
Monte Carlo simulation of
hyper-parameters in hidden Markov
random fields

Xin Luo

Master of Science in Mathematics (for international students)

Supervisor: Håkon Tjelmeland, MATH

Department of Mathematical Sciences

Submission date: June 2014

Norwegian University of Science and Technology

Preface

This thesis is the final part of my Master of Science degree in Mathematics at the Norwegian

University of Science and Technology. The author shows his sincere gratitude for the careful

supervision and the excellent help from Professor H̊akon Tjelmeland, and also thank my

parents and friends for their emotional support over past one year. The technical aid of

firmware is very important for the scientific computing as well, so the author is grateful to

technical staffs working in the Department of Mathematical Sciences.

Xin Luo

Trondheim

May 2014

i

ii

Abstract

Bayesian inference is an important branch in statistical sciences. The subject of

this thesis is about Bayesian inference in models for a vast number of dependent ob-

jects. The fundamental scheme used for the inference in this thesis is Markov chain

Monte Carlo (MCMC) methods. However, conventional MCMC approaches are not

feasible for resolving issues resulting from intractable normalizing constants. Several

methods, such as the single auxiliary variable method and the exchange algorithm, can

avoid computer-intensive calculations of intractable normalizing constants, but they

are merely applicable to the case without latent variables. Based on Markov random

fields (MRFs), we propose two different strategies to overcome the difficulty as the

result of noisy observations. The first strategy named simulation strategy I combines

the exchange algorithm with MCMC techniques to simulate from the distribution of

interest. For the second strategy called simulation strategy II, we use more auxiliary

variables with block updates, and adopt partially ordered Markov models (POMMs)

to approximate the proposal distributions in order to get rid of high dimensional cal-

culations. We empirically compare these two strategies according to the diagnostics of

convergence, mixing and CPU time requirements coming from our simulation exam-

ples. For the mixing assessment, we use the Effective Sample Size (ESS). Simulation

strategy II using block updates can generate stationary Markov chains having better

mixing within fewer number of iterations (≤ 200), and maximum ratio of ESS in sim-

ulation strategy II to ESS in simulation strategy I is 6.27. Simulation strategy I uses

less CPU time per iteration irrespective of convergence to stationarity or simulations of

equilibrium samples, but simulation strategy I needs more iterations (> 200), and for

large absolute values of parameters it produces poor mixing compared with simulation

strategy II.

iii

iv

Contents

1 Introduction 1

2 Background theory 3

2.1 Markov chain Monte Carlo method . 3

2.2 Markov random fields . 6

2.3 Perfect simulation . 9

2.4 The exchange algorithm . 15

2.5 Partially ordered Markov models . 16

3 Methodology and algorithm 18

3.1 Simulation strategy I . 19

3.2 Simulation strategy II . 22

4 Simulation examples 25

4.1 Simulations in the parameter settings with θ0 = 0 27

4.2 Simulations in the parameter settings with θ0 = 0.5 37

5 Closing remarks 46

v

vi

1 Introduction

In general, Bayesian inference is a crucial branch of statistical theories, known as Bayesian

statistics. The subject of this thesis is about Bayesian inference in models for a vast number

of dependent objects, for instance, in the areas of uncertainty in reservoir evaluation, image

restoration and genetic analysis. Monte Carlo methods are a set of useful tools applied

to Bayesian analysis based on sophisticated models. The art of designing Monte Carlo

algorithms chiefly resides in the adoption of an adequate trade-off between the simplicity

of implementation and the difficult incorporation of important characteristics of the target

distribution. With respect to the type of model, we focus on Markov random fields (MRFs)

(Hammersley and Clifford, 1971), specifically, binary Markov random fields, which is one

of undirected graphical models most prevailing for spatial data. A common scenario is

that observations of MRFs are completely given, but in reality, we usually only have noisy

observations while the values of latent variables are unknown. As a result, the estimation of

parameters of the model we choose implies a significant computational challenge in terms of

either a Bayesian or a frequentist perspective.

Suppose y ∈ Y indicates noisy observations and x ∈ X hidden variables of discrete type.

Our target is to estimate the parameters of interest θ ∈ Θ. Given only the observations y,

using the Bayesian approach we obtain the joint posterior distribution of interest

π(θ, x|y) ∝ π(x, y, θ) = π(θ)π(x|θ)π(y|x, θ),

where π(θ) is the prior distribution of θ, π(x|θ) represents the likelihood of a Markov random

field with respect to x, and there is a relation between random variables x and observations

y according to π(y|x, θ).

After obtaining π(θ, x|y), it is in principle possible to calculate the marginal distribution

π(θ|y) =
∑

x∈X π(θ, x|y), but the direct manipulation (summation) is often difficult espe-

cially when x is multi-dimensional, so putting forward an alternative method is necessary.

Monte Carlo methods are useful for such problems, but one problem with applying Monte

Carlo integration is obtaining samples from a complex probability distribution. Attempts

to solve this problem are the roots of Markov Chain Monte Carlo (MCMC) methods. In

particular, The MCMC approach is our preference since using this method can tremendously

1

increase the possibility of practical computation based on computer simulations. One of the

most important factors concerning how to design Monte Carlo algorithms to sample from

π(θ|y) relies on the appropriate choice of proposal distributions. As a rule of thumb, the

proposal distributions resulting in efficient algorithms should consist of some properties such

as capturing the major characteristics (e.g. scales or dependence structures) of π(θ|y) and

being easy to sample from.

In this thesis, we adopt MCMC methods which are a subset of Monte Carlo methods.

Under ordinary configurations of MCMC, normalizing constants vanish when computing ac-

ceptance probabilities, but in some models, such as the Ising model (Ising, 1925) defined on

an MRF, their normalizing constants do not cancel since they are functions of parameters of

interest, and calculating such constants involves high dimensional summation or integration.

Hence, it is computationally difficult to utilize directly the scheme of Metropolis–Hastings

(Hastings, 1970) or Gibbs sampling (Geman and Geman, 1984). Maximum likelihood esti-

mation or Bayesian posterior distributions for parameters of π(θ|x) becomes consequently

infeasible by straightforward approaches. However, several strategic and ingenious tech-

niques have been proposed in the literature. There are systematically several perspectives

from which we should take into account the methods as follows. One is to calculate approx-

imations instead of exact values. To be more specific, Besag (1974) proposed the definition

of pseudo-likelihood functions and later Heikkinen and Hogmander (1994) and Huang and

Ogata (2002) defined different versions of such functions. For small lattices, Friel and Rue

(2007) came up with approximations using forward-backward algorithm (Reeves and Pet-

titt, 2004) in lieu of the exact computations. In addition, Møller et al. (2006) proposed an

efficient MCMC approach with auxiliary variables so that normalizing constants cancel from

Metropolis–Hastings ratios. Murray et al. (2006) provided a generalization of Møller et al.

(2006) that obtains better acceptance probabilities and removes the need to estimate model

parameters before sampling starts. This method is usually called the exchange algorithm.

Furthermore, a wide range of MCMC estimation techniques for normalizing constants were

proposed by Chen and Shao (1999) and path sampling by Gelman and Meng (1998). Green

and Richardson (2001) and Berthelsen and Møller (2003) applied these estimation techniques

in practical applications. All they have done are only related to non-hidden variables without

2

noisy observations, i.e. π(θ|x) ∝ π(θ)π(x|θ).

In the present report, given noisy data, we concentrate on how to simulate from π(θ, x|y)

with good mixing and fast convergence based on the MCMC technique. Due to the difficulty

in computing normalizing constants of the autologistic model (Besag, 1974), we incorporate

the exchange algorithm into our algorithm and use partially ordered Markov models (Cressie

and Davidson, 1998) to approximate the proposal distributions (Tjelmeland and Austad,

2012) so as to avoid high dimensional calculations. Afterwards, we compare the proposed

algorithm with blocking with the alternative without blocking on the basis of the quantities

relating to total CPU times and the Effective Sample Size (ESS) (Kass et al., 1998).

The remainder of this thesis is organized as follows. In Section 2, we introduce background

theories including MCMC, MRFs, perfect simulation, the exchange algorithm and POMMs

that are used for our methodologies. In section 3, we specify and discuss two different

simulation strategies. In Section 4, we present simulation examples, and discuss the results.

Relevant conclusions and remarks are given in Section 5.

2 Background theory

In this section, we present some background theories for MCMC, MRFs, perfect simulation,

the exchange algorithm and POMMs, and briefly describe how these knowledge can be used

for our purpose.

2.1 Markov chain Monte Carlo method

In statistics, Markov chain Monte Carlo (MCMC) methods are a class of algorithms using

local information for sampling from probability distributions based on devising a Markov

chain that has the desired distribution as its equilibrium distribution. In this section we

briefly discuss how MCMC is used to sample from a given distribution π(x), x ∈ X . For

more thorough introductions on the topic, one can read other literatures: Hastings (1970),

Geman and Geman (1984), Carlin and Chib (1995) and Berg (2004).

For simplicity assume x to be a vector of discrete random variables which is the set-

ting carried out in the following sections, but MCMC can also be used to sample continu-

3

ous random variables. MCMC generates samples from π(x) by simulating a Markov chain

{xb}∞b=0, x
b ∈ X with limiting distribution identical to π(x), so after a sufficiently large num-

ber of Markov chain steps the generated xb is essentially from the distribution π(x). There

are different approaches regarding how to construct the transition matrix of a Markov chain,

but clearly the most frequently used strategy results in the so-called Metropolis–Hastings

(MH) algorithm, and in the following we constrain our attention to this setup.

Let Q(x′|x) = Pr(x → x′) for x, x′ ∈ X be the transition matrix of a Markov chain.

Sufficient conditions for which π(x) is the limiting distribution of the Markov chain are that

the Markov chain is irreducible and aperiodic, and that Q(x′|x) fulfills the detailed balance

condition

π(x)Q(x′|x) = π(x′)Q(x|x′) for all x, x′ ∈ X . (1)

In the MH algorithm, Q(x′|x) is defined as

Q(x′|x) = q(x′|x)α(x′|x) for all x 6= x′,

where q(x′|x) is a proposal probability from x to x′, and α(x′|x) is an acceptance probability

given by

α(x′|x) = min

{
π(x′)q(x|x′)
π(x)q(x′|x)

, 1

}
. (2)

It is easy to show that with this expression for α(x′|x), the detailed balance condition in (1)

is fulfilled, so that π(x) is the limiting distribution of this Markov chain.

Thus, provided an initial value x0, in each iteration of the MH algorithm, first a candidate

value x′ is proposed for the next sample dependent on the current one xb by the transition

probability function q(x′|xb). Then, with the probability α(x′|xb), the candidate is accepted,

i.e. xb+1 = x′, and otherwise rejected, i.e. xb+1 = xb. Following an adequately long burn-in

period, the chain has approached its stationary distribution and samples xb are essentially

generated from π(x).

Different strategies can be used to construct the proposal distribution q(x′|x), and often

a combination of proposal distributions is used within one MH algorithm. This means that

several proposal distributions qk(x
′|x), k = 1, 2, . . . , K are defined and used within the same

4

MH algorithm. For example, q1(x′|x) is used in the first iteration, q2(x′|x) in the second

iteration and so on until qK(x′|x) is used in the Kth iteration. In iteration K+ 1 one adopts

q1(x′|x) again, in iteration K + 2 one adopts q2(x′|x) and so on. In the following we discuss

some strategies for constructing proposal distributions that we use in MH algorithms in

subsequent sections of this thesis.

Assume x to be n-dimensional and write x = (x1, . . . , xn). A single-site Gibbs update

is proposing a change for only one of the components of x. Which component to propose

a new value for can be drawn at random or be decided deterministically. Now assume that

the component to be changed or updated is numbered i, xi. The single-site Gibbs update

defines the potential new state x′ = (x′1, . . . , x
′
n) by setting x′j = xj for all i 6= j and sample x′i

from the full conditional π(xi|xj, j 6= i). Inserting this proposal distribution into the general

expression for the acceptance probability α(x′|x) given in (2), it is simple to demonstrate

that for single-site Gibbs updates one always has α(x′|x) = 1. Hence, with single-site Gibbs

updates the potential new states are always accepted.

As the generalization of the single-site Gibbs update, we turn to single-site updates in

general and introduce the basics of such updates. Based on the conditions and notations

used in single-site Gibbs updates above, we take on a distribution q(x′i|x) from which x′i can

be conveniently sampled instead of using the full conditional π(xi|xj, j 6= i) that perhaps

leads to difficulties in analytical derivations or practical implementations, and set x′j = xj

for all j 6= i. Consequently, the acceptance probability given in (2) is

α(x′|x) = min

{
π(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)q(xi|x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)

π(x1, . . . , xi−1, xi, xi+1, . . . , xn)q(x′i|x1, . . . , xi−1, xi, xi+1, . . . , xn)
, 1

}
6≡ 1.

In particular, by setting q(xi|x) = π(xi|xj, j 6= i) one gets the single-site Gibbs update

discussed above.

In contrast to single-site updates, block updates including block Gibbs updates are widely

applicable in many scenarios. If the dimension of a random vector is large, and some or even

all of the components of this random vector are potentially highly correlated, using single-

site updates makes a Markov chain converge to its stationarity slowly. Thus, we usually

utilize blocking schemes which may reduce the time consumption until the chain reaches the

5

6

3

5

4

1

2

Figure 1: A sample of undirected graph with six nodes and nine edges

equilibrium. For some A ⊆ {1, 2, . . . , n}, split x into two disjoint parts xA = (xi; i ∈ A)

and x−A = (xi; i ∈ {1, . . . , n}\A). If A has only one component, e.g. A = {i} for some

i ∈ {1, . . . , n}, then we write xi = xA and x−i = x−A to simplify the notations. Assume

the components of xA are dependent, then these components can be updated simultane-

ously when using block updates. That is to say we first propose x′A from a multivariate

proposal distribution q(x′A|x), and then accept all components of x′A at the same time with

the probability

α(x′|x) = min

{
π(x′A, x−A)q(xA|x′A, x−A)

π(x)q(x′A|x)
, 1

}
6≡ 1.

Analogously, the scheme of block Gibbs updates gives a block update with α(x′|x) = 1 if

one generates x′A from π(xA|x−A) just as for single-site Gibbs updates.

2.2 Markov random fields

Markov random fields (MRFs) are the fundamental model component in this thesis, and

in this section we introduce basic definitions and statistical features of MRFs. For more

profound details, see relevant literatures such as Hammersley and Clifford (1971) and Kin-

dermann et al. (1980).

Assume that an undirected graph G = {V , E} is defined as a collection of vertices V =

{1, 2, . . . , n} and edges E ⊆ {(i, j)|i, j ∈ V , i 6= j}. A simple example graph is illustrated in

Figure 1. Here the vertices are represented as circles and the edges as lines that connect

two vertices. In this example, we have the vertices V = {1, 2, 3, 4, 5, 6} and the edges

6

E = {(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (2, 6), (3, 6)}. In general, the neighbors of a vertex i ∈ V

is ∂(i) = {k : (i, k) ∈ E}, meaning all vertices that directly connect to i. For the graph in

Figure 1, for example, the neighbors of vertex 6 is ∂(6) = {2, 3, 5}. A graph is complete if

E = {(i, j)|i, j ∈ V , i 6= j}, saying any pair of vertices are neighbors. The neighbors of any

vertex in a complete graph thus has the property that ∂(i) = {1, 2, . . . , i − 1, i + 1, . . . , n}

∀i ∈ V . According to the definition of being complete, the graph in Figure 1 is not complete

since some nodes (e.g. 3 and 5) are not neighbors. The set of vertices in a complete subgraph

of G is called a clique. A maximal clique cl is a clique that it is not a subset of another

clique, and we use CL to denote the set of all maximal cliques of the graph G. For instance,

the subgraph {1, 2, 5} is a maximal clique in the graph in Figure 1.

Given an undirected graph G = {V , E} and a vector of parameters θ, a vector of discrete

random variables x = (x1, x2, . . . , xn) ∈ X with a joint probability distribution π(x|θ) is said

to be an MRF with respect to G if it fulfills the positivity condition π(x|θ) > 0 for all x ∈ X

and the local Markov property

π(xi|x−i, θ) = π
(
xi|x∂(i), θ

)
for i ∈ {1, 2, . . . , n}. (3)

The Hammersley-Clifford theorem given by Hammersley and Clifford (1971) states that a

discrete random vector x having a joint probability distribution π(x|θ) is an MRF with

respect to a graph G if and only if it can be factorized over the maximal cliques of G, so it

can be expressed as

π(x|θ) =
ν(x|θ)
C(θ)

, where ν(x|θ) = exp
{
−
∑

cl∈CLΦcl(xcl; θ)
}

is an unnormalized version of π(x|θ), C(θ) is the normalizing constant and Φcl(xcl; θ) is a

clique potential function for a maximal clique cl. In a word, this theorem is equivalent to

a sufficient and necessary condition under which a positive probability distribution can be

represented by a Markov random field.

Defining the energy function U(x; θ) by U(x; θ) =
∑

cl∈CLΦcl(xcl; θ), the normalizing

constant C(θ) can be written as

C(θ) =
∑
z∈X

exp{−U(z; θ)}.

7

Figure 2: A small section of a rectangular lattice where circles and lines represent vertices and edges in G,

respectively.

Note that the normalizing constant C(θ) is typically not available in closed form. Moreover,

the value of C(θ) cannot be practically computed. For instance, if each component of x has

two possible values, 0 and 1, then C(θ) is calculated based on totally 2n different combinations

of x, so we confirm that computing the accurate value of C(θ) is greatly computer-intensive

even if the number of vertices n is not large (e.g. for a lattice with n = 100, 2100 > 1030).

As an example of MRFs, we next consider the Ising model.

The Ising model (Ising, 1925) is a particular MRF defining a distribution over a random

vector of binary variables. The Ising model and its generalization Potts model (Ashkin

and Teller, 1943; Potts, 1952) where random variables might have more than two states are

frequently used in the analysis of spatial statistics. Suppose that G = {V , E} is defined from

a rectangular lattice. Letting n denote the number of vertices in the lattice, we number the

vertices from 1 to n lexicographically. Let xi be the discrete variable related to vertex i, and

write x = (x1, . . . , xn). A small part of the resulting graph is shown in Figure 2. Assume

that the neighborhood of a vertex is only its nearest horizontal and vertical vertices. Then

a maximal clique cl is a set of any pair of two vertices that are horizontally or vertically

closest to each other. For the Ising model x is required to be a binary random vector, i.e.

8

x ∈ {0, 1}n, and the potential function for a maximal clique cl = {i, j} is given by

Φcl(xcl; θ) = −θ · I(xi = xj),

where θ determines the intensity of interaction between xi and its neighbors, and I(·) is an

indicator function, i.e. I(A) = 1 if A is true and I(A) = 0 otherwise. Letting i ∼ j denote

that vertices i and j are neighbors as defined by G, the energy function of the Ising model

can be written as

U(x; θ) =
∑
cl∈CL

Φcl(xi, xj; θ) = −θ
∑
i∼j

I(xi = xj).

Thereby, the distribution function of the Ising model is

π(x|θ) =
1

C(θ)
exp

{
θ
∑
i∼j

I(xi = xj)

}
. (4)

Now that the distribution of the Ising model (4) is factorized over the cliques of G, we also

can easily obtain an expression for the full conditional in (3)

π(xi|x−i, θ) = π(xi|x∂(i), θ) =
1

Ci
(
x∂(i), θ

) exp

θ ∑
j∈∂(i)

I(xj = xi)

 ,

where Ci
(
x∂(i), θ

)
is the normalizing constant of π(xi|x∂(i), θ). In addition, the constraint

Pr(xi = 1|x∂(i), θ) + Pr(xi = 0|x∂(i), θ) = 1 implies that the normalizing constant is given by

Ci
(
x∂(i), θ

)
= exp

θ ∑
j∈∂(i)

I(xj = 1)

+ exp

θ ∑
j∈∂(i)

I(xj = 0)

 .

2.3 Perfect simulation

To cope with some intrinsic deficiencies of MCMC, we introduce perfect simulation and how

to sample by it in this section. In the following we limit our attention to ”Coupling From

The Past (CFTP)” which is a specific approach in the field of perfect simulation. CFTP is

not a generic roadmap for general MRFs, only a few cases including the autologistic model

(Besag, 1974) can be perfectly sampled, and simulating from continuous distributions using

CFTP is more arduous and such samples are beyond our need. See Propp and Wilson (1996)

for more details.

9

As we know, MCMC requires infinite number of iterations to produce the target distri-

bution, that is, from initial time t = 0, a perfect sample can be generated from the target

distribution by MCMC at time t = ∞. Alternatively, if the Markov chain starts at time

t = −∞, then it must converge to its stationary states at time t = 0. However, it is impos-

sible to simulate over a infinitely long period of time, and actually we only care about the

stationary states at time t = 0 instead of the process in which a Markov chain runs from

t = −∞ to t = 0.

Define a Markov chain {xt}0
t=−T from time t = −T < 0 to t = 0, where xt ∈ X and

xt is n-dimensional for all t ∈ {−T, . . . , 0}. Assume that π(x) is the limiting distribution

of the Markov chain {xt}0
t=−T , and that the state space is equipped with a natural partial

ordering property (Cressie and Davidson, 1998) ”4”. Each iteration of the MH scheme uses

a number of random variables to generate the potential new state, and decide if it should

be accepted. Let vt denote the vector composed of these random variables at time t. The

process in which the state xt+1 is simulated based on its last state xt then can be expressed

by a deterministic function, denoted by φ(·, ·), i.e. xt+1 = φ(xt, vt). In the following, we also

assume that φ(·, ·) owns the property that X 3 x 4 x′ ∈ X implies φ(x, v0) 4 φ(x′, v0) almost

surely. The stationary states at time t = 0 a Markov chain converges to are independent of

its initial state at time t = −∞, so if Markov chains, which start from all states in X at

time t = −T < 0 and are updated through φ(·, ·) with the same sequence of random vectors

{vt}0
t=−T in each iteration, coalesce at time t ≤ 0, then the state at t = 0 for a Markov chain

simulated from −∞ is also equal to the same state and thus is a perfect sample.

Furthermore, we assume that there exist an upper bound state 1̂ and a lower bound state

0̂ such that 0̂ 4 x 4 1̂ for all x ∈ X . Define two Markov chains {1̂t}1
t=−T and {0̂t}0

t=−T

that start from 1̂ and 0̂, respectively, at time t = −T , i.e. 1̂−T = 1̂ and 0̂−T = 0̂, and are

updated according to φ(·, ·) with the same sequence of random vectors {vt}0
t=−T . Hence,

for any xt ∈ X at any time t ∈ {−T, . . . , 0}, given 0̂−T 4 x−T 4 1̂−T it is easy to obtain

φ(0̂−T , v−T) 4 φ(x−T , v−T) 4 φ(1̂−T , v−T), i.e. 0̂−T+1 4 x−T+1 4 1̂−T+1, then iteratively

0̂−T+2 4 x−T+2 4 1̂−T+2 and so on until 0̂0 = x0 = 1̂0. Therefore, if {1̂t}0
t=−T and {0̂t}0

t=−T

coalesce at time t ≤ 0, all chains starting between 1̂ and 0̂ must also coalesce with 1̂t and 0̂t

before time 0. Thereby, we are able to obtain a perfect sample from the target distribution

10

-
Time

6

φ(·, ·)

0−1−T

1̂

0̂

@
@
@

@@
A
A
A �� A

A
A

��
�
�
� @

@
@ ��

Figure 3: The coalescence of coupled chains

by simulating merely two Markov chains {1̂t}0
t=−T and {0̂t}0

t=−T . This is the essential idea of

CFTP. Moreover, CFTP can also determine the smallest value of T , denoted by T∗, at which

{1̂t}0
t=−T and {0̂t}0

t=−T coalesce before time 0. If for some value T , {1̂t}0
t=−T and {0̂t}0

t=−T

have not coalesced at time 0, we can doubly increase the value of T , i.e. set T = 2T , and if

time 2T is a coupling time, it is not difficult to prove that Pr{T < T∗ ≤ 2T} = 1. Figure 3

roughly illustrates how CFTP works for the exact sampling.

Let us consider how to sample exactly from a generalized version of the Ising model (4),

namely the autologistic model (Besag, 1974). Assume a graph G = (V , E) is defined from

a rectangular lattice via the same construction procedure as in Section 2.2. Therefore, any

notion or term relating to G is the same as that in Section 2.2. In this section, we introduce

the autologistic model by first giving the joint probability distribution of x given a parameter

vector θ = (α1, . . . , αn, β)

π(x|θ) =
1

C(θ)
exp

{
n∑
i=1

αixi +
∑
i∼j

β · I(xi = xj)

}
, (5)

where C(θ) is the normalizing constant, xi ∈ {0, 1} and i, j ∈ {1, 2, . . . , n}. This distribution

function can be rewritten as

π(x|θ) =
1

C(θ)
exp

{∑
i∼j

[
αixi
|∂(i)|

+
αjxj
|∂(j)|

+ β · I(xi = xj)

]}
,

11

where |∂(i)| represents the number of neighbors of vertex i. Thus, for a maximal clique

cl = {i, j} ∈ CL, the potential function is

Φcl (xcl; θ) = −
(
αixi
|∂(i)|

+
αjxj
|∂(j)|

+ β · I(xi = xj)

)
.

Since π(x|θ) can be factorized over the maximal cliques of G, the random vector x is an MRF

with respect to G by the Hammersley-Clifford theorem. Thereby, the full conditional of (5)

is

π(xi|x−i, θ) =
1

Ci(x−i, θ)
exp

αixi +
∑
j∈∂(i)

β · I(xi = xj)

 , (6)

where Ci(x−i, θ) is the normalizing constant of π(xi|x−i, θ). Based on the fact Pr(xi =

1|x−i, θ) + Pr(xi = 0|x−i, θ) = 1, the normalizing constant Ci(x−i, θ) in the full conditional

is known, that is,

Ci(x−i, θ) = exp

αi · 1 + β
∑
j∈∂(i)

I(xj = 1)

+ exp

αi · 0 + β
∑
j∈∂(i)

I(xj = 0)

 .

Inserting the expression of Ci(x−i, θ) into (6) and rearranging it, we obtain

Pr(xi = 1|x−i, θ) =
1

1 + exp
{
β
∑

j∈∂(i) [I(xj = 0)− I(xj = 1)]− αi
} , (7)

and Pr(xi = 0|x−i, θ) = 1− Pr(xi = 1|x−i, θ).

In addition to the settings for the autologistic model above, we define the partial ordering

”4”. Assume x = (x1 . . . , xn) ∈ X and x′ = (x′1, . . . , x
′
n) ∈ X , the partially ordering

x 4 x′ holds if and only if xi ≤ x′i for all i ∈ {1, . . . , n}. Thus, the upper bound state is

1̂ = (1, 1, . . . , 1) with n ones, and the lower bound state is 0̂ = (0, 0, . . . , 0) with n zeros.

Suppose for i ∈ {1, 2, . . . , n} at time t, the ith component of 1̂t is 1̂it, and vt is made up of

two random numbers (ut, kt) sampled from a real uniform distribution ut ∼ Unif(0, 1) and

an integer uniform distribution kt ∼ Unif[1, n], respectively. Then use the Gibbs update only

for the component 1̂ktt at time t via the full conditional probability of the form (7), i.e.

1̂ktt+1 = I
(
ut ≤ π

(
1̂ktt = 1

∣∣∣∂(kt)
))

,

where I(·) is an indicator function, and for any i 6= kt, 1̂
i
t+1 = 1̂it. As a consequence, this

procedure can be described by 1̂t+1 = φ(1̂t, vt). In the same way, we have 0̂t+1 = φ(0̂t, vt).

12

• T = 1

• repeat

– upper = (1, 1, . . . , 1), lower = (0, 0, . . . , 0)

– for t = −T to 0

∗ generate an integer kt ∼ Unif[1, n] and a real number ut ∼

Unif(0, 1), and set vt = (ut, kt)

∗ upper = φ(upper, vt) and lower = φ(lower, vt)

– T = 2T

• until upper = lower

• return upper

Figure 4: Algorithm of CFTP for generating the exact samples from the autologistic model of the form (5).

Figure 4 demonstrates the main principles about exactly simulating from the autologistic

model (5).

Figure 5 shows six simulations from the autologstic model (5) with different sets of

parameters on a 100× 100 lattice. The three scenes on the left in this figure are generated

with αi = 0.05 for all i, and the three scenes on the right are based on αi = 0.3 for

all i. The parameter β is set to 0.1, 0.5 and 0.9 for the two upper, middle and lower

scenes, respectively. Black and white pixels stand for numbers 1 and 0, respectively. By

vertically observing subfigures from top to bottom on the left-hand (or right-hand) panel,

the distribution of black and white pixels is less and less scattering, and it shows a significant

clustering pattern in the bottom plots. Thus, β determines the interaction effect between

xi and its neighbors. Comparing two plots horizontally in the upper, middle and lower

positions, the number of black pixels on the right-hand panel is greater than that on the

left-hand panel, so we know that it is likely to get more 1’s as αi increases.

13

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

0.0 0.4 0.8

0
.0

0
.4

0
.8

Figure 5: Simulations of the autologistic model of the form (5) with different αi (i = 1, 2, . . . , 100) and β on

a 100× 100 lattice. The three scenes on the left in this figure are generated with αi = 0.05 for all i, and the

three scenes on the right are based on αi = 0.3 for all i. The parameter β is set to 0.1, 0.5 and 0.9 for the

two upper, middle and lower scenes, respectively.

14

θ

x

(a) The original model

θ

x

ϕ

w

(b) The extended model

Figure 6: Two graphical models: (a) is the original model of π(x|θ) without auxiliary variables, (b) is the

extended model used for the exchange algorithm with auxiliary variables ϕ and w.

2.4 The exchange algorithm

The exchange algorithm helps us get rid of the computational difficulties and other potential

issues as the result of normalizing constants when using näıve MCMC schemes, so in this

section we briefly discuss this algorithm and it is the core strategy we adopt in the following

parts. One can read Murray et al. (2006) for more details.

Suppose we have observed x ∈ X assumed to be a sample from an MRF with distribution

π(x|θ), where θ is a parameter vector. Our interest is in θ and adopting the Bayesian

approach, we assume a prior π(θ) for it, and focus on the resulting posterior π(θ|x) ∝

π(θ)π(x|θ). The corresponding graphical model is illustrated in Figure 6(a). Adopting the

same notations as in Section 2.2, the posterior distribution of θ can also be expressed as

π(θ|x) ∝ 1

C(θ)
π(θ)ν(x|θ). (8)

Apparently, simulating from π(θ|x) by MCMC leads to a fraction of two different normalizing

constants that is tough to compute in practice. Hence, we choose to use the exchange

algorithm (Murray et al., 2006). On the basis of the original graphical model shown in

Figure 6(a), we need to construct two auxiliary variables w and ϕ, and the new graphical

model is depicted in Figure 6(b). Given θ we assume it is available to use CFTP to sample x

from the distribution function π(x|θ) whose normalizing constant is a function of θ, and the

distribution π(w|ϕ) is of the same type of distribution as π(x|θ). It is required that w ∈ X

15

and ϕ ∈ Θ share the same state spaces as x ∈ X and θ ∈ Θ, respectively. Moreover, let

q(ϕ|θ) be a conditional distribution for ϕ given θ.

Since only x is observed, we first focus on the joint distribution π(θ, ϕ, w|x), and then by

integrating out auxiliary variables ϕ and w, it is easy to obtain

π(θ|x) =

∫
ϕ∈Θ

[∑
w∈X

π(θ, ϕ, w|x)

]
dϕ.

Therefore, the joint distribution π(θ, ϕ, w|x) is of interest, and

π(θ, ϕ, w|x) ∝ π(θ, ϕ, w, x)

= π(θ)q(ϕ|θ)π(x|θ)π(w|ϕ)

=
1

C(θ)C(ϕ)
π(θ)q(ϕ|θ)ν(x|θ)ν(w|ϕ).

We simulate from the distribution π(θ, ϕ, w|x) by an MH scheme which consists of two steps.

The first is to update (ϕ,w) by the block Gibbs step

(ϕ,w) ∼ π(ϕ,w|θ, x)

= q(ϕ|θ)π(w|ϕ).

The second is to update (θ, ϕ) by a block MH update. The potential new state is defined by

interchanging θ and ϕ, i.e. (θ′, ϕ′) = (ϕ, θ). The acceptance probability is

α(θ′, ϕ′|θ, ϕ) = α(ϕ, θ|θ, ϕ)

=
π(ϕ, θ, w|x)

π(θ, ϕ, w|x)

=
π(ϕ)q(θ|ϕ)ν(x|ϕ)ν(w|θ)
π(θ)q(ϕ|θ)ν(x|θ)ν(w|ϕ)

,

(9)

which can be efficiently computed since all terms are explicitly expressed. The pseudocode

concerning how to sample from π(θ|x) is illustrated in Figure 7.

2.5 Partially ordered Markov models

Partially ordered Markov models (POMMs) are a class of spatial models whose members

have probability distributions that can be written in closed form. For deeper and broader

discussions, read Cressie and Davidson (1998), Tjelmeland and Austad (2012).

16

Input: Initial setting θ, number of iterations T

• for t = 1, 2, . . . , T

– propose ϕ ∼ q(·|θ)

– use CFTP to generate w, i.e. w ∼ π(·|ϕ)

– compute α(ϕ, θ|θ, ϕ) =
π(ϕ)q(θ|ϕ)ν(x|ϕ)ν(w|θ)
π(θ)q(ϕ|θ)ν(x|θ)ν(w|ϕ)

– draw u ∼Unif[0, 1]

– set θ = ϕ if u < α(ϕ, θ|θ, ϕ)

• end for

Figure 7: The exchange algorithm for generating the vector of parameters of interest θ from the posterior

distribution π(θ|x).

Here we only describe the computational algorithm of POMMs without the rigorous proof

as it is the programming techniques regarding POMMs that are used in the later sections.

Let x = (x1, x2, . . . , xn) ∈ {0, 1}n be a binary MRF with respect to a graph, and assume

that π(x) = 1
C

exp{−U(x)} is the corresponding joint distribution. Using the multiplication

rule of probability successively, we can in principle obtain

π(x) = π(x1|x−1)π(x−1),

π(x−1) = π
(
x2|x−{1,2}

)
π
(
x−{1,2}

)
and so on. Eventually, this recursion gives

π(x) = π(xn)
n−1∏
i=1

π(xi|xi+1, . . . , xn−1). (10)

Equation (10) is one possible form that is convenient to apply, but not the general definition

form. The normalizing constant C of π(x) is actually included in π(xn), so C can be evaluated

from the fact π(xn = 1) + π(xn = 0) = 1. Meanwhile, simulating x from π(x) is tantamount

to firstly simulating xn from π(xn), secondly simulating xn−1 from π(xn−1|xn) and so on.

From Equation (10) we essentially know the rules concerning how to generate x from

π(x), but such an analytical exact algorithm based on these rules is not computationally

17

feasible when the number of neighbors becomes large as it needs a lot of time consumptions

to compute and potentially requires much memory storage. Thereby, Tjelmeland and Austad

(2012) proposed an approximation method to overcome these two difficulties. The core idea

is to substitute the conditional distributions with approximations by ignoring higher-order

interaction effects if some threshold conditions hold. More specifically, the joint distribution

π(x) is decomposed into the exact full conditional π(x1|x−1) and an approximation π̃(x−1)

of π(x−1). Then decompose the approximation π̃(x−1) into an approximation π̃
(
x2|x−{1,2}

)
of π

(
x2|x−{1,2}

)
and an approximation π̃

(
x−{1,2}

)
of π

(
x−{1,2}

)
and so on. Recursively, the

form of (10) turns out to be

π(x) ≈ π̃(x) = π(x1|x−1)π̃(xn)
n−1∏
i=2

π̃(xi|xi+1, . . . , xn−1).

One should also note that the normalizing constant of π(x) can be approximated by that of

π̃(x), and approximate samples from π(x) can be generated by sampling from π̃(x).

3 Methodology and algorithm

As aforementioned, our target is to simulate from the joint distribution π(θ, x|y) provided

noisy observations y = (y1, y2, . . . , yn). The model components include a prior π(θ) for θ ∈ Θ,

the distribution of a discrete MRF π(x|θ) for an unobserved field x = (x1, x2, . . . , xn) ∈ X

and a likelihood function π(y|x) for the observed data y. Assuming y to be conditionally

independent of θ given x, we can visualize the model as done in Figure 8. Specifically, given

a vector of parameters θ = (θ0, θ1), the distribution π(x|θ) is a simplified version of the

autologistic model (5) by setting αi = θ0, i = 1, 2, . . . , n and β = θ1 and thereby π(x|θ) is

expressed as

π(x|θ) =
1

C(θ)
exp

{
θ0

n∑
i=1

xi + θ1

∑
i∼j

I(xi = xj)

}
. (11)

The likelihood for the observed data y is assumed to be

π(y|x, θ) = π(y|x) =
n∏
i=1

π(yi|xi) =

(
1√

2πσ2

)n
exp

{
−
∑n

i=1(yi − xi)2

2σ2

}
,

where σ2 is a common known variance for each Gaussian distribution π(yi|xi).

18

θ

x

y

Figure 8: The graphical model that indicates relationships among hidden variables x, observations y and

parameters θ.

Thus, according to the graphical model depicted in Figure 8, the posterior joint distri-

bution π(θ, x|y) of interest can be derived by Bayes’ theorem and conditional independence

as

π(θ, x|y) ∝ π(x, y, θ) = π(θ)π(x|θ)π(y|x, θ) = π(θ)π(x|θ)π(y|x).

However, the existence of C(θ) in π(x|θ) leads to unsolvable summations when computing the

acceptance ratio using näıve MCMC schemes. As a result, we should expand the statistical

relationship amongst θ, x and y so that the normalizing constants can disappear under the

conditions of the MH technique. The exchange algorithm invented by Murray et al. (2006)

is a useful key to such problems, but it is not valid for latent variables, so we put forward

two different strategies that can be regarded as extended versions of the exchange algorithm.

3.1 Simulation strategy I

In this strategy, we need auxiliary variables ϕ ∈ Θ and w ∈ X , and the corresponding

graphical model is illustrated in Figure 9. Besides the assumptions and models in the last

section, we additionally let q(ϕ|θ) denote the conditional distribution for ϕ given θ, and the

distribution function for w given ϕ is in the same form as the distribution for x given θ, i.e.

π(w|ϕ) =
1

C(ϕ)
exp

{
ϕ0

n∑
i=1

wi + ϕ1

∑
i∼j

I(wi = wj)

}
,

19

θ

x

y

ϕ

w

Figure 9: The graphical model that uses an extended version of the exchange algorithm with an auxiliary

variable w to simulate θ and x from π(θ, x|y).

where ϕ = (ϕ0, ϕ1). Similarly with Section 2.4, the distribution π(θ, x|y) can be derived

from π(θ, ϕ, w, x|y) by marginalization, i.e.

π(θ, x|y) =

∫
ϕ∈Θ

[∑
w∈X

π(θ, ϕ, w, x|y)

]
dϕ.

Thereby, the joint distribution π(θ, ϕ, w, x|y) becomes what we are interested in, and it can

be written as

π(θ, ϕ, x, w|y) ∝ π(θ, ϕ, x, w, y)

= π(θ)q(ϕ|θ)π(x|θ)π(w|ϕ)π(y|x).

For this simulation strategy, we at first use the block Gibbs update for (ϕ,w), that is,

(ϕ,w) ∼ π(ϕ,w|θ, x, y) = q(ϕ|θ)π(w|ϕ),

meaning to propose ϕ from q(ϕ|θ) and thereafter to generate w from π(w|ϕ) by perfect

sampling. Afterwards, we use the exchange technique for (θ, ϕ) by setting (θ′, ϕ′) = (ϕ, θ)

with acceptance probability

α(θ′, ϕ′|θ, ϕ) = α(ϕ, θ|θ, ϕ)

=
π(ϕ)q(θ|ϕ)ν(x|ϕ)ν(w|θ)π(y|x)

π(θ)q(ϕ|θ)ν(x|θ)ν(w|ϕ)π(y|x)

=
π(ϕ)q(θ|ϕ)ν(x|ϕ)ν(w|θ)
π(θ)q(ϕ|θ)ν(x|θ)ν(w|ϕ)

.

(12)

20

We have already analyzed how to update θ, ϕ and w, so the remainder is to figure out an

update for x. By observing Figure 9, we realize that x is not only related to θ, but depends

on y as well, so the distribution of x conditioned on θ and y is

π(x|θ, y) ∝ π(x, θ, y) ∝ π(x|θ)π(y|x).

The normalizing constant of π(y|x) is assumed to be independent of θ, so the unnormal-

ized function of π(x|θ, y) is the product of the unnormalized function of π(x|θ) and the

unnormalized function of π(y|x), i.e. the joint probability function of π(x|θ, y) is

π(x|θ, y) =
1

C(θ, y)
exp

{
θ0

n∑
i=1

xi + θ1

∑
i∼j

I(xi = xj)−
∑n

i=1(yi − xi)2

2σ2

}

∝ exp

{
n∑
i=1

(
θ0 +

2yi − 1

2σ2

)
xi + θ1

∑
i∼j

I(xi = xj)

}
.

(13)

Furthermore, we notice that (13) is the distribution function of an autologistic model with

αi = θ0 + 2yi−1
2σ2 and β = θ1. Thus, it is available to use CFTP to sample from π(x|θ, y).

Hence, we can use the Gibbs update for x, i.e. x ∼ π(x|θ, ϕ, w, y) = π(x|θ, y). In order to

make this simulation strategy easier to understand, one can see the pseudocode shown in

Figure 10.

An alternative way to formulate this algorithm is as follows. We discard ϕ and w in

Figure 9, and instead consider ϕ as a proposal of θ and w as a proposal of x. Then the joint

distribution π(θ, x|y) is of interest, and a proposal distribution is

q(ϕ,w|θ, x, y) = q(ϕ|θ)π(w|ϕ)

is used. The corresponding acceptance probability becomes

α(ϕ,w|θ, x) =
π(ϕ,w|y)q(θ, x|ϕ,w, y)

π(θ, x|y)q(ϕ,w|θ, x, y)

=
π(ϕ)q(θ|ϕ)ν(x|ϕ)ν(w|θ)
π(θ)q(ϕ|θ)ν(x|θ)ν(w|ϕ)

,

which is precisely equal to (12). This offers an alternative to think about the problem.

Studying the realizations in Figure 9, we find out that x is directly generated from π(x|θ)

if θ is given, so the dependency between x and θ cannot be ignored. Thus, using the block

update that binds x with θ may be a good option, and this ideal is introduced in the next

section.

21

Input: Initial setting θ, x and number of iterations T

• for t = 1, 2, . . . , T

– propose ϕ ∼ q(·|θ)

– use CFTP to generate w, i.e. w ∼ π(·|ϕ)

– compute α(θ′, ϕ′|θ, ϕ) =
π(ϕ)q(θ|ϕ)ν(x|ϕ)ν(w|θ)
π(θ)q(ϕ|θ)ν(x|θ)ν(w|ϕ)

– draw u ∼Unif[0, 1]

– set θ = ϕ if u < α(θ′, ϕ′|θ, ϕ)

– simulate x according to x ∼ π(·|θ, y)

• end for

Figure 10: The extended exchange algorithm for generating the parameters of interest θ and the hidden

variables x from the joint posterior distribution π(θ, x|y).

3.2 Simulation strategy II

In this section, the simulation strategy with the blocking technique requires four auxiliary

variables ϕ ∈ Θ, w ∈ X , x′ ∈ X and w′ ∈ X . The graphical model for this strategy is

depicted in Figure 11. Apart from π(w|ϕ) and q(ϕ|θ) chosen as in Section 3.1, assume that

the distribution for w′ given θ is the POMM approximation π̃(w′|θ) of π(w′|θ), and the

distribution for x′ given (ϕ, y) is the POMM approximation π̃(x′|ϕ, y) of π(x′|ϕ, y), where

π(w′|θ) =
1

C(θ)
exp

{
θ0

n∑
i=1

w′i + θ1

∑
i∼j

I(w′i = w′j)

}
,

and π(x′|ϕ, y) is of the form (13), i.e.

π(x′|ϕ, y) ∝ exp

{
n∑
i=1

(
ϕ0 +

2yi − 1

2σ2

)
x′i + ϕ1

∑
i∼j

I(x′i = x′j)

}
.

Analogously as before, we can obtain π(θ, x|y) by marginalizing π(x, θ, w, ϕ, x′, w′|y), that

is,

π(θ, x|y) =

∫
ϕ∈Θ

[∑
w′∈X

∑
x′∈X

∑
w∈X

π(x, θ, w, ϕ, x′, w′|y)

]
dϕ.

22

θ

x

y

ϕ

ww′ x′

Figure 11: The graphical model that uses an extended version of the exchange algorithm with auxiliary

variables ϕ, w, x′ and w′ based on blocking to simulate θ and x from π(θ, x|y).

Thus, the joint distribution of interest π(x, θ, w, ϕ, x′, w′|y) is

π(x, θ, w, ϕ, x′, w′|y) ∝ π(x, θ, w, ϕ, x′, w′, y)

= π(θ)π(x|θ)q(ϕ|θ)π(w|ϕ)π(y|x)π̃(w′|θ)π̃(x′|ϕ, y)

=
π(θ)ν(x|θ)q(ϕ|θ)ν(w|ϕ)ν(y|x)π̃(w′|θ)π̃(x′|ϕ, y)

C(θ)C(ϕ)
.

(14)

With respect to block updates, initially we simulate (w,ϕ, x′, w′) by the block Gibbs update

π(w,ϕ, x′, w′|θ, x, y) = q(ϕ|θ)π̃(w′|θ)π(w|ϕ)π̃(x′|ϕ, y),

meaning first to propose ϕ from q(ϕ|θ), then to generate w′ from π̃(w′|θ) by the POMM ap-

proximation and draw w from π(w|ϕ) through perfect sampling, and finally to sample x′ from

π̃(x′|ϕ, y) using the POMM approximation. Afterwards, suppose the potential new update

written as S ′ = (x′, ϕ, w′, θ, x, w) is proposed from the current state S = (x, θ, w, ϕ, x′, w′).

Specifically, interchange x and x′, swap θ and ϕ, exchange w and w′. Thus, this forms the

state shown in Figure 12. The acceptance probability is

α(S ′|S) =
π(x′, ϕ, w′, θ, x, w|y)

π(x, θ, w, ϕ, x′, w′|y)

=
π(ϕ)ν(x′|ϕ)q(θ|ϕ)ν(w′|θ)ν(y|x′)π̃(w|ϕ)π̃(x|θ, y)

π(θ)ν(x|θ)q(ϕ|θ)ν(w|ϕ)ν(y|x)π̃(w′|θ)π̃(x′|ϕ, y)

=
π(ϕ)ν(x′|ϕ)q(θ|ϕ)ν(w′|θ)ν(y|x′)π̃(w|ϕ)π̃(x|θ, y)

π(θ)ν(x|θ)q(ϕ|θ)ν(w|ϕ)ν(y|x)π̃(w′|θ)π̃(x′|ϕ, y)
.

(15)

By the same arguments as in Section 3.1, we also sample x from π(x|θ, y) whose distribution

function is of the form (13). Figure 13 shows how to simulate θ and x from π(θ, x|y) through

23

ϕ

x′

y

θ

w′w x

Figure 12: The state after using the exchange proposal with respect to the graphical model in Figure 11.

Input: Initial setting θ, x and number of iterations T

• for t = 1, 2, . . . , T

– propose ϕ ∼ q(·|θ)

– use CFTP to generate w, i.e. w ∼ π(·|ϕ)

– generate x′ and w′ from the approximate distributions π̃(x′|ϕ, y)

and π̃(w′|θ), respectively

– compute α(S ′|S) of the form (15)

– draw u ∼Unif[0, 1]

– set θ = ϕ, x = x′ and w = w′ if u < α(S ′|S)

• end for

Figure 13: The extended exchange algorithm with blocking for generating the parameters of interest θ and

the hidden variables x from the joint posterior distribution π(θ, x|y).

24

the block update.

Now we go back to the issue about the unsolvable fraction of normalizing constants,

and discuss a bit more. Obviously, if we had used π(w|ϕ) and π(x|θ, y) instead of their

corresponding POMM approximations in the model in Figure 11, the formula of acceptance

probability (15) would have become

α(S ′|S) =
C(θ)C(ϕ, y)

C(ϕ)C(θ, y)
· π(ϕ)ν(x′|ϕ)q(θ|ϕ)ν(y|x′)ν(x|θ, y)

π(θ)ν(x|θ)q(ϕ|θ)ν(y|x)ν(x′|ϕ, y)
,

where the fraction C(θ)C(ϕ,y)
C(ϕ)C(θ,y)

is not computationally tractable in practice, and thereby this is

why we adopt the POMM approximations rather than the corresponding analytical distri-

butions.

Corresponding to what we have explained for simulation strategy I in Section 3.1, it is

again possible to consider the simulation algorithm as simulating from a model with less

auxiliary variables. If we discard x′ and w′ in Figure 11, and instead regard x′ as a proposal

of x and w′ as a proposal of w, then the proposal distribution is

q(x′, w′|x,w, θ, ϕ, y) = π̃(w′|θ)π̃(x′|ϕ, y),

so the corresponding acceptance probability becomes

α(x′, ϕ, w′, θ|x, θ, w, ϕ) =
π(x′, ϕ, w′, θ|y)q(x,w|x′, w′, ϕ, θ, y)

π(x, θ, w, ϕ|y)q(x′, w′|x,w, θ, ϕ, y)

=
π(ϕ)ν(x′|ϕ)q(θ|ϕ)ν(w′|θ)ν(y|x′)π̃(w|ϕ)π̃(x|θ, y)

π(θ)ν(x|θ)q(ϕ|θ)ν(w|ϕ)ν(y|x)π̃(w′|θ)π̃(x′|ϕ, y)
,

i.e. identical to (15). Therefore, such a distinct perspective is feasible for these two strategies.

4 Simulation examples

In this section, we apply different parameter settings for θ = (θ0, θ1) and σ to simulate

hidden variables x and noisy observations y from π(x, y|θ) = π(x|θ)π(y|x) under the model

conditions given in Section 3. On the basis of these realizations, we use the simulated noisy

data y to estimate parameters θ and latent values x from the posterior distribution π(θ, x|y),

and compare these simulations with the true values of x and θ that was used to generate y.

In the backward process that generates θ and x from π(θ, x|y), we try two different methods

25

– simulation strategy I and simulation strategy II, and the main goal of our study is to

compare the efficiencies for these two simulation strategies rather than how much useful the

strategies are. Specifically, for both strategies, we adopt the improper prior π(θ0, θ1) ∝ 1,

and let the proposal q(ϕ|θ) be a bivariate Gaussian distribution in which ϕ0|θ ∼ N(θ0, σ
2
∗)

and ϕ1|θ ∼ N(θ1, σ
2
∗) independently, where ϕ = (ϕ0, ϕ1) and σ∗ is a tuning parameter. For

each of the parameter settings, we choose a suitable σ∗ such that the overall acceptance

probability in every simulation is approximately equal to 0.25. The CPU time (minutes)

spent on 500 iterations is recorded, and we use estimated autocorrelation functions (ACFs)

and the ratio of the Effective Sample Size (ESS) (Kass et al., 1998) to the simulation sample

size per minute for mixing diagnostics. Here we just briefly introduce the basic concepts and

definitions of ACFs and ESS. Define a collection of the samples of a Markov chain {xb}Bb=1,

then the sample autocovariance function of lag h is defined by

γ̂(h) =
1

B

B−h∑
b=1

(
xb − x̄

) (
xb+h − x̄

)
, 0 ≤ h < B,

where x̄ = 1
B

∑B
b=1 x

b. The sample autocorrelation of lag h is thus defined in terms of the

sample autocovariance function

ρ̂(h) =
γ̂(h)

γ̂(0)
, |h| < B.

Thereby, we can define ESS which is a closely related measure of mixing as follows,

ESS =
B

τ
=

B

1 + 2
∑∞

h=1 ρ(h)
,

where ρ(h) is the autocorrelation of lag h, and τ is referred to as the autocorrelation time. To

estimate τ , the Bayesian procedures first find a cutoff point k after which the autocorrelations

are very close to zero, and then sum all the ρ(h) up to that point. The cutoff point k is

typically such that ρ(k) < 0.01 or ρ(k) < 2sk , where sk is the estimated standard deviation

given by

sk = 2

√√√√ 1

B

(
1 + 2

k−1∑
h=1

(ρ(h))2

)
.

Small discrepancy between ESS and the simulation sample size indicates good mixing. When

it comes to evaluating convergence, we just choose samples in equilibrium by observing trace

26

plots to approximately skip burn-in periods. Moreover, all simulations are run in the same

computer, and the time consumed in each iteration is assumed to be identical. In the

following we first consider the parameter settings with θ0 = 0 and then with θ0 = 0.5. For

both cases, the number of iterations after the burn-in period for each simulation of θ is

chosen to be 500 counted from the 500th iteration to the 999th iteration. Then due to the

number of these samples constantly equal to 500, we just need ESS per minute to judge if

the mixing is good in lieu of the fraction of ESS to the simulation sample size per minute.

4.1 Simulations in the parameter settings with θ0 = 0

In addition to setting θ0 = 0, we consider four combinations of (θ1, σ) used to simulate four

realizations of x and four realizations of y by perfect sampling. These four combinations

are set by (θ1, σ) = (0.4, 0.3), (0.7, 0.3), (0.4, 0.6) and (0.7, 0.6), respectively. In Figure 14,

observing each of the four rows, the left scene is a simulation x and the right is the corre-

sponding noisy observation y generated from the autologistic model of the form (11) with

fixed θ0 = 0 and a certain value of θ1 on a 100×100 lattice. The four scenes on the left from

top to bottom are generated with θ1 = 0.4, 0.7, 0.4 and 0.7, respectively; The four scenes

from top to bottom on the right are based on σ = 0.3, 0.3, 0.6 and 0.6, respectively. The

data shown in the four scenes on the right-hand panel in Figure 14 is used for the parame-

ter estimation, and the values of σ (0.3 and 0.6) are assumed to be known in all computer

simulations.

Figure 15 presents the trace plots of θ generated from π(θ, x|y) for each of the noisy

observations under the parameter setting θ0 = 0. Red lines stand for the trace plots of θ0,

and blue lines represent that of θ1. The four scenes on the left in this figure are simulated

by simulation strategy I, and the four scenes on the right by simulation strategy II. From

top to bottom in this figure, two trace plots of θ in any row are generated according to the

observation y that locates in the same row on the right in Figure 14. Comparing two scenes

in each row in Figure 15, we see that it takes larger number of iterations to pass the burn-in

period for simulation strategy I than that for simulation strategy II. In addition, the trace

plots in all cases show that any simulated chain of θ0 or θ1 can reach its stationary states

after the 500th iteration, so it is sufficient to use 500 samples from the 500th iteration to the

27

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 14: Simulations x and their noisy observations y of the autologistic model of the form (11) with fixed

θ0 = 0 and different θ1 on a 100×100 lattice. In each of four rows in this figure, the left scene is a simulation

x and the right is the corresponding noisy observation y. The four scenes on the left from top to bottom

are generated with θ = 0.4, 0.7, 0.4 and 0.7, respectively; The four scenes from top to bottom on the right

are based on σ = 0.3, 0.3, 0.6 and 0.6, respectively.

28

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

I

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

II

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

I

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

II

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

I

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

II

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

I

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

II

Iterations

Figure 15: Trace plots of θ generated from π(θ, x|y) for each of the noisy observations under the parameter

setting θ0 = 0. Red and blue solid lines represent the trace plots of θ0 and θ1, respectively. Red and blue

dashed lines represent the true values of θ0 and θ1, respectively. The four scenes on the left in this figure

are simulated by simulation strategy I, and the four scenes on the right by simulation strategy II. From top

to bottom in this figure, two trace plots of θ in any row are generated according to the observation y in the

same row on the right in Figure 14.

29

Table 1: The choices of tuning parameter σ∗ in the four cases under the parameter setting θ0 = 0 using

simulation strategy I and in the four cases using simulation strategy II. Roman numbers I and II are the

abbreviations of simulation strategy I and simulation strategy II, respectively.

θ1 = 0.4 θ1 = 0.7

I
σ = 0.3 0.018 0.011

σ = 0.6 0.017 0.011

II
σ = 0.3 0.028 0.021

σ = 0.6 0.024 0.018

999th iteration as we mention before.

The values of tuning parameter σ∗ for different combinations of parameters (θ1, σ) are

shown in Table 1. To study the stationary distribution of θ0 is not our main purpose in

this thesis, but it is still of interest, so we make histograms in Figure 16 for samples of

θ0 based on the four noisy observations. From top to bottom in this figure, the scenes in

the four rows correspond to the noisy observations generated by setting (θ1, σ) to (0.4, 0.3),

(0.7, 0.3), (0.4, 0.6) and (0.7, 0.6), respectively. The four scenes on the left in this figure are

from the samples of θ0 generated by simulation strategy I, and the four scenes on the right

by simulation strategy II. For every row, the variance caused by simulation strategy II is

slightly greater than that by simulation strategy I due to Monte Carlo simulation errors.

Observing the first row and the third row, or the second and the fourth in Figure 16, it

is simple to realize that the variance of θ0 generated with σ = 0.6 (larger value) is greater

than that with σ = 0.3 (small value). Figure 17 shows the histograms for samples of θ1. By

analogy, we can draw the same conclusions for θ1 as in Figure 16.

The estimated ACFs for θ0 are shown in Figure 18. From top to bottom, the scenes in

the four rows correspond to the noisy observations generated by setting (θ1, σ) to (0.4, 0.3),

(0.7, 0.3), (0.4, 0.6) and (0.7, 0.6), respectively. The four scenes on the left in this figure

are estimated from θ0 generated by simulation strategy I, and the four scenes on the right

by simulation strategy II. The results from simulation strategy II slip down to zero faster

than that from simulation strategy I in terms of all the four parameter settings. Thus, the

mixing of the Markov chains using simulation strategy II is better than that using simulation

30

I

−0.015 −0.005 0.005 0.015

0

10

20

30

40

50

60

70

II

−0.010 0.000 0.010 0.020

0

10

20

30

40

50

I

−0.015 −0.005 0.005 0.010 0.015

0

20

40

60

80

100

II

−0.04 −0.02 0.00 0.01 0.02

0

5

10

15

20

25

30

I

−0.010 0.000 0.005 0.010 0.015 0.020

0

20

40

60

80

II

−0.06 −0.04 −0.02 0.00 0.02

0

5

10

15

20

25

30

I

−0.04 −0.02 0.00 0.02

0

5

10

15

20

25

30

35

II

−0.06 −0.04 −0.02 0.00 0.02

0

5

10

15

20

25

Figure 16: Histograms of samples of θ0 under the parameter setting θ0 = 0. From top to bottom, the scenes

in the four rows correspond to the noisy observations generated by setting (θ1, σ) to (0.4, 0.3), (0.7, 0.3),

(0.4, 0.6) and (0.7, 0.6), respectively. The four scenes on the left in this figure are from the samples of θ0

generated by simulation strategy I, and the four scenes on the right by simulation strategy II.

31

I

0.36 0.38 0.40 0.42 0.44

0

5

10

15

20

25

II

0.36 0.38 0.40 0.42 0.44

0

5

10

15

20

25

I

0.66 0.68 0.70 0.72 0.74

0

5

10

15

20

25

30

II

0.66 0.67 0.68 0.69 0.70 0.71 0.72

0

10

20

30

I

0.34 0.36 0.38 0.40 0.42 0.44 0.46

0

5

10

15

20

II

0.34 0.36 0.38 0.40 0.42 0.44 0.46

0

5

10

15

20

I

0.67 0.68 0.69 0.70 0.71 0.72

0

10

20

30

40

II

0.68 0.69 0.70 0.71 0.72

0

10

20

30

40

Figure 17: Histograms of samples of θ1 under the parameter setting θ0 = 0. From top to bottom, the scenes

in the four rows correspond to the noisy observations generated by setting (θ1, σ) to (0.4, 0.3), (0.7, 0.3),

(0.4, 0.6) and (0.7, 0.6), respectively. The four scenes on the left in this figure are from the samples of θ1

generated by simulation strategy I, and the four scenes on the right by simulation strategy II.

32

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

Figure 18: The estimated ACFs for θ0 under the parameter setting θ0 = 0. From top to bottom, the scenes

in the four rows correspond to the noisy observations generated by setting (θ1, σ) to (0.4, 0.3), (0.7, 0.3),

(0.4, 0.6) and (0.7, 0.6), respectively. The four scenes on the left in this figure are estimated from θ0 generated

by simulation strategy I, and the four scenes on the right by simulation strategy II.

33

Table 2: ESS, the CPU times, ESS per minute and their ratios under the parameter setting θ0 = 0. The

CPU times are recorded for simulating 500 stationary samples. The calculation results in the second, third,

fourth and fifth columns in this table are based on the four noisy observations on the right panel from top

to bottom in Figure 14, respectively. CPU is the abbreviation of the CPU time. Roman numbers I and II

represent simulation strategy I and simulation strategy II, respectively.

(θ0, θ1) (θ0, θ1) (θ0, θ1) (θ0, θ1)

I

ESS (35, 26) (42, 31) (20, 17) (34, 28)

CPU 5.28 19.27 6.65 21.12

ESS/CPU (17.50, 13.00) (2.18, 1.61) (3.01, 2.56) (1.61, 1.33)

II

ESS (67, 70) (128, 130) (34, 43) (99, 106)

CPU 202.01 215.72 202.21 219.3

ESS/CPU (0.33, 0.35) (0.59, 0.60) (0.17, 0.21) (0.45, 0.49)

ESS(II)/ESS(I) (1.91, 2.69) (3.05, 4.19) (1.70, 2.53) (2.91, 3.79)

CPU(II)/CPU(I) 38.26 11.19 30.41 10.38

(ESS/CPU)(I)/(ESS/CPU)(II) (53.03, 37.14) (3.69, 2.68) (17.71, 12.19) (3.58, 2.71)

strategy I. On the right-hand panel, comparing the first row with the second, or the third

with the fourth, i.e. keep σ fixed, we see that the estimated ACFs with θ1 = 0.7 decrease

more dramatically than that with θ1 = 0.4. Hence, when the value of θ1 is larger, Markov

chains simulated by simulation strategy II give more satisfactory mixing since the larger

value of θ1 implies the stronger dependency between θ and x, and thus it is more efficient

to use simulation strategy II. The ACFs for θ1 are depicted in Figure 19, we use the same

organization, and can obtain the same conclusions as before.

Table 2 summarizes the information about the mixing of the Markov chains and relevant

CPU times derived from the simulations. The data shown in the second, third, fourth and

fifth columns in this table are based on the four noisy observations on the right panel from top

to bottom in Figure 14, respectively, i.e. (θ1, σ) = (0.4, 0.3), (0.7, 0.3), (0.4, 0.6) and (0.7, 0.6),

respectively. For convenience, we use CPU and Roman numbers I and II to represent the

total CPU time for simulating 500 stationary samples, simulation strategy I and simulation

strategy II, respectively. Given a fixed column, comparing rows vertically, the ratios of

34

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

Figure 19: The estimated ACFs for θ1 under the parameter setting θ0 = 0. From top to bottom, the scenes

in the four rows correspond to the noisy observations generated by setting (θ1, σ) to (0.4, 0.3), (0.7, 0.3),

(0.4, 0.6) and (0.7, 0.6), respectively. The four scenes on the left in this figure are estimated from θ1 generated

by simulation strategy I, and the four scenes on the right by simulation strategy II.

35

ESS for simulation strategy II to that for simulation strategy I are larger than 1 with the

maximum value equal to 4.19. This indicates the mixing resulted from simulation strategy II

is better that from simulation strategy I. However, the CPU time and the values of ESS per

minute for simulation strategy I are greater than that for simulation strategy II, so one should

select simulation strategy I if taking into account time consumptions and the efficiency of

simulations. Studying the third and sixth rows – the CPU times for two strategies, all of

the CPU times spent on simulation strategy II are beyond 200 minutes, and their relative

differences are not very big. For instance, the relative difference of CPU times between

202.01 and 219.3 is the greatest for simulation strategy II, i.e. 219.3−202.01
202.01

≈ 0.086. However,

such differences for simulation strategy I cannot be ignored since the minimum difference

value is based on 19.27 and 21.12, i.e. 21.12−19.27
19.27

≈ 0.096 which is larger than the maximum

value 0.086 for simulation strategy II. Thus, the computation time used to calculate POMM

approximations plays a dominant role in the total CPU time. Comparing the second column

(θ1 = 0.4) with the third column (θ1 = 0.7), or the fourth column (θ1 = 0.4) with the

fifth column (θ1 = 0.7) in terms of ESS(II)/ESS(I), the discrepancy of mixing between

simulation strategy I and simulation strategy II is larger and larger as the value of θ1 increases

since θ1 affects the dependency between θ and x. In other words, the greater value of θ

implies the stronger correlation between θ and x, so using simulation strategy II with block

updates is more efficient verifying the assumption in the end of Section 3.1. With respect to

(ESS/CPU)(I)/(ESS/CPU)(II), 53.03 > 3.69, 37.14 > 2.68 and 17.71 > 3.58, 12.19 > 2.71,

so the superiority for simulation strategy I in ESS per minute is increasingly weak with the

larger value of θ1.

The visual differences between the true x shown on the left-hand panel in Figure 14 and

simulated x illustrated as gray-scale images are insignificant whichever strategy is used. The

simulated x is picked from the final sample of x from π(θ, x|y), i.e. the sample is the 999th

iteration. In Table 3 we present the number of vertices in the 100× 100 lattice that are not

identical in the plot of the true x and its counterpart. The proportion of different vertices

is small since 30
104

= 0.3% � 1. A larger value of ESS indicates better mixing, so obviously,

simulation strategy II generates stationary chains with more satisfactory mixing in all our

four cases than simulation strategy I. The strategy with a smaller value of ESS per minute

36

Table 3: The number of different vertices in the 100 × 100 lattice between the true x and simulated x for

simulation strategy I and simulation strategy II under the parameter setting θ0 = 0.

(θ1, σ) = (0.4, 0.3) (θ1, σ) = (0.7, 0.3) (θ1, σ) = (0.4, 0.6) (θ1, σ) = (0.7, 0.6)

I 0 0 28 30

II 0 0 28 30

owns more useful availabilities, so one should choose simulation strategy I in practice.

4.2 Simulations in the parameter settings with θ0 = 0.5

In this section, for a fair comparison, we do simulations with the same configurations as

in the last section except the setting θ0 = 0.5. The alignment structures and symbols in

all figures in this section are the same as their corresponding figures in Section 4.1. For

instance, the group of trace plots in this section has the same arrangement for its subfigures

as that in Figure 15 in the last section. If there exist some differences, we will point them

out. Moreover, the conclusions and results in this section which are the same as that in

Section 4.1 are not fully stated or they are presented by a few words.

We set θ0 = 0.5 so as to make the proportion of 1’s (black pixels) equal to 70% to 80%

in a 100× 100 lattice. The parameter settings of (θ1, σ) are the same as that in Section 4.1.

Figure 20 shows four simulations of x and their corresponding noisy observations y of the

autologistic model of the form (11) with fixed θ0 = 0.5 and different values of θ1 on a 100×100

lattice. Compared with Figure 14, there are more black pixels in each scene on the left in

Figure 20 since θ1 = 0.5 > 0 determines the proportion of 1’s as we discuss in the example

in Section 2.3.

The trace plots of θ0 and θ1 under the conditions of four parameter settings are shown

in Figure 21. In addition to the same conclusions as for Figure 15, we find out that Markov

chains simulated by simulation strategy II on the right in Figure 21 converge to their cor-

responding stationary distributions faster than that on the right in Figure 15 as θ0 6= 0

enhances the dependency between θ and x, and thereby simulation strategy II with the

blocking scheme is more efficient. However, in this figure the chains simulated by simulation

37

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 20: Simulations x and their noisy observations y of the autologistic model of the form (11) with

fixed θ0 = 0.5 and different θ1 on a 100× 100 lattice. In each of four rows in this figure, the left scene is a

simulation x and the right is the corresponding noisy observation y. The four scenes on the left from top

to bottom are generated with θ = 0.4, 0.7, 0.4 and 0.7, respectively; The four scenes from top to bottom on

the right are based on σ = 0.3, 0.3, 0.6 and 0.6, respectively.

38

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

I

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

II

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

I

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

II

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

I

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

II

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

I

Iterations

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

II

Iterations

Figure 21: Trace plots of θ generated from π(θ, x|y) for each of the noisy observations under the parameter

setting θ0 = 0.5. Red and blue solid lines represent the trace plots of θ0 and θ1, respectively. Red and blue

dashed lines represent the true values of θ0 and θ1, respectively. The four scenes on the left in this figure

are simulated by simulation strategy I, and the four scenes on the right by simulation strategy II. From top

to bottom in this figure, two trace plots of θ in any row are generated according to the observation y in the

same row on the right in Figure 20.

39

Table 4: The choices of tuning parameter σ∗ in the four cases under the parameter setting θ0 = 0.5 using

simulation strategy I and in the four cases using simulation strategy II. Roman numbers I and II are the

abbreviations of simulation strategy I and simulation strategy II, respectively.

θ1 = 0.4 θ1 = 0.7

I
σ = 0.3 0.023 0.023

σ = 0.6 0.023 0.025

II
σ = 0.3 0.031 0.032

σ = 0.6 0.030 0.035

strategy I without blocking converges in the almost same speed as or even more slowly than

that on the left in Figure 15.

In the rest of this section, the histograms of samples for θ0 are shown in Figure 22. The

variance of θ0 generated by some strategy with some parameter setting in Figure 22 is larger

than the variance of the corresponding one in Figure 16. The reasons can be explained as

follows. Now that θ0 = 0.5 6= 0, then both θ0 and θ1 affect the pattern of x. Reversely,

it is hard to distinguish the influence coming from θ0 and θ1, and thereby the errors and

the uncertainties should be greater than that in simulations with θ0 = 0. Moreover, large

values of |θ0| and θ1 lead to large variances of samples for θ0 and θ1. For example, given

a part of the lattice in which the values of all vertices are 1, then it is difficult to diagnose

whether this pattern is mainly because of either a large value of θ0 > 0 or a large interaction

effect caused by large θ1. The situations in Figure 23 are the same as that in Figure 22,

and can be interpreted by the same arguments. The values of tuning parameter σ∗ for

different combinations of parameters (θ1, σ) when θ0 = 0.5 are shown in Table 4. In this

table, the values of σ∗ used for simulation strategy II are still larger than that for simulation

strategy I. The difference between σ∗ for strategy I and σ∗ for strategy II in terms of a

certain parameter setting in Table 4 is approximately equal to such a difference in Table 1.

Therefore, the consistency for the choice of tuning parameter σ∗ in all the cases for two

different θ0 holds.

The estimated ACFs for θ0 are shown in Figure 24 and that for θ1 are shown in Figure 25.

The estimated ACFs in Figure 24 and in Figure 25 reflect the mixing of the stationary

40

I

0.50 0.55 0.60

0

2

4

6

8

10

II

0.45 0.50 0.55 0.60

0

2

4

6

8

10

12

I

0.30 0.35 0.40 0.45 0.50

0

2

4

6

8

10

II

0.35 0.40 0.45 0.50 0.55 0.60

0

2

4

6

8

10

I

0.50 0.55 0.60 0.65

0

2

4

6

8

II

0.45 0.50 0.55 0.60 0.65

0

2

4

6

8

10

I

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

0

1

2

3

4

II

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64

0

5

10

15

Figure 22: Histograms of samples of θ0 under the parameter setting θ0 = 0.5. From top to bottom, the scenes

in the four rows correspond to the noisy observations generated by setting (θ1, σ) to (0.4, 0.3), (0.7, 0.3),

(0.4, 0.6) and (0.7, 0.6), respectively. The four scenes on the left in this figure are from the samples of θ0

generated by simulation strategy I, and the four scenes on the right by simulation strategy II.

41

I

0.32 0.34 0.36 0.38 0.40 0.42

0

5

10

15

20

II

0.34 0.36 0.38 0.40 0.42

0

5

10

15

I

0.68 0.70 0.72 0.74 0.76 0.78

0

5

10

15

20

II

0.66 0.68 0.70 0.72 0.74 0.76

0

5

10

15

20

I

0.30 0.32 0.34 0.36 0.38 0.40

0

5

10

15

II

0.30 0.35 0.40 0.45

0

2

4

6

8

10

I

0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70

0

2

4

6

8

10

II

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

0

1

2

3

4

5

Figure 23: Histograms of samples of θ1 under the parameter setting θ0 = 0.5. From top to bottom, the scenes

in the four rows correspond to the noisy observations generated by setting (θ1, σ) to (0.4, 0.3), (0.7, 0.3),

(0.4, 0.6) and (0.7, 0.6), respectively. The four scenes on the left in this figure are from the samples of θ1

generated by simulation strategy I, and the four scenes on the right by simulation strategy II.

42

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

Figure 24: The estimated ACFs for θ0 under the parameter setting θ0 = 0.5. From top to bottom, the scenes

in the four rows correspond to the noisy observations generated by setting (θ1, σ) to (0.4, 0.3), (0.7, 0.3),

(0.4, 0.6) and (0.7, 0.6), respectively. The four scenes on the left in this figure are estimated from θ0 generated

by simulation strategy I, and the four scenes on the right by simulation strategy II.

43

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

I

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Lag

II

Figure 25: The estimated ACFs for θ1 under the parameter setting θ0 = 0.5. From top to bottom, the scenes

in the four rows correspond to the noisy observations generated by setting (θ1, σ) to (0.4, 0.3), (0.7, 0.3),

(0.4, 0.6) and (0.7, 0.6), respectively. The four scenes on the left in this figure are estimated from θ1 generated

by simulation strategy I, and the four scenes on the right by simulation strategy II.

44

Table 5: ESS, the CPU times, ESS per minute and their ratios under the parameter setting θ0 = 0.5. The

CPU times are recorded for simulating 500 stationary samples. The calculation results in the second, third,

fourth and fifth columns in this table are based on the four noisy observations on the right panel from top

to bottom in Figure 20, respectively. CPU is the abbreviation of the CPU time. Roman numbers I and II

represent simulation strategy I and simulation strategy II, respectively.

(θ0, θ1) (θ0, θ1) (θ0, θ1) (θ0, θ1)

I

ESS (20, 16) (31, 22) (16, 10) (23, 20)

CPU 3.19 10.22 5.98 14.27

ESS/CPU (6.27, 5.02) (3.03, 2.15) (2.68, 1.67) (1.61, 1.40)

II

ESS (43, 49) (125, 138) (27, 30) (98, 104)

CPU 198.22 204.93 200.01 208.46

ESS/CPU (0.22, 0.25) (0.61, 0.67) (0.13, 0.15) (0.47, 0.50)

ESS(II)/ESS(I) (2.15, 3.06) (4.03, 6.27) (1.67, 3.00) (4.26, 5.20)

CPU(II)/CPU(I) 62.14 20.05 33.44 14.61

(ESS/CPU)(I)/(ESS/CPU)(II) (28.50, 20.08) (4.97, 3.21) (20.62, 11.13) (3.43, 2.80)

chains of θ0 and θ1, respectively. The mixing in all cases with θ0 = 0.5 is not better than

that with θ0 = 0, but according to the eighth rows (ratio of ESS) in both Table 2 and

Table 5, 4.03 > 3.05, 6.27 > 4.19 and 4.26 > 2.91, 5.20 > 3.79 etc., the goodness of using

simulation strategy II when θ0 = 0.5 is more significant than that when θ0 = 0. This implies

and verifies that large |θ0| 6= 0 increases the dependency between θ and x. Comparing the

third row and the sixth row in Table 5 with the corresponding rows in Table 2, respectively,

we can observe that the relative reduction of CPU time using simulation strategy I is more

drastic than that using simulation strategy II since it is easier to make a perfect sample

when θ0 6= 0. For example, an image produced from x with some pattern and its inverse

image can be generated with the same probability if θ0 = 0, but it is more likely to generate

the image with more black pixels if θ0 > 0, so this implies the relative reduction of CPU

time 14.27−10.22
14.27

≈ 0.28(min for I) > 208.46−198.22
208.46

≈ 0.049(max for II) for simulation strategies

I and II. The simulations in equilibrium when θ0 = 0 have less variance and better mixing

than that when θ0 = 0.5.

45

Table 6: The number of different vertices in the 100 × 100 lattice between the true x and simulated x for

simulation strategy I and simulation strategy II under the parameter setting θ0 = 0.5.

(θ1, σ) = (0.4, 0.3) (θ1, σ) = (0.7, 0.3) (θ1, σ) = (0.4, 0.6) (θ1, σ) = (0.7, 0.6)

I 0 0 39 54

II 0 0 39 54

In this case with θ0 = 0.5, in order to inspect different vertices between the true x on the

left-hand panel in Figure 20 and simulated x from the last simulation iteration, we present

the number of different vertices in the 100 × 100 lattice in Table 6. As we discuss before,

when θ0 = 0.5, the variance of the simulations is greater than that in Section 4.1, so this is

why 39 > 28 and 53 > 30.

5 Closing remarks

The Bayesian approach results in computational inefficiencies for hidden MRFs using con-

ventional MCMC as normalization constants do not vanish when calculating the acceptance

probabilities. The exchange algorithm is a useful excalibur when confronting normalizing

constants, but the standard version of this algorithm is only applicable to the case without

latent variables. Thus, we incorporate the exchange algorithm with MCMC schemes into

our two strategies. Both of them are based on alternate usage of the Gibbs update and the

MH update. The major difference between these two strategies is that simulation strategy I

swaps two variables in one MH update while simulation strategy II interchanges all variables

under some rule in one MH update, i.e. the latter uses the block MH update. For a fair com-

parison of our two strategies, it is important to take the CPU time used into consideration.

Note that in strategy II with blocking we replace the exact distributions with the POMM

approximations, so this means that if the approximations are close enough to the analytical

results the distributions of interest will be sufficiently precise. Moreover, the complexity of

the structures of POMM approximations we adopt determines the computation time of the

simulations. In other words, if we select so sophisticated approximations that they are close

to the true values, the simulation results should be ”perfect”, but it requires incredibly long

46

computation time, and this is not what we need in practice. Therefore, we have to seek a

trade-off between the precision and the temporal availability.

In our simulation examples, we have demonstrated that the strategy with blocking costs

more CPU time than the other one under all parameter settings However, it is not rigorous

to conclude that the strategy without blocking is more efficient than that with blocking only

according to the CPU time. This is because mixing is also a crucial factor contributing to

judging whether a stationary chain is good or not, i.e. samples are generated independently

from our target distribution if a Markov chain has mixing of high quality. Therefore, we apply

ESS per time unit given a fixed value of simulated sample size rather than the total CPU time

after burn-in period. Note that for convergence diagnostics we only observe their trace plots,

and then estimate approximate lengths of burn-in periods, but the mixing diagnostics are

based on ESS. Whichever strategy, simulation strategy I or II, is used, simulation strategy

I spends less CPU time and has greater values of ESS per minute. However, simulation

strategy II can generate samples with better mixing. Furthermore, with respect to mixing,

as the values of |θ0| and θ1 increase, the superiority that simulation strategy II is better

than simulation strategy I becomes more and more significant. Based on the results and

the conclusions in the previous sections, we speculate that the efficiency of using simulation

strategy II will rise as the value of θ1 increase, and will be identical to the efficiency of using

simulation strategy I until θ1 reach some threshold value, and after this value the efficiency

of using simulation strategy II will become higher than that using simulation strategy I.

There are several approximations used for constructing the algorithmic framework of

simulation strategy II, and the computation time is not acceptable compared with that in

simulation strategy I. Hence, alternatively we can use other sorts of approximations such

as particle Markov chain Monte Carlo methods (Andrieu et al., 2010) and approximate

Bayesian computation (Beaumont et al., 2002), and other application is in Everitt (2012).

In addition, we can also focus on reformulating the approximation of an MRF such that it is

less computationally time-consuming in our further work. In the proposed models, we assume

that the common variance σ2 for Gaussian distributions from which noisy observations are

generated is known. More generally, we do not need this assumption or we utilize a more

complicated model to establish the statistical relationship between the hidden variables x

47

and the observed data y. Then take into account σ2 as a stochastic variable, and denote θ =

(θ0, θ1, σ
2), so that the conditional independence for y and θ does not hold, i.e. π(y|x, θ) 6=

π(y|x). In the future, the work without knowing σ2 can be done by similar procedure with

what we have completed. In addition, we also have some other options for the further work,

for instance, to improve the POMM approximations such that it spends less CPU time, to

propose a new model or theory by which it is possible to get rid of using approximations for

analytical distributions.

48

References

Andrieu, C., Doucet, A., and Holenstein, R. (2010), “Particle Markov chain Monte Carlo methods,” Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 72, 269–342.

Ashkin, J. and Teller, E. (1943), “Statistics of two-dimensional lattices with four components,” Phys. Rev.,

64, 178–184.

Beaumont, M. A., Zhang, W., and Balding, D. J. (2002), “Approximate Bayesian computation in population

genetics,” Genetics, 162, 2025–2035.

Berg, B. A. (2004), “Introduction to Markov chain Monte Carlo simulations and their statistical analysis,”

eprint arXiv:cond-mat/0410490.

Berthelsen, K. K. and Møller, J. (2003), “Likelihood and non-parametric Bayesian MCMC inference for

spatial point processes based on perfect simulation and path sampling,” Scandinavian Journal of Statistics,

30, 549–564.

Besag, J. (1974), “Spatial interaction and the statistical analysis of lattice systems,” Journal of the Royal

Statistical Society. Series B (Statistical Methodology), 36, 192–236.

Carlin, B. P. and Chib, S. (1995), “Bayesian model choice via Markov chain Monte Carlo methods,” Journal

of the Royal Statistical Society-Series B (Statistical Methodology), 57, 473–484.

Chen, M.-H. and Shao, Q.-M. (1999), “Monte Carlo estimation of Bayesian credible and HPD intervals,”

Journal of Computational and Graphical Statistics, 8, 69–92.

Cressie, N. and Davidson, J. L. (1998), “Image analysis with partially ordered Markov models,” Computa-

tional Statistics & Data Analysis, 29, 1–26.

Everitt, R. G. (2012), “Bayesian parameter estimation for latent Markov random fields and social networks,”

Journal of Computational and Graphical Statistics, 21, 940–960.

Friel, N. and Rue, H. (2007), “Recursive computing and simulation-free inference for general factorizable

models,” Biometrika, 94, 661–672.

Gelman, A. and Meng, X.-L. (1998), “Simulating normalizing constants: from importance sampling to bridge

sampling to path sampling,” Statistical Science, 13, 163–185.

Geman, S. and Geman, D. (1984), “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration

of images,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-6, 721–741.

49

Green, P. J. and Richardson, S. (2001), “Modelling heterogeneity with and without the Dirichlet process,”

Scandinavian Journal of Statistics, 28, 355–375.

Hammersley, J. M. and Clifford, P. E. (1971), “Markov random fields on finite graphs and lattices,” Unpub-

lished manuscript.

Hastings, W. K. (1970), “Monte Carlo sampling methods using Markov chains and their applications,”

Biometrika, 57, 97–109.

Heikkinen, J. and Hogmander, H. (1994), “Fully Bayesian approach to image restoration with an application

in biogeography,” Applied Statistics, 43, 569–582.

Huang, F. and Ogata, Y. (2002), “Generalized pseudo-likelihood estimates for Markov random fields on

lattice,” Annals of the Institute of Statistical Mathematics, 54, 1–18.

Ising, E. (1925), “Beitrag zur theorie des ferromagnetismus,” Zeitschrift für Physik, 31, 253–258.

Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998), “Markov chain Monte Carlo in practice: a

roundtable discussion,” The American Statistician, 52, 93–100.

Kindermann, R., Snell, J. L., et al. (1980), Markov Random Fields and Their Applications, vol. 1, American

Mathematical Society Providence, RI.

Møller, J., Pettitt, A. N., Reeves, R., and Berthelsen, K. K. (2006), “An efficient Markov chain Monte Carlo

method for distributions with intractable normalising constants,” Biometrika, 93, 451–458.

Murray, I., Ghahramani, Z., and MacKay, D. J. C. (2006), “MCMC for doubly-intractable distributions,”

in Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06), AUAI

Press, 359–366.

Potts, R. B. (1952), “Some generalized order-disorder transformations,” in Proceedings of the Cambridge

Philosophical Society, Cambridge University Press, 106–109.

Propp, J. G. and Wilson, D. B. (1996), “Exact sampling with coupled Markov chains and applications to

statistical mechanics,” Random Structures and Algorithms, 9, 223–252.

Reeves, R. and Pettitt, A. N. (2004), “Efficient recursions for general factorisable models,” Biometrika, 91,

751–757.

Tjelmeland, H. and Austad, H. M. (2012), “Exact and approximate recursive calculations for binary Markov

random fields defined on graphs,” Journal of Computational and Graphical Statistics, 21, 758–780.

50

