are not equidistant on the
interval, but they are symmetric and have higher density close to the boundaries. The
placement of the nodes is unique for each N , meaning that the nodes will be placed
differently for each value of N .

Figure 3.2: Gauss Lobatto Legendre nodes for N = 10, giving 11 nodes

3.2 Spectral Galerkin applied to the heat equation
In order to learn the basics of the spectral Galerkin method, we will apply it to
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wt = wxx, x ∈ [−1, 1] (3.1)
w(−1) = w(1) = 0 w(x, 0) = sin(πx).

The problem has the exact solution

w(x, t) = e−π
2t sin(πx). (3.2)

As mentioned, we need the weak formulation of the problem. We multiply (3.1) by
a test function ϕ ∈ W and integrate over [−1, 1]:∫ 1

−1
wtϕ−

∫ 1

−1
wxxϕ = 0.

By applying integration by parts on the second integral and use w(±1) = 0, we obtain∫ 1

−1
wtϕ+

∫
Ω
wxϕx = d

dt
(w,ϕ) + a(w,ϕ) = 0,

where a(w,ϕ) =
∫

Ω wxϕx. This gives the weak formulation

Find w ∈ W such that d
dt

(w,ϕ) + a(w,ϕ) = 0 for all ϕ ∈ W .

We define W = {w ∈ H1(Ω) : w(±1) = 0} = H1
0 (Ω).

As basis functions, we choose the N − 1 Lagrange polynomials `j(x). We only need
N − 1 functions because we can exclude the two endpoints where we have homoge-
neous Dirichlet conditions. The discrete space WN can be represented by these basis
functions, WN =span{`1, . . . , `N−1}. Now, we express a discrete solution wN ∈ WN to
our problem as

wN(x) =
N−1∑
j=1

wN(xj)`j(x).

We define wN(xj) = wj. Because `j(xi) = δij, the coefficients wj are equal to wN at the
nodes xj, so the wj’s are the solution to our problem. We can now write the bilinear
formulation as

a(
N−1∑
j=1

wj`j(x), ϕ).

By choosing ϕ(x) = `i(x) with i = 1, . . . , N − 1, we get

a(
N−1∑
j=1

wj`j(x), `i(x)) =
N−1∑
j=1

a(`j, `i)wj, i = 1, . . . , N − 1.

We can write this as the matrix A where Aij = a(`j, `i). Next, we evaluate the integral
in the bilinear form by GLL quadrature

a(`j, `i) =
∫ 1

−1
`′j(x)`′i(x)dx

=
N∑
α=0

ρα`
′
i(ξα)`′j(ξα) = aN(`j, `i)

=
N∑
α=0

ραDαiDαj = Aij.
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Each of the basis functions have degree N−1, so `i`j ∈ P2N−2 and the GLL quadrature
is exact.

Similarly, we get that the time derivative leads to a matrix M , where Mij = (`i, `j)
and

(`i, `j) =
N∑
α=0

ρα`i(ξα)`j(ξα) = (`i, `j)N = ρiδij.

Note that aN(·, ·) and (·, ·)N means that the integrals are evaluated by GLL quadrature.
Now, we can write this as the system Mẇ + Aw = 0. The matrix formulation

will be equal for all methods considered in this report, as long as we use the correct
corresponding matrices M and A, so we will give a general solution method for this
system. For a general right hand side f , we have the system

Mẇ + Aw = f ,

which can be solved by using an appropriate time discretization. We approximate ẇ
by

ẇ ≈ wk+1 −wk

h
,

where h is the time step. By using implicit Euler, we get

M
wk+1 −wk

h
+ Awk+1 = fk+1.

This gives the following expression for wk+1

wk+1 = (M + hA)−1(hfk+1 + Mwk).

We can also use Crank-Nicolson as discretization scheme. This gives

M
wk+1 −wk

h
+ 1

2A
(
wk+1 + wk

)
= 1

2
(
fk+1 + fk

)
.

The main difference between the two methods is that Crank-Nicolson is quadratic in
time, while implicit Euler is linear in time. In addition, Crank-Nicolson requires more
calculations per iteration.

Using Crank-Nicolson as discretization, we get the solution given in figure 3.3. We
have used N = 50 and h = 1 ·10−3 in the calculations. To see how good the method is,
we study the convergence of the numerical solution. To do this, we will use the GLL
quadrature to approximate a norm of the difference between the exact solution and the
numerical solution at the last time step. We call this norm ‖ · ‖GLL, and define it as

‖wexact(·, T )− wN(·, T )‖2
GLL =

∫ 1

−1
|wexact(ξα, T )− wN(ξα, T )|2dξ

≈
N∑
α=0

ρα|wexact(ξα, T )− wN(ξα, T )|2, (3.3)

so ‖ · ‖GLL is the square root of this. This norm is a space norm, and we will use it
to study convergence in both space and time. This norm will be used to study the
convergence throughout the thesis, and we will call it the GLL-norm. The norm is the
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Figure 3.3: Solution of equation (3.1) with N = 50 and h = 10−3.

best norm we can use for our problem because it is based on the quadrature that we
use and the nodes in which we have calculated the solution. We are also interested
in the relative norm, which is the above estimate divided by the norm of the exact
solution.

The convergence results are given in figure 3.4. From the left side of the figure, we
observe that the error in space decreases rapidly in the beginning, and then flattens out.
From the lecture notes of Rønquist, we have an a priori estimate for the approximation
error

‖w − wN‖ ≤ cN1−σ‖w‖Hσ . (3.4)

We know that the exact solution (3.2) is analytic, and this should give exponential
convergence. This is what we see in the first few points in the right side of figure
3.4. We then reach the best approximation possible with this method and time step
h = 10−4. We observed that we have reached a very small absolute error when the
constant convergence is reached.

From the right side of figure 3.4, we see that the convergence in time is quadratic
except for the largest values of h. This is expected because the convergence of Crank-
Nicolson is quadratic. We are able to achieve relative errors of size 10−13, which is very
good.

3.3 The polynomial collocation method
Polynomial collocation methods are based on the principle that the equation should
be solved exactly at a set of points called the collocation points. As for the GLL
quadrature, there are many possible choices of collocation points. For easy comparison,
we use the GLL nodes as collocation points, but most commonly the Chebyshev points
are used.

When we use collocation methods, the boundary conditions can be treated explic-
itly. We enforce the boundary conditions at the boundary nodes and use collocation
at the interior nodes.

We will give the details of how to solve a problem using polynomial collocation by
solving the heat equation.
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Figure 3.4: Convergence plot. The blue line is the absolute error calculated in the
GLL-norm. Left: convergence in space when h = 10−4. Right: convergence in time
when N = 50. The red line is h plotted against h2.

3.4 Polynomial collocation applied to the heat equa-
tion

We study the same problem as in section 3.2, equation (3.1). We use the GLL nodes
as collocation points, and require that the approximate solution wN satisfies

wN,t(x)− wN,xx(x)|x=xi = 0, i = 1, . . . , N − 1. (3.5)
In addition, the boundary conditions require wN(x0) = wN(xN) = 0. Next, we write

wN(x) =
N∑
j=0

wN(xj)`j(x), (3.6)

where `j are the Lagrangian polynomials. It is convenient to use the same polynomials
as for the Galerkin method, for easier comparance.

Next, we insert (3.6) into (3.5), giving
N∑
j=0

ẇN(xj)`j(xi)−
N∑
j=0

wN(xj)`′′j (xi) = 0, i = 1, . . . , N − 1.

Then, we write wN(xi) as wi. This gives

ẇi −
N∑
j=0

wjD
(2)
ij , i = 1, . . . , N − 1.

The matrix element D(2)
ij is the second derivative of the Lagrangian polynomial `j

evaluated at xi. We write this system as

Mẇ + Aw = 0,

where
Mij =

{
δij if i = 1, . . . , N − 1, j = 0, . . . , N
0 otherwise
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and

Aij =


D

(2)
ij if i = 1, . . . , N − 1, j = 0, . . . , N

1 if i = j = 0 or i = j = N
0 otherwise.

We solve the system by using Crank-Nicolson as in section 3.2. When we use
N = 50 and h = 10−3, we obtain the numerical solution given in figure 3.5. We study
the convergence of this method in the same way as for spectral Galerkin. The results
are given in figure 3.6, and we see that the results are identical to the ones in figure
3.4. Thus, we conclude that the two methods produce equally good results for this
problem. This is expected because we use the same polynomials and set of solution
points.

Figure 3.5: Solution of (3.1) by the polynomial collocation method when N = 50 and
h = 10−3.

Figure 3.6: Convergence plot. The blue line is the absolute error measured in the
GLL-norm. Left: convergence in space when h = 10−4. Right: convergence in time
when N = 50. The red line is h plotted against h2.
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Chapter 4

Solving Black-Scholes equation

In this chapter, we will solve Black-Scholes equation. We will use the spectral Galerkin
method and a polynomial collocation method. The two methods will be applied to both
equation (2.6) and the transformed equation (2.11) in order to compare the results.
We will also solve the original equation using the finite element method.

4.1 The spectral Galerkin Method

4.1.1 Mapping to reference domain
The Lagrangian basis functions that we use for the spectral Galerkin method are con-
structed on the interval ξ ∈ [−1, 1], therefore we need transformations from the domains
S ∈ [0,∞] and x ∈ [−∞,∞] to the reference domain Ω̂ = [−1, 1]. An illustration of a
mapping S = F(ξ) is given below.

S = 0 S =∞ ξ = −1 ξ = 1

For the mapping to work in practice, we need to set a limit for Smax which is
large enough for our purpose. The limit must be such that the error introduced by
imposing the boundary condition in the limit is sufficiently small. When K = 10,
Smax = LS = 50 is large enough because it is very unlikely that the spot price will be
larger than 4K in the time interval that we will use. This is approximately equivalent
to xmax = Lx = 4. The interval [−4, 4] is small compared to [−∞,∞], but the upper
bound is still large enough when K = 10. At the lower bound, we introduce an error
because xmin = −4 translates back to Smin = 0.02 which might not be close enough to
0. We will investigate this further when we solve the transformed equation.

For S, the mapping is given by

S(ξ) = LS
2 (ξ + 1), ∂S

∂ξ
= LS

2 = JS,

while for x it is simply

x(ξ) = Lxξ,
∂x

∂ξ
= Lx = Jx.

23
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The Jacobian of the mapping must be included in the implementations. In our case,
the Jacobian is the derivative of the mappings. With the mapping, we can write

∂V

∂S
= dξ

dS

∂V

∂ξ
= 1
JS

∂V

∂ξ
,

and similarly for the other derivative. With these definitions, we write out the bilinear
forms (2.14) and (2.16):

a(V, ϕ) = − 1
2JS

σ2
∫

Ω̂
S(ξ)2Vξϕξdξ − (σ2 − r)

∫
Ω̂
S(ξ)Vξϕdξ − rJS

∫
Ω̂
V ϕdξ (4.1)

and
ã(v, ϕ) = − 1

2Jx
σ2
∫

Ω̂
vξϕξdξ + r

∫
Ω̂
vξϕdξ − rJx

∫
Ω̂
vϕdξ. (4.2)

The time integral (2.15) is
d

dt
(V, ϕ) = JS

∫
Ω̂
Vtϕdξ,

and similarly for the transformed equation, but with Jx and v instead.

4.1.2 Spectral approximation
As in section 3.2, we start with the bilinear form in equation (4.1) and write the discrete
solution VN as

VN =
N−1∑
j=1

Vj`j(x).

And again, we have

a

N−1∑
j=1

Vj`j(x), `i(x)
 =

N−1∑
j=1

a(`j, `i)Vj i = 1, . . . , N − 1,

where we have excluded the two endpoints where we have Dirichlet conditions. The
evaluation of the integrals in (4.1) by GLL quadrature yields

a(`j, `i) = − 1
2JS

σ2
N∑
α=0

ρα`
′
j(ξα)`′i(ξα)S2

α − (σ2 − r)
N∑
α=0

ρα`
′
j(ξα)`i(ξα)Sα

− rJS
N∑
α=0

ρα`j(ξα)`i(ξα)

= − 1
2JS

σ2
N∑
α=0

ραDαiDαjS
2
α − (σ2 − r)

N∑
α=0

ραDαj`i(ξα)Sα

− rJS
N∑
α=0

ρα`j(ξα)`i(ξα)

= − 1
2JS

σ2
N∑
α=0

ραDαiDαjS
2
α − (σ2 − r)ρiDijSi − rJSρiδij

= Aij, i = 1, . . . , N − 1, j = 1, . . . N − 1.

Agian, we have used that `j(ξi) = δij and defined `′j(ξi) = Dij. The GLL quadrature
is exact because the degree of the polynomial is 2N − 2.
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Similarly, we can approximate the bilinear form in equation (4.2) by

ã(`j, `i) = − 1
2Jx

σ2
N∑
α=0

ρα`
′
j(ξα)`′i(ξα) + (r − 1

2σ
2)

N∑
α=0

ρα`
′
j(ξα)`i(ξα)

− rJx
N∑
α=0

ρα`j(ξα)`i(ξα)

= − 1
2Jx

σ2
N∑
α=0

ραDαiDαj + (r − 1
2σ

2)
N∑
α=0

ραDαj`i(ξα)− rJx
N∑
α=0

ρα`j(ξα)`i(ξα)

= rρiDij − (r − 1
2σ

2)Jxρiδij −
1

2Jx
σ2

N∑
α=0

ραDαiDαj

= Ãij, i = 1, . . . , N − 1, j = 1, . . . N − 1.

The time dependent integral is equal in both cases, and is approximated by

(`i, `j) = J
N∑
α=0

ρα`j(ξα)`i(ξα) = ρiJδij = Mij.

The boundary conditions at S = 0 and x = xmin can be imposed directly by
setting V0 = e−r(T−t) and VN = 0, or by adding a right-hand side and changing the
corresponding elements in A and M. We choose the first alternative.

As in section 3.2, we write this as the system MV̇+AV = 0. We use implicit Euler
as time discretization.

4.1.3 Numerical results
Original equation

Unless otherwise stated, we have used a time step of size h = 10−3 and N = 60, giving
N + 1 = 61 nodes and basis functions. The values used in computations are given in
table 4.1.

Figure 4.1: Solutions for equation (2.6) when N = 60 and h = 10−3. Left: the
numerical solution. Right: the exact solution.
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Constant Value
T 1
K 10
σ 0.25
r 0.05

Table 4.1: Values of constants used in the calculatuions

N ‖V BS − V ‖GLL α ‖V BS−V ‖GLL
‖V BS‖GLL

2 0.38675006 0 0.07041806
3 0.41805756 0 0.10762645
4 0.23005799 0.74940399 0.07228541
6 0.17495923 1.25668284 0.05050752
8 0.11975595 0.94190019 0.03530606
12 0.07410233 1.23942794 0.02174223
16 0.03513480 1.76912464 0.01030305
24 0.03407096 1.12097629 0.00999052
32 0.00751120 2.22578589 0.00220248
48 0.00566842 2.58752428 0.00166213
64 0.00031284 4.58553168 0.00009173
96 0.00017004 5.05902414 0.00004986
128 0.00036715 -0.23093662 0.00010766
192 0.00024370 -0.51927920 0.00007146
256 0.00013606 1.43211443 0.00003990
384 0.00004109 2.56819660 0.00001205
512 0.00010336 0.39662536 0.00003031
768 0.00004097 0.00412725 0.00001201

Table 4.2: Values for absolute error and relative error and the corresponding values of
α. The time step is kept fixed at h = 10−3.

h ‖V BS − V ‖GLL α ‖V BS−V ‖GLL
‖V BS‖GLL

1/2 0.01336128 0 0.00383226
1/4 0.00797037 0.74533933 0.00230652
1/8 0.00430943 0.88714976 0.00125448
1/16 0.00251610 0.77630871 0.00073498
1/32 0.00209822 0.26202278 0.00061407
1/64 0.00218373 -0.05762556 0.00063972
1/128 0.00230782 -0.07974137 0.00067641

Table 4.3: Values for absolute error and relative error and the corresponding values of
α when N = 60.
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Figure 4.2: Convergence for (2.6). Left: Convergence in space. Log-log plot of the
GLL-norm plotted against N when h = 10−3. The red line is 1/N2 plotted against
N . Right: Convergence in time. Log-log plot of the GLL-error plotted against h when
N = 60. The red line is h against h.

The solution for V is given in figure 4.1. We can see from the figure that the
numerical solution and the exact solution looks the same, which is good since we want
the numerical solution to converge to the exact solution. We can examine this further
by looking at the GLL-norm (3.3). Now, the exact solution is the solution given in
equation (2.8). We are interested in both the absolute norm and the relative norm.
For the relative norm, we need the norm of the exact solution, which is

‖V BS‖GLL ≈

√√√√ N∑
α=0

ραV BS(ξα, T )2.

The relative norm will be given in the converence tables. To give expressions for the
slope of the convergence, we use the relations

‖ · (N)‖GLL = CN−α

and
‖ · (2N)‖GLL = C2−αN−α,

which gives the following expression for α

α = ln ‖ · (N)‖GLL − ln ‖ · (2N)‖GLL
ln 2 .

Convergence in space is shown in the left side of figure 4.2, and the correspond-
ing values are given in table 4.2. The figure shows that the norm is approximately
quadratic, even though the α-values in the table seems random. We would normally
expect better convergence than quadratic, but because the initial data is not smooth,
we do not get optimal convergence. The a priori estimate in (3.4) explains this. The
solution of (2.6) is in H1, but the second derivative has a δ-function at t = 0. This
means that the solution is almost in H2 and we can obtain quadratic convergence with



28 CHAPTER 4. SOLVING BLACK-SCHOLES EQUATION

a large constant term. Despite the initial condition, we are able to achieve relative
errors of size 10−5.

The right side of figure 4.2 shows the convergence in time. We see that the conver-
gence is linear in the beginning, before it reaches a constan convergence. The linear
convergence is expected, because this is the convergence of the time discretization we
have used. Because the convergence in space is approximately quadratic, we could
expect to obtain the same in time. Therefore, we try to use Crank-Nicolson as dis-
cretization scheme instead. The discrtized system is then(

M + h

2A
)
V k+1 = h

2
(
fk + fk+1 −AV k

)
+ MV k.

This expression is used to obtain the convergence results in figure 4.3. We observe that
the convergence in space is approximately the same and that the convergence in time
reaches the constant convergence much faster than earlier. From table 4.4, we see that
the values are almost the same as in table 4.3 when h ≤ 1/16.

Figure 4.3: Convergence for (2.6) when Crank-Nicolson is used as time discretization.
Left: Convergence in space. Log-log plot of the GLL-norm plotted against N when
h = 10−3. The red line is 1/N2 plotted against N . Right: Convergence in time. Log-
log plot of the GLL-error plotted against h when N = 60. The red line is h against
h.

To study the impact of the ”bad” initial data, we study the difference between the
exact solution from Black-Scholes formula and the numerical solution, in other words
the difference between the two plots in figure 4.1. This is given in figure 4.4. We see
that the difference is largest at K = S when we are close to the initial condition at
t = T , when T − t is small. The error then decreases with time. This indicates that
the spectral method does not handle the sharp edge of the initial data very well.

In figure 4.5, we have increased T from 1 to 5 in order to see that the error continues
to decrease with time. To avoid introducing errors because LS is too small, we increased
it to LS = 100. For both figures, the largest difference is approximately 1.5·10−2, which
is small compared to the solution. It also seems to be the case that most of the error
is caused by the initial data. When we reach the constant convergence in time, this
difference is constant.
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h ‖V BS − V ‖GLL α ‖V BS−V ‖GLL
‖V BS‖GLL

1/2 0.00571293 0 0.00163857
1/4 0.00304873 0.90601989 0.00088226
1/8 0.00263321 0.21138982 0.00076653
1/16 0.00254081 0.05153433 0.00074219
1/32 0.00250727 0.01916958 0.00073378
1/64 0.00249287 0.00830960 0.00073028
1/128 0.00248624 0.00383845 0.00072871

Table 4.4: Values for absolute and relative error and the corresponding values of α
when N = 60 and Crank-Nicolson is used as time discretization.

Figure 4.4: Difference between the exact solution and the numerical solution forN = 60
and h = 10−3.

Figure 4.5: Difference between the exact solution and the numerical solution on a larger
domain where T = 5, LS = 100, N = 120 and h = 10−3.
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To get better convergence and get rid of the error due to initial data, it could be
tempting to try to approximate the initial data by a smooth function. In order to get a
good approximation, we would need many nodes around the point K = S. This means
that we would need a large N to obtain sufficiently accuracy on the domain, and the
computation time would probably increase more than the correctness. In addition,
the solution would converge to the wrong solution. When we then reach small enough
errors, the error due to the approximation of the initial data would dominate. Thus,
this is not a good idea if we want to reduce the error.

Transformed equation

Figure 4.6: Numerical solution for the transformed equation (2.11) when N = 60 and
h = 10−3.

The numerical solution for the transformed equation (2.11) is given in figure 4.6.
From the figure, we see that the solution looks like the solutions in figure 4.1. However,
the convergence plots in figure 4.7 shows that the convergence is not as good as for the
original equation. From the left side of figure 4.7, we see that the error is approximately
quadratic in the beginning before it reaches a constant error of size 3 · 10−3, but the
error of the original equation continues to decrease. This is reflected in the values in
table 4.5. It also seems that the solution of the transformed equation is not very stable
for small N

The right side of figure 4.7 and table 4.6 shows that the convergence in time behaves
as the convergence of the original equation, but is a little bit larger.

From figure 4.8, we see that the difference between the exact and numerical solution
behaves almost in the same way as for the original equation, but we also have an error
along the boundary x = xmin because e−4 6= 0. The error along this boundary does not
decrease as we increase N because the endpoint value does not change. Therefore, this
can be one of the reasons that we have a larger error for the transformed equation.

From the results in this section, it looks like it is better to solve the original equation
when we want to obtain good numerical convergence.
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N ‖V BS − V ‖GLL α ‖V BS−V ‖GLL
‖V BS‖GLL

2 0.01697580 0 0.00150831
3 0.21477835 0 0.02165946
4 0.06293417 -1.89036352 0.00602614
6 0.14856888 0.53171665 0.01440888
8 0.05674811 0.14927103 0.00545679
12 0.10092918 0.55778863 0.00972871
16 0.03479542 0.70567512 0.00335268
24 0.01707888 2.56305793 0.00164555
32 0.01757554 0.98532797 0.00169340
48 0.01010895 0.75658020 0.00097400
64 0.00567725 1.63030467 0.00054700
96 0.00310244 1.70415895 0.00029892
128 0.00324821 0.80554765 0.00031296
192 0.00297616 0.05994806 0.00028675
256 0.00295461 0.13667779 0.00028468

Table 4.5: Values for absolute error and relative error and the corresponding values of
α. The time step is kept fixed at h = 10−3.

h ‖V BS − V ‖GLL α ‖V BS−V ‖GLL
‖V BS‖GLL

1/2 0.02424988 0 0.00229451
1/4 0.01480968 0.71143664 0.00141152
1/8 0.00790935 0.90490974 0.00075751
1/16 0.00402587 0.97425983 0.00038667
1/32 0.00270893 0.57157665 0.00026059
1/64 0.00276022 -0.02706003 0.00026574
1/128 0.00301833 -0.12897001 0.00029071

Table 4.6: Values for absolute error and relative error and the corresponding values of
α when N = 60.
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Figure 4.7: Convergence for (2.11). Left: Convergence in space. Log-log plot of the
GLL-norm plotted against N when h = 10−3. The red line is 1/N2 plotted against
N . Right: Convergence in time. Log-log plot of the GLL-error plotted against h when
N = 60. The red line is h against h.

Figure 4.8: Difference between the exact solution and the numerical solution for the
transformed equation.

4.1.4 Analysis of the method
The book by Achdou and Pironneau [1] gives the analysis of the weak formulation of
Black-Scholes. The analysis in this section is similar to the book, but slightly changed
to adapt it to our problem. To avoid repeating results, the analysis is performed only
for the original problem, equation (2.6). We assume that we have transformed the
equation to the domain [−1, 1] and that we have homogeneous Dirichlet boundary
conditions.

Before we start the analysis, we introduce the following energy norm

‖ϕ‖2
E = ‖SϕS‖2

L2(Ω) + ‖ϕ‖2
L2(Ω), (4.3)
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the seminorm

|ϕ|2E = ‖SϕS‖2
L2(Ω) (4.4)

and the corresponding space

E =
{
ϕ ∈ L2(Ω) : ‖ϕ‖E <∞

}
.

We will also use the following version of Poincaré’s inequality

‖ϕ‖L2(Ω) ≤ 2‖SϕS‖L2(Ω) ∀ϕ ∈ E. (4.5)

Next, we state a lemma showing that the seminom is a norm.

Lemma 1. The seminorm (4.4) is a norm equivalent to (4.3).

Proof.

|ϕ|2E = ‖SϕS‖2
L2(Ω)

≤ ‖ϕ‖2
E = ‖SϕS‖2

L2(Ω) + ‖ϕ‖2
L2(Ω)

≤ ‖SϕS‖2
L2(Ω) + 4‖SϕS‖2

L2(Ω) = 5|ϕ|2E.

To obtain the last inequality, we used Poincaré’s inequality.

For easier analysis, we will make the equation forward in time. We let t = T − t,
and write

a(V, ϕ) =
∫

Ω

1
2σ

2S2VSϕS +
∫

Ω
(σ2 − r)SVSϕ+

∫
Ω
rV ϕ. (4.6)

The sign of the time derivative remains unchanged.

Gårding’s inequality

In stead of the coercivity of the bilinear form, we give an estimate for the lower bound
of the bilinear form through Gårding’s inequality. The estimate is valid at each time
step, which is enough to know that it holds for the method.

Lemma 2.
a(ϕ, ϕ) ≥ 1

4σ
2|ϕ|2E −K0‖ϕ‖2

L2(Ω). (4.7)

Proof. Starting with the bilinear form (4.6), we have

a(ϕ, ϕ) = 1
2σ

2|ϕ|2E + r‖ϕ‖2
L2(Ω) + (σ2 − r)

∫
Ω
SϕSϕ

≥ 1
2σ

2|ϕ|2E + r‖ϕ‖2
L2(Ω) − |σ2 − r|

∫
Ω

(1
2εS

2ϕ2
S + 1

2εϕ
2)

≥ (1
2σ

2 − 1
2 |σ

2 − r|ε)|ϕ|2E −
(
−r + |σ

2 − r|
2ε

)
‖ϕ‖2

L2(Ω).

Choosing
ε = σ2

2|σ2 − r|
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gives

a(ϕ, ϕ) ≥ 1
4σ

2|ϕ|2E −
(
−r + |σ

2 − r|2

σ2

)
‖ϕ‖2

L2(Ω),

which is equal to (4.7) with

K0 = −r + |σ
2 − r|2

σ2 .

By using the Poincaré inequality, we can obtain an estimate of the form a(ϕ, ϕ) ≥
K|ϕ|Er, but the lower bound obtained form Gårding’s inequality gives a better estimate
and is therefore preferred.

Continuity

We state a lemma concerning the continuity of the bilinear form.

Lemma 3.
|a(ϕ, ψ)| ≤ C|ϕ|E|ψ|E. (4.8)

Proof. By using the Poincaré inequality, we get the following estimates for each of the
integrals in (4.6)

|
∫

Ω

1
2σ

2S2ϕSψS| ≤
1
2σ

2|ϕ|E|ψ|E,

|
∫

Ω
(−r + σ2)SϕSψ| ≤ (r + σ2)|ϕ|E‖ψ‖L2(Ω) ≤ 2(r + σ2)|ϕ|E|ψ|E and

r|
∫

Ω
ϕψ| ≤ 4r|ϕ|E|ψ|E.

Combining the above, we get

|a(ϕ, ψ)| ≤
(5

2σ
2 + 6r

)
|ϕ|E|ψ|E

which shows that the bilinear form is continuous with constant C = 5
2σ

2 + 6r.

Now, we have showed that the bilinear form is both ”coercive” and continuous at
each time t. If we then apply a time discretization to the weak formulation, Lax-
Milgram’s lemma A.2 ensures that a solution exists and that the solution will be
unique.

Stability

We will give an energy estimate to show that the solution is stable.

Lemma 4. The equation is stable with energy estimate

e−2K0t‖ϕ(t)‖2
L2(Ω) + σ2

2

∫ t

0
e−2K0t|ϕ(t)|2Edt ≤ ‖ϕ(0)‖2

L2(Ω). (4.9)
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Proof. We start with the weak equation (2.13) and use the test function ϕe−2K0t:
∫ t

0

∫
Ω
e−2K0tϕtϕdt dx+

∫ t

0
e−2K0ta(ϕ, ϕ)dt = 0. (4.10)

Note that
∂

∂t

(
e−2K0tϕ2

)
= −2K0e

−2K0tϕ2 + 2e−2K0tϕϕt,

so we can write (4.10) as
∫ t

0

1
2
∂

∂t

(
e−2K0t‖ϕ‖2

L2(Ω)

)
dt+K0

∫ t

0
e−2K0t‖ϕ‖2

L2(Ω)dt

+ σ2

4

∫ t

0
e−2K0t|ϕ|2Edt−K0

∫ t

0
e−2K0t‖ϕ‖2

L2(Ω)dt ≤ 0.

This is equal to
∫ t

0

1
2
∂

∂t

(
e−2K0t‖ϕ‖2

L2(Ω)

)
dt+ σ2

4

∫ t

0
e−2K0t|ϕ|2Edt ≤ 0.

By applying the fundamental theorem of calculus to the above equation, we get

1
2e
−2K0t‖ϕ(t)‖2

L2(Ω) −
1
2‖ϕ(0)‖2

L2(Ω) + σ2

4

∫ t

0
e−2K0t|ϕ|2Edt ≤ 0,

which is equal to (4.9) when we multiply by 2 and rearrange.

Convergence

The last part of the analysis concerns the convergence of the method. We want the
discrete solution Vh to converge to the continuous solution V . A similar proof is found
in [12, chapter 5.3].

Lemma 5.
‖V (t)− Vh(t)‖2

L2(Ω) ≤
h(t)
N2 e

(K0+ 1
2 )t.

Proof. Note that we can write

a(V − Vh, V − Vh) = a(V − Vh, V − ϕh) + a(V − Vh, ϕh − Vh).

By using the weak formulation of the equation and subtracting the same formulation
for the discrete solution, we get(

∂

∂t
(V − Vh), ϕh − Vh

)
+ a(V − Vh, ϕh − Vh) = 0. (4.11)

By using the estimate from Gårding inequality (4.7) and the two above equations, we
get

1
4σ

2|V −Vh|2E−K0‖V −Vh‖2
L2(Ω) ≤ a(V −Vh, V −ϕh)−

(
∂

∂t
(V − Vh), ϕh − Vh

)
. (4.12)
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Next, we apply the continuity estimate and Young’s inequality

a(V − Vh, V − ϕh) ≤ C|V − Vh|E|V − ϕh|E (4.13)

≤ ε|V − Vh|2E + C2

4ε |V − ϕh|
2
E

≤ 1
4σ

2|V − Vh|2E + C2

σ2 |V − ϕh|
2
E,

where we have chosen ε = 1
4σ

2. Next, we use ϕh − Vh = (ϕh − V ) + (V − Vh) to write

−
(
∂

∂t
(V − Vh), ϕh − Vh

)
=
(
∂

∂t
(V − Vh), V − ϕh

)
− 1

2
∂

∂t
‖V − Vh‖2

L2(Ω). (4.14)

Inserting (4.13) and (4.14) into (4.12), we get

1
4σ

2|V − Vh|2E −K0‖V − Vh‖2
L2(Ω)

≤ 1
4σ

2|V − Vh|2E + C2

σ2 |V − ϕh|
2
E +

(
∂

∂t
(V − Vh), V − ϕh

)
− 1

2
∂

∂t
‖V − Vh‖2

L2(Ω).

Rearranging, this gives

1
2
∂

∂t
‖V − Vh‖2

L2(Ω) ≤
C2

σ2 |V − ϕh|
2
E +K0‖V − Vh‖2

L2(Ω) +
(
∂

∂t
(V − Vh), V − ϕh

)
.

Now, we multiply the inequality by 2 and integrate over t which results in

‖(V − Vh)(t)‖2
L2(Ω) ≤ ‖(V − Vh)(0)‖2

L2(Ω) + 2C2

σ2

∫ t

0
|V (t)− ϕh|2Edt (4.15)

K0

∫ t

0
‖(V − Vh)(t)‖2

L2(Ω)dt+ 2
∫ t

0

(
∂

∂t
(V − Vh)(t), V (t)− ϕh

)
dt.

The last integral in (4.15) can be written as
∫ t

0
( ∂

∂t
(V − Vh)(t), V (t)− ϕh ) dt = −

∫ t

0

(
(V − Vh)(t),

∂

∂t
(V (t)− ϕh)

)
dt

+ ((V − Vh)(t), (V − ϕh)(t))− ((V − Vh)(0), (V − ϕh)(0))

≤
∫ t

0
‖ ∂
∂t

(V (t)− ϕh)‖2
L2(Ω)dt+ 1

4

∫ t

0
‖(V − Vh)(t)‖2

L2(Ω)dt+ 1
4‖

∂

∂t
(V − Vh)(t)‖2

L2(Ω)

+ ‖(V − ϕh)(t)‖2
L2(Ω) + ‖(V − Vh)(0)‖L2(Ω)‖(V − ϕh)(0)‖L2(Ω).

Inserting this into (4.15), we get

‖(V − Vh)(t)‖2
L2(Ω) ≤ ‖(V − Vh)(0)‖2

L2(Ω) + 2C2

σ2

∫ t

0
|V (t)− ϕh|2Edt

+K0

∫ t

0
‖(V − Vh)(t)‖2

L2(Ω)dt+ 2
∫ t

0
‖ ∂
∂t

(V (t)− ϕh)‖2
L2(Ω)dt

+ 1
2

∫ t

0
‖ ∂
∂t

(V − Vh)(t)‖2
L2(Ω)dt+ 1

2‖(V − Vh)(t)‖
2
L2(Ω)

+ 2‖(V − ϕh)(t)‖2
L2(Ω) + 2‖(V − Vh)(0)‖L2(Ω)‖(V − ϕh)(0)‖L2(Ω).
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Finally, we can write this as

1
2‖(V − Vh)(t)‖

2
L2(Ω) ≤ ‖(V − Vh)(0)‖2

L2(Ω) + 2C2

σ2

∫ t

0
|V (t)− ϕh|2Edt

+ (K0 + 1
2)
∫ t

0
‖(V − Vh)(t)‖2

L2(Ω)dt+ 2
∫ t

0
‖ ∂
∂t

(V (t)− ϕh)‖2
L2(Ω)dt

+ 2‖(V − ϕh)(t)‖2
L2(Ω) + 2‖(V − Vh)(0)‖L2(Ω)‖(V − ϕh)(0)‖L2(Ω).

To bound the integrals, we will use ϕh = ΠGLL
N V , together with Vh(0) = ϕh(0),

‖V − ΠGLL
N V ‖L2(Ω) ≤ C̃

1
N
‖VS‖L2(Ω)

and
|V − ΠGLL

N V |E ≤ LS|V − ΠGLL
N V |H1(Ω) ≤ C̃S

1
N
‖VSS‖L2(Ω),

where C̃S depends on LS. This gives

E1 = 2C2

σ2

∫ t

0
|V (t)− ΠGLL

N V |2Edt ≤ C̃1
1
N2

∫ t

0
‖VSS‖2

L2(Ω) ≤ C1
1
N2C0(t)

E2 = 2
∫ t

0
‖ ∂
∂t

(V (t)− ΠGLL
N V )‖2

L2(Ω)dt ≤ C̃2
1
N2

∫ t

0
‖ ∂
∂t
VS‖2

L2(Ω) ≤ C2
1
N2C0(t)

E3 = 2‖(V − ΠGLL
N V )(t)‖2

L2(Ω) ≤ C̃3
1
N2‖VS‖

2
L2(Ω) ≤ C3

1
N2C0(t)

E4 = ‖(V − Vh)(0)‖2
L2(Ω) + 2‖(V − Vh)(0)‖L2(Ω)‖(V − ΠGLL

N V )(0)‖L2(Ω)

≤ C̃4
1
N2‖VS(0)‖2

L2(Ω) ≤ C4
1
N2C0(0).

Now, we have

E1 + E2 + E3 + E4 ≤ C5
1
N2 g(V )

for some suitable function g(V ). The coercivity bound can then be written as

‖V (t)− Vh(t)‖2
L2(Ω)

≤ C5
1
N2 g(V ) + (K0 + 1

2)
∫ t

0
‖V (t)− Vh(t)‖2

L2(Ω)dt.

If we use Gronwall’s lemma A.3 to this, we obtain

‖V (t)− Vh(t)‖2
L2(Ω) ≤

h(t)
N2 e

(K0+ 1
2 )t,

where h(t) is a suitable function involving g(V ).

Other convergence estimates are also possible. For example, if we choose ε = 1
8σ

2,
the norms |V − Vh|2E will not cancel out and we get a better estimate containing
|V − Vh|2E.
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4.2 The spectral collocation method

4.2.1 Mapping to reference domain
As for the Galerkin method, we must use a mapping from the domains S ∈ [0, S]
and x ∈ [−∞,∞] to the reference domain Ω̂ = [−1, 1]. The mappings are the same
as before, S(ξ) = LS

2 (ξ + 1) and x(ξ) = Lxξ. When we change domain, the partial
derivatives change to

∂V

∂S
= ∂V

∂ξ

dξ

dS
= 2
LS

∂V

∂ξ
= 1
JS

∂V

∂ξ

∂2V

∂S2 = ∂

∂S

(
∂V

∂S

)
= ∂

∂ξ

dξ

dS

(
2
LS

∂V

∂ξ

)
= 4
L2
S

∂2V

∂ξ2 = 1
J2
S

∂2V

∂ξ2 ,

and similarly for the derivatives of v.

4.2.2 Spectral approximation
The first thing we do is to require that the approximate solution VN solves the equation
at the interior collocation points

VN,t + 1
2σ

2S2VN,SS + rSVN,S − rVN
∣∣∣∣
S=Si

= 0 i = 1, . . . , N − 1.

The boundary points are excluded because we have Dirichlet boundaries. At the refer-
nce domain, this is

VN,t + 1
2σ

2S(ξ)2VN,ξξ + rS(ξ)VN,ξ − rVN
∣∣∣∣
ξ=ξi

= 0 i = 1, . . . , N − 1.

As earlier, we use the GLL nodes as collocation points. If we write VN(S, t) =
(VN(S1, t), . . . , VN(SN−1, t))T , we can approximate VN(S, t) by

VN(S, t) ≈
N−1∑
j=1

Vj`j(S),

where we have used VN(Sj, t) = Vj. With this approximation, we can write
N−1∑
j=1

V̇j`j(ξi) + 1
2J2

S

σ2
N−1∑
j=1

VjS
2
i `
′′
j (ξi) + r

1
JS

N−1∑
j=1

VjSi`
′
j(ξi)− r

N−1∑
j=1

Vj`j(ξi)

=
N−1∑
j=1

V̇jδij + 1
2J2

S

σ2
N−1∑
j=1

VjS
2
i `
′′
j (ξi) + r

1
JS

N−1∑
j=1

VjSi`
′
j(ξi)− r

N−1∑
j=1

Vjδij

=V̇i + 1
2J2

S

σ2
N−1∑
j=1

S2
iD

(2)
ij Vj + r

1
JS

N−1∑
j=1

DijSiVj − rVi = 0, i = 1, . . . , N − 1,

where Dij = `′j(ξi) and D(2)
ij = `′′j (ξi).

We now have a system of equations to solve for V , which we can write in matrix
form with Mij = δij and

Aij = 1
2J2

S

σ2S2
iD

(2)
ij + r

1
JS
DijSi − rδij.
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By the same method, we obatin the following stiffness matrix for the transformed
equation

Ãij = 1
2J2

x

σ2D
(2)
ij + (r − 1

2σ
2) 1
Jx
Dij − rδij.

We agian obtain the system MV̇ + AV = 0, which we solve using implicit Euler as in
section 3.2. Similarly as for the Galerkin method, the boundary conditions are enforced
directly.

4.2.3 Numerical results

Original equation

Figure 4.9: Solution for equation (2.6) when polynomial collocation is used, N = 60
and h = 10−3. Left: the numerical solution. Right: the exact solution.

We are still using N = 60, h = 10−3 and the values in table 4.1 in the calculations.
The solution for V when we have used polynomial collocation to solve equation (2.6) is
given in figure 4.9. Again, we see that the solution looks the same as the exact solution
and it also looks equal to the solution in figure 4.1. This is good, as the two method
should produce the same result.

We use equation (3.3) to estimate the GLL-error for the convergence plots. We
look at both the absolute error and the relative error as earlier. The error plots are
given in figure 4.10, with corresponding values in tables 4.7 and 4.8. We see that
the convergence in both space and time behaves in the same way as in figure 4.2. In
particular, the error values in table 4.3 is almost identical and when N ≥ 12, the values
in tables 4.2 and 4.7 are similar as well. We can therfore assume that we will get the
same improved convergence result if we try Crank-Nicolson as time discretization here
as well. This is what we see in figure 4.11 and table 4.9.

We study the difference between the exact solution and the numerical solution for
this method as well, which is shown in figure 4.12. We have the same error trend here
as for the spectral Galerkin method, where the error is largest close to K = S for t
close to T and decreasing with time.
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N ‖V BS − V ‖GLL α ‖V BS−V ‖GLL
‖V BS‖GLL

2 0.06642501 0 0.01209443
3 0.05027341 0 0.01294259
4 0.08774829 -0.40164460 0.02757097
6 0.07104010 -0.49883813 0.02050798
8 0.07641986 0.19942344 0.02252985
12 0.07055524 0.00988049 0.02070149
16 0.03548788 1.10662109 0.01040658
24 0.03307573 1.09298009 0.00969869
32 0.00744941 2.25212869 0.00218437
48 0.00564706 2.55020040 0.00165587
64 0.00029235 4.67136395 0.00008572
96 0.00016792 5.07163657 0.00004924
128 0.00036710 -0.32849581 0.00010764
192 0.00024370 -0.53733280 0.00007146
256 0.00013606 1.43192556 0.00003990
384 0.00004109 2.56821455 0.00001205
512 0.00010336 0.39662572 0.00003031
768 0.00004097 0.00410489 0.00001201

Table 4.7: Values for absolute error and relative error and the corresponding values of
α. The time step is kept fixed at h = 10−3.

h ‖V BS − V ‖GLL α ‖V BS−V ‖GLL
‖V BS‖GLL

1/2 0.01336123 0 0.00383225
1/4 0.00797038 0.74533250 0.00230652
1/8 0.00430937 0.88717265 0.00125446
1/16 0.00251587 0.77641923 0.00073491
1/32 0.00209786 0.26214009 0.00061396
1/64 0.00218333 -0.05761517 0.00063960
1/128 0.00230743 -0.07975490 0.00067630

Table 4.8: Values for absolute error and relative error and the corresponding values of
α when N = 60.

h ‖V BS − V ‖GLL α ‖V BS−V ‖GLL
‖V BS‖GLL

1/2 0.00555973 0 0.00159463
1/4 0.00291599 0.93102904 0.00084385
1/8 0.00262636 0.15092316 0.00076453
1/16 0.00254022 0.04811137 0.00074202
1/32 0.00250686 0.01906969 0.00073366
1/64 0.00249247 0.00830387 0.00073017
1/128 0.00248585 0.00383678 0.00072859

Table 4.9: Values for absolute error and relative error and the corresponding values of
α when N = 60 and Crank-Nicolson is used as time discretization.
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Figure 4.10: Convergence for (2.6). Left: Convergence in space. Log-log plot of the
GLL-norm plotted against N when h = 10−3. The red line is 1/N2 plotted against
N . Right: Convergence in time. Log-log plot of the GLL-error plotted against h when
N = 60. The red line is h against h.

Figure 4.11: Convergence for (2.6) when Crank-Nicolson is used as time discretization.
Left: Convergence in space. Log-log plot of the GLL-norm plotted against N when
h = 10−3. The red line is 1/N2 plotted against N . Right: Convergence in time. Log-
log plot of the GLL-error plotted against h when N = 60. The red line is h against
h

Transformed equation

The transformed solution is given in figure 4.13. Again, we observe that the solution
looks like the other solutions. The convergence plots in figure 4.14 shows the same
trend as in figure 4.7. The left side of figure 4.14 shows the convergence in space is
approximately quadratic in the beginning before it becomes constant, and the right
side of the figure shows that the convergence in time is linear in the beginning, and
then becomes constant. The convergence values in tables 4.10 and 4.11 is identical to
the values in table 4.5 and 4.6, which confirms that the two methods are equivalent.

Figure 4.15 shows the absolute difference between the exact and numerical solution.
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Figure 4.12: Difference between the exact solution and the numerical solution

Figure 4.13: Numerical solution for equation (2.11) when polynomial collocation is
used, N = 60 and h = 10−3.

The difference is similar to the result in figure 4.8, a decreasing error due to the initial
condition and a constant error from the boundary condition at x = xmin.

Again, we see that the original equation gives better convergence results and better
solution than the transformed equation, confirming that the transformation is not
necessary to solve the equations numerically.

4.2.4 Analysis of the method
In this section, we will show that the collocation method is mathematically equivalent
to the spectral Galerkin method that we used. This implies that the analysis is the
same as in section 4.1.4, and no further analysis is required. We will show that the
two methods are equivalent at each time t. If we use the same time discretization for
the two methods, they should be equivalent. The numerical results obtained confirms
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N ‖V BS − V ‖GLL α ‖V BS−V ‖GLL
‖V BS‖GLL

2 0.01697580 0 0.00150831
3 0.21477835 0 0.02165946
4 0.06293417 -1.89036352 0.00602614
6 0.14856888 0.53171665 0.01440888
8 0.05674811 0.14927103 0.00545679
12 0.10092918 0.55778863 0.00972871
16 0.03479542 0.70567512 0.00335268
24 0.01707888 2.56305793 0.00164555
32 0.01757554 0.98532797 0.00169340
48 0.01010895 0.75658020 0.00097400
64 0.00567725 1.63030467 0.00054700
96 0.00310244 1.70415895 0.00029892
128 0.00324821 0.80554765 0.00031296
192 0.00297616 0.05994806 0.00028675
256 0.00295461 0.13667779 0.00028468

Table 4.10: Values for absolute error and relative error and the corresponding values
of α. The time step is kept fixed at h = 10−3.

h ‖V BS − V ‖GLL α ‖V BS−V ‖GLL
‖V BS‖GLL

1/2 0.02424988 0 0.00229451
1/4 0.01480968 0.71143664 0.00141152
1/8 0.00790935 0.90490974 0.00075751
1/16 0.00402587 0.97425983 0.00038667
1/32 0.00270893 0.57157665 0.00026059
1/64 0.00276022 -0.02706003 0.00026574
1/128 0.00301833 -0.12897001 0.00029071

Table 4.11: Values for absolute error and relative error and the corresponding values
of α when N = 60.
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Figure 4.14: Convergence for (2.11). Left: Convergence in space. Log-log plot of the
GLL-norm plotted against N when h = 10−3. The red line is 1/N2 plotted against
N . Right: Convergence in time. Log-log plot of the GLL-error plotted against h when
N = 60. The red line is h against h.

Figure 4.15: Difference between the exact solution and the numerical solution for the
transformed equation

this. The proof can be found in [12, Chapter 10.3].
We start by defining the operator ΠGLL as

ΠGLLV (S) =
N−1∑
i=1

V (Si)`i(S),

and the discrete inner product

(f, g)N =
N−1∑
i=1

ρif(Si)g(Si),

where ρi is the GLL weight corresponding to node i. This is the GLL quadrature.
Remeber from section 3.1 that the quadrature is exact when fg ∈ P2N−1, and thus
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(f, g)N = (f, g). In addition, we have

(ΠGLLf, g)N =
N−1∑
i=1

ρiΠGLLf(Si)g(Si)

=
N−1∑
i=1

ρi
N−1∑
j=1

f(Si)g(Si)`j(Si)

=
N−1∑
i=1

ρif(Si)g(Si) = (f, g)N .

Now, we write the bilinear form (2.14) as the first step in the derivation in section
2.1.6:

1
2σ

2(ΠGLLS2VSS, ϕ) + r(ΠGLLSVS, ϕ)− r(ΠGLLV, ϕ).

By including the time derivative, we obtain the weak formulation

Find V ∈ XN such that (ΠGLLVt, ϕi) + (LV, ϕi)N = 0 i = 1, 2, . . . , N − 1,

where we have defined

LV = 1
2σ

2ΠGLLS2VSS + rΠGLLSVS − rΠGLLV.

Looking at the i-th equation, we get for each of the three terms in LV

1
2σ

2(ΠGLLS2VSS, ϕi)N = 1
2σ

2ρiΠGLLS2
i VSS(Si),

r(ΠGLLSVS, ϕi)N = rρiΠGLLSiVS(Si) and
r(ΠGLLV, ϕi)N = rρiΠGLLV (Si),

and the time derivative
(ΠGLLVt, ϕi)N = ρiΠGLLV̇ (Si)

Dividing by ρi and collecting the terms, we get

ΠGLLV̇ (Si) + 1
2σ

2ΠGLLS2
i VSS(Si) + rΠGLLSiVS(Si) + rΠGLLV

This is equal to
N−1∑
j=1

V̇i`j(Si) + 1
2σ

2
N−1∑
j=1

S2
i Vj`

′′
j (Si) + r

N−1∑
j=1

SiVi`
′
j(Si) + r

N−1∑
j=1

Vi`j(Si),

where we have chosen the basis functions ϕi to be the Lagrange polynomials `i. This
expression is the same as the approximation in section 4.2.2. Therefore, the analysis
of stability and coercivity in section 4.1.4 holds for the collocation case as well.

Generally, we can not say that the two methods are equivalent. It holds in our
case because both boundary conditions are of Dirichlet type. If we had other types of
boundary conditions, both i, j would be 0 ≤ i, j ≤ N . The boundary conditions would
be treated differently for the two methods, making the two methods different at the
boundaries.
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4.3 Solution using the finite element method
In order to have something to compare the results with, we solve Black-Scholes equation
using the finite element method as well. The finite element method is similar to the
spectral Galerkin method, but the basis functions are no longer global. In stead, we
use local basis functions at each element.

We do not give all the details of the derivation of this method, but we will point
out some similarities and differences from the spectral Galerkin method.

For the finite element method, we use a grid with equally spaced nodes on the
domain. An element is then defined as the interval between two neighbouring points
on the grid: [Sj, Sj+1]. All elements will be of the same size hN = Sj+1 − Sj. The
calculations are performed by looping over all the elements.

As for the spectral Galerkin method, the calculations are performed on a reference
domain. Here, this means that the calculations are perfomed on a reference element,
and we need a transformation from an arbitrary element to the reference element. We
will use the element ξ ∈ [−1, 1] as reference element. The transformation from an
element [Sj, Sj+1] is then given by

S(ξ) = Sj+1 + Sj
2 + (Sj+1 − Sj)ξ

2 ,
dS

dξ
= Sj+1 − Sj

2 .

The mapping is performed elementwise when we loop over the elements. We define the
basis functions on the reference element as

ϕ̂1(ξ) = 1− ξ
2 and ϕ̂2(ξ) = 1 + ξ

2 .

As earlier, we write the approximate solution VN(S) as

VN(S) =
N−1∑
j=1

Vjϕj(S).

We choose ϕ = ˆϕ1,2 and get an expression for each element. From [1, chapter 4.3] we
have expressions for the matrix elements in the stiffness matrix A

Aij =



−S2
i σ

2/2hN + rSi/2 if j = i− 1, i = 2, . . . , N + 1
S2
i σ

2/hN + rhN if i = j, i = 2, . . . , N + 1
−S2

i σ
2/2hN − rSi/2 if j = i+ 1, i = 1, . . . , N

rhN/2 if i = j = 1
0 otherwise.

and the mass matrix M

Mij =



h/6 if j = i− 1, i = 2, . . . , N + 1
2h/3 if i = j, i = 2, . . . , N + 1
h/6 if j = i+ 1, i = 1, . . . , N
h/3 if i = j = 1
0 otherwise.

Again, we solve the system using implict Euler. The numerical solution when
N = 60 and h = 10−3 is shown in figure 4.16. Again, we get the same solution as for
the other methods.
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To study the convergence in the GLL-norm, we must interpolate the solution from
the equidistant grid to a GLL-grid. This is done by using built-in functions in Matlab.
The numerical convergence is displayed in figure 4.17. We see that the convergence is
slower than for both the spectral methods, the convergence in space is almost linear
and the convergence in time is linear at first, than grows a little before it becomes
constant.

Figure 4.16: Solution of (2.6) by the finite element method

Figure 4.17: Convergence for (2.6) when the finite element method is used, N = 60
and h = 10−3. The blue line is the GLL-norm. Left: Convergence in space. Log-log
plot of the GLL-error plotted against N . The red line is 1/N plotted against N . Right:
Convergence in time. Log-log plot of the GLL-error plotted against h. The red line is
h against h.

4.4 Timing
We would like to know something about how fast we can reach a certain tolerance to
compare the two spectral methods and the finite element solver. We will only look at
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‖V BS − V ‖GLL
Method 10−1 10−2 10−3 10−4

Galerkin N = 9 N = 25 N = 47 N = 108
Collocation N = 5 N = 25 N = 47 N = 108

FEM N = 9 N = 38 N = 240 N = 2112

Table 4.12: Number of nodes N needed to obtain the desired accuracy for the different
methods when h is kept fixed at 10−3.

‖V BS − V ‖GLL
Method 10−1 10−2 10−3 10−4

Galerkin h = 1/5 h = 1/5 h = 1/46 h = 1/698
Collocation h = 1/5 h = 1/5 h = 1/46 h = 1/666

FEM h = 1/5 h = 1/5 − −

Table 4.13: Size of time step h needed to obtain the desired accuracy for the different
methods when N is kept fixed at 108.

the solutions of (2.6), and not the transformed equation because the solution has slow
convergence compared to the solution of the original equation.

To obtain the timing results, we first check which values of N and h we must have to
reach a certain accuracy. We keep h fixed at 1/1000 and vary N . The results are given
in table 4.12, where we give the values of N that we need to obtain an error measured
in the GLL-norm of size 10−1, 10−2, 10−3 and 10−4. All calculations are performed in
the absolute norm. We observe that the values for spectral Galerkin and polynomial
collocation are approximately equal in every case. This is explained by the fact that
the two methods are mathematically equivalent in our case, as shown in section 4.2.4.

From table 4.12 we observed that by choosing N = 108, we can obtain good ac-
curacy. Therefore, we use this value to check which values of h that we need. This is
shown in table 4.13. Again, the values for the two spectral methods are almost equal.

We also included the corresponding values obtained when we use the the finite
element method to solve the equation. Figure 4.17 shows that the convergence of
the finite element method is much slower than for both the spectral methods that we
used. This is also reflected in table 4.12 and 4.13, as we found that we need a lot
more nodes for the finite element method. With N = 108, we are not able to reach
‖V BS − V ‖GLL < 10−3 as we can for the two spectral methods.

In addition, we want to check if the number of nodes in table 4.12 can be improved
by choosing a smaller time step h. The number of nodes needed is shown in table 4.14.
We see that the values of N needed to reach the different accuracies are the same as
before, but the computation time will be about 10 times larger than when h = 10−3.
As figure 4.18 illustrates, the placement of the nodes (which depends on N) has a large
impact on the error. The placement of the nodes that yield high accuracies are still
good when we decrease h, therefore it is sufficient to use h = 10−3 to find the values of
N which give good accuracy of the solution.

We can use the values from table 4.12 and 4.13 to test the computation time needed
to reach the desired accuracy. For each of the combinations in the two tables, we run
the program 10 times, and calculate the average of the 10 runs. The results are given
in tables 4.15 and 4.16. We observe that the fastest way to obtain the desired accuracy
is by finding a good value of N , then keep it fixed and change h. We also observe
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‖V BS − V ‖GLL
Method 10−1 10−2 10−3 10−4

Galerkin N = 9 N = 25 N = 47 N = 108
Collocation N = 5 N = 25 N = 47 N = 108

Table 4.14: Number of nodes N needed to obtain the desired accuracy for the different
methods when h is kept fixed at 10−4.

Figure 4.18: Convergence for (2.6) when spectral Galerkin is used. The values of N is
in the range [10, 25] and h = 10−3.

that polynomial collocation is a bit faster than the spectral Galerkin method. This
is because there is an extra for-loop in the stiffness matrix coming from the GLL
quadrature in the spectral Galerkin method. The polynomial collocation method does
not have this for-loop, and it is therefore a bit faster. As expected, the finite element
method is significantly slower than the two spectral methods when we are interested
in errors of size 10−3.

The results show that the two spectral methods are faster than the finite element
method in terms of reaching a desired accuracy, even though the inital data is not
smooth.

‖V BS − V ‖GLL
Method 10−1 10−2 10−3 10−4

Galerkin 0.3601 s 0.9243 s 1.7129 s 4.3014 s
Collocation 0.1869 s 0.910 s 1.6757 s 4.0489 s

FEM 0.3548 s 1.3502 s 8.8078 s 85.2170 s

Table 4.15: The time needed to calculate the solution when h = 10−3 and we use values
for N in table 4.12
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‖V BS − V ‖GLL
Method 10−1 10−2 10−3 10−4

Galerkin 0.3025 s 0.3025 s 0.4674 s 3.0896 s
Collocation 0.0465 s 0.0465 s 0.2109 s 2.7217 s

Table 4.16: The time needed to calculate the solution when N = 60 and we use values
for h in table 4.13



Chapter 5

Solving the Heston model

5.1 The spectral Galerkin method

5.1.1 Mapping to reference domain
The domain of this problem is v ∈ [0, 0.75], S ∈ [0, 50]. The reference domain Ω̂ is the
two dimensional version of the reference domain in chapter 3, namely ξ, η ∈ [−1, 1].
The domains are displayed below.

v

S

ξ

η

This gives us the following mappings to the reference domain

v(ξ) = Lv
2 (ξ + 1) and S(η) = LS

2 (η + 1)

with derivatives
dv

dξ
= Lv

2 = Jv and dS

dη
= LS

2 = JS.

The partial derivatives in equation (2.23) are

∂U

∂v
= ∂Û

∂ξ

dξ

dv
= 1
Jv

∂Û

∂ξ
,

∂ϕ

∂v
= ∂ϕ̂

∂ξ

dξ

dv
= 1
Jv

∂ϕ̂

∂ξ

and so on. Now, we can write equation (2.23) as

Ut+
1

2J2
v

σ2vUξξ+
1

JvJS
ρσvSUξη+ 1

2J2
S

vS2Uηη+(κ(θ−v)−λv)Uξ+rSUη−rU = 0. (5.1)

51
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Using the same method as in section 2.2.5, we obtain the bilinear form of this equation∫
Ω̂
JvJSUtϕdξdη −

1
2

∫
Ω̂
σ2v

JS
Jv
Uξϕξdξdη −

1
2

∫
Ω̂
ρσvSUηϕξdξdη (5.2)

− 1
2

∫
Ω̂
ρσvSUξϕηdξdη −

1
2

∫
Ω̂
vS2 Jv

JS
Uηϕηdξdη

+
∫

Ω̂

(
(κθ − 1

2σ
2)− (κ+ λ+ 1

2ρσ)v
)
JSUξϕdξdη +

∫
Ω̂

(r − v − 1
2ρσ)SJvUηϕdξdη

−
∫

Ω̂
rJvJSUϕdξdη = 0.

This equation will be used in the next section to find the spectral approximation.

5.1.2 Spectral approximation
We start by writing the approximate solution UN(ξ, η) as

UN(ξ, η) =
N∑
m=0

N∑
n=0

Umn`m(ξ)`n(η),

where `i(ξ) represents the one-dimensional Lagrangian basis function and Uij is a two
dimensional nodal basis. This is a tensor-product extension of the one-dimensional
basis we used to solve Black-Scholes equation. We choose the Lagrangian polynomials
as test functions as well, giving ϕ = `i(ξ)`j(η).

Using this basis, we can write the first integral in (5.2) as
∫

Ω̂
JvJSUtϕdξdη =

∫
Ω̂
JvJS

(
N∑
m=0

N∑
n=0

U̇mn`m(ξ)`n(η)
)
`i(ξ)`j(η)

= JvJS
N∑
m=0

N∑
n=0

U̇mn

(∫ 1

−1
`i(ξ)`m(ξ)dξ

)(∫ 1

−1
`j(η)`n(η)dη

)

= JvJS
N∑
m=0

N∑
n=0

U̇mn(`i(ξ), `m(ξ))1 · (`j(η), `n(η))1

≈ JvJS
N∑
m=0

N∑
n=0

U̇mn(`i(ξ), `m(ξ))1
N · (`j(η), `n(η))1

N

= JvJS
N∑
m=0

N∑
n=0

U̇mnM
1
imM

1
jn, 0 ≤ i, j ≤ N,

where (·, ·)1
N represents an one-dimensional inner product evaluated by GLL quadrature

and M1
im is the one dimensional mass matrix. Using the same approach for the other

integrals gives

1
2

∫
Ω̂
σ2v

JS
Jv
Uξϕξdξdη ≈

1
2σ

2JS
Jv

N∑
m=0

N∑
n=0

vnUmnA
1
imM

1
jn,

1
2

∫
Ω̂
ρσvSUηϕξdξdη ≈

1
2ρσ

N∑
m=0

N∑
n=0

vnSmUmnD
1
imC

1
jn,

1
2

∫
Ω̂
ρσvSUξϕηdξdη ≈

1
2ρσ

N∑
m=0

N∑
n=0

vnSmUmnC
1
imD

1
jn,



5.1. THE SPECTRAL GALERKIN METHOD 53

1
2

∫
Ω̂
vS2 Jv

JS
Uηϕηdξdη ≈

1
2
Jv
JS

N∑
m=0

N∑
n=0

vnS
2
mUmnM

1
imA

1
jn,

∫
Ω̂

(
(κθ − 1

2σ
2)− (κ+ λ+ 1

2ρσ)v
)
JSUξϕdξdη

≈ JS
N∑
m=0

N∑
n=0

(
(κθ − 1

2σ
2)− (κ+ λ+ 1

2ρσ)vn
)
UmnC

1
imM

1
jn,

∫
Ω̂

(r − v − 1
2ρσ)SJvUηϕdξdη ≈ Jv

N∑
m=0

N∑
n=0

(r − v − 1
2ρσ)SmUmnM1

imC
1
jn

and ∫
Ω̂
rJvJSUϕdξdη ≈ JvJSr

N∑
m=0

N∑
n=0

UmnM
1
imM

1
jn.

The matrix elements A1
im, C1

im and D1
im are the corresponding elements in the matri-

ces coming from the GLL evaluation of the one-dimensional inner products (`′i, `′m)1
N ,

(`i, `′m)1
N and (`′i, `m)1

N , respectively.
As usual, we combine the evaluation of the integrals into two matrices, the mass

matrix M the stiffness matrix A. To include the boundary condition at S = 0, we
change the corresponding matrix elements. This gives a system of equations with
(N + 1)2 unknows, which we will write as



0 · · · 0
. . .

0
MN+2,N+2

... . . . ...

0 · · · M(N+1)2,(N+1)2





U̇0,0
...

U̇0,N+1
...

U̇m,n
...

U̇N+1,N+1



+



1 0 · · · 0
0 . . . 0 . . . 0
0 1 0 · · · 0

AN+2,0 AN+2,1 · · · AN+2,(N+1)2

... · · · ...

A(N+1)2,0 A(N+1)2,1 · · · A(N+1)2,(N+1)2





U0,0
...

U0,N+1
...

Um,n
...

UN+1,N+1


=



F0,0
...

F0,N+1
0
0
...
0


,

where F0,n = e−r(T−t). This system can then be solved using an appropriate time
discretization. We have used Crank-Nicolson.

5.1.3 Numerical results
Figure 5.1 shows the numerical solution obtained when we solve the system of equations
given in the previous section, and the exact solution is given in figure 5.2. The values
used in the calculations are given in table 5.1, and we have used N = 60 in both
directions and h = 10−3. We see that the numerical solution does not look like the
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Constant Value
T 1
K 10
σ 0.5
ρ 0.1
λ 0
κ 2.5
θ 0.06
r 0.05

Table 5.1: Values of constants used in the calculatuions

exact solution. The difference between the numerical and exact solution is shown
in figure 5.3. We observe that the error is smallest close to v = vmin, but it is not
particularly small here either. From figure 5.1, it can look like the sign of the diffusion
term or the convection term might be wrong, but this is not the case. We have also
tried using smaller time steps without success.

There are some possible reasons for why we do not get the correct answer. The
most obvious explanation is that the approximation in the previous section is wrong,
but we can’t see that this is the case. An other option is that the equation is not
solvable by the spectral Galerkin method, or at least not without using any special
tricks. In [19], Kopriva and Zhu solves the Heston model by using the spectral element
method. By using the spectral element method one might avoid the problems with the
inital data by using S = K as a boundary between elements. This is exactly what is
done in [19], and might be necessary to obtain correct solutions.

We have not studied the convergence of the numerical method in this case because
the solution converges to the wrong solution.

Figure 5.1: Numerical solution for equation (2.23) when N = 60 and h = 10−3.
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Figure 5.2: Exact solution for equation (2.23) when N = 60 and h = 10−3.

Figure 5.3: Difference between the exact and numerical solution when N = 60 and
h = 10−3.

5.1.4 Analysis of the method
The analysis of this problem is not straight forward. We can either follow the analysis
by Winkler et al in [16], but this is not valid for the continuity when vmin = 0. The next
option is to follow the analysis by Achdou and Pironneau in [1], but this analysis is for
the Stein-Stein stochastic volatility model. The third option is to follow Daskalopoulos
in [6], but the analysis in this article is very advanced. Understanding all parts of the
analysis of Daskalopoulos is out of scope of this thesis, therefore we will follow Winkler
in stead.

We need some definitions before we can start the analysis. Winkler uses the time
discretized version of the bilinear form. We use the same time discretization as we have
done throughout the thesis, so we can write

∫
Ω

Uk+1 − Uk

h
ϕ+ a(Uk+1, ϕ) = 0,
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which equals ∫
Ω

Uk+1

h
ϕ+ a(Uk+1, ϕ) =

∫
Ω

Uk

h
ϕ.

Next, we state the following lemma.

Lemma 6.∫
Ω

(f · ∇U)ϕ = 1
2

∫
Ω

(f · ∇Uϕ− Uf · ∇ϕ)− 1
2

∫
Ω
∇ · fUϕ+ 1

2

∫
Ω

(f · −→n )Uϕ.

Proof. Write ∫
Ω

(f · ∇U)ϕ = 1
2

∫
Ω

(f · ∇U)ϕ+ 1
2

∫
Ω

(f · ∇U)ϕ,

and use integration by parts to obtain the result.

We know that equation (2.24) is backwards in time, but in order to make the
analysis simpler, we make it forward in time be writing t = T − t. This means that
everything except the time derivative changes sign. If we in addition include the time
derivative in the bilinear form and use the result from lemma 6, we get

a(Uk+1, ϕ) =
∫

Ω
E∇Uk+1 · ∇ϕ− 1

2

∫
Ω

(f · ∇Uk+1ϕ− Uk+1f · ∇ϕ) (5.3)

+
∫

Ω
(r + 1

h
+ 1

2∇ · f)Uk+1ϕ− 1
2

∫
Γ2

(κ(θ − v)− λv − 1
2ρσv −

1
2σ

2)Uk+1ϕ

− 1
2

∫
Γ3

(rS − 1
2ρσS − vS)Uk+1ϕ− 1

2

∫
Γ4

(1
2σ

2 − κθ)Uk+1ϕ.

We have written out the boundary integral in lemma 6 and inserted S = 0 and v = 0
at the appropriate boundaries.

We will also need the inner product

(U,ϕ)∗ =
∫

Ω
E∇U · ∇ϕ+

∫
Ω

(r + 1
h

+ 1
2∇ · f)Uϕ (5.4)

and the corresponding norm
‖U‖2

∗ = (U,U)∗.

This is the same norm as we defined in section 2.2.5 with λc = 1
h
. In order for (5.4) to

be an inner product, we need

r + 1
h

+ 1
2∇ · f ≥ 0.

Throughout the analysis, we require that h fulfilles this condition.
We will also use that

f · ∇U = fT I · ∇U = fT (E−1/2E1/2) · ∇U = (E−T/2f)T (E1/2∇U).

Where we have used that E−T/2 = E−1/2, which comes form the fact that E is sym-
metric. We now have everything we need to perform the analysis of the problem.
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Coercivity

We start by showing that the bilinear form is coercive.

Lemma 7. Assuming that Feller’s condition holds, the bilinear form is coercive with
lower bound

a(Uk+1, Uk+1) ≥ ‖Uk+1‖2
∗.

Proof. We start by inserting Uk+1 into (5.3), yielding

a(Uk+1, Uk+1) = ‖Uk+1‖2
∗ −

1
2

∫
Ω

(f · ∇Uk+1Uk+1 − Uk+1f · ∇Uk+1)

− 1
2

∫
Γ2

(κ(θ − v)− λv − 1
2ρσv −

1
2σ

2)Uk+1Uk+1

− 1
2

∫
Γ3

(rS − 1
2ρσS − vS)Uk+1Uk+1 − 1

2

∫
Γ4

(1
2σ

2 − κθ)Uk+1Uk+1.

We have∫
Ω

(f · ∇Uk+1Uk+1 − Uk+1f · ∇Uk+1) =
∫

Ω
((f · ∇Uk+1)Uk+1 − Uk+1(f · ∇Uk+1)) = 0.

Thus,
a(Uk+1, Uk+1) ≥ ‖Uk+1‖2

∗

if the constants satisfy

κ(θ − v)− λv − 1
2ρσv −

1
2σ

2 ≤ 0 on Γ2

rS − 1
2ρσS − vS ≤ 0 on Γ3

1
2σ

2 − κθ ≤ 0 on Γ4.

We have some comments on the constraints in the proof. The first constraint is
harmless and tells us that

κθ − 1
2σ

2 ≤ (κ+ λ+ 1
2ρσ)vmax,

which is easily fulfilled. The second constraint says that

r ≤ 1
2ρσ + v.

Here, we must be more carefull to ensure that the constraint is fulfilled, but it is for our
choice of constants. The last constraint is known as Feller’s condition. This constant
ensures that the CIR process for v is positive and is fulfilled by our choice of constants.
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Continuity

To prove that the bilinear form is continuous, we need to find an upper bound for
the bilinear form. We look at the bilinear form without boundary conditions, and the
result is given in the following lemma.

Lemma 8. Assuming that vmin = ε > 0,

a(Uk+1, ϕ) ≤ C‖Uk+1‖∗‖ϕ‖∗.

Proof. We start with equation (5.3) without the boundary conditions:

a(Uk+1, ϕ) =
∫

Ω
E∇Uk+1 · ∇ϕ− 1

2

∫
Ω

(
f · ∇Uk+1ϕ− Uk+1f · ∇ϕ

)
+
∫

Ω
(r + 1

h
+ 1

2∇ · f )Uk+1ϕ

= (Uk+1, ϕ)∗ −
1
2

∫
Ω

(
(E−1/2f · E1/2∇Uk+1)ϕ− Uk+1(E−1/2f · E1/2∇ϕ)

)
≤ ‖Uk+1‖∗‖ϕ‖∗ + 1

2‖E
−1/2fϕ‖L2(Ω)‖E1/2∇Uk+1‖L2(Ω)

+ 1
2‖E

−1/2fUk+1‖L2(Ω)‖E1/2∇ϕ‖L2(Ω)

≤ ‖Uk+1‖∗‖ϕ‖∗ + C1‖ϕ‖L2(Ω)‖Uk+1‖∗ + C2‖Uk+1‖L2(Ω)‖ϕ‖∗
≤ ‖Uk+1‖∗‖ϕ‖∗ + C3‖ϕ‖∗‖Uk+1‖∗ + C4‖Uk+1‖∗‖ϕ‖∗
≤ C‖Uk+1‖∗‖ϕ‖∗.

We have some comments on the proof of the lemma. First, note that the matrix E
is diagonalizable

E = 1
2v
[
σ2 ρσS
ρσS S2

]
= 1

2vPDP
−1,

where D is a diagonal matrix. With this diagonalization, we can write

E−1/2 = 1√
2v
PD−1/2P−1 ≤ 1√

2ε
PD−1/2P−1.

This expression is used to obtain the second inequality in the proof. Therefore, the
constant in the proof depends on 1/

√
ε, where ε = vmin > 0. This the reason why we

can’t have vmin = 0.
With continuity and coercivity in place, we can again use Lax-Milgram’s Lemma

A.2 that a unique solution exist at each time t when all constraints are fulfilled and
vmin > 0.

Stability

The article by Zhu and Kopriva [19] gives a stability estimate which we will present in
this section.

Lemma 9.
‖U(T )‖L2(Ω) ≤ ebT‖U0‖L2(Ω).
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Proof. We start with the forward weak form∫
Ω
Utϕ =

∫
∂Ω
ϕ(E∇U) · −→n −

∫
Ω
∇ϕ · ∇U +

∫
Ω
f · ∇Uϕ− r

∫
Ω
Uϕ.

If we choose ϕ = U and use the boundary conditions in section 2.1.3 to make the
boundary integral disappear, we have∫

Ω
UtUdΩ = −

∫
Ω
∇U · ∇UdΩ +

∫
Ω
Uf · ∇UdΩ− r

∫
Ω
U2dΩ.

By using the L2-norm and the fact that E ≥ 0, we can write this as

1
2
∂

∂t
‖U‖2

L2(Ω) ≤
∫

Ω
Uf · ∇UdΩ− r‖U‖2

L2(Ω).

The integral in this expression can be written as∫
Ω
Uf · ∇UdΩ = 1

2

∫
Ω

(r − v − 1
2ρσ)SUSUdΩ

+ 1
2

∫
Ω

(κθ − 1
2σ

2)UvUdΩ

− 1
2

∫
Ω

(κ+ λ+ 1
2ρσ)vUvUdΩ

= 1
2(I1 + I2 − I3).

We use integration by parts on I1, I2 and I3 and obtain∫
Ω
Uf · ∇UdΩ = LS

2

∫ Lv

0
(r − v − 1

2ρσ)U2dv |S=LS

+ 1
2

[
(κθ − 1

2σ
2)− (κ+ λ+ 1

2ρσ)Lv
] ∫ LS

0
U2dS |v=Lv

− 1
2(κθ − 1

2σ
2)
∫ LS

0
U2dS |v=0

+ 1
2(κ+ λ+ ρσ − r)‖U‖2

L2(Ω) + 1
2

∫
Ω
vU2dΩ.

We need all this integrals to be zero or negative. We then obtain some conditions that
need to be fulfilled. First, we note that again we need Feller’s condition to hold. We
must also have

(κθ − 1
2σ

2)− (κ+ λ+ 1
2ρσ)Lv ≤ 0.

The first integral is equal to zero or negative if we change the boundary condition on
Γ3 to {

U = 0 if r − v − 1
2ρσ > 0

E∇U · −→n = 0 if r − v − 1
2ρσ ≤ 0.

If we also use ∫
Ω
vU2dΩ ≤ Lv‖U‖2

L2(Ω),

we obtain

1
2
∂

∂t
‖U‖2

L2(Ω) ≤
1
2(κ+ λ+ ρσ − r + Lv)‖U‖2

L2(Ω) − r‖U‖2
L2(Ω),
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or
∂

∂t
‖U‖2

L2(Ω) ≤ 2γ‖U‖2
L2(Ω),

where 2γ = (κ+ λ+ ρσ − 3r + Lv). Using Duhamel’s formula then gives

‖U(T )‖2
L2(Ω) ≤ eγT‖U(0)‖2

L2(Ω).

Convergence

When coercivity, convergence and stability is assured, we have the following conver-
gence estimate from [4]. This estimate is valid at each time t for the time discretized
problem.

Lemma 10.
‖U − UN‖∗ ≤ (1 + C)‖U − ΠNU‖∗,

where C is the continuity constant.

Proof. Assume that there exists a subspace W ⊂ W with an interpolation operator

ΠN :W → X

such that when N →∞,

‖U − ΠNU‖∗ → 0, ∀U ∈ W .

Next, we write e = UN − ΠNU such that

(Le, ϕ) = (L(U − ΠNU), ϕ), ∀ϕ ∈ X.

The operator L is the linear operator corresponding to writing equation (2.23) as
LU = 0. Then, from the coercivity and convergence estimates, we have

‖e‖∗ ≤ C‖U − ΠNU‖∗.

If we use U − UN = U − ΠNU − e, we obtain

‖U − UN‖∗ ≤ (1 + C)‖U − ΠNU‖∗.

5.2 The polynomial collocation method

5.2.1 Spectral approximation
The mapping is the same as in section 5.1, giving us the following equation for the
numerical solution UN of (5.1) at the collocation points ξm, ηn:

UN,t + 1
2J2

v

σ2vUN,ξξ + 1
JvJS

ρσvSUN,ηξ + 1
2J2

S

vS2UN,ηη (5.5)

+ (κ(θ − v)− λv) 1
Jv
UN,ξ + 1

JS
rSUN,η − rUN |ξ,η=ξi,ηj = 0.
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Then, we write UN as

UN =
N∑
m=0

N∑
n=0

Umn`m(ξ)`n(η).

As earlier, the Lagrangian polynomials represents a nodal basis. Inserting this into 5.5
gives

N∑
m=0

N∑
n=0

U̇mn`m(ξi)`n(ηj) + 1
2σ

2 1
J2
v

N∑
m=0

N∑
n=0

Umnvn`
′′
m(ξi)`n(ηj)

+ ρσ
1

JvJS

N∑
m=0

N∑
n=0

vnSmUmn`
′
m(ξi)`′n(ηj) + 1

2J2
S

N∑
m=0

N∑
n=0

vnS
2
mUmn`m(ξi)`′′n(ηj)

+ 1
Jv

N∑
m=0

N∑
n=0

(κ(θ − vn)− λvn)Umn`′m(ξi)`n(ηj) + r
1
JS

N∑
m=0

N∑
n=0

SmUmn`m(ξi)`′n(ηj)

− r
N∑
m=0

N∑
n=0

`m(ξi)`n(ηj)

=
N∑
m=0

N∑
n=0

U̇mnδimδjn + 1
2J2

v

σ2
N∑
m=0

N∑
n=0

vnUmnD
(2)
imδjn

+ ρσ
1

JvJS

N∑
m=0

N∑
n=0

vnSmUmnDimDjn + 1
2J2

S

N∑
m=0

N∑
n=0

vnS
2
mUmnD

(2)
jn δim

+ 1
Jv

N∑
m=0

N∑
n=0

(κ(θ − vn)− λvn)UmnDimδjn + r
1
JS

N∑
m=0

N∑
n=0

SmUmnDjnδmi

− r
N∑
m=0

N∑
n=0

Umnδimδjn, 0 ≤ i, j ≤ N.

In the same manner as for the spectral Galerkin method, this can be written as a
system

MU̇ + AU = F,

where Aij and Mij are defined in the same manner as for the spectral Galerkin method
and F contains the boundary values.

5.2.2 Implementation of boundary conditions
In order for the boundary conditions to be fulfilled, we must include them in the
system. The Dirichlet condition on Γ1 is included in the same manner as for the
spectral Galerkin method.

On Γ2, we have E∇U · −→n = 0, which is equal to ρSUS + σUv = 0. Approximating
this gives

1
JS
ρ
N−1∑
m=0

SmUmNδimDjN + σ
1
Jv

N−1∑
m=0

UmNDimδjN .

Using the same approach for the condition on Γ3 gives

1
JS
LS

N∑
n=0

UNnδiNDjn + ρσ
1
Jv

N∑
n=0

UNnDiNδjn.

The stiffness matrix A must be updated to include these contributions as well.
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5.2.3 Numerical results

Figure 5.4: Numerical solution after 10 time steps for equation (2.23) when N = 60
and h = 10−3.

Figure 5.5: Exact solution after 10 time steps for equation (2.23) when N = 60 and
h = 10−3.

The solution after 10 time steps when N = 60 and h = 10−3 is shown in figure
5.4, and the exact solution at the same time is shown in figure 5.5. The difference
between the exact and numerical solution is shown in figure 5.6. As for the spectral
Galerkin method, we do not get the correct solution. We see from figure 5.6 that the
error is large for S ∈ (0, K] and increases as v increases. In addition, we have an
error at (vmax, Smax) which increases at each time step. After 50 time steps, this error
has blown up to 107 and completely dominates the solution. This is why we present
solutions after only 10 of 1000 time steps.

The oscillations in figure 5.6 comes from the exact solution in figure 5.5. The exact
solution is calculated for a European call option and transformed to a put option by
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Figure 5.6: Difference between the exact and numerical solution after 10 time steps
when N = 60 and h = 10−3.

the put-call-parity
Vput = Vcall − S +Ke−r(T−t),

and this is unstable when T − t is small.
In [17], the Heston model is used to price American perpetual put options. Per-

petual means that the expiry date is infinite, so the problem that is solved is time-
independent. The model is solved using the spectral collocation method. Making the
problem time-independent can be the difference needed to solve the problem.

The solution may be incorrect because we have done something wrong in the approx-
imation or implementation. This is even more likely in this case than for the spectral
Galerkin method because the error at (vmax, Smax) probably comes from wrong bound-
ary conditions or wrong implementation of the boundary conditions. If the boundary
conditions are incorrect, then it is the case for the spectral Galerkin method as well
and might be the reason why we don’t get the correct solution.

5.2.4 Analysis of the method
The analysis of the polynomial collocation method involves using the discrete inner
product

(U,ϕ)N =
N∑
k=0

N∑
l=0

U(vk, Sl)ϕ(vk, Sl)ρkρl

with the discrete norm
‖U‖2

N = (U,U)N
to write the collocation solution as

(LNUN , ϕkl) = 0, 0 ≤ k, l ≤ N,

and then proving that the operator LN is coercieve and continuous. Then, the same
theory as for the spectral Galerkin method can be applied to prove stability and co-
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ercivity. The results will therefore be similar to section 5.1.4, and we will not repeat
them here.



Chapter 6

Conclusions and further work

6.1 Conclusion
The goal of this thesis was to solve option pricing models efficiently by using spectral
methods. We have solved two option pricing models, Black-Scholes model and Heston’s
stochastic volatility model. Both models have been solved using two spectral methods,
the spectral Galerkin method and a polynomial collocation method. All methods have
been based on the Gauss-Lobatto-Legendre nodes and the Lagrange polynomials.

Black-Scholes model was solved with the finite element method as well. We observed
that the two spectral methods required a much smaller number of unknowns than the
finite element method, which also made the computation time smaller. However, we
did not achieve spectral convergence for the two method because the inital data is
not analytic. The computational results from the two spectral methods were almost
identical, but the polynomial collocation method was a bit faster than the spectral
Galerkin method. We also observed that solving the original equation gives better
convergence and smaller errors than solving the transformed equation.

For the Heston stochastic volatility model, we were not able to get any good solu-
tions neither by the spectral Galerkin method nor the polynomial collocation method.
There are two possibilities for why this did not work: either we have done something
wrong in the spectral approximation or implementation of both methods, or the Hes-
ton model is not solvable by the spectral method with our time discretization schemes.
We have found one article [19] which solves the Heston model by using a spectral
element method, and one article [17] which solves the Heston model for American per-
petual options by using a polynomial collocation method, but no articles where the
Heston model for European option is solved with either of the methods we have tried.
Therefore, there is a possibility that the methods do not work for this problem.

The thesis shows that even though the spectral method is best for solving problems
with smooth solutions and inital data, we get good results when we solve the one-
dimensional option pricing problems as well. However, the two-dimensional stochastic
volatility models are probably better solved by using other numerical methods than
the spectral method.

6.2 Further work
Some problems have accured while solving the option pricing models with spectral
methods. The main issue is the inital condition which is not smooth. This introduces
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the Gibbs phenomenom, which is oscillations of the solution in the interior of the do-
main. Together with the variable coefficients of the equations, this causes errors to our
solutions. However, as suggested in [8], this can be avoided by using various techniques
such as using filters or introducing a different basis with very special properties.

As mentioned earlier, there are many possible choices of basis functions and quadra-
ture. We have used Gauss-Lobatto-Legendre nodes and quadrature and Lagrange poly-
nomials as basis functions. Other common choices include using Fourier series instead
of Lagrange polynomials, and one could try to solve the models using this approach.
The Chebyshev points are also commonly used as nodes for the methods. We have
observed that the placement of the nodes impacts the solution, so we could obtain
better results by changing to other sets of nodes.

We could also try to use the spectral element method instead. This combines the
advantages of the spectral method and the finite element method. The method is used
in [18] to solve Black-Scholes for two assets and in [19] to solve the Heston model.
Because we know that this method gives correct solutions, we could use this method
instead.

A third possibility is to try to approximate the inital condition by a smooth function.
As mentioned earlier, this would give convergence towards the wrong solution and it
is therefore not the best approach to obtain better convergence.

To obtain faster solvers, one could parallelize the codes in order to solve the prob-
lems on supercomputers or clusters using multiple processors or threads.



Appendix A

Theorems and lemmas

A.1 Ito’s Lemma in multiple dimensions
The lemma can be found in for example [2] or in continuous form in [7]. We start by
assuming that x1, x2, . . . , xN are solutions to

dxi = ai(t, x1, x2, . . . , xN)dt+
M∑
p=1

σip(t, x1, x2, . . . , xN)dWp,

whereW1, . . . ,WM are Wiener processes with correlation structure defined in theN×N
matrix Q, where Qijdt = E[dWidWj] and σip is an N ×M array.

Let F (t, x1, . . . , xN) be a function. Then Ito’s lemma states

Lemma 11.

dF =
∂F
∂t

+
N∑
j=1

∂F

∂xj
aj + 1

2

N∑
j,k=1

∂2F

∂xj∂xk
gjk

 dt+
N∑
j=1

M∑
p=1

∂F

∂xj
σjpdWp,

where
gjk =

N∑
p=1

M∑
q=1

σjpσkqQpq.

A.2 Lax-Milgram’s Lemma
From [12], we have the following Lemma:

Lemma 12. Let V be a Hilbert space, a(·, ·) : V × V → R a continuous and coercive
bilinear form, F (·) : V → R a linear and continouos functional. Then there exists one
unique solution to the problem

find u ∈ V : a(u, v) = F (v) ∀v ∈ V.

A.3 Gronwall’s Lemma on integral form
Lemma 13. If u(t) satisfies

u(t) ≤ α(t) +
∫ t

a
β(s)u(s)ds
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for some non-negative β and non-decreasing α, then

u(t) ≤ α(t)exp
(∫ t

a
β(s)ds

)
.

The lemma can be found in [12, chapter 2.7].
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