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This thesis consists of an Introduction and the two papers:

1. Toeplitz flows and their ordered K-theory

2. Finite-rank Bratteli-Vershik diagrams are expansive – a new proof.

Paper 1 studies the important class of dynamical systems called Toeplitz flows in
terms of (ordered) Bratteli diagrams and K-theory. The thrust of the paper is
to give a definite characterization of Toeplitz flows in terms of their K0-groups,
which, in fact, simultaneously characterizes these dynamical systems in terms of
their orbit structure.

Paper 2 contains a new proof of a result by T. Downarowicz and A. Maass
[DM], while at the same time addressing the open problem they raise about a
certain lower bound. We are able to find a significantly lower bound than they
found, which we conjecture is optimal. The result proved in [DM] was used in
paper 1 to exhibit examples of (ordered) Bratteli diagrams and compute the
associated dimension groups, where the corresponding Bratteli-Vershik systems
are Toeplitz flows. We found the proof in [DM] very hard to follow. However, the
importance of the result proved in [DM] motivated us to find a more accessible
proof.

The Introduction will give the background and set the stage, so to say, for
the two papers. We will give a survey of topological dynamical systems, more
specifically, Cantor minimal systems, and (ordered) Bratteli diagrams associated to
these. The two papers are mainly treating special kinds of Cantor minimal systems,
namely shift systems, also called symbolic dynamical systems. In particular, we
will survey the family of Toeplitz flows, the type of shift systems that are the
focus of paper 1. An important tool used in both papers to prove our results are
Bratteli diagrams. In addition to explain what a Bratteli diagram is and how one
can associate an ordered abelian group (dimension group) to it, we will explain
the link between ordered Bratteli diagrams and Cantor minimal systems.

1 Topological dynamical systems
By a topological dynamical system we will mean a pair (X, G), where X is
a compact metrizable space and G is a countable (discrete) group acting as
homeomorphisms on X. In this thesis we will use the term dynamical system to
mean a compact metric space X together with a homeomorphism T : X → X,
and this dynamical system will be denoted by (X, T ). This induces in a natural
way a Z-action on X. The orbit of x ∈ X under this action is {T nx | n ∈ Z} and
will be denoted by orbitT (x). If all the orbits are dense in X we say that (X, T )
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is a minimal system. It is a simple observation that (X, T ) is minimal if and only
if T (A) = A for some closed A ⊆ X implies that A = X or ∅. In this thesis we
shall often consider minimal dynamical systems where X is a Cantor set, i.e. a
totally disconnected compact space with no isolated points. In this case we say
that (X, T ) is a Cantor minimal system.

We will denote the natural numbers {1, 2, 3, . . . } by N, the integers by Z,
the rational numbers by Q, the real numbers by R. Also, let Z+ = {0, 1, 2, . . . },
Q+ = {r ∈ Q | r ≥ 0}, R+ = {t ∈ R | t ≥ 0}. Zn will denote the group {0, 1, . . . ,
n − 1} where addition is done modulo n. When A and B are two sets A − B will
mean all elements in A except elements in A ∩ B.

By a map between two dynamical systems (X, T ) and (Y, S) we will mean a
continuous map π : X → Y which satisfies S(π(x)) = π(Tx), ∀x ∈ X. (Observe
that this implies that Sn(π(x)) = π(T nx) for all n ∈ Z.) If this map in addition
is surjective we say that (X, T ) is an extension of (Y, S) and that (Y, S) is a
factor of (X, T ), and we call π a factor map. Sometimes we will use the notation
π : (X, T ) → (Y, S). Two dynamical systems are conjugate if the map between
them is a bijection, and then we write (X, T ) ∼= (Y, S). We say that (X, T ) is
flip conjugate to (Y, S) if (X, T ) ∼= (Y, S) or (X, T ) ∼= (Y, S−1). The dynamical
systems (X, T ) and (Y, S) are orbit equivalent if there exists a homeomorphism
F : X → Y such that F (orbitT (x)) = orbitS(F (x)) for all x ∈ X. We call F an
orbit map.

Remark 1.1. Clearly flip conjugacy implies orbit equivalence. It is a fact that if
X (and hence Y ) is a connected space then orbit equivalence between (X, T ) and
(Y, S) implies flip conjugacy. This follows by a simple argument using a result of
Sierpińsky, cf. [Ku, Theorem 6, Ch. V, §47, III]. This has the consequence that
the study of orbit equivalence is only interesting as it pertains to Cantor minimal
systems (X, T ), i.e. X is a Cantor set on which T acts minimally. The K-theoretic
invariant we are going to introduce is an invariant for orbit equivalence, and so
we will assume henceforth that our dynamical systems are Cantor minimal, even
though some of the subsequent definitions apply to more general systems.

Let (X, T ), (Y, S), both (X, T ) and (Y, S) being Cantor minimal systems, be
orbit equivalent with orbit map F . For each x ∈ X there exists a unique integer
n(x) (respectively, m(x)) such that F (Tx) = Sn(x)(F (x)), F (T m(x)x) = S(F (x)).
We call m, n : X → Z the orbit cocycles associated to the orbit map F .

Definition 1.2. We say that (X, T ) and (Y, S) are strong orbit equivalent if
there exists an orbit map F : X → Y such that each of the two associated orbit
cocycles m, n : X → Z have at most one point of discontinuity [GPS, Definition
1.3]
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1.1 Entropy
If we have a continuous map T : X → X where (X, B, μ) is a measure space and μ ∈
M(X, T ), where M(X, T ) denotes the set of measure preserving transformations
(i.e. μ(T −1(A)) = μ(A) for all A ∈ B(X)) we have the notion of measure-theoretic
entropy hμ(T ) [Wa, Chapter 4]. For topological dynamical systems we also have a
similar notion, topological entropy. We will define this concept as it was originally
defined using open covers, and present a results describing the connection between
the two notions of entropy. To do so, we need to introduce some concepts. If
α and β are two open (finite) covers of X, then so is the join of α and β, α ∨ β,
which consists of sets A ∩ B where A ∈ α and B ∈ β. If any set A ∈ α is a subset
of a set in β then we say that α is a refinement of β and we write β ≺ α.

Definition 1.3. If α is an open cover of X we define the entropy of α to be
H(α) = logN(α), where N(α) is the number of sets in a subcover of α with the
smallest cardinality.

Definition 1.4. If α is an open cover of X and T : X → X is a continuous map
then we define the entropy of T relative to α to be

h(T, α) = lim
n→∞

1
n

H

(
n−1∨
i=0

T −iα

)
.

Here
∨n−1

i=0 T −iα means the join α ∨ T −1α ∨ · · · ∨ T −(n−1)α. (Notice that the
continuity of T ensures that T −iα is an open cover of X for all i.)

This limit does exists [Wa, Theorem 7.1].

Definition 1.5. The topological entropy of T is defined to be

h(T ) = sup
α

h(T, α),

where α is an open cover of X.

Topological entropy is a conjugacy invariant [Wa, Theorem 7.2], and is a
non-negative real number, possibly +∞. The following result, which we state
here without a proof, shows the close connection between the notion of measure-
theoretic entropy and topological entropy.

Theorem 1.6. Let T : X → X be a continuous map of a compact metric space
X. Then h(T ) = sup {hμ(T ) | μ ∈ M(X, T )}.

For a proof, see [Wa, Theorem 8.6].
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V0

E1M1 =

[
1
1

]

V1

E2M2 =

⎡
⎣5 2
4 1
1 1

⎤
⎦

V2

E3M3 =

[
1 2 2
1 2 1

]

V3

Figure 1: An example of a Bratteli diagram

2 Bratteli diagrams
A Bratteli diagram (V, E) consists of a set of vertices V = �∞

n=0Vn and a set
of edges E = �∞

n=1En, where the Vn’s and the En’s are finite disjoint sets and
where V0 = {v0} is a one-point set. The edges in En connect vertices in Vn−1
with vertices in Vn. If e connects v ∈ Vn−1 with u ∈ Vn we write s(e) = v
and r(e) = u, where s : En → Vn−1 and r : En → Vn are the source and range
maps, respectively. We will assume that s−1(v) 
= ∅ for all v ∈ V and that
r−1(v) 
= ∅ for all v ∈ V \V0. A Bratteli diagram can be given a diagrammatic
presentation with Vn the vertices at level n and En the edges between Vn−1
and Vn. If |Vn−1| = tn−1 and |Vn| = tn then the edge set En is described by
a tn × tn−1 incidence matrix Mn = (mn

ij), where mn
ij is the number of edges

connecting vn
i ∈ Vn with vn−1

j ∈ Vn−1 (see Figure 1). In such a diagrammatic
presentation of the Bratteli diagram we can also illustrate the source and range
maps as seen in Figure 2. Let k, l ∈ Z+ with k < l and let Ek+1 ◦ Ek ◦ · · · ◦
El denote all the paths from Vk to Vl. Specifically, Ek+1 ◦ Ek ◦ · · · ◦ El =
{(ek+1, · · · , el) | ei ∈ Ei, i = k + 1, . . . , l; r(ei) = s(ei+1), i = k + 1, . . . , l − 1} .

We define r ((ek+1, · · · , el)) = r(el) and s ((ek+1, · · · , el)) = s(ek+1). Notice
that the corresponding incidence matrix is the product MlMl−1 · · · Mk+1 of the
incidence matrices.

Definition 2.1. Given a Bratteli diagram (V, E) and a sequence 0 = m0 < m1 <
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e

v = s(e)

u = r(e)

Vn−1

Vn

En

...

...

Figure 2: Here tn−1 = 3, tn = 2, and the source of the edge e ∈ En is s(e) = v ∈
Vn−1 and the range, r(e) is u ∈ Vn.

m2 < · · · in Z+, we define the telescoping of (V, E) to {mn} as (V ′, E′), where
V ′

n = Vmn
and E′

n = Emn−1+1 ◦ · · · ◦ Emn
, and the source and the range maps are

as above.

Definition 2.2. We say that the Bratteli diagram (V, E) is simple if there exists
a telescoping of (V, E) such that the resulting Bratteli diagram (V ′, E′) has full
connection between all consecutive levels, i.e. the entries of all the incidence
matrices are non-zero.

Given a Bratteli diagram (V, E) we define the infinite path space associated
to (V, E), namely

X(V,E) = {(e1, e2, . . . ) | ei ∈ Ei, r(ei) = s(ei+1);∀i ≥ 1} .

Clearly X(V,E) ⊆
∏∞

n=1 En, and we give X(V,E) the relative topology,
∏∞

n=1 En

having the product topology. Loosely speaking this means that two paths in
X(V,E) are close if the initial parts of the two paths agree on a long initial stretch.
Also, X(V,E) is a closed subset of

∏∞
n=1 En, and is compact.

On X(V,E) we can define the metric d by d(x, y) = 1
n if x = (e1, e2, . . . ,

en−1, en, . . . ) and y = (e1, e2, . . . , en−1, e′
n, . . . ) and en 
= e′

n. This metric will
be compatible with the topology on X(V,E). Let p = (e1, e2, . . . , en) ∈ E1 ◦ · · · ◦
En be a finite path starting at v0 ∈ V0. We define the cylinder set U(p) ={
(f1, f2, . . . ) ∈ X(V,E) | fi = ei, i = 1, 2, . . . , n

}
. The collection of cylinder sets is

a basis for the topology on X(V,E). The cylinder sets are clopen (i.e. closed and
open) sets, and so X(V,E) is a compact, totally disconnected metric space – metric
because the collection of cylinder sets is countable. If (V, E) is simple then X(V,E)
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v

Vn−1

Vn

En

...

...

Figure 3: For v ∈ Vn the edges in r−1(v) ⊂ En are the dashed edges.

has no isolated points, and so X(V,E) is a Cantor set. (We will in the sequel
disregard the trivial case where |X(V,E)| is finite.)

Let Pn = E1 ◦ · · · ◦ En be the set of finite paths of length n (starting at the top
vertex). We define the truncation map τn : X(V,E) → Pn by τn ((e1, e2, . . . )) = (e1,
e2, . . . , en). If m ≥ n we have the obvious truncation map τm,n : Pm → Pn.

There is an obvious notion of isomorphism between Bratteli diagrams (V, E)
and (V ′, E′); namely, there exists a pair of bijections between V and V ′ preserving
the gradings and intertwining the respective source and range maps. Let ∼
denote the equivalence relation on Bratteli diagrams generated by isomorphism
and telescoping. One can show that (V, E) ∼ (V ′, E′) iff there exists a Bratteli
diagram (W, F ) such that telescoping (W, F ) to odd levels 0 < 1 < 3 < · · · yields
a diagram isomorphic to some telescoping of (V, E), and telescoping (W, F ) to
even levels 0 < 2 < 4 < · · · yields a diagram isomorphic to some telescoping of
(V ′, E′).

2.1 Ordered Bratteli diagrams and
the Bratteli-Vershik model

An ordered Bratteli diagram (V, E, ≥) is a Bratteli diagram (V, E) together with
a partial order ≥ in E so that edges e, e′ ∈ E are comparable if and only if
r(e) = r(e′). In other words, we have a linear order on each set r−1(v), v ∈ V \V0
(see Figure 3). We let Emin and Emax, respectively, denote the minimal and
maximal edges in the partially ordered set E.

Note that if (V, E, ≥) is an ordered Bratteli diagram and k < l in Z+, then
the set Ek+1 ◦ Ek+2 ◦ · · · ◦ El of paths from Vk to Vl with the same range can be
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given an induced (lexicographic) order as follows:

(ek+1 ◦ ek+2 ◦ · · · ◦ el) > (fk+1 ◦ fk+2 ◦ · · · ◦ fl)

if for some i with k + 1 ≤ i ≤ l, ej = fj for i < j ≤ l and ei > fi. If (V ′, E′) is a
telescoping of (V, E) then, with this induced order from (V, E, ≥), we get again
an ordered Bratteli diagram (V ′, E′, ≥).

Definition 2.3. We say that the ordered Bratteli diagram (V, E, ≥), where (V, E)
is a simple Bratteli diagram, is properly ordered if there exists a unique min path
xmin = (e1, e2, . . . ) and a unique max path xmax = (f1, f2, . . . ) in X(V,E). (That
is, ei ∈ Emin and fi ∈ Emax for all i = 1, 2, . . . .)

Let (V, E) be a properly ordered Bratteli diagram, and let X(V,E) be the
path space associated to (V, E). Then X(V,E) is a Cantor set. Let T(V,E) be
the lexicographic map on X(V,E), i.e. if x = (e1, e2, . . . ) ∈ X(V,E) and x 
= xmax
then T(V,E)x is the successor of x in the lexicographic ordering. Specifically, let
k be the smallest natural number so that ek /∈ Emax. Let fk be the successor of
ek (and so r(ek) = r(fk)). Let (f1, f2, . . . , fk−1) be the unique least element in
E1 ◦ E2 ◦ · · · ◦ Ek−1 from s(fk) ∈ Vk−1 to the top vertex v0 ∈ V0. Then T(V,E)((e1,
e2, . . . )) = (f1, f2, . . . , fk, ek+1, ek+2, . . . ). We define T(V,E)xmax = xmin. Then it
is easy to check that T(V,E) is a minimal homeomorphism on X(V,E). We note that
if x 
= xmax then x and T(V,E)x are cofinal, i.e. the edges making up x and T(V,E)x,
respectively, agree from a certain level on. We will call the Cantor minimal system
(X(V,E), T(V,E)) a Bratteli-Vershik system. There is an obvious way to telescope
a properly ordered Bratteli diagram, getting another properly ordered Bratteli
diagram, such that the associated Bratteli-Vershik systems are conjugate – the
map implementing the conjugacy is the obvious one. By telescoping we may
assume without loss of generality that the properly ordered Bratteli diagram has
the property that at each level all the minimal edges (respectively the maximal
edges) have the same source.

Theorem 2.4 ([HPS]). Let (X, T ) be a Cantor minimal system. Then there exists
a properly ordered Bratteli diagram (V, E, ≥) such that the associated Bratteli-
Vershik system (X(V,E), T(V,E)) is conjugate to (X, T ).

Proof sketch. Let x0 ∈ X and let {Un}n∈Z+ be a decreasing sequence of clopen
sets of X such that U0 = X and Un ↘ {x0}. For each Un we construct a finite
number of towers “built” over Un in the following way:

For n ∈ N, let λn : Un → N (where N is given the discrete topology) be defined
by λn(y) = inf {m ∈ N | T my ∈ Un }. Since we chose Un to be clopen, λn will be
continuous, so λn(Un) ⊆ N is compact, i.e.

λn(Un) = {m1, m2, . . . , mkn
}.
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λ−1
n (m1) λ−1

n (m2) λ−1
n (mi) λ−1

n (mkn)

T

T

T

...

m1

T

T

T

T

...

m2

T

T

T

T

T

T

...

mi

T

T

T

T

T

T

T

T

T

...

mkn

Figure 4: k towers of height mi, i = 1, 2, . . . , kn (here m1 < m2 < · · · < mkn).

The collection {λ−1
n (m1), λ−1(m2), . . . , λ−1

n (mkn)} will be a clopen partition of Un.
By construction T j(λ−1

n (mi)) 
⊂ Un when 0 < j < mi, and T mi(λ−1
n (mi)) ⊂ Un

for all i = 0, 1, . . . , kn. Thus we get kn towers over the subset Un where T maps
one subset onto the next subset in the tower as seen in Figure 4. T applied to the
top level of any tower is somewhere in Un since T mi(λ−1

n (mi)) ⊂ Un for i = 1, 2,
. . . , kn. For convenience we label the sets such that Un(i, j) is the j-th floor in
the i-th tower (the ground floor is the zero-th floor), i.e. Un(i, j) = T j(λ−1

n (mi)).
By construction,

X̃ =
kn⋃
i=1

mi−1⋃
j=0

Un(i, j)

is closed, T -invariant and contains the non-empty set Un, so X̃ = X. T being
a homeomorphism ensures that Y (i, j) ∩ Y (i′, j′) = ∅ when (i, j) 
= (i′, j′) so
{Un(i, j) | i = 1, 2, . . . , kn, j = 0, 1, . . . , mi − 1} is a clopen partition of X. These
towers may be vertically subdivided, giving rise to more towers (some of them of
the same height), such that we obtain the following scenario: The clopen partitions
{Pn}n∈Z+ of X that the towers associated to the various Un’s generate are nested,
P0 ≺ P1 ≺ P2 ≺ · · · , and the union of the Pn’s is a basis for the topology of X.
We build the properly ordered Bratteli diagram (V, E, ≥) by letting the vertices
Vn at level n correspond to the various towers built over Un, so if we have kn

different towers built over Un then we will have |Vn| = kn. The edges between
levels n − 1 and n and their ordering is determined by the order in which the
towers at level n traverse the towers at level n − 1.

To illustrate what we mean by this, we look at an example. Assume that over
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Un we get 3 towers, as seen in Figure 5a, and over the set Un+1 we get 2 towers,
as seen in Figure 5b. (We omit indicating the T -map.) We construct towers over
Un+1, where the various ground floors will be subsets of the various ground floors
in Figure 5a. Specifically, the subdivision mentioned above is done in such a
way that Un+1(1, 0) ⊆ Un(i, 0) and Un+1(2, 0) ⊆ Un(j, 0),for some i, j ∈ {1, 2, 3}.
Say i = 1 and j = 3 (in general we can also have i = j). Let us now look at
the tower with floor Un+1(1, 0). Since Un+1(1, 0) ⊆ Un(1, 0) we must also have
Un+1(1, 1) ⊆ Un(1, 1). By the construction of the towers over Un we know that
T (Un+1(1, 1)) ⊂ Un, if we also have T (Un+1(1, 1)) ⊂ Un+1 then the first tower is
complete, so assume that this is not the case. Then T (Un+1(1, 1)) ⊂ Un(i, 0) for
some i ∈ {1, 2, 3}, say in this case i = 3. Then by the same argument as above,
we will have to traverse the tower over Un(3, 0) before we will again end up back
in Un. We continue this process until we end up back in Un+1, and in each step
we will end up traversing one of the towers in the tower construction over Un as
seen in Figure 5b. In this example, level n and n+1 of the corresponding Bratteli
diagram would be as in Figure 6. We call the diagram we get by this construction
(V, E). Given a point x ∈ X we can associate an infinite path in X(V,E). The
point x seen in Figure 5 can be associated (uniquely) to an edge in En+1 in the
following way. In the tower construction over Un, x lies in tower C and in the
tower construction over Un+1, x lies in tower E, hence x shall be associated to an
edge between C and E. Since x lies in the part of the tower that corresponds to
the second traverse of a tower from the previous construction, edge number 2 is
the correct one. Doing this at every level gives the infinite path that corresponds
to x. Now we have that x0 ∈ Un for all n, so x0 will correspond to the unique
min path xmin in the ordered Bratteli diagram (V, E). It is easy to see that Tx
will correspond to the “next path” in the lexicographic order.

Let (V, E, ≥) be a properly ordered Bratteli diagram, and let (X(V,E), T(V,E))
be the associated Bratteli-Vershik system. For each k ∈ N let Pk as above denote
the paths from V0 to Vk, i.e. the paths from v0 ∈ V0 to some v ∈ Vk. We define the
map πk : X(V,E) → P Z

k by πk(x) =
(

τk(T n
(V,E)x)

)∞

n=−∞
, where τk : X(V,E) → Pk

is the truncation map. Let Sk denote the shift map on P Z
k . Then the following

diagram commutes

X(V,E) X(V,E)

Xk Xk

T(V,E)

Sk

πk πk
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x

λ−1
n (2) = A λ−1

n (3) = B λ−1
n (5) = C

(a) Here kn = 3 and m1 = 2, m2 = 3 and m3 = 5.

x

D E

A

C

B

A

C

C

A

B

C

(b) Here kn+1 = 2 and m1 = 12, m2 =
20 and the traversing of the towers
over Un in Figure 5a is indicated. D =
λ−1

n+1(12) and E = λ−1
n+1(20)

Figure 5: The towers over Un and Un+1, respectively.

1 2
34 1

2

3

4 5

A B C

D E

n

n+ 1

Figure 6: The ordered edges between levels n and n + 1 of the Bratteli diagram
associated to the tower construction in Figure 5.
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where Xk = πk(X(V,E)). One observes that πk is a continuous map, and so Xk is
a compact shift-invariant subset of P Z

k . So (Xk, Sk) is a factor of (X(V,E), T(V,E)).
For k > l there is an obvious factor map πk,l : Xk → Xl such that the following
diagram commutes

Xk Xk

Xl Xl

Sk

Sl

πk,l πk,l

.

If m > k > l we have πm,l = πk,l ◦ πm,k. We set πk,k = id|Xk
. It is now easy

to show that (X(V,E), T(V,E)) is the inverse limit lim←−k∈N
(Xk, Sk). In fact, let

(X, T ) = lim←−k∈N
(Xk, Sk). Then

X =
{

x = (xk) ∈
∏
k∈N

Xk

∣∣∣∣∣πn,m(xn) = xm for all m, n ∈ N with m ≤ n

}

and Tx = T ((xk)) = (Skxk). There are natural factor maps Θ: (X, T ) → (Xk, Sk).
One easily sees that (X, T ) ∼= (X(V,E), T(V,E)).

Definition 2.5. Let (V, E) be a Bratteli diagram. If there exists K < ∞ such
that |Vn| ≤ K for all n ≥ 1 then we say that (V, E) has finite rank. By telescoping
we may in this case actually assume that |Vn| has the same value (≤ K) for
all n ≥ 1. If the Bratteli diagram (V, E) is such that |Vn| has the same value
(≤ K) for all n ≥ 1 and in addition the incidence matrices Mn for all n ≥ 2
are equal we say that the Bratteli diagram is stationary. If we have an ordered
Bratteli diagram (V, E, ≥) such that the Bratteli diagram (V, E) is stationary and
the ordering is the same at all levels (beyond level 1) we say that (V, E, ≥) is a
stationary ordered Bratteli diagram.

3 Expansive systems, shift systems and equicon-
tinuous systems.

If X = Π∞
−∞Λ = ΛZ, Λ a finite alphabet, is given the product topology it is

easy to see that X is a Cantor set. The shift operator, S : X → X, defined by
(Sx)(n) = x(n + 1) is a homeomorphism on X, called the full shift (or Bernoulli
shift) on Λ. If Y ⊆ X is closed and S-invariant then (Y, S) is called a subshift. (By
slight abuse of notation we will most of the time denote the restriction S

∣∣
Y

of S
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to Y again by S.) If furthermore S
∣∣
Y

is minimal, the subshift (Y, S)(= (Y, S
∣∣
Y
))

is a Cantor minimal system. (We will assume that Y is infinite, and thus (Y, S)
is not a periodic (equivalently, finite) system.)

A dynamical system (X, T ), where the topology on X is given by the metric d
is said to be expansive if there exists a constant δ > 0 such that for all x, y ∈ X,
x 
= y, there exists n ∈ Z such that d(T nx, T ny) > δ. Note that the constant δ
does not depend on the choice of x and y, and we say that the expansive system
(X, T ) has expansive constant δ. A subshift is easily seen to be expansive. In fact,
all expansive Cantor minimal systems are conjugate to a subshift as we will see in
Proposition 3.7. This justifies using the term symbolic systems about expansive
Cantor minimal systems. We will now show that the notion of expansiveness does
not depend on the metric d, but only on the topology of X following the proof
given in [Wa, §5.6]. In order to prove this we need to introduced the following
concept.

Definition 3.1. Let (X, T ) be a dynamical system where X is a compact metric
space. A finite open cover α of X is a generator for T if for every bisequence
{Ai}∞

i=−∞ with Ai ∈ α the set
⋂∞

i=−∞ T −iAi contains at most one point. If we
instead have that

⋂∞
i=−∞ T −iAi contains at most one point for every bisequence

we say that α is a weak generator for T .

If a finite open cover α is a generator for T , then it is obviously also a weak
generator for T . But in fact, if T has a weak generator then it also has a generator.

Proposition 3.2. T has a weak generator iff T has a generator.

Proof. Assume β = {B1, . . . , Bk} is a weak generator for T . Let δ > 0 be the
Lebesgue number of β (i.e. each subset of X of diameter less than or equal to
δ lies in Bi for some i = 1, . . . , k). Let α be a finite open cover of X where all
elements Ai ∈ α have diam(Ai) ≤ δ, (i.e. d(x, y) ≤ δ for all x, y ∈ Ai), and hence
diam(Ai) ≤ δ. Now let {Ai}∞

i=−∞ be a bisequence with Ai ∈ α. Since diam(Ai) ≤
δ, there is Bni

∈ β such that Ai ⊆ Bni
. So

⋂∞
i=−∞ T −iAi ⊆

⋂∞
i=−∞ T −iBni

.
Since β is a weak generator,

⋂∞
i=−∞ T −iAi must also contain at most one point,

so α is a generator for T .

Theorem 3.3. Let T be a homomorphism on a compact, metric space (X, d).
Then T is expansive iff T has a generator iff T has a weak generator.

Proof. Assume T is expansive with expansive constant δ > 0. Let α be a finite
open cover consisting of balls of radius at most δ

2 . Assume {An}∞
n=−∞ is a

bisequence from α and x, y ∈
⋂∞

n=−∞ T −nAn. Then for all n ∈ Z we have
d(T nx, T ny) ≤ δ, so since T is expansive this must mean that x = y and so α is a
generator for T .
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(a) Sketch illustrating what it means to be expansive.

· · · ·
x Tx T 2x Tnx
·

· · ·
y

Ty

T 2y
Tny

ε ε ε ε

δx

(b) Sketch illustrating what it means to be equicontinuous at x.

Figure 7: In the expansive system we can start with x and y arbitrarily close
together, and still some T n will map them at least δ apart. In the equicontinuous
system, if we start with a y sufficiently close to x they will be mapped to points
which are less than ε apart.

Conversely assume α is a weak generator for T . Let δ > 0 be the Lebesgue
number of α, and let x, y ∈ X. If d(T nx, T ny) ≤ δ there is some An ∈ α such
that x, y ∈ An. Now assume that d(T nx, T ny) ≤ δ for all n ∈ Z, then we
get a bisequence {An}∞

n=−∞ where An ∈ α such that T nx, T ny ∈ An. Then
x, y ∈

⋂∞
n=−∞ T −nAn, so x = y since α is a weak generator, so T is expansive.

This together with Proposition 3.2 finishes the proof.

Corollary 3.4. The concept of expansiveness of the dynamical system (X, T ) is
independent of the metric d (compatible with the topology on X).

Proof. The concept of a generator is independent of which metric we put on X
and as seen in Theorem 3.3 being expansive is equivalent to having a generator.
The only thing depending on the metric is the expansive constant.

Definition 3.5. A dynamical system (X, T ), where (X, d) is a metric system, is
equicontinuous at x ∈ X if given ε > 0 there exists δx > 0 s.t. d(x, y) < δx ⇒
d(T nx, T ny) < ε, ∀n ∈ Z. If (X, T ) is equicontinuous at every point x ∈ X then
we say that (X, T ) is equicontinuous.

Remark 3.6. The notions of expansive systems and equicontinuous systems are
diametrically opposite. This is illustrated in Figure 7.
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Recall that (Xk, Sk) is the subshift of P Z
k (where Pk is the set of all finite

paths from v0 ∈ V0 to vertices in Vk) defined in section 2.1.

Proposition 3.7. Assume (X(V,E), T(V,E)) is expansive. Then there exists k0 ∈ N
such that for all k ≥ k0, (X(V,E), T(V,E)) is conjugate to (Xk, Sk) by the map
πk : X(V,E) → Xk.

Proof. Since the πk’s are factor maps, all we need to show is that there exists
k0 such that πk is injective for all k ≥ k0. Recall that (X(V,E), T(V,E)) being
expansive means that there exists δ > 0 such that given x 
= y there exists n0 ∈ Z
such that d(T n0

(V,E)x, T n0
(V,E)y) > δ, where d is some metric on X(V,E) compatible

with the topology. Choose k0 such that we have d(x′, y′) < δ for all x′, y′ that
agree on the k0 first edges. Now assume that πk(x) = πk(y) for some k ≥ k0.
By the definition of πk this means that, for all n ∈ Z, τk(T n

(V,E)x) = τk(T n
(V,E)y),

and so d(T n
(V,E)x, T n

(V,E)y) < δ for all n ∈ Z because of our choice of k0. This
contradicts that d(T n0

(V,E)x, T n0
(V,E)y) > δ. Hence πk is injective for all k ≥ k0,

proving the proposition.

Generally for a topological dynamical system (X, T ) we have that 0 ≤ h(T ) ≤
∞, but for expansive system we have the following result [Wa, Corollary 7.11.1].

Theorem 3.8. An expansive homeomorphism has finite topological entropy.

It is noteworthy that within the family of Cantor minimal systems C expan-
siveness is a generic property. This means that the set of expansive systems is a
dense Gδ-set in C, where C is given an appropriate topology making it a Polish
space (i.e. a complete metric space). For details, cf. [H].

3.1 Substitution systems
Let Λ be a finite alphabet, the elements of Λ are called letters, we let Λ+ denote
the set of finite words over this alphabet and Λ∗ = Λ+ ∪ {e}, where e is the empty
word. Elements of ΛZ are called sequences over the alphabet Λ. It is obvious
what we mean by a subword of a word in Λ+ (or of a sequence ΛZ). The set
of all subwords of a sequence x ∈ ΛZ is the language L(x) associated to x. If
we pick a point x ∈ ΛZ then orbitT (x) will be a closed T -invariant subspace of
ΛZ, so (orbitT (x), T ) is a subshift. Here T denotes the subshift. This subshift
will be minimal if and only if x is uniformly recurrent, i.e. all finite subwords of
x will appear with bounded gaps in x [F, Theorems 1.15, 1.17 and Proposition
1.22]. By a substitution on the alphabet Λ we will mean a map θ : Λ → Λ+. This
can be extended to maps θ : Λ+ → Λ+ and θ : ΛZ → ΛZ by concatenation, again
denoting these by θ. Similarly, we can define θn : Λ → Λ+ by concatenation. For
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the substitution θ we define the language L(θ) to be the set of words which are
subwords of θn(η) for some η ∈ Λ and for some n ≥ 1.

We will henceforth only consider primitive substitutions θ : Λ → Λ+, i.e.
there exists n > 0 such that for all a, b ∈ Λ we have that b is a subword of
θn(a). (To avoid trivial cases we will assume that there exists a ∈ Λ such that
limn→∞ |θn(a)| → ∞, where |θn(a)| denotes the length of θn(a).)

Definition 3.9. Let Xθ be the set of x ∈ ΛZ such that every finite subword of x
is in L(θ). Let Tθ be the shift on ΛZ restricted to Xθ. Xθ is a closed subset of
ΛZ which is closed under the shift, so (Xθ, Tθ) is a subshift which we will call the
substitution dynamical system associated to θ.

The following is a well-known result, cf. [Qu].

Theorem 3.10. Every substitution dynamical system is minimal and uniquely
ergodic.

We are not interested in finite substitution systems (Xθ, Tθ), i.e. |Xθ| < ∞.
So we will assume that θ is aperiodic, i.e. |Xθ| = ∞. (There is an algorithm
which decides whether a given substitution is aperiodic or not.)

Theorem 3.11 ([DHS]). The family of Bratteli-Vershik systems associated with
stationary, properly ordered Bratteli diagrams is (up to isomorphism) the disjoint
union of the family of aperiodic substitution minimal systems and the family of
stationary odometer systems. Furthermore, the correspondence in question is
given by an explicit and algorithmic effective construction. The same is true of
the computation of the dimension group associated with a substitution minimal
system.

Substitution minimal systems are countable up to conjugation. This stands
in stark contrast to the next class of symbolic systems we will describe, namely
Toeplitz flows, which are uncountable.

3.2 Toeplitz flows
Toeplitz flows were introduced by Jacobs and Keane in 1969 [JK]. In 1984 Susan
Williams made a thorough analysis of Toeplitz flows [W]. Her constructions are
important for our work, so we will give a survey of her analysis.

Definition 3.12. Let η ∈ ΛZ be η = (η(n))n∈Z where Λ is a finite alphabet.
Then we define

Perp(η, σ) = {n ∈ Z | η(n + mp) = σ, ∀m ∈ Z} , σ ∈ Λ,

Perp(η) = ∪σ∈ΛPerp(η, σ).
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If all entries in η has some period, then we say that η is a Toeplitz sequence, i.e. η
is Toeplitz if

Aper(η) = Z − (∪p∈NPerp(η)) = ∅.

Observation 3.13. If p
∣∣q, then we obviously have Perp(η) − q = Perp(η).

Definition 3.14. We say that p is an essential period of η if

Perp(η) − q = Perp(η) ⇒ p
∣∣q.

In particular, this means that Perp(η) − q 
= Perp(η) for all 0 < q < p when p is
an essential period of η.

Definition 3.15. Let η ∈ ΛZ be a Toeplitz sequence, then the dynamical system
(O(η), S), where O(η) = orbitS(η)(= {Snη | n ∈ Z}) and S is the shift operator
restricted to O(η), is called a Toeplitz system.

Observation 3.16. (O(η), S) is a minimal system. (One shows namely easily
that η is uniformly recurrent, and so by what we said above, the system will be
minimal.)

A small subclass of Toeplitz flows can be constructed as substitution minimal
systems. For example, the Feigenbaum sequence which is the fixed point of the
substitution

θ =
{
0 �→ 11
1 �→ 10

will give a substitution minimal system that is also a Toeplitz flow (the Feigenbaum
sequence will be a Toeplitz sequence).

Definition 3.17. Let ω ∈ O(η). The p-skeleton of ω is

Sp(ω)(k) =
{

ω(k) k ∈ Perp(ω)
∗ k 
∈ Perp(ω)

Observe that if ω ∈ ΛZ, then Sp(ω) ∈ (Λ ∪ {∗})Z.

Definition 3.18. (pi)i∈N, is said to be a periodic structure for a non-periodic
Toeplitz sequence η if

1. for all i, pi is an essential period for η

2. pi

∣∣pi+1 for all i

3.
⋃∞

i Perpi(η) = Z
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Observation 3.19. If (pi)i∈N is a periodic structure for η then

lim
i→∞

Spi(η) = η

since Aper(η) = ∅

The following lemma is due to S. Williams [W], and is presented here with
slight modifications (dropping the assumption that p is an essential period in
points (i), (iii) and (iv)). We will in the sequel be a little imprecise with notation
for the sake of brevity. This should not cause any misunderstanding. We will for
example write n ∈ Zp (= Z/pZ) for n ∈ Z instead of the more precise n+pZ ∈ Zp.

Lemma 3.20. For p ∈ {2, 3, . . . } and n ∈ Zp define Ap
n = {Sn+mpη | m ∈ Z} ⊂

O(η). (Since Ap
i+p = Ap

i we only need to consider n ∈ Zp.) We have

(i) ω ∈ Ap
n ⇒ Sp(ω) = Sp(Snη).

(ii) If p is an essential period of η, then
{

Ap
n | n ∈ Zp

}
is a partition of O(η)

of clopen sets in O(η). In this case the implication in (i) is actually an
equivalence.

(iii) Ap
n ⊃ Aq

m when p
∣∣q and m ≡ n (mod p).

(iv) SAp
n = Ap

n+1.
Proof. (i) If ω ∈ Ap

n then we see easily that Sp(ω) = Sp(Snη). Since ω ∈
{Sn+mpη | m ∈ Z} we can not have that ω differs from Snη on elements
that are a part of the p-skeleton of Snη, the only possibility is that the
p-skeleton of ω have additional entries. Assume that ω ∈ Ap

n. Assume now
that Sp(ω) 
= Sp(Snη), hence there must be k ∈ Z such that Sp(ω) = σ ∈ Λ
and Sp(Snη)(k) = ∗. Since k 
∈ Perp(η, σ) there must be m0 ∈ Z such that
Snη(k +m0p) = τ 
= σ. In addition, there must be q such that p|q such that
k + m0p ∈ Perq(η, τ) since η is a Toeplitz sequence. Now, for any m ≥ 0 we
can find α ∈ Z q

p
such that q|(m + α)p.

Sn+mpη(k + m0p + αp) = Snη(k + m0p + (α + m)p) = τ 
= σ

= ω(k + (m0 + α)p = ω(k + m0p + αp).

So d(ω, Sn+mpη) ≥ 2−k−m0p−q so ω can not be in Ap
n.

(ii) If x ∈ O(η), then there exists m ∈ Z such that x = Smη. Since m = m′ + lp
for some m′ ∈ Zp and l ∈ Z, x = Sm′+lpη ∈ Ap

m′ . Thus

O(η) =
p−1⋃
n=0

Ap
n, so O(η) =

p−1⋃
n=0

Ap
n.
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Assume p is an essential period for η, that n 
= m, n, m ∈ Zp and that
0 ≤ m < n. If this union is disjoint the sets Ap

n are open, so it remains
to show that this union is disjoint. Assume ad absurdum that there exists
ω ∈ Ap

n ∩ Ap
m. (i) then implies that Sp(ω) = Sp(Snη) = Sp(Smη). Since

Perp(Snη, σ) = Perp(η, σ) − n and Perp(Smη, σ) = Perp(η, σ) − m for all
σ ∈ Λ this equality implies that Perp(η, σ) − (n − m) = Perp(η, σ)∀σ ∈ Λ so

Perp(η) − (n − m) = Perp(η), 0 < n − m < p

which contradicts that p is an essential period. Thus Ap
n ∩ Ap

m = ∅. That
we get an equivalence in (i) follows since ω ∈ Ap

m for some m, 0 ≤ m ≤ p.
Then Sp(Smη) = Sp(ω) = Sp(Snη) by (i), and since p is now an essential
period we must have n = m.

(iii) If p|q then q = αp for some α ∈ N and m ≡ n (mod p) gives m = n + βp for
some β ∈ Z. Obviously

Aq
m =

{
Sm+kqη | k ∈ Z

}
=
{

Sn+(β+kα)pη | k ∈ Z
}

⊆
{

Sn+lpη | l ∈ Z
}
= Ap

n,

so Aq
m ⊆ Ap

n.

(iv) Ap
n =

{
Sn+lpη | l ∈ Z

}
so

SAp
n =

{
S1+n+lpη | l ∈ Z

}
= Ap

n+1 (mod p).

S is a homeomorphism, so we also get SAp
n = Ap

n+1 (mod p).

Definition 3.21. Let (pi)∞
i=1 be a periodic structure for the Toeplitz sequence η.

For each i ∈ N define φi : Zpi+1 → Zpi
by φi(n) = n (mod pi), where n ∈ Zpi+1 .

Zp1
φ1←− Zp2

φ2←− · · · Zpi−1

φi−1←− Zpi

φi←− Zpi+1 · · ·
We then define the odometer group Gp associated to the periodic structure p =
(pi)∞

i=1 to be the inverse limit

Gp = lim←−
i

(Zpi , φi).

Remark 3.22. The group Gp is naturally isomorphic to the a-adic group

Ga =
∞∏

i=1
{0, 1, . . . ai − 1}, ai =

pi

pi−1

where we set p0 = 1 and the addition is defined by ’carry over’ to the right. We
refer to [HR, Chapter II] for background information on a-adic groups.



Dimension groups 21

Definition 3.23. Let 1̂ = (1, 0, 0, . . . ) ∈ Ga and let ρ̂1 be the rotation by 1̂ on
Ga. That is, ρ̂1(x) = x + 1̂, where x ∈ Ga. We call (Ga, ρ̂1) an odometer system
(or just an odometer for short). In particular, it is a Cantor minimal system.

Remark 3.24. By the natural isomorphism between Ga and Gp it is easy to
see that the rotation ρ̂1 on Ga corresponds to adding (1, 1, 1, . . . ) in

∏
k∈N Zpk

(appropriately moded out, cf. the description prior to Definition 2.5) to get the
conjugate rotation on Gp.
Remark 3.25. It is a fact that the family consisting of compact groups G that
are both monothetic (i.e. contains a dense copy of Z , which of course implies
that G is abelian) and Cantor (as a topological space), coincides with the family
of a-adic groups. It is also noteworthy that all minimal rotations (in particular
rotation by 1̂) on such groups are conjugate. This is a consequence of the fact
that the dual group of an a-adic group is a torsion group, cf. [HR, Chapter VI].

4 Dimension groups
Recall that an ordered (torsion free) abelian group G with positive cone G+

satisfies

(i) G+ − G+ = G

(ii) G+ + G+ ⊆ G+

(iii) G+ ∩ (−G+) = {0}

Definition 4.1. (G, G+) is a dimension group if G is a countable, ordered abelian
group with positive cone G+ such that

1. G is unperforated (a ∈ G, n ∈ N, na ∈ G+ ⇒ a ∈ G+)

2. G has the Riesz interpolation property (ai ≤ bj , (i, j = 1, 2) ⇒ ∃c ∈ G such
that ai ≤ c ≤ bj , (i, j = 1, 2)).

An order unit for the dimension group (G, G+) is an element u ∈ G+\{0} such
that for any x ∈ G there exists an n ∈ N such that x ≤ nu (we use the convention
that a ≤ b if b − a ∈ G+). A dimension group may have more than one order
unit. If we pick a distinguished order unit u we write (G, G+, u), or sometimes
just (G, u), to indicate that.

Notation We write (G1, G+
1 , u1) ∼= (G2, G+

2 , u2) to mean that there exists a group
isomorphism φ : G1 → G2 such that φ(G+

1 ) = G+
2 and φ(u1) = u2. For short we

say that G1 and G2 are order-isomorphic by a map respecting order units.
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Definition 4.2. The dimension group (G, G+) is simple if it contains no non-
trivial order ideal J , i.e. J = J+ − J+ where J+ = J ∩ G+ and 0 ≤ a ≤ b ∈ J ⇒
a ∈ J . This is equivalent to that all non-zero elements in G+ are order units.

Definition 4.3. Let G be a simple dimension group and let u ∈ G+ − {0}. We
say that a ∈ G is infinitesimal if −εu ≤ a ≤ εu for all 0 < ε ∈ Q. (If ε = p

q , p,

q ∈ N, then a ≤ εu means that qa ≤ pu.) An equivalent definition is: a ∈ G
is infinitesimal if p(a) = 0 for all p ∈ Su(G), where Su(G) is introduced below.
(It is evident that the infinitesimal elements do not depend on the particular
order unit u.) The collection of infinitesimal elements of G form a subgroup, the
infinitesimal subgroup of G, which we denote by InfG.

Remark 4.4. The quotient group G/InfG has a natural induced ordering, i.e.
[a] > 0 if a >, where [ ] denotes the quotient map. It is then easy to see that
G/InfG becomes a simple dimension group with no infinitesimal elements except
0. If G has distinguished order unit u then G/InfG inherits the distinguished
order unit [u]. Note that an order isomorphism α : G1 → G2, i.e. α(G+

1 ) = G+
2 ,

where G1 and G2 are dimension groups, maps InfG1 onto InfG2.

Definition 4.5. (Elliott) Let (V, E) be a Bratteli diagram where for each n
Vn denotes the nodes at level n and Mn is the incidence matrix between levels
n − 1 and n. Then we define (K0(V, E), K0(V, E)+) to be the direct limit of

(Z|V0|, (Z+)|V0|) M1−→ (Z|V1|, (Z+)|V1|) M2−→ (Z|V2|, (Z+)|V2|) M3−→ · · · .

(Recall that |V0| = 1.) The positive cone K0(V, E)+ is given by the induced
ordering, where each (Z|Vn|, (Z+)|Vn|) has the simplicial ordering. The map
Mn : (Z|Vn−1|, (Z+)|Vn−1|) → (Z|Vn|, (Z+)|Vn|) is given by the matrix multiplication
of Mn with Z|Vn−1| column vectors.

Proposition 4.6. (K0(V, E), K0(V, E)+, 1), where 1 is represented by
1 ∈ Z|V0| = Z is a dimension group with canonical order unit.

Theorem 4.7 ([EHS]). All dimension groups (G, G+, u) with a distinguished
order unit u arise as described in Proposition 4.6, i.e. there exists a Bratteli
diagram (V, E) such that (G, G+, u) ∼= (K0(V, E), K0(V, E)+, 1). Also, (G, G+)
is a simple dimension group if and only if (V, E) is a simple Bratteli diagram.

We will not give a presentation of (simple) dimension groups in terms of Cantor
minimal systems.

Definition 4.8. Let (X, T ) be a Cantor minimal system and let

∂T : C(X, Z) → C(X, Z)
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be defined by ∂T (f) = f − f ◦ T −1. Then

K0(X, T ) def= C(X, Z)/∂T (C(X, Z)).

Let K0(X, T )+ =
{
[f ] ∈ K0(X, T ) | [f ] = [g], and g ≥ 0

}
and let 1 denote [1].

([ ] denotes the quotient map.)

Theorem 4.9 ([HPS]). (K0(X, T ), K0(X, T )+) is a simple dimension group. If
(V, E) is a Bratteli-Vershik model for the Cantor minimal system (X, T ) then
(K0(X, T ), K0(X, T )+,1) ∼= (K0(V, E), K0(V, E)+, 1).

Definition 4.10. A compact convex set K is a Choquet simplex if every point
x ∈ K is the barycenter of a unique positive and normalized boundary measure
μx, i.e. μx(∂eK) = 1 where ∂eK denotes the extreme boundary of K. So
a(x) =

∫
K

adμx for all a ∈ Aff(K). Recall that a ∈ Aff(K) if a : K → R is
continuous and a(λx + (1 − λ)y) = λa(x) + (1 − λ)a(y) for all x, y ∈ K and
0 ≤ λ ≤ 1. We observe that the finite dimensional simplices coincide with the
standard simplices.

Let (G, G+, u) be a dimension group with a distinguished order unit u ∈ G+

and let p : G → R a homomorphism. If p is positive (i.e. p(G+) ≥ 0) and p(u) = 1
we say that p is a state. The set of all states on (G, G+, u) is denoted Su(G) and
may be given a natural topology making it a compact convex set. In fact, Su(G)
is naturally embedded in RG as a convex set. With RG given the product topology,
we give Su(G) the relative topology.

We define the map θ : G → Aff(Su(G)) by θ(a) = â, where â(p) = p(a),
p ∈ Su(G). In particular, θ(u) = 1. Clearly θ is an additive map. We have the
following important result.

Theorem 4.11 ([E, Theorems 4.2 and 4.4]). Suppose (G, G+, u) is a simple
(noncyclic) dimension group with distinguished order unit u. Then Su(G) is
a Choquet simplex and θ : G → Aff(Su(G)) determines the order on G in the
sense that G+ = {a ∈ G | θ(a) = â is a strictly positive function on Su(G)}∪{0}.
Furthermore, θ(G) is a dense (in the uniform topology) additive subgroup of
Aff(Su(G)). Also, ker(θ) = InfG.

Corollary 4.12. Let (G, G+, u) be as in Theorem 4.11 such that InfG = {0}.
Then (G, G+, u) is order isomorphic to a countable dense additive subgroup of
Aff(K) for some Choquet simplex K mapping u to the constant function 1. (Here
Aff(K) is given the strict ordering.)

The following theorem is a fairly straightforward corollary of Theorem 2.4.

Theorem 4.13 ([HPS]). Let (X, T ) be a Cantor minimal system. All (noncyclic)
simple dimension groups (G, G+, u) with distinguished order unit u are order
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isomorphic to (K0(X, T ),K0(X, T )+,1) for some Cantor minimal system (X, T ).
Furthermore, the state space S1(K0(X, T )) may be identified in an obvious way
with the Choquet simplex M(X, T ) of T -invariant probability measures; in fact,
these two Choquet simplices are affinely homeomorphic. In particular, [f ] ∈ K0(X,
T )+ − {0} if and only if

∫
X

fdμ > 0 for all μ ∈ M(X, T ).

Theorem 4.14 ([GPS]). The Cantor minimal systems (X, T ) and (Y, S) are
strong orbit equivalent if and only if (K0(X, T ), K0(X, T )+,1) ∼= (K0(Y, S),
K0(Y, S)+,1).

Theorem 4.15 ([GPS]). The Cantor minimal systems (X, T ) and (Y, S) are orbit
equivalent if and only if ( ˜K0(X, T ), ˜K0(X, T )+, 1̃) ∼= ( ˜K0(Y, S), ˜K0(Y, S)+, 1̃),
where

˜K0(X, T ) = K0(X, T )/Inf(K0(X, T )), ˜K0(Y, S) = K0(Y, S)/Inf(K0(Y, S)),

and the positive cones and order units are induced by the quotient maps.

Remark 4.16. The idea behind introducing K0(X, T ) with an ordering for a Cantor
minimal system (X, T ) comes from (non-commutative) operator algebra theory.
In fact, one can show that K0(X, T ) as defined above is order-isomorphic to the
K0-group of the associated C∗-crossed product C (X)�T Z by a map respecting
distinguished order units. The latter K0-group comes with a natural order. It
turns out that the ordered K0-group of C (X)�T Z, with its natural order unit
corresponding to the unit element, is a complete isomorphism invariant, and so it
follows that (X, T ) is strong orbit equivalent to (Y, S) if and only if C (X)�T Z
is ∗-isomorphic to C (Y )�S Z [GPS].

4.1 Rational subgroups
Definition 4.17. The rational subgroup Q(G, u) of the simple dimension group
G = (G, G+, u) with order unit u is defined by

Q(G, u) = {g ∈ G | ng = mu, n ∈ N, m ∈ Z}

where Q(G, u)+ = Q(G, u) ∩ G+.

Proposition 4.18. The group Q(G, u) is order isomorphic to a subgroup of Q.

Proof. Let φ : Q(G, u) → Q be defined by φ(g) = m
n , where n ∈ N, m ∈ Z, such

that ng = mu. The map is well-defined. In fact, if ng = mu and n′g = m′u, then
we get by multiplying with n′ and n respectively: n′ng = n′mu and nn′g = nm′u.
Subtracting we get (n′m−nm′)u = 0. Since G is torsion free we get n′m−nm′ = 0,
and so m

n = m′
n′ .
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We need to show that φ is one-to-one and that φ is a group homomorphism.
Assume φ(g1) = m1

n1
and φ(g2) = m2

n2
, that is n1g1 = m1u and n2g2 = m2u.

Then we also have (by multiplying with n1 and n2 respectively) n2n1g1 = n2m1u
and n1n2g2 = n1m2u. Adding this we get n2n1g1 + n1n2g2 = n1n2(g1 + g2) =
(n2m1+n1m2)u and φ(g1+g2) = (n2m1+n1m2)

n1n2
= m1

n1
+m2

n2
= φ(g1)+φ(g2). Assume

φ(g) = 0 = 0
1 . Then g = 0 and so φ is one-to-one. So φ : Q(G, u) → φ(Q(G,

u)) ⊂ Q is an isomorphism. Clearly φ(g) ≥ 0 ⇔ g ≥ 0, and so φ is an order
isomorphism.

Proposition 4.19. G/Q(G, u) is torsion free.

Proof. Assume g ∈ G and ng ∈ Q(G, u). Since ng ∈ Q(G, u) there exists r ∈ N
and m ∈ Z such that

r(ng) = mu.

But then (rn)g = mu and so g ∈ Q(G, u). This proves that G/Q(G, u) is torsion
free.

It is straightforward to check the following proposition.

Proposition 4.20. (G1, G+
1 , u1) ∼= (G2, G+

2 , u2) ⇒ Q(G1, u1) ∼= Q(G2, u2).

A consequence of this is that since by Theorem 4.13 we have (K0(X, T ), K0(X,
T )+,1) ∼= (K0(V, E), K0(V, E)+, [1]), we get Q(K0(X, T ),1) ∼= Q(K0(V, E), [1]).

5 Factors of dynamical systems
We shall now look more closely at factors of dynamical systems. Since we are only
interested in Cantor minimal systems, we will restrict our attention to dynamical
systems with a Z-action.

Definition 5.1. Let (Y, S) be a factor of (X, T ), and assume that (Y, S) is
equicontinuous (cf. Definition 3.5). We say that (Y, S) is the maximal equiconti-
nouos factor of (X, T ) if all other equicontinouos factors of (X, T ) are also factors
of (Y, S).

Proposition 5.2. If (X, T ), where (X, d) is a metric space, is equicontinuous
then there exists an isometric metric d : X × X → R+, i.e. d(Tx, Ty) = d(x,
y), ∀x, y ∈ X, which is equivalent with d, i.e. generates the same topology on
X.

Proof. Define d : X × X → R+ by

d(x, y) = sup
n∈Z

{d(T nx, T ny)}.
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We can easily see that d(x, y) = d(y, x) and d(x, y) = 0 ⇔ x = y. The triangle
inequality also holds since for all n ∈ Z

d(T nx, T nz) ≤ d(T nx, T ny) + d(T ny, T nz)
≤ d(x, y) + d(y, z).

So d(x, z) = supn∈Z d(T nx, T nz) ≤ d(x, y) + d(y, z) and d does define a metric
on X. Observe that by construction d(Tx, Ty) = d(x, y) for all x, y ∈ X. Since
d(x, y) ≤ d(x, y) for all x, y ∈ X the map id: (X, d) → (X, d) is continuous.
So we need only to check that the map id: (X, d) → (X, d) is continuous. Let
B(x, r) = {w ∈ X | d(w, x) < r } denote the open ball with centre x and d-radius
r. Let ε > 0. By equicontinuity there is a δz > 0 for every z ∈ X such that
y ∈ B(z, δz) ⇒ d(T ny, T nz) < ε/2 for all n ∈ Z. {B(z, δz)|z ∈ X} will be an
open covering of X. By Lebesgue’s covering lemma, there is δ > 0 such that any
ball of radius δ is contained in B(z, δz) for some z ∈ X.
So let x, y ∈ X such that d(x, y) < δ. Then there is a z ∈ X such that {x,
y} ⊂ B(z, δz), and so d(T nx, T ny) ≤ d(T nx, T nz) + d(T nz, T ny) < ε/2 + ε/2 = ε.
So id : (X, d) → (X, d) is continuous.

Proposition 5.3. Assume that (X, T ) is an equicontinuous minimal dynamical
system. Then X can be given a group structure such that X is a compact abelian
group and T is rotation by an element in X.

Proof. Since (X, T ) is minimal, {T nx0 | n ∈ Z} is dense in X for all x0 ∈ X. We
will define group multiplication and inverse on the dense subset orbitT (x0) =
{T nx0 | n ∈ Z} for some x0. We show that these operations are uniformly
continuous and then we can extend them continuously to all of X. We define
multiplication orbitT (x0)×orbitT (x0) → orbitT (x0) by (T nx0, T mx0) �→ T n+mx0.
The inverse of an element T nx0 we define to be T −nx0. By the previous proposition
we can assume that the metric d on X is isometric.

Given ε > 0 choose δ = ε/2. Then for n, n′, m, m′ ∈ Z with d(T nx0, T n′
x0) < δ

and d(T mx0, T m′
x0) < δ we get

d(T n+mx0, T n′+m′
x0) ≤ d(T n+mx0, T n′+mx0) + d(T n′+mx0, T n′+m′

x0)
≤ d(T m(T nx0), T m(T n′

x0)) + d(T n′
(T mx0), T n′

(T m′
x0))

= d(T nx0, T n′
x0) + d(T mx0, T m′

x0)
= 2δ = ε.

For the inverse map, notice that

d(T −nx0, T −n′
x0) = d(T n(T −nx0), T n(T −n′

x0)) = d(x0, T n−n′
x0)

= d(T n′
x0, T n′

(T n−n′
x0)) = d(T n′

x0, T nx0) < ε,
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so both the inverse map and the group multiplication is uniformly continuous and
thus can be extended to all of X. X will obviously be an abelian group and we
observe that x0 is the identity element.

Applying T can now be seen as simply multiplying with an element in X. In
fact, if x ∈ orbitT (x0) then x = T nx0 for some n ∈ Z so

Tx = T (T nx0) = T n+1x0 = (Tx0) · (T nx0)

because of the way we defined multiplication in X. If x ∈ X then there is
some Cauchy sequence {xk} in orbitT (x0) converging to x, say xn = T nk x0, and
Tx = limn→∞ T (T nk x0). By continuity of the multiplication

T nk x0 → x ⇒ T (T nk x0) = (Tx0) · (T nk x0) → (Tx0) · x,

hence Tx = (Tx0) · x, i.e. applying T to x is the same as rotating by the element
Tx0.

Theorem 5.4. Let (X, T ) be a minimal dynamical system. Then there exists a
maximal equicontinuous factor π : (X, T ) → (Y, S) such that for any equicontinouos
factor φ : (X, T ) → (Z, R) there is a unique factor map ψ : (Y, S) → (Z, R) such
that ψ ◦ π = φ. The system (Y, S) is unique up to conjugacy.

For a proof, see [K, Th. 2.44].

Definition 5.5. We say that the factor map π : (X, T ) → (Y, S) is almost one-
to-one if there exists y ∈ Y such that π−1(y) is a singleton set.

It might be surprising that we are interested in a property of a single point of
the dynamical system. But knowing that the factor map is one-to-one at a point
x0 actually implies that there is a dense Gδ set of points where π is one-to-one.
To see this we first notice that if π−1(π(x0)) = {x0} then π−1(π(x)) = {x} for
all x ∈ orbitT (x0). In fact, let x = T nx0 for some n ∈ Z and set π(x0) = y0.
Since π(x) = π(T nx0) = Snπ(x0) = Sny0, we get that x ∈ π−1(Sny0). Let
z ∈ π−1(Sny0). Then π(T −nz) = S−nπ(z) = S−nSny0 = y0. Hence T −nz = x0,
and so z = T nx0 = x. Hence π−1(π(x)) = {x}, proving our assertion. So for
minimal systems the set of points where π is almost one-to-one is dense.

Recall that a Gδ set is a countable intersection of open sets. Let d be a metric
on X and let B

(
x, 1

n

)
denote the open ball around x with radius 1

n . Define

A(x, n) =
{

y ∈ Y

∣∣∣∣π−1(y) ⊆ B

(
x,

1
n

)}
(⊆ Y ).

We claim that A(x, n) is open. In fact, let y ∈ A(x, n), i.e. π−1(y) ⊆ B
(
x, 1

n

)
.

We must show that there exists a neighborhood around y which lie entirely
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inside A(x, n). Assume this is not the case. Then we can find yn → y such
that π−1(yn) 
⊆ B

(
x, 1

n

)
. Hence there exists xn ∈ X, π(xn) = yn, such that

d(xn, x) ≥ 1
n . By choosing a subsequence we may assume that xn → x0. Then

d(x0, x) ≥ 1
n . Also, yn = π(xn) → π(x0) = y, and so x0 ∈ π−1(y), which is a

contradiction. This finishes the proof that A(x, n) is open. Then An =
⋃

x∈X A(x,

n) ⊆ Y is also open. We now claim that B = π−1 (
⋂∞

n=1 An) =
(⋂∞

n=1 π−1(An)
)

equals the set
{

x ∈ X
∣∣π−1(π(x)) = {x}

}
. Assume now that x1, x2 ∈ B and

π(x1) = π(x2) = y. Then y ∈
⋂∞

n=1 An, and so y ∈
⋃

x∈X A(x, n) for all
n ∈ N. So for each n ∈ N there exists an x(n) ∈ X such that y ∈ A(x(n),
n). Since x1, x2 ∈ π−1(y) ⊆ B

(
x(n), 1

n

)
we get d(x1, x(n)) < 1

n and d(x2,

x(n)) < 1
n . By the triangle inequality we have d(x1, x2) < 2

n . Since this holds
for all n we must have x1 = x2, so B ⊆

{
x ∈ X

∣∣π−1(π(x)) = {x}
}
. Now

assume that z ∈
{

x ∈ X
∣∣π−1(π(x)) = {x}

}
. Then π−1(π(z)) = {z} and so

obviously π−1(π(z)) ⊆ B
(
z, 1

n

)
for all n. Thus π(z) ∈ A(z, n) for all n. Hence

π(z) ∈
⋂∞

n=1 An and so z ∈ B. Thus
{

x ∈ X
∣∣π−1(π(x)) = {x}

}
⊆ B. This

shows that π is one-to-one on a dense Gδ subset of X.

The following Theorem is due to Paul [P], and will be helpful in identifying
when a factor is the maximal equicontinuous factor of a dynamical system.

Theorem 5.6. Let (X, T ) be a minimal dynamical system. If (Z, R) is a factor
where the factor map π : X → Z is almost one-to-one, and (Z, R) is a group
rotation, then (Z, R) is the maximal equicontinuous factor of (X, T ).

Proof. Assume (Y, S) is the maximal equicontinouos factor of (X, T ) with factor
map π2 : (X, T ) → (Y, S). Then there exists a factor map π1 : (Y, S) → (Z, R)
such that the following diagram commutes.

X X

Y Y

Z Z

T

π2π2

S

R

π1π1

◦

◦

π π◦ ◦

If we can show that π1 is an isomorphism, then (Z, G) is in fact the maximal
equicontinuous factor. Since π is almost one-to-one, i.e. there exists x′ ∈ X such
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that π−1(π(x′)) = {x′}, we get
π−1

1 (π(x′)) = π−1
1 (π1(π2(x′))) = {π2(x′)}.

If we show that |π−1
1 (z)| is constant for all z ∈ Z we consequently get that

|π−1
1 (z)| = 1 for all z ∈ Z, and so π1 is a conjugation.
Since (Z, R) is a group rotation, Z has a group structure and there is an element

z0 ∈ Z such that Rz = z0 · z. (We write the group operation multiplicatively.)
Clearly Rnz = zn

0 · z for n ∈ Z. There exists an x0 ∈ X such that π(x0) = z0.
Consider the element y0 = π2(x0) ∈ Y . Since (Y, S) is an equicontinuous system
Y can be given a group structure as described in Proposition 5.3 such that y0 is
the identity element and Sy = (Sy0) · y. Since π = π1 ◦ π2 we have π1(y0) = z0.
Define π̃1 : Y → Z by π̃1(y) = π1(y) · z−1

0 . Since π1 is onto we get that π̃1 is onto.
We get π̃1(Sny0) = π1(Sny0) · z−1

0 = Rn(π1(y0)) · z−1
0 = Rn(z0) · z−1

0 = zn
0 . We

then get
π̃1(Sny0 · Smy0) = π̃1(Sn+my0) = zn+m

0 = zn
0 · zm

0

= π̃1(Sny0) · π̃1(Smy0)
so π̃1 is a group homomorphism on orbitS(y0). Since the systems are minimal
and orbitS(y0) is a dense subgroup of Y , π̃1 extends continuously to a group
homomorphism π̃1 : Y → Z. Clearly

∣∣π−1
1 (z)

∣∣ = ∣∣π̃−1
1 (z)

∣∣ for z ∈ Z. Since π̃1 is
a group homomorphism we must have that

∣∣π̃−1
1 (z)

∣∣ is the same for all z ∈ Z.
Combining this with the fact that there exists a z ∈ Z such that

∣∣π−1
1 (z)

∣∣ = 1, we
get that π1 is one-to-one, and hence a conjugation, thus finishing the proof.

The following theorem is due to S. Williams [W].
Theorem 5.7. (Gp, ρ̂1) is the maximal equicontinuous factor of (O(η), S) if
p = (pi)i∈N is a periodic structure for the Toeplitz sequence η. (We will identify
Gp with Ga as explained in Remark 3.22.
Proof. We need to define a factor map π : O(η) → Gp which is continuous, sur-
jective and such that

O(η) O(η)

Gp Gp

S

ρ̂1

π π
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commutes. We also need to show that we can apply Theorem 5.6 to show that
(Gp, ρ̂1) is in fact the maximal equicontinuous factor of (O(η), S).

Recall that Ap
n = {Sn+mpη | m ∈ Z} and that a g ∈ Gp is of the form

g = (ni)∞
i=1 where nj ≡ ni (mod pi) when i < j.

Given g ∈ Gp define the set

Ag =
∞⋂

i=1
Api

ni .

By (iii) in Lemma 3.20 Ap1
n1 ⊇ Ap2

n2 ⊇ · · · so for all N ∈ N

N⋂
i=1

Api
ni = ApN

nN 
= ∅,

thus Ag 
= ∅. Each Api
ni is clopen, so Ag will be closed.

Define π : O(η) → Gp by π−1(g) = Ag. For this to be a well defined function,
we need Ag1 ∩ Ag2 = ∅ when g1 
= g2 and that any x ∈ O(η) is in a Ag for some
g, i.e. we need {Ag | g ∈ Gp } to be a partition of O(η). Let x ∈ O(η), then for
each i ∈ N there exists an ni such that x ∈ Api

ni since
{

Api
ni | 0 ≤ ni < pi

}
is a

partition of O(η) for each i ∈ N (by (ii) in Lemma 3.20). Let g = (ni)∞
i=1, then

x ∈ Ag.
Now assume g 
= g′ where g′ = (mi)∞

i=1 and g = (ni)∞
i=1. Then there is at

least one j ∈ N such that nj 
= mj . Again by (ii) in Lemma 3.20 this implies
that A

pj
mj ∩ A

pj
nj = ∅ so Ag ∩ Ag′ = ∅ and {Ag | g ∈ Gp } is a partition of O(η)

as desired.
By construction π is surjective, but we need to show that it is also continu-

ous. The collection
{

Bj
m | j ∈ N, 0 ≤ m < pj

}
of cylinder sets Bj

m = {(ni)∞
i=1 ∈

Gp | nj = m} is a basis for Gp.

π−1(Bj
m) =

⋃
g∈Bj

m

Ag =
⋃

g∈Bj
m

∞⋂
i=1

Api
ni = A

pj
m ,

which is open in O(η) so π is continuous.
By (iv) in Lemma 3.20 we get

SAg = S

∞⋂
i=1

Api
ni =

∞⋂
i=1

SApi
ni =

∞⋂
i=1

Api

ni+1 (mod pi) = A
g+1̂,

so π ◦ S(Ag) = π(SAg) = g + 1̂ = ρ̂1(g) = ρ̂1(π(Ag)) = ρ̂1 ◦ π(Ag). The diagram
commutes and π is in fact a factor map.
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We have that ρ̂1 is a rotation on Gp. If we in addition have that π is almost
one-to-one, then (Gp, ρ̂1) is the maximal equicontinuous factor by Theorem 5.6.

Assume ω ∈ π−1(π(η)). By the definition of Ap
n it is easy to see that η ∈ Ap

0
for all p, so π(η) = (0, 0, 0, . . . ) = 0̂. So ω ∈ π−1(π(η)) means that ω ∈ A0̂, i.e.
ω ∈ Api

0 for all i ∈ N. By (i) in Lemma 3.20, this implies that Spi
(ω) = Spi

(S0η) =
Spi

(η), ∀i, thus since η = limi→∞ Spi
(η), ω must equal η so π−1(π(η)) = {η} and

π is almost one-to-one.

Remark 5.8. We have shown that the maximal equicontinouos factor of a Toeplitz
flow is an odometer. This was first proved by Paul [P]. The converse is partially
true: An expansive almost one-to-one extension of an odometer system is a
Toeplitz flow [MP]. In paper 1 we identify for which K0 groups it is possible to
find such an expansive almost one-to-one extension. We will present some results
which give some restrictions as to which K0-groups we could expect this to work
for.

In order to prove the next theorem, we will need the following results.

Lemma 5.9 (Gottschalk-Hedlund, [GH]). Let (X, T ) be a minimal dynamical
system and f ∈ C (X). Then the following are equivalent:

• f = g − g ◦ T −1 for a g ∈ C (X)

• There exists x0 ∈ X such that

sup
n

∣∣∣∣∣
n−1∑
i=0

f(T ix0)
∣∣∣∣∣ < ∞.

The following proposition is well known among the experts, but we know no
source to cite for a proof. Therefore we will present a proof here.

Proposition 5.10. If (Y, S) is a factor of (X, T ), with factor map π : X → Y
then π∗ : M(X, T ) → M(Y, S), where π∗(μ) = μ ◦ π−1, is a continuous (in the
w∗-topology) affine surjection.

Proof. The only nontrivial thing to prove is the surjection assertion. Let μ ∈ M(Y,
S). Since we may embed C(Y ) in C(X) by the map f → f ◦ π, we get by Hahn-
Banach that there exists a probability measure ν on X such that π∗(ν) = μ. We
claim that ν ◦ T −1 = T∗ν ∈ (π∗)−1(μ), where (T∗ν)(A) = ν(T −1(A)) for A a
Borel set in X. We must show that π∗(T∗ν) = μ. For B a Borel set in Y we get:

(π∗(T∗ν))(B) = (T∗ν)(π−1(B)) = ν(T −1(π−1(B)))
= ν(π−1(S−1(B))) = μ(S−1(B)) = μ(B)
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since π ◦ T = S ◦ π. This proves the claim. Notice that we also get that
ν ◦ T −i ∈ (π∗)−1(μ) for all i ∈ N.

Clearly (π∗)−1(μ) is a convex, w∗-compact subset of P (X), the set of probabil-
ity measures on X. Let ν ∈ (π∗)−1(μ), and define νn = 1

n

∑n−1
i=0 ν ◦ T −i ∈

(π∗)−1(μ). A subsequence (νnk
)k will converge in the w∗-topology to some

θ ∈ (π∗)−1(μ). Now νnk
− νnk

◦ T −1 = 1
nk

(ν − ν ◦ T −nk−1) → 0. Hence
θ = θ ◦ T −1, and so θ ∈ M(X, T ). Since π∗(θ) = μ we are done.

Theorem 5.11 (Glasner–Weiss [GW]). If the minimal dynamical system (Y, S)
is a factor of the minimal system (X, T ) with factor map π : X → Y , then

π∗ : K0(Y, S) ↪→ K0(X, T )

is an order-embedding (where π∗([h]) = [h ◦ π]).

This result was originally proved in [GW, Prop. 3.1], but we will give a proof
here.

Proof. The first thing we need to show, is that π∗ is a well-defined injective map.
From π : X → Y we get the map C(Y ) → C(X), defined by

h �→ h ◦ π.

and composing this with the quotient map we get

θ : C(Y ) → C(X)/∂T C(X)

where ker(θ) = {h ∈ C(Y ) | h ◦ π ∈ ∂T C(X)}, i.e. h is in ker(θ) iff there is a
g ∈ C(X) such that h ◦ π = g − g ◦ T −1. For π∗ to be a well-defined injection we
need to prove that ker(θ) = ∂SC(Y ). First assume h ∈ ∂SC(Y ), so h = l − l ◦ S−1

for some l ∈ C(Y ). Then

h ◦ π = (l − l ◦ S−1) ◦ π = l ◦ π − l ◦ S−1 ◦ π = (l ◦ π) − (l ◦ π) ◦ T −1 ∈ ∂T C(X),

so h ∈ ker(θ).
Assume now that h ∈ ker(θ), so h ◦ π = g − g ◦ T −1 for a g ∈ C(X). To show

that h = l − l ◦ S−1 for some l we only need to find y0 ∈ Y such that

sup
n

∣∣∣∣∣
n−1∑
i=0

h(Siy0)
∣∣∣∣∣ < ∞ (1)

by Lemma 5.9. But since we know that h ◦ π = g − g ◦ T −1 we get, from the same
lemma that there exists x0 such that

sup
n

∣∣∣∣∣
n−1∑
i=0

h ◦ π(T ix0)
∣∣∣∣∣ < ∞.
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But h ◦ π(T ix0) = h ◦ Si(π(x0)) so if we choose y0 = π(x0) then (1) is satisfied
and so h ∈ ker(θ). So we have proved that π∗ is a well-defined injection.

To show that π∗ is an order embedding we need to show that π∗([h]) > 0
in K0(X, T ) if and only if [h] > 0 in K0(Y, S), where h ∈ C(Y ). If [h] > 0
then there exists g ∈ C(Y ), g(y) > 0 for all y ∈ Y , such that [h] = [g]. Then
π∗([h]) = π∗([g]) = [g ◦ π] which clearly is > 0 in K0(X, T ). Conversely, assume
[h◦π] = π∗([h]) > 0 in K0(X, T ). By Theorem 4.13 this means that

∫
X

h◦πdν > 0
for all ν ∈ M(X, T ). Now

∫
X

h ◦ πdν =
∫

Y
hdπ∗(ν). By Proposition 5.10 π∗

maps M(X, T ) onto M(Y, S), and so we get
∫

Y
hdμ > 0 for all μ ∈ M(Y, S). By

Theorem 4.13 this implies that [h] > 0 in K0(Y, S), and the proof is complete.

Proposition 5.12. If π in Theorem 5.11 in addition is almost one-to-one, then
the quotient

K0(X, T )/π∗(K0(Y, S))

is torsion free.

Remark 5.13. A sketch of the proof of this is given in Lemma 4.2 in paper 1.
Proposition 5.12 is one of many tools to obtain the results in paper 1.
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Société Mathématique de France, 2003.



References 35

[Ku] K. Kuratowski. Topology, Vol. II. Academic Press, New York, 1968.

[MP] N. G. Markley, and M. E. Paul. Almost automorphic symbolic minimal
sets without unique ergodicity. Israel J. Math., 34 (1979), 259–272.

[P] M. E. Paul. Construction of almost automorphic symbolic minimal flows.
General Topology Appl., 6 (1976), 45–56.
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TOEPLITZ FLOWS AND THEIR ORDERED
K-THEORY

SIRI-MALÉN HØYNES

Abstract

To a Toeplitz flow (X, T ) we associate an ordered K0-group, denoted K0(X,
T ), which is order isomorphic to the K0-group of the associated (non-
commutative) C∗-crossed product C(X) �T Z. However, K0(X, T ) can
be defined in purely dynamical terms, and it turns out to be a complete
invariant for (strong) orbit equivalence. We characterize the K0-groups
that arise from Toeplitz flows (X, T ) as exactly those simple dimension
groups (G, G+) that contain a noncyclic subgroup H of rank one that
intersects G+ nontrivially. Furthermore, the Bratteli diagram realization of
(G, G+) can be chosen to have the ERS-property, i.e. the incidence matrices
of the Bratteli diagram have equal row sums. We also prove that for any
Choquet simplex K there exists an uncountable family of pairwise non-orbit
equivalent Toeplitz flows (X, T ) such that the set of T -invariant probability
measures M(X, T ) is affinely homeomorphic to K, where the entropy h(T )
may be prescribed beforehand. Furthermore, the analogous result is true if
we substitute strong orbit equivalence for orbit equivalence, but in that case
we can actually prescibe both the entropy and the maximal equicontinuous
factor of (X, T ). Finally, we present some interesting concrete examples of
dimension groups associated to Toeplitz flows.

1 Introduction.
Toeplitz flows have been extensively studied, both as topological and measure-
theoretic dynamical systems, since they were first introduced by Jacobs and
Keane in 1969 [JK]. (Note: In spite of the word “flow”, which would indicate
an R-action, Toeplitz flows are dynamical systems with a Z-action generated
by a single homeomorphism.) In this paper we will exclusively study Toeplitz
flows as topological dynamical systems. A Toeplitz flow is a special minimal
subshift on a finite alphabet Λ (in particular, it is a symbolic system) defined
in terms of a so-called Toeplitz sequence on Λ, the latter being associated to
certain arithmetic progressions. (Incidentally, the reason the name “Toeplitz”
has been attached to these systems is that Toeplitz in 1924 [T] gave an explicit
construction of almost periodic functions (in the Bohr sense) on R, where he as a
device used arithmetic progressions.) Toeplitz flows are closely related to the well
understood odometer systems, and may in a certain sense be seen as the simplest
Cantor minimal systems beyond the odometer systems. Yet, surprisingly, Toeplitz
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flows exhibit a richness of properties that the odometer systems do not have. As
examples of this we mention that any Choquet simplex can be realized as the set
of invariant probability measures for some Toeplitz flow. Furthermore, for every
0 ≤ t < ∞ there exists a Toeplitz flow (in fact, an uncountable family of pairwise
non-isomorphic Toeplitz flows) whose topological entropy is equal to t.

An entirely new approach to study Toeplitz flows, and, for that matter, Cantor
minimal systems in general – thereby providing powerful new tools – came from
an unsuspected source : non-commutative C∗-algebras. In fact, by studying the
so-called C∗-crossed product associated to a Cantor minimal system a complete
isomorphism invariant turns out to be a special ordered abelian group, a so-called
dimension group. This group is the K0-group of the crossed product and it comes
with a natural ordering. It turns out that the K0-group can be defined purely in
dynamical terms, and that it is a complete invariant for (strong) orbit equivalence.
This invariant is completely independent of other invariants traditionally used to
study dynamical systems, like spectral invariants and entropy. Furthermore, the
invariant is in many cases effectively computable. We mention two papers that
illustrate this. The first is the paper by Durand, Host and Skau [DHS] where
substitutional dynamical systems are studied using the K0-approach. The other
is a paper by Gjerde and Johansen [GJ] where Toeplitz flows are treated. In the
latter paper a “clean” conceptual proof – as seen from the theory of dimension
groups – is given of the Choquet simplex realization result alluded to above.
(The original proof of that result is due to Downarowicz [D], after preliminary
results had been obtained by Williams [W].) Furthermore, the dimension groups
(i.e. the K0-groups), associated to Toeplitz flows are described in their paper
in terms of Bratteli diagrams with what they call the EPN-property (which is
the same as the ERS-property – the term we prefer to use). In this paper we
will both extend their results considerably, and we will give a more satisfactory
description of the K0-groups. In fact, the main thrust of this paper is to give the
definite characterization of the K0-groups associated to Toeplitz flows. This is
done in an intrinsic way, meaning that we give a characterization in terms of the
group itself, while the Bratteli diagram realizations of the groups in question play
an important, but auxiliary role. By our characterization we can easily exhibit
concrete examples of such groups, some of these will be described in Section 5.
Furthermore, our results underscore in a striking manner that the K0-group of a
Toeplitz flow (X, T ) does not “see” the entropy h(T ) of T , these two entities are
independent. (See the Remark after Theorem 2.4.)

We remark that Toeplitz flows in contrast to substitution minimal systems are
“unstable”. By that we mean that whereas an induced system of a substitution
system is again a substitution system, and a Cantor factor of a substitution system
is either again a substitution system or an odometer, this it not true for Toeplitz
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flows in general. (Cf. [DD].)There is a “tiny” overlap between Toeplitz flows and
substitution minimal systems. In fact, some – but not all – substitution minimal
systems associated to (primitive, aperiodic) substitutions of constant length are
Toeplitz flows. (Cf. [M, Theorem 6.03].)

2 Main results
We formulate our main results, referring to Section 3 for definitions of some of
the terms occurring in the statements of the theorems below.

Theorem 2.1. Let 0 ≤ t < ∞. The following two sets are equal (up to order
isomorphisms):

(i)
{
(K0(X, T ), K0(X, T )+ | (X, T ) Toeplitz flow, h(T ) = t

}
(ii)

{
(G, G+)

∣∣G simple dimension group containing a noncyclic subgroup
H of rank one such that H ∩ G+ 
= {0}}

Theorem 2.2. Let (G, G+, u) be a simple dimension group with order unit u,
and assume the rational (and hence rank one) subgroup Q(G, u) is noncyclic. Let
0 ≤ t < ∞. There exists a Toeplitz flow (X, T ) such that

(i) (G, G+, u) ∼= (K0(X, T ), K0(X, T )+,1)

(ii) The entropy h(T ) of T equals t.

(iii) The set of (continuous) eigenvalues of T is
{
e2πis∣∣s ∈ Q(G, u)

}
Theorem 2.3. Let 0 ≤ t < ∞. The following three sets of simple dimension
groups with order units are equal (up to order isomorphisms preserving order
units):

Tt =
{
(K0(X, T ), K0(X, T )+,1) | (X, T ) Toeplitz flow, h(T ) = t

}
G =

{
(G, G+, u) | G simple dimension group with Q(G, u) noncyclic

}
B =

{
(K0(V, E), K0(V, E)+, [1])

∣∣∣∣∣ (V, E) simple Bratteli diagram
with the ERS property

}
.

Theorem 2.4. Let 0 ≤ t < ∞. For any Choquet simplex K there exists an
uncountable family of pairwise non-orbit equivalent Toeplitz flows A = {(X, T )},
such that for each (X, T ) ∈ A:

(i) K ∼= M(X, T ), i.e. K is affinely homeomorphic to the T -invariant probability
measures on X.
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(ii) h(T ) = t.

Now let (Y, S) be any odometer and let K be any Choquet simplex. There
exists an uncountable family of pairwise non-strong orbit equivalent Toeplitz flows
Ã = (X̃, T̃ ), such that for each (X̃, T̃ ) ∈ Ã:

(i) K ∼= M(X̃, T̃ )

(ii) h(T̃ ) = t

(iii) The maximal equicontinuous factor of (X̃, T̃ ) is (Y, S).

Remark. As we alluded to above, Theorem 2.4 yields in a striking way as
a corollary that for Toeplitz flows orbit structure and entropy are independent
entities.

Our result Theorem 2.2(i) has an interesting consequence which we will briefly
describe. In [GMPS] the following remarkable result is proved (cf. [GMPS,
Theorem 2.5]):

Let d be a natural number. A minimal Zd-action on the Cantor set is orbit
equivalent to a minimal Z-action (i.e. to a Cantor minimal system (X, T )). A
complete invariant for orbit equivalence is a simple dimension group with order
unit (G, G+, u), such that InfG = {0}. Specifically, G is given by

G = C(X, Z)/
{

f ∈ C(X, Z

∣∣∣∣ ∫
X

fdμ = 0, ∀μ ∈ M(X, Zd)
}

.

(Here M(X, Zd) denotes the set of invariant probability measures under the Zd-
action.) G+ is given by the induced ordering from C(X, Z) and u corresponds to
the constant function 1 ∈ C(X, Z).

Remark. An open problem raised in [GMPS] is: what is the range of the
invariant (G, G+, u) when d > 1? (For d = 1 it is known that the range is all
simple dimension groups with order unit (G, G+, u) such that InfG = {0}, cf.
[HPS, Theorem 5.4].)

In [CP] the following theorem is proved (cf. [CP, Theorem B]):
Let (X, T ) be a Toeplitz flow and let d ≥ 1. There exists a Toeplitz Zd-

subshift (and so, in particular, a minimal Zd-action on the Cantor set) which is
orbit equivalent to (X, T ).

Combining Theorem 2.2(i) with the two results cited above we get the following
interesting result.

Proposition 2.5. Let d be a natural number. The range of the orbit invariant
for minimal Zd-actions on the Cantor set contains all simple dimension groups
with order unit (G, G+, u), where InfG = {0}, such that Q(G, u) is noncyclic.
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3 Basic concepts and definitions and key back-
ground results.

3.1 Dynamical systems
Throughout this paper we will use the term dynamical system to mean a compact
metric space X together with a homeomorphism T : X → X, and we will denote
this by (X, T ). This induces in a natural way a Z-action on X. The orbit of
x ∈ X under this action is {T nx | n ∈ Z} and will be denoted by orbitT (x). If all
the orbits are dense in X we say that (X, T ) is a minimal system. It is a simple
observation that (X, T ) is minimal if and only if TA = A for some closed A ⊆ X
implies that A = X or ∅.

(We will denote the natural numbers {1, 2, 3, . . . } by N, the integers by Z,
the rational numbers by Q, the real numbers by R. Also, let Z+ = {0, 1, 2, . . . },
Q+ = {r ∈ Q | r ≥ 0}, R+ = {t ∈ R | t ≥ 0}.)

Definition 3.1. We say that a dynamical system (Y, S) is a factor of (X, T )
and that (X, T ) is an extension of (Y, S) if there exists a continuous surjection
π : X → Y which satisfies S(π(x)) = π(Tx), ∀x ∈ X. We call π a factor map. If
π is a bijection then we say that (X, T ) and (Y, S) are conjugate, and we write
(X, T ) ∼= (Y, S). We say that (X, T ) is flip conjugate to (Y, S) if (X, T ) ∼= (Y, S)
or (X, T ) ∼= (Y, S−1).

Definition 3.2. The dynamical systems (X, T ) and (Y, S) are orbit equivalent if
there exists a homeomorphism F : X → Y such that F (orbitT (x)) = orbitS(F (x))
for all x ∈ X. We call F an orbit map.

Remark. Clearly flip conjugacy implies orbit equivalence. One can show that if X
(and hence Y ) is a connected space then orbit equivalence between (X, T ) and
(Y, S) implies flip conjugacy. (This follows by a simple argument using a result of
Sierpińsky, cf. [K, Theorem 6, Ch. V, §47, III].) This has the consequence that
the study of orbit equivalence is only interesting as it pertains to Cantor minimal
systems (X, T ), i.e. X is a Cantor set on which T acts minimally. The K-theoretic
invariant we are going to introduce is an invariant for orbit equivalence, and so
we will assume henceforth that our dynamical systems are Cantor minimal, even
though some of the subsequent definitions apply to more general systems.

Let (X, T ), (Y, S) and F be as in Definition 3.2, both (X, T ) and (Y, S) being
Cantor minimal systems. For each x ∈ X there exists a unique integer n(x)
(respectively, m(x)) such that F (Tx) = Sn(x)(F (x)), F (T m(x)x) = S(F (x)). We
call m, n : X → Z the orbit cocycles associated to the orbit map F .

Definition 3.3. We say that (X, T ) and (Y, S) are strong orbit equivalent if
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there exists an orbit map F : X → Y such that each of the two associated orbit
cocycles m, n : X → Z have at most one point of discontinuity.

Remark. Boyle (cf. [BT]) proved that if the orbit cocycles are continuous for all
x ∈ X, then (X, T ) and (Y, S) are flip conjugate. So strong orbit equivalence is
in a sense the mildest weakening possible of flip conjugacy.

We shall need the concept of induced transformation and Kakutani equivalence.

Definition 3.4. Let (X, T ) be a Cantor minimal system and let A be a clopen
subset of X (hence A is again a Cantor set). Let TA : A → A be the first return
map, i.e. TA(x) = T rA(x)x, where rA(x) = min {n ∈ N | T n

Ax ∈ A}. We say that
(A, TA), which is again Cantor minimal, is the induced system of (X, T ) with
respect to A.

Definition 3.5. The Cantor minimal systems (X, T ) and (Y, S) are Kakutani
equivalent if (up to conjugacy) they have a common induced system. (One can
show that this is an equivalence relation on the family of Cantor minimal systems.)

Definition 3.6. Let (X, T ) and (Y, S) be (Cantor) minimal systems, (Y, S) being
a factor of (X, T ) by a map π : X → Y . If there exists a point x ∈ X such that
π−1 (π(x)) = {x} we say that π is almost one-to-one and we say that (X, T ) is an
almost one-to-one extension of (Y, S).

Remark. One can show that the subset B of X consisting of point z in X satisfying
the above condition is a dense Gδ-set in X. In fact, define
A(x, n) =

{
y ∈ Y

∣∣π−1(y) ⊆ B(x, 2−n)
}
, where B(x, 2−n) is the open ball around

x with radius 2−n. One shows that A(x, n) is an open subset of Y . Define
An =

⋃
v∈X A(v, n). Then An is an open subset of Y . A simple argument yields

that the subset B in question is equal to π−1 (
⋂∞

n=1 An) =
⋂∞

n=1 π−1(An), which
is a dense Gδ-set.

3.2 Toeplitz flows
Definition 3.7. (X, T ) is expansive if there exists δ > 0 such that if x 
= y
then supnd(T nx, T ny) > δ, where d is a metric that gives the topology of X.
(Expansiveness is independent of the metric as long as the metric gives the topology
of X.)

Let Λ = {a1, a2, . . . , an}, n ≥ 2, be a finite alphabet and let Z = ΛZ be the set
of all bi-infinite sequences of symbols from Λ with Z given the product topology –
thus Z is a Cantor set. Let S : Z → Z denote the shift map, S : (xn) → (xn+1).
If X is a closed subset of Z such that S(X) = X, we say that (X, S) is a subshift,
where we denote the restriction of S to X again by S. Subshifts are easily seen
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to be expansive. We state the following well-known fact as a proposition. (Cf.
[Wa, Theorem 5.24].)

Proposition 3.8. Let (X, T ) be a Cantor minimal system. Then (X, T ) is
conjugate to a minimal subshift on a finite alphabet if and only if (X, T ) is
expansive.

As a general reference on Toeplitz flows we refer to [W]. (Cf. also [D].)

Definition 3.9. Let η = (η(n))n∈Z ∈ ΛZ, where Λ is a finite alphabet. Then we
define for σ ∈ Λ, p ∈ N

Perp(η, σ) = {n ∈ Z | η(n + mp) = σ, ∀m ∈ Z} .

Let
Perp(η) =

⋃
σ∈Λ

Perp(η, σ).

We say that η is a Toeplitz sequence if
⋃

p∈N Perp(η) = Z.

By the p-skeleton of η we will mean the part of η which is periodic with period
p; more precisely, we define the p-skeleton to be the sequence obtained from η
by replacing η(n) with a new symbol ∗ for all n 
∈ Perp(η). We say that p is an
essential period of η if the p-skeleton of η is not periodic with any smaller period.
The least common multiple of two essential periods is again an essential period, a
fact which is easily verified.

Definition 3.10. Assume that a Toeplitz sequence η is non-periodic. A periodic
structure for η is a strictly increasing sequence (pi)i∈N such that pi is an essential
period of η for all i, pi|pi+1 and

⋃∞
i=1 Perpi

(η) = Z. (A periodic structure always
exists for a (non-periodic) Toeplitz sequence, cf. [W].)

Definition 3.11. Let η ∈ ΛZ be a Toeplitz sequence. The dynamical system
(O(η), S) is called a Toeplitz flow, where O(η) = orbitS(η) and S is the shift map.

Periodic sequences are Toeplitz sequences. Every Toeplitz sequence is almost
periodic, i.e. every word occurring in η appears with bounded gap between
successive occurrences. Hence (O(η), S) is minimal. In the sequel we will only
consider non-periodic Toeplitz flows, and so Toeplitz flows are expansive Cantor
minimal systems.

Let (pi)i∈N be a periodic structure for the (non-periodic) Toeplitz sequence
η, and denote the associated Toeplitz flow by (Y, S). Let (Ga, ρ

1̂
) denote the

odometer (also called adding machine) associated to the a-adic group

Ga =
∞∏

i=1

{
0, 1, . . .

pi

pi−1
− 1

}
,
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where a =
{

pi

pi−1

}
i∈N

(we set p0 = 1) and where ρ
1̂
(x) = x + 1̂, where 1̂ = (1, 0,

0, . . . ). We note that Ga is naturally isomorphic to the inverse limit group

Z/p1Z
φ1←− Z/p2Z

φ2←− Z/p3Z
φ3←− · · ·

where φi(n) is the residue of n modulo pi. It is a fact that the family consisting
of compact groups G that are both monothetic (i.e. contains a dense copy of Z ,
which of course implies that G is abelian) and Cantor (as a topological space),
coincides with the family of a-adic groups. It is also noteworthy that all minimal
rotations (in particular rotation by 1̂) on such groups are conjugate. This is a
consequence of the fact that the dual group of an a-adic group is a torsion group.
If a = {p}i∈N, where p is a prime, then Ga is the p-adic integers. (We refer to
[HR, Vol 1] for background information on a-adic groups.)

Recall that every (minimal) dynamical system has a maximal equicontinuous
factor , the latter being, by a well-known theorem, conjugate to a minimal rota-
tion on a compact abelian group G, and so, in particular, is uniquely ergodic.
Specifically, let (G, ρg) be the maximal equicontinuous factor of (X, T ), where
ρg : G → G is rotation by g, i.e. ρg(x) = x + g for x ∈ G, and Φ: X → G is
the factor map. Let (H, ρh) be another minimal group rotation factor of (X, T )
where Ψ: X → H is the factor map. Then (H, ρh) is a factor of (G, ρg) by a
factor map π : G → H such that Ψ = π ◦ Φ.

One can detect the maximal equicontinuous factor (G, ρg) of (X, T ) by deter-
mining the (continuous) eigenvalues Γ of T , i.e.

Γ = {λ ∈ T | f ◦ T = λf for some 0 
= f ∈ C(X)} ,

where T is the unit circle. Now Γ is a countable and discrete subgroup of the
discrete circle group Td, and G = Γ̂ is the compact dual group with g ∈ G being
the character on Γ defined by g(γ) = γ, ∀γ ∈ Γ. Incidentally, the dual group Ĝa

of the odometer group Ga has only torsion elements and is equal to the following
subgroup of Td, namely

Ĝa =
{
e

2πil
a1a2···ak

∣∣∣ a = {ai}i∈N, k ∈ N, l ∈ Z

}
.

If (X, T ) is a Toeplitz flow with a periodic structure (pi)i∈N, then the maximal
equicontinuous factor is the odometer system associated to a =

(
pi

pi−1

)
i∈N

. Fur-
thermore, the factor map π : X → Ga is an almost one-to-one map. The converse
is also true. We state two theorems that establish this fact.
Theorem 3.12 ([P]). Let (X, T ) be a minimal almost one-to-one extension
of a (minimal) group rotation system (G, ρg). Then (G, ρg) is the maximal
equicontinuous factor of (X, T ).
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Theorem 3.13 ([MP]). An expansive Cantor minimal system (X, T ) is a Toeplitz
flow if and only if (X, T ) is an almost one-to-one extension of an odometer system
(Ga, ρ̂1). Furthermore, (Ga, ρ̂1) is the maximal equicontinuous factor of (X, T ).

A more detailed analysis of the situation is found in [W]. We summarize by
listing some salient points from [W] which is relevant for this paper:

Let η be a (non-periodic) Toeplitz sequence and let (O(η), S) be the asso-
ciated Toeplitz flow. Let (pi)i∈N be a periodic structure for η. Define Ai

n =
{Smη | m ≡ n( mod pi)}.

1. Ai
n is the set of all ω ∈ O(η) with the same pi-skeleton as Sn(η).

2.
{

Ai
n | n ∈ Z/piZ

}
is a partition of O(η) into clopen sets.

3. Ai
n ⊃ Aj

m for i < j and m ≡ n( mod pi).

4. SAi
n = Ai

n+1.

5. ω, θ ∈
⋂∞

i=1 Ani (where ni ≡ nj( mod pi) for j ≥ i) if and only if ω and θ
have the same pi-skeleton for all i ∈ N. In particular,

⋂∞
i=1 Ani = {ω} if

and only if ω is a Toeplitz sequence. This implies that π−1(π(ω)) = {ω} if
and only if ω is a Toeplitz sequence. Here π : O(η) → Ga is the factor map,
(Ga, ρ̂1) being the maximal equicontinuous factor of (O(η), S).

Since Perpi
(η) is periodic it has density in Z given by

di =
1
pi

|{n ∈ Z/piZ | n ∈ Perpi
(η)}|

where |E| denotes the number of elements in the set E. The di are increasing,
and we set d = limi→∞ di.

Definition 3.14. The Toeplitz sequence η is regular if d = 1.

Notation. Let (X, T ) be a dynamical system. We denote by M(X, T ) the set of
T -invariant probability measures on X. We say that (X, T ) is uniquely ergodic if
M(X, T ) is a singleton.

Fact. If (X, T ) is a minimal dynamical system, then M(X, T ) is a Choquet simplex
(where M(X, T ) is given the w∗-topology).
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V0

E1M1 =

[
1
1

]

V1

E2M2 =

⎡
⎣5 2
4 1
1 1

⎤
⎦

V2

E3M3 =

[
1 2 2
1 2 1

]

V3

Figure 1: An example of a Bratteli diagram

Theorem 3.15 ([JK]). If (O(η), S) is a regular Toeplitz flow (i.e. η is a regular
Toeplitz sequence), then it is uniquely ergodic and the (topological) entropy h(S)
is zero.

We will return to Toeplitz flows and their properties after we have introduced
the (ordered) K-theory associated to such systems.

3.3 Bratteli diagrams and dimension groups.
(As general references for the material in this section we refer to [E], [HPS] and
[GPS1].)

3.3.1 Bratteli diagrams

A Bratteli diagram (V, E) consists of a set of vertices V = �∞
n=0Vn and a set

of edges E = �∞
n=1En, where the Vn’s and the En’s are finite disjoint sets and

where V0 = {v0} is a one-point set. The edges in En connect vertices in Vn−1
with vertices in Vn. If e connects v ∈ Vn−1 with u ∈ Vn we write s(e) = v and
r(e) = u, where s : En → Vn−1 and r : En → Vn are the source and range maps,
respectively. We will assume that s−1(v) 
= ∅ for all v ∈ V and that r−1(v) 
= ∅



Basic concepts and definitions and key background results. 49

for all v ∈ V \V0. A Bratteli diagram can be given a diagrammatic presenta-
tion with Vn the vertices at level n and En the edges between Vn−1 and Vn. If
|Vn−1| = tn−1 and |Vn| = tn then the edge set En is described by a tn × tn−1
incidence matrix Mn = (mn

ij), where mn
ij is the number of edges connecting

vn
i ∈ Vn with vn−1

j ∈ Vn−1 (see Figure 1). Let k, l ∈ Z+ with k < l and let Ek+1 ◦
Ek ◦ · · · ◦ El denote all the paths from Vk to Vl. Specifically, Ek+1 ◦ Ek ◦ · · · ◦ El =
{(ek+1, · · · , el) | ei ∈ Ei, i = k + 1, . . . , l; r(ei) = s(ei+1), i = k + 1, . . . , l − 1}. We
define r ((ek+1, · · · , el)) = r(el) and s ((ek+1, · · · , el)) = s(ek+1). Notice that the
corresponding incidence matrix is the product MlMl−1 · · · Mk+1 of the incidence
matrices.

Definition 3.16. The Bratteli diagram (V, E) with incidence matrices (Mn)∞
n=1

has the ERS-property (ERS = Equal Row Sum) if the row sums of the incidence
matrices are constant. Let the constant row sum of Mn be rn. We associate
the supernatural number

∏∞
n=1 rn to (V, E). (See the comments after Definition

3.23.)

Definition 3.17. Given a Bratteli diagram (V, E) and a sequence 0 = m0 <
m1 < m2 < · · · in Z+, we define the telescoping of (V, E) to {mn} as (V ′, E′),
where V ′

n = Vmn
and E′

n = Emn−1+1 ◦ · · · ◦ Emn
, and the source and the range

maps are as above.

Remark. Observe that the ERS-property is preserved under telescoping, and that
is also the case for the associated supernatural number.

Definition 3.18. We say that the Bratteli diagram (V, E) is simple if there
exists a telescoping of (V, E) such that the resulting Bratteli diagram (V ′, E′) has
full connection between all consecutive levels, i.e. the entries of all the incidence
matrices are non-zero.

Given a Bratteli diagram (V, E) we define the infinite path space associated
to (V, E), namely

X(V,E) = {(e1, e2, . . . ) | ei ∈ Ei, r(ei) = s(ei+1); ∀i ≥ 1} .

Clearly X(V,E) ⊆
∏∞

n=1 En, and we give X(V,E) the relative topology,
∏∞

n=1 En

having the product topology. Loosely speaking this means that two paths in
X(V,E) are close if the initial parts of the two paths agree on a long initial stretch.
Also, X(V,E) is a closed subset of

∏∞
n=1 En, and is compact.

Let p = (e1, e2, . . . , en) ∈ E1 ◦ · · · ◦ En be a finite path starting at v0 ∈ V0.
We define the cylinder set U(p) =

{
(f1, f2, . . . ) ∈ X(V,E) | fi = ei, i = 1, 2, . . . , n

}
.

The collection of cylinder sets is a basis for the topology on X(V,E). The cylinder
sets are clopen sets, and so X(V,E) is a compact, totally disconnected metric space
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– metric because the collection of cylinder sets is countable. If (V, E) is simple
then X(V,E) has no isolated points, and so X(V,E) is a Cantor set. (We will in the
sequel disregard the trivial case where |X(V,E)| is finite.)

Let Pn = E1 ◦ · · · ◦ En be the set of finite paths of length n (starting at the top
vertex). We define the truncation map τn : X(V,E) → Pn by τn ((e1, e2, . . . )) = (e1,
e2, . . . , en). If m ≥ n we have the obvious truncation map τm,n : Pm → Pn.

There is an obvious notion of isomorphism between Bratteli diagrams (V, E)
and (V ′, E′); namely, there exists a pair of bijections between V and V ′ preserving
the gradings and intertwining the respective source and range maps. Let ∼
denote the equivalence relation on Bratteli diagrams generated by isomorphism
and telescoping. One can show that (V, E) ∼ (V ′, E′) iff there exists a Bratteli
diagram (W, F ) such that telescoping (W, F ) to odd levels 0 < 1 < 3 < · · · yields
a diagram isomorphic to some telescoping of (V, E), and telescoping (W, F ) to
even levels 0 < 2 < 4 < · · · yields a diagram isomorphic to some telescoping of
(V ′, E′).

3.3.2 Dimension groups

By an ordered group we shall mean a countable abelian group G together with a
subset G+, called the positive cone, such that

1. G+ − G+ = G

2. G+ ∩ (−G+) = {0}

3. G+ + G+ ⊂ G+

We shall write a ≤ b if b − a ∈ G+. We say that an ordered group is unperforated
if a ∈ G and na ∈ G+ for some a ∈ G and n ∈ N implies that a ∈ G+. Observe
that an unperforated group is torsion free. By an order unit for (G, G+) we mean
an element u ∈ G+ such that for every a ∈ G, a ≤ nu for some n ∈ N.

Definition 3.19. A dimension group (G, G+, u) with distinguished order unit
u is an unperforated ordered group (G, G+) satisfying the Riesz interpolation
property, i.e. given a1, a2, b1, b2 ∈ G with ai ≤ bj (i, j = 1, 2), there exists c ∈ G
with ai ≤ c ≤ bj (i, j = 1, 2).

We write (G1, G+
1 , u1) ∼= (G2, G+

2 , u2) if there exists an order isomorphism
φ : G1 → G2, i.e. φ is a group isomorphism such that φ(G+

1 ) = G+
2 , and φ(u1) =

u2.

To a Bratteli diagram (V, E) we can associate an ordered group, which we
will denote by K0(V, E) (because of its connection to (ordered) K-theory). Let
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V = �∞
n=0Vn and let (Mn)∞

n=1 be the incidence matrices. Then we have a system
of simplicially ordered groups and positive maps

(Z =)Z|V0| M1−→ Z|V1| M2−→ Z|V2| −→ · · ·

where the positive homomorphism Mn : Z|Vn−1| → Z|Vn| is given by matrix multi-
plication with the incidence matrix Mn. (Z|Vn| is a column vector, and an element
in Z|Vn| is positive if all its entries are non-negative.) By definition K0(V, E) is the
inductive limit of the system above, and K0(V, E) is given the induced order. We
denote the positive cone by K0(V, E)+. K0(V, E) has a distinguished order unit,
namely the element [1] in K0(V, E)+ corresponding to the element 1 ∈ Z|V0| = Z.
The triple (K0(V, E), K0(V, E)+, [1]) denotes the countable, ordered abelian group
K0(V, E) with positive cone K0(V, E)+ and distinguished order unit [1]. We will
sometimes in the sequel for short only write K0(V, E), the ordering and the order
unit being implicitly understood.

One can show that (V, E) ∼= (V ′, E′) if and only if K0(V, E) is order isomorphic
to K0(V ′, E′) by a map sending the distinguished order unit of K0(V, E) to the
distinguished order unit of K0(V ′, E′).

It is straightforward to verify that (K0(V, E), K0(V, E)+) is a dimension group.
The converse however, is not obvious and we state it as a theorem formulated in
such a way that it suits our purpose.

Theorem 3.20 ([EHS]). Let (G, G+, u) be a dimension group with distinguished
order unit u. Then there exists a Bratteli diagram (V, E) such that (G, G+,
u) ∼= (K0(V, E), K0(V, E)+, [1]).

A dimension group (G, G+) is simple if it contains no non-trivial order ideals.
An order ideal is a subgroup J such that J = J+ − J+ (where J+ = J ∩ G+) and
0 ≤ a ≤ b ∈ J implies a ∈ J . It is easily seen that (G, G+) is a simple dimension
group if and only if every a ∈ G+\{0} is an order unit. In the sequel we will
exclusively work with noncyclic (i.e. G 
∼= Z) simple dimension groups (G, G+).

Let (G, G+, u) be a simple dimension group with distinguished order unit u.
We say that a homomorphism p : G → R is a state if p is positive (i.e. p(G+) ≥ 0)
and p(u) = 1. Denote the collection of all states on (G, G+, u) by Su(G). Now
Su(G) is a convex compact subset of the locally convex space RG with the product
topology. In fact, one can show that Su(G) is a Choquet simplex. It is a fact that
Su(G) determines the order on G. In fact,

G+ = {a ∈ G | p(a) > 0, ∀p ∈ Su(G)} ∪ {0}.

Definition 3.21. Let (G, G+) be a simple dimension group and let u ∈ G+\{0}.
We say that a ∈ G is infinitesimal if −εu ≤ a ≤ εu for all 0 < ε ∈ Q+. (If
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ε = p
q , p, q ∈ N, then a ≤ εu means that qa ≤ pu. It is easy to see that the

definition does not depend upon the particular order unit u.) An equivalent
definition is: a ∈ G is infinitesimal if p(a) = 0 for all p ∈ Su(G). The collection
of infinitesimal elements of G form a subgroup, the infinitesimal subgroup of G,
which we denote by Inf(G).

Remark The quotient group G/Inf(G) is again a simple dimension group in the
induced order, and the infinitesimal subgroup of G/Inf(G) is trivial. Also, an
order unit for G maps to an order unit for G/Inf(G).

The following theorem summarizes some facts that are relevant for our situation,
and the proof can be found in [E].

Theorem 3.22. Let (G, G+, u) be a simple (noncyclic) dimension group with
distinguished order unit u.The map θ : G → Aff(Su(G)) from G to the additive
group of continuous affine functions on the Choquet simplex Su(G) defined by
θ(g)(p) = p(g) is a strict order preserving map (i.e. θ(g)(p) > 0 for all p ∈ Su(G)
implies g > 0). Furthermore, Im(θ) is dense in Aff(Su(G)) in the uniform norm
and contains the constant function 1, and ker(θ) = Inf(G).

Conversely, suppose K is a Choquet simplex and H is a countable dense
subgroup of Aff(K), and that θ : G → H is a homomorphism of a torsion free
countable abelian group G onto H. Then letting

G+ = {g ∈ G | θ(g)(p) > 0 all p ∈ K } ∪ {0}

we get that (G, G+) is a simple dimension group such that InfG = ker(θ). In
particular, if G = H (with θ the identity map) and G contains the constant
function 1, then Inf(G) = {0} and S1(G) is affinely homeomorphic to K by the
map sending k ∈ K to k̂ : G → R, where k̂(g) = g(k), g ∈ G.

Definition 3.23. By a rational group H we shall mean a (additive) subgroup of Q
that contains Z. We say that H is a noncyclic rational group if H is not isomorphic
to Z. Clearly (H, H+, 1) is a simple dimension group with distinguished order
unit 1, where H+ = H ∩ Q+.

Since rational dimension groups are going to play such an important role
in this paper we will give a short description of them (Cf. [F, Chapter XIII,
Section 85]). First of all they are exactly the countable torsion-free groups of
rank one. Let n = pk1

1 pk2
2 pk3

3 · · · be a supernatural number , where p1, p2, p3, . . .
are the primes 2, 3, 5, . . . listed in increasing order, and 0 ≤ ki ≤ ∞ for each i.
(If (rn)∞

n=1 is a sequence of natural numbers, then we get a supernatural number∏∞
n=1 rn in an obvious way by factoring each rn into a product of primes.) Clearly

n ∈ N if and only if ki < ∞ for all i, and ki = 0 for all but finitely many i’s.
If m = pl1

1 pl2
2 pl3

3 · · · is another supernatural number we multiply n and m as
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nm = pk1+l1
1 pk2+l2

2 pk3+l3
3 · · · , where ki + li = ∞ if either ki or li are equal to ∞.

We say that m divides n (notation m|n) if li ≤ ki for all i. For n = pk1
1 pk2

2 pk3
3 · · ·

let
G(n) =

{a

b
| a ∈ Z, b ∈ N, b|n

}
.

Then G(n) is a rational group and all rational groups are of this form. Furthermore,
G(n) is isomorphic to G(m) if and only if there exists a, b ∈ N such that an = bm.
In particular, all groups G(n), where n ∈ N, are isomorphic to G(1) = Z. We
note that G(n) is p-divisible (i.e. for every a ∈ G there exists x ∈ E such that
px = a) for some prime p if and only if p occurs with infinite multiplicity in the
factorization of n. The group G(n) can be made into a dimension group in exactly
two ways, namely by letting the positive cone G(n)+ be G(n)∩Q+ or −G(n)∩Q+,
respectively. If a = (a1, a2, . . . ) is a sequence of natural numbers with ai ≥ 2 for
all i, we associate the noncyclic rational group

{
m

a1a2···ak

∣∣∣m ∈ Z, k ∈ N
}
. Clearly

this is the same as the group G(n), where n is the supernatural number
∏∞

i=1 ai.
(Here the factorization of

∏∞
i=1 ai into products of primes is obviously understood.)

Definition 3.24. Let (G, G+, u) be a simple dimension group with order unit u.
We define the rational subgroup of G, denoted Q(G, G+, u) (or Q(G, u) for short),
to be

Q(G, u) = {g ∈ G | ng = mu for some n ∈ N, m ∈ Z} .

Proposition 3.25. Let Q(G, u) be as in Definition 3.24 The map Γ: Q(G, u) → Q
defined by Γ(g) = m

n if ng = mu, is an injective order homomorphism sending u
to 1 ∈ Z, where Q(G, u)+ = Q(G, u) ∩ G+. Thus Q(G, u) is order isomorphic to a
rational group. Furthermore, G/Q(G, u), as an abstract group, is torsion free.
Proof. The map Γ is well-defined. In fact, if ng = mu and n′g = m′u, then we
get by multiplying with n′ and n respectively: nn′g = n′mu and nn′g = nm′u.
Subtracting we get: (n′m−nm′)u = 0. Since G is torsion free we get n′m−nm′ = 0,
and so m

n = m′
n′ . Similarly we show that Γ is a group homomorphism sending u

to 1. If Γ(g) = 0, then ng = 0 for some n ∈ N, and so g = 0 by torsion-freeness of
G. So Γ is injective. It is straightforward to show that Γ(g) ≥ 0 ⇔ g ≥ 0, and so
Γ is an order isomorphism onto its image. Hence Q(G, u) is order isomorphic to a
rational group.

To show that G/Q(G, u) is torsion free, let kg = 0 for some k ∈ N, where g
is the image of g ∈ G under the quotient map. This implies that kg ∈ Q(G, u),
and so there exist n ∈ N, m ∈ Z such that nkg = mu. Hence g ∈ Q(G, u), and so
g = 0, thus proving that G/Q(G, u) is torsion free. �
Remark. Let (G1, G+

1 , u1) ∼= (G2, G+
2 , u2) by a map φ : G1 → G2. Then it is

easily seen that φ (Q(G1, u1)) = Q(G2, u2). So, loosely speaking, we have that
isomorphic dimension groups with distinguished order units have the same rational
subgroups.
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The notion of rational subgroup of a dimension group with distinguished order
unit depends heavily upon the choice of the order unit as the following example
shows.

Example 3.26. Let H be a noncyclic subgroup of Q containing Z. Let G = H ⊕Z
with G+ = {(h, k) | h > 0, k ∈ Z} ∪ {(0, 0)}. Then (G, G+) is a simple dimension
group with Inf(G) = 0 ⊕ Z. If we choose the order unit u = (1, 0) for G, then one
shows easily that Q(G, u) = H ⊕ 0 ∼= H. However, if we choose the order unit
ũ = (1, 1) for G, then Q(G, ũ) = {(k, k) | k ∈ Z} ∼= Z.

3.3.3 Ordered Bratteli diagram and the Bratteli-Vershik model

An ordered Bratteli diagram (V, E, ≥) is a Bratteli diagram (V, E) together with
a partial order ≥ in E so that edges e, e′ ∈ E are comparable if and only if
r(e) = r(e′). In other words, we have a linear order on each set r−1(v), v ∈ V \V0.
We let Emin and Emax, respectively, denote the minimal and maximal edges of
the partially ordered set E.

Note that if (V, E, ≥) is an ordered Bratteli diagram and k < l in Z+, then
the set Ek+1 ◦ Ek+2 ◦ · · · ◦ El of paths from Vk to Vl with the same range can be
given an induced (lexicographic) order as follows:

(ek+1 ◦ ek+2 ◦ · · · ◦ el) > (fk+1 ◦ fk+2 ◦ · · · ◦ fl)

if for some i with k + 1 ≤ i ≤ l, ej = fj for i < j ≤ l and ei > fi. If (V ′, E′) is a
telescoping of (V, E) then, with this induced order from (V, E, ≥), we get again
an ordered Bratteli diagram (V ′, E′, ≥).

Definition 3.27. We say that the ordered Bratteli diagram (V, E, ≥), where
(V, E) is a simple Bratteli diagram, is properly ordered if there exists a unique min
path xmin = (e1, e2, . . . ) and a unique max path xmax = (f1, f2, . . . ) in X(V,E).
(That is, ei ∈ Emin and fi ∈ Emax for all i = 1, 2, . . . .)

Let (V, E) be a properly ordered Bratteli diagram, and let X(V,E) be the
path space associated to (V, E). Then X(V,E) is a Cantor set. Let T(V,E) be
the lexicographic map on X(V,E), i.e. if x = (e1, e2, . . . ) ∈ X(V,E) and x 
= xmax
then T(V,E)x is the successor of x in the lexicographic ordering. Specifically, let
k be the smallest natural number so that ek /∈ Emax. Let fk be the successor of
ek (and so r(ek) = r(fk)). Let (f1, f2, . . . , fk−1) be the unique least element in
E1 ◦ E2 ◦ · · · ◦ Ek−1 from s(fk) ∈ Vk−1 to the top vertex v0 ∈ V0. Then T(V,E)((e1,
e2, . . . )) = (f1, f2, . . . , fk, ek+1, ek+2, . . . ). We define T(V,E)xmax = xmin. Then it
is easy to check that T(V,E) is a minimal homeomorphism on X(V,E). We note that
if x 
= xmax then x and T(V,E)x are cofinal, i.e. the edges making up x and T(V,E)x,
respectively, agree from a certain level on. We will call the Cantor minimal system
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(X(V,E), T(V,E)) a Bratteli-Vershik system. There is an obvious way to telescope
a properly ordered Bratteli diagram, getting another properly ordered Bratteli
diagram, such that the associated Bratteli-Vershik systems are conjugate – the
map implementing the conjugacy is the obvious one. By telescoping we may
assume without loss of generality that the properly ordered Bratteli diagram has
the property that at each level all the minimal edges (respectively the maximal
edges) have the same source.

Theorem 3.28 ([HPS]). Let (X, T ) be a Cantor minimal system. Then there
exists a properly ordered Bratteli diagram (V, E, ≥) such that the associated Bratteli-
Vershik system (X(V,E), T(V,E)) is conjugate to (X, T ).

Proof sketch. Let x0 ∈ X and let {Un}n∈Z+ be a decreasing sequence of clopen
sets of X such that U0 = X and Un ↘ {x0}. For each Un we construct a finite
number of towers “built” over Un. These are determined by the map λn : Un → N,
λn(y) = inf{m ∈ N | T my ∈ Un}. If λn(Un) = {m1, m2, . . . , mkn

}, then we get at
first kn towers of height m1, m2, . . . , mkn

, respectively. These may be vertically
subdivided, giving rise to more towers (some of them of the same height), such
that we obtain the following scenario: The clopen partitions {Pn}n∈Z+ of X that
the towers associated to the various Un’s generate are nested, P0 ≺ P1 ≺ P2 ≺ · · · ,
and the union of the Pn’s is a basis for the topology of X. We build the properly
ordered Bratteli diagram (V, E, ≥) by letting the vertices Vn at level n correspond
to the various towers built over Un. The ordering of the edges between levels
n − 1 and n is determined by the order in which the towers at level n traverse the
towers at level n − 1.
Remark. The simplest Bratteli-Vershik model (V, E, ≥) for the odometer (Ga, T )
associated to a = (ai)i∈N is obtained by letting Vn = 1 for all n, and the number
of edges between Vn−1 and Vn be an.

Definition 3.29. Let (X, T ) be a Cantor minimal system. Define the (additive)
coboundary map ∂T : C(X, Z) → C(X, Z) by ∂T f = f − f ◦ T −1. Define

K0(X, T ) = C(X, Z)/∂T (C(X, Z))

and give K0(X, T ) the induced order, i.e.

K0(X, T )+ =
{
[f ] ∈ K0(X, T ) | [f ] = [g], for some g ≥ 0

}
,

where [f ] denotes the class of f ∈ C(X, Z). Let 1(= [1]) denote the distinguished
order unit corresponding to the constant function 1 on X. We will in the sequel
sometimes for short only write K0(X, T ), the ordering and the order unit being
implicitly understood.
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Remark. Let (Ga, ρ
1̂
) be the odometer associated to a = (ai)i∈N. Then K0(Ga, ρ

1̂
)

is order isomorphic to the rational group associated to a, namely{
m

a1a2 · · · an

∣∣∣∣m ∈ Z, n ∈ N

}
,

and so, in particular, Q(K0(X, T ),1) ∼= Q(K0(V, E), [1]) by a map preserving the
canonical order units.

The following result, which is implicit in [GPS1, Section 2], is highly relevant
for this paper and we present a proof due to B. Host (cf. [O, Theorem 2.2]).

Proposition 3.30. Let (X, T ) be a Cantor minimal system and let p be a natural
number greater than 1. The following are equivalent:

(i) 1
p ∈ Q(K0(X, T ),1)

(ii) 2πi
p is a continuous eigenvalue for T , i.e. ∃f ∈ C(X), f 
= 0, such that

f ◦ T = e
2πi

p f .

Proof. (i) ⇒ (ii): For any set E, let 1E denote the characteristic function of
E. By condition (i) there exist continuous functions f, g : X → Z such that
pf − 1X = g − g ◦ T −1, where f is non-zero (and hence g is non-zero). Let
n ∈ Im(g) and let A = g−1({n}). Then A is a non-empty clopen set. For x ∈ A
let r(x) be the first return time of x to A, i.e. r(x) is the smallest positive integer
such that T r(x)x ∈ A. Since T is minimal the function r : A → Z is uniformly
bounded and

⋃
x∈A

⋃r(x)
j=1 T jx = X. We get:

p

⎛⎝r(x)∑
j=1

f(T jx)

⎞⎠ − r(x) =
r(x)∑
j=1

(
pf(T jx) − 1X(T jx)

)
=

r(x)∑
j=1

(
g(T jx) − g(T j−1x)

)
= g(T r(x)x) − g(x).

If x ∈ A, the right hand side is 0, and so the left hand side yields that r(x)
must be a (positive) multiple of p. Let Ã =

⋃
l≥0 T lp(A), and so, in particular,

A is an open set. Then for all x ∈ A the first return time to Ã is p. Then
X = �p−1

j=0T j(Ã) (disjoint union), and so, in particular, Ã, T (Ã), . . . , T p−1(Ã), are
clopen sets. Define f ∈ C(X) by

f(x) = e
j2πi

p if x ∈ T j(Ã).

Then one easily sees that f ◦ T = e
2πi

p f , and so 2πi
p is a continuous eigenvalue for

T .
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(ii) ⇒ (i): Let 2πi
p be a continuous eigenvalue for T , and let f ∈ C(X) be a

non-zero eigenfunction, i.e. f ◦ T = e
2πi

p f . We may assume that |f(x)| = 1 for all
x ∈ X and that A = f−1 ({1}) is non-empty. Now clearly A, T (A), . . . , T p−1(A)
are disjoint closed sets, and T

(⋃p−1
j=0 T j(A)

)
=
⋃p−1

j=0 T j(A), and so by minimality
of T , we have

⋃p−1
j=0 T j(A) = X. Hence A is clopen, and so 1A ∈ C(X). Now

p1A − 1X = (1A − 1A) + (1A − 1T (A)) + · · · + (1A − 1T p−1(A)

= 0 + (1A − 1A ◦ T −1) + · · · + (1A − 1A ◦ T −(p−1)).

Also

1A − 1A ◦ T −j =(1A − 1A ◦ T −1) + (1A ◦ T −1 − (1A ◦ T −1) ◦ T −1)
+ · · · + (1A ◦ T −(j−1) − (1A ◦ T −(j−1)) ◦ T −1)

is a coboundary, and so p1A − 1X is a coboundary. This shows that 1
p ∈ Q(K0(X,

T ),1). �
Combining Proposition 3.30 with Theorems 3.12 and 3.13 (and the remarks

just preceding these theorems), we get the following result:

Proposition 3.31. Let (X, T ) be a Cantor minimal system. Then Q(K0(X, T ),
1) completely determines the maximal equicontinuous Cantor factor of (X, T ).
Specifically, the maximal equicontinuous Cantor factor is the odometer (Ga, ρ

1̂
)

associated to the a-adic number a = (a1, a2, . . . ), where Q(K0(X, T ),1) ∼= K0(Ga,
ρ
1̂
). (The latter group is described in the Remark preceding 3.30.)

The following theorem is a fairly straightforward corollary of Theorem 3.28.

Theorem 3.32 ([HPS]). Let (X, T ) be a Cantor minimal system. Then (K0(X,
T ),K0(X, T )+) is a simple dimension group, and all (noncyclic) simple dimension
groups (G, G+, u) with distinguished order unit u are order isomorphic to (K0(X,
T ),K0(X, T )+,1) for some Cantor minimal system (X, T ). In particular, if (V, E,
≥) is a properly ordered Bratteli diagram such that (X, T ) is conjugate to (X(V,E),
T(V,E)), then K0(X, T ) ∼= K0(V, E) (as ordered groups with canonical order units),
and so, in particular, Q(K0(X, T ),1) ∼= Q(K0(V, E), [1]). Furthermore, the state
space S1(K0(X, T )) may be identified in an obvious way with the Choquet simplex
M(X, T ) of T -invariant probability measures; in fact, these two Choquet simplices
are affinely homeomorphic.

Remark. Changing the order unit corresponds dynamically to considering induced
systems. (Cf. Definitions 3.4 and 3.5.) In fact, let (V, E, ≥) be a simply ordered
Bratteli diagram, and let (V ′, E′, ≥) be the resulting simply ordered Bratteli
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diagram after we have made a finite change to (V, E, ≥). (By a finite change we
mean adding and/or removing a finite number of edges and then making arbitrary
choices of linear orderings of the edges meeting at the same vertex for a finite
number of vertices.) Then (X(V,E), T(V,E)) is Kakutani equivalent to (X(V ′,E′),
T(V ′,E′)), which can be seen as an immediate consequence of how the Vershik map
is defined. Furthermore, if (X, T ) is Cantor minimal with associated dimension
group K0(X, T ) with distinguished order unit, then choosing a new order unit, say
u, there exists a Cantor minimal system (Y, S) which is Kakutani equivalent to
(X, T ) such that (K0(Y, S), K0(Y, S)+,1) ∼= (K0(X, T ), K0(X, T )+, u). In fact,
(Y, S) is obtained from (X, T ) by making a finite change to the Bratteli-Vershik
model for (X, T ).

Theorem 3.33 ([GPS1]). The Cantor minimal systems (X, T ) and (Y, S) are
strong orbit equivalent if and only if (K0(X, T ), K0(X, T )+,1) ∼= (K0(Y, S),
K0(Y, S)+,1).

Remark. The idea behind introducing K0(X, T ) with an ordering for a Cantor
minimal system (X, T ) comes from (non-commutative) operator algebra theory.
In fact, one can show that K0(X, T ) as defined above is abstractly isomorphic
to the K0-group of the associated C∗-crossed product C (X) �T Z. The latter
K0-group comes with a natural order, which translates to the order we introduced
on K0(X, T ). It turns out that the ordered K0-group of C (X) �T Z, with its
natural scaling corresponding to the unit element, is a complete isomorphism
invariant, and so it follows that (X, T ) is strong orbit equivalent to (Y, S) if and
only if C (X)�T Z is ∗-isomorphic to C (Y )�S Z [GPS1].

Theorem 3.34 ([GPS1]). The Cantor minimal systems (X, T ) and (Y, S) are
orbit equivalent if and only if ( ˜K0(X, T ), ˜K0(X, T )+, 1̃) ∼= ( ˜K0(Y, S), ˜K0(Y, S)+,
1̃), where
˜K0(X, T ) = K0(X, T )/Inf(K0(X, T )), ˜K0(Y, S) = K0(Y, S)/Inf(K0(Y, S)), and

the positive cones and order units are induced by the quotient maps.

Let (V, E, ≥) be a properly ordered Bratteli diagram, and let (X(V,E), T(V,E))
be the associated Bratteli-Vershik system. For each k ∈ N let Pk as above denote
the paths from V0 to Vk, i.e. the paths from v0 ∈ V0 to some v ∈ Vk. For x ∈ X(V,E)

we associate the bi-infinite sequence πk(x) =
(

τk(T n
(V,E)x)

)∞

n=−∞
∈ P Z

k over the
finite alphabet Pk, where τk : X(V,E) → Pk is the truncation map. Let Sk denote
the shift map on P Z

k . Then the following diagram commutes
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X(V,E) X(V,E)

Xk Xk

T(V,E)

Sk

πk πk

where Xk = πk(X(V,E)). One observes that πk is a continuous map, and so Xk is
a compact shift-invariant subset of P Z

k . So (Xk, Sk) is a factor of (X(V,E), T(V,E)).
For k > l there is an obvious factor map πk,l : Xk → Xl, and one can show
that (X(V,E), T(V,E)) is the inverse limit of the system {(Xk, Sk)}k∈N. All the
systems (Xk, Sk) are clearly expansive. One has the following result which will be
important for us. Even though the result is well known by people familiar with
(ordered) Bratteli diagrams, no proof has been written down as far as we know.
So we will present a proof here.

Proposition 3.35. Assume (X(V,E), T(V,E)) is expansive. Then there exists
k0 ∈ N such that for all k ≥ k0, (X(V,E), T(V,E)) is conjugate to (Xk, Sk) by the
map πk : X(V,E) → Xk.

Proof. Since the πk’s are factor maps, all we need to show is that there exists
k0 such that πk is injective for all k ≥ k0. Recall that (X(V,E), T(V,E)) being
expansive means that there exists δ > 0 such that given x 
= y there exists n0 ∈ Z
such that d(T n0

(V,E)x, T n0
(V,E)y) > δ, where d is some metric on X(V,E) compatible

with the topology. Choose k0 such that d(x, y) < δ if x and y agree (at least)
on the k0 first edges. Now assume that πk(x) = πk(y) for some k ≥ k0. By the
definition of πk this means that, for all n ∈ Z, τk(T n

(V,E)x) = τk(T n
(V,E)y), and so

d(T n
(V,E)x, T n

(V,E)y) < δ for all n ∈ Z because of our choice of k0. This contradicts
that d(T n0

(V,E)x, T n0
(V,E)y) > δ. Hence πk is injective for all k ≥ k0, proving the

proposition. �

3.4 Order embeddings of dimension groups associated to
factor maps.

We have seen that Toeplitz flows can be characterized by being (expansive)
almost one-to-one Cantor minimal extensions of odometer systems (cf. Theorem
3.13). The following theorem will therefore be important for us since it relates
the K0-groups of the extension and the factor, respectively, of Cantor minimal
systems.

Theorem 3.36 ([GW, Proposition 3.1]). Let (X, T ) and (Y, S) be Cantor minimal
systems such that (X, T ) is an extension of (Y, S) by the factor map π : X → Y .
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Then π∗ : K0(Y, S) → K0(X, T ) defined by π∗([h]) = [h◦π] is an order embedding,
i.e. [h] ≥ 0 if and only if π∗([h]) ≥ 0 for h ∈ C(Y, Z). (Here [h] and [h ◦ π] denote
the class of h and h ◦ π in K0(Y, S) and K0(X, T ), respectively.)

Remark. The proof of Theorem 3.36 has two ingredients. The first is the use of
the Gottschalk-Hedlund lemma [GH], which in our context says that g ∈ C(X,
Z) is a coboundary, i.e. g = f − f ◦ T −1 for some f ∈ C(X, Z), if and only
if supn

∣∣∣∑n−1
i=0 g(T ix0)

∣∣∣ < ∞ for some x0 ∈ X. This will establish that π∗ is
well-defined. The second ingredient, which gives the order embedding, is applying
Theorem 3.22 (cf. also Theorem 3.32) together with the fact that π induces a
surjective map of M(X, T ) onto M(Y, S).

4 Proofs of the main results
The proofs of Theorem 2.1, Theorem 2.2 and Theorem 2.3 stated in Section 2 will
rest heavily upon results obtained earlier by Gjerde-Johansen [GJ] and Sugisaki
[S1], [S2], [S3], where the paper [S3] is extending and being inspired, so to speak,
by an analogous result proved by Giordano, Putnam, Skau in [GPS2]. The proofs
in [S1], [S2] and [S3] are rather technical, involving very clever manipulations of
Bratteli diagrams. Looking carefully at crucial steps in the proofs of the main
theorems in [S2] and [S3], in particular, we could deduce more specific properties of
the Bratteli diagrams that appear, starting with our basic setting. This, combined
with the Bratteli-Vershik model for Toeplitz flows established in [GJ] and the
embedding result of [GW], will, loosely speaking, give the proofs of our three first
theorems. (The proof of the fourth theorem, Theorem 2.4, requires a somewhat
different approach.) However, this should not be construed as saying that our
theorems are simply corollaries of these earlier results. But one could perhaps say
that the results we obtain represent the culmination of the study of (topological)
Toeplitz flows from the perspective of orbit equivalence and/or K0-groups.

Lemma 4.1. The Bratteli–Vershik model associated to a properly ordered Bratteli
diagram (V, E, ≥) with the ERS-property has the odometer corresponding to the
supernatural number of (V, E) (cf. Definition 3.16) as a factor. The factor map π
is almost one-to-one. If the Bratteli-Vershik system (X(V,E), T(V,E)) is expansive,
then for some k we get that πk(xmin) is a Toeplitz sequence and πk : X(V,E) → Xk

is a conjugacy map between (X(V,E), T(V,E)) and (Xk, Sk) (cf. Proposition 3.35).
In particular, (X(V,E), T(V,E)) is a Toeplitz flow.

Proof. We will give the proof by appealing to Figure 2, where we have drawn on the
left a particular Bratteli diagram (V, E) with the ERS-property. Let the incidence
matrices be (Mn)∞

n=1, say, with rn equal to the (constant) row sum of Mn. We
“collapse” (V, E) in an obvious way to create the diagram (W, F ) on the right in
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(V,E)

...

(W,F )

...

Figure 2: Assuming the edges in both (V, E) and (W, F ) are ordered left to right,
the factor map π will take the dashed path in (V, E) to the dashed path in (W, F ).
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Figure 2, where |Wn| = 1 for all n and the number of edges between Wn−1 and Wn

is rn. Let them be linearly ordered as f
(n)
1 < f

(n)
2 < · · · < f

(n)
rn . The factor map

π : X(V,E) → X(W,F ) is defined by reading off the labels, so to say. That is, let x =
(en)∞

n=1 ∈ X(V,E) and let en be the kn’th edge in the linear ordering of r−1(r(en)).
We then map en to f

(n)
kn

, thus getting π(x) ∈ X(W,F ). It is easy to see that π is a
continuous map that intertwines T(V,E) and T(W,F ). Also, π−1{π(xmin)} = {xmin},
where xmin is the unique minimal path of X(V,E), and so π is almost one-to-one.
The map π is onto since the image of π is a compact, hence closed, subset of
X(W,F ), and π clearly maps orbitT(V,E)(xmin) to a dense subset of X(W,F ). The
factor (X(W,F ), T(W,F )) is by construction an odometer with the properties stated.
If (X(V,E), T(V,E)) is expansive, then for some k ∈ N, πk : X(V,E) → Xk is a
conjugacy map by Proposition 3.35. As pointed out in Section 3.3.3 we may
assume that at each level all the minimal edges (respectively the maximal edges)
have the same source. This scenario is obtained by telescoping the original diagram,
and all essential properties are preserved by this operation. The ERS-property of
(V, E) implies that πk(xmin) is a Toeplitz sequence, a fact that is easily shown; we
omit the details. So (X(V,E), T(V,E)) is a Toeplitz flow (which, incidentally, also is
a consequence of Theorem 3.13). �

Remark. Lemma 4.1 is the easy part of Theorem 8 of [GJ]. Conversely, if one starts
with a Toeplitz flow (X, T ) one can construct a properly ordered Bratteli diagram
(V, E, ≥) such that (V, E) has the ERS-property and (X, T ) ∼= (X(V,E), T(V,E)).
This is achieved by merging the structure of Toeplitz flows as described in Section
3.2 with the construction described in the proof sketch of Theorem 3.28. (See [GJ,
Theorem 8].) In [S1] it is proved that for any ordered Bratteli diagram (V, E, ≥)
such that (V, E) has the ERS-property, there exists another properly ordered
Bratteli diagram (V ′, E′, ≥) such that (V ′, E′) has the ERS-property, with K0(V ′,
E′) ∼= K0(V, E) (as ordered groups with distinguished order units) and (X(V ′,E′),
T(V ′,E′)) is Toeplitz. By Theorem 3.32, K0(X, T ) ∼= K0(X(V ′,E′), T(V ′,E′)), and
so (X, T ) is strong orbit equivalent to (X(V ′,E′), T(V ′,E′)) by Theorem 3.33.

Lemma 4.2. Let π : (X, T ) → (Y, S) be an almost one-to-one factor map between
Cantor minimal systems. Then

K0(X, T )/π∗(K0(Y, S))

is torsion free.

Proof. We will give a heuristic argument in order to highlight the basic idea
behind the proof, avoiding the somewhat messy details that tend to obscure the
understanding. (For a more detailed proof, see [S3, Theorem 3.1].) Since π is a
factor map, we know from Theorem 3.36 that π∗ : K0(Y, S) → K0(X, T ) is an
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order embedding where π∗([h]) = [h ◦ π]. (Here h ∈ C(Y, Z) and [h] and [h ◦ π]
denote the classes of h and h ◦ π in K0(Y, S) and K0(X, T ), respectively.) We will
construct specific Bratteli-Vershik models for (X, T ) and (Y, S), respectively. Let
x0 ∈ X be such that π−1(π(x0)) = x0. Let {Un}n∈Z+ be a decreasing sequence
of clopen sets in Y such that U0 = Y and Un ↘ {y0}, where y0 = π(x0). We now
proceed as described in the proof sketch of Theorem 3.28. Let {Pn}n∈Z+ be the
nested sequence of clopen partitions of Y associated to the tower constructions
built over the various Un’s, such that the union of the Pn’s is a basis for the
topology of Y . Let (W, F, ≥) be the resulting properly ordered Bratteli diagram,
from which we get a Bratteli-Vershik model for (Y, S). Consider the clopen sets
Ũn = π−1(Un), n ∈ Z+. Clearly {Ũn}n∈Z+ is a descending sequence of clopen
subsets of X such that Ũ0 = X, Ũn ↘ {x0}. Proceeding again as described
in the proof sketch of Theorem 3.28 we get a simply ordered Bratteli diagram
(V, E, ≥), from which we get a Bratteli-Vershik model for (X, T ). Now K0(X,
T ) ∼= K0(V, E) and K0(Y, S) ∼= K0(W, F ) as ordered groups with canonical
order units. We note that the functions λn : Un → N and λ̃n : Ũn → N defined
by λn(u) = inf{m ∈ N | Smu ∈ Un} and λ̃n(ũ) = inf{m ∈ N | T mũ ∈ Ũn},
respectively, are related by λn(u) = λ̃n(ũ) if ũ ∈ π−1(u). This has implications
for how K0(W, F ) is embedded in K0(V, E). Loosely speaking, each w ∈ Wn

(which corresponds to a tower Tw over Un) is split into a finite number of vertices
v1, v2, . . . , vl in Vn (this corresponds to the tower Tw being subdivided into l

towers Tv1 , Tv2 , . . . , Tvl
over Ũn, each of the same height as Tw). The factor map

π : X(V,E) → X(W,F ) is a kind of “collapsing” map similarly to the one exhibited
in Figure 2. While the scenario exhibited in Figure 2 is very simple, it does
illustrate the essential point. In fact, the single vertices at levels 1, 2 and 3 of
(W, F ) in Figure 2 split into three, two and two vertices, respectively, at levels 1,
2 and 3 of (V, E). The image of the group element of K0(W, F ) that is −7, say,
at level 2 of (W, F ) in Figure 2 is represented by (−7, −7) at level 2 of (V, E).
In general, a group element in K0(W, F ) which is represented as being b ∈ Z at
w ∈ Wn, and zero at the other vertices in Wn, is mapped to the group element in
K0(V, E) that is represented by being b at each of the vertices in Vn associated to
w, and zero elsewhere. This extends by linearity in an obvious way to any element
in K0(W, F ) that are represented as a vector at level n. This “locally constancy”
property, which is preserved at the higher levels under the canonical mappings of
the Bratteli diagram, is what completely characterizes the embedding of K0(W, F )
into K0(V, E). This clearly implies that K0(V, E)/π∗(K0(W, F )) is torsion free.
If namely g ∈ K0(V, E) is such that kg ∈ π∗(K0(W, F )) for some k ∈ N, then kg
is represented by some “locally constant” vector at level n of (V, E), say. But
then clearly g is also represented by a “locally constant” vector (at some higher
level of (V, E) than n, perhaps), and hence g lies in π∗(K0(W, F )). �
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Remark. The converse of Lemma 4.2 is not true. In a recent paper by Glasner
and Host they construct Cantor minimal systems (Y, S) and (X, T ) such that
(X, T ) is an extension of (Y, S) by a map π : (X, T ) → (Y, S) which is not an
almost one-to-one extension, and K0(X, T )/π∗(K0(Y, S)) is non-zero and torsion
free [GHo, Appendix C]. In fact, their example can be adjusted to make (Y, S) an
odometer and (X, T ) to be expansive.

Lemma 4.3. Let (V, E, ≥) be a simple Bratteli diagram with the ERS-property.
Let Mn be the incidence matrix between levels n − 1 and n, and let rn be the
(constant) row sum of Mn. Let m be the supernatural number

∏∞
n=1 rn. Let

H = Q(K0(V, E), [1]) where [1] is the canonical order unit of K0(V, E). Then H
is order isomorphic to the rational group G(m) by a map sending [1] to 1 ∈ G(m).
Furthermore, H is represented in an obvious way by constant vectors at each level
of (V, E), i.e. vectors of the form (a, a, a, . . . , a)tr ∈ Z|Vn| for each n (tr denotes
the transpose).

Proof. The proof is an immediate consequence of the fact that

Mn(1, 1, . . . , 1)tr = (rn, rn, . . . , rn)tr

where (1, 1, . . . , 1)tr ∈ Z|Vn−1|, (rn, rn, . . . , rn)tr ∈ Z|Vn|, which yields

MnMn−1 · · · M1(1) =
(

n∏
k=1

rk,

n∏
k=1

rk, . . . ,

n∏
k=1

rk

)tr

∈ Z|Vn|.

�
Remark. We will say that (V, E) is an ERS realization of G ∼= K0(V, E) with
respect to a subdimension group H ⊆ G if H is embedded in K0(V, E) as in
Lemma 4.3.

Lemma 4.4. Let (J, J+, 1) be a noncyclic rational group (cf. Definition 3.23),
and let (Y, S) be an odometer such that K0(Y, S) ∼= J (as ordered groups with
distinguished order units). Let ι : J → G be an order embedding of J into a simple
dimension group (G, G+, u) preserving the order units, such that G/ι(J) is torsion
free. There exists a properly ordered Bratteli diagram (V, E, ≥) such that:

(i) (V, E) has the ERS-property

(ii) K0(X(V,E), T(V,E)) ∼= G (as ordered groups with distinguished order units).

(iii) (X(V,E), T(V,E)) is an almost one-to-one extension of (Y, S).

(iv) (Y, S) is the maximal equicontinuous factor of (X, T ).
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(v) (J, J+, 1) ∼= Q(K0(V, E), [1]).

Proof. Assertions (ii) and (iii) are the main result of [S3], namely Theorem 1.1
(see also Corollary 1.2). Since the properly ordered Bratteli diagram associated to
(Y, S) is very special – having a single vertex at each level – the almost one-to-one
extension of (Y, S) constructed in the proof of Theorem 1.1 in [S3], which is
obtained by constructing a properly ordered Bratteli diagram (V, E, ≥) based on
the one associated to (Y, S), will have property (i). (For details, cf. Remark 3.2
and Proposition 3.3 of [S3].) The assertion (iv) is a consequence of Theorem 3.12.
The assertion (v) follows from (iii) and Lemma 4.3. In fact, K0(Y, S) embeds into
K0(V, E) as constant vectors at each level of (V, E). (Cf. the proof of Lemma 4.2,
keeping in mind that in our case the properly ordered Bratteli diagram (W, F, ≥)
appearing there and being associated to (Y, S), has one vertex at each level.) �

Lemma 4.5. Let (V, E, ≥) be a properly ordered Bratteli diagram such that (V, E)
has the ERS-property. Let 0 ≤ t < ∞. There exists a properly ordered Bratteli
diagram (Ṽ , Ẽ, ≥) such that:

(i) (Ṽ , Ẽ) has the ERS-property

(ii) K0(Ṽ , Ẽ) ∼= K0(V, E) (as ordered groups with distinguished order units).

(iii) (X(Ṽ ,Ẽ), T(Ṽ ,Ẽ)) is expansive.

(iv) h(T(Ṽ ,Ẽ)) = t.

Proof. The assertions (ii), (iii) and (iv) are the main result (Theorem 1.1) of [S2].
(Note that by Theorems 3.32, 3.33 and Proposition 3.8, respectively, strong orbit
equivalence is related to K0-groups, and expansiveness is related to subshifts,
respectively.) Now in the proof of Theorem 1.1 of [S2] various simple Bratteli
diagrams are constructed, modifying the given Bratteli diagram (V, E). However,
each modification preserves the ERS-property of the original Bratteli diagram
(V, E). (For details, cf. Propositions 4.2, 4.4 and Sections 5.1, 5.3 and 5.4 of [S2].)
So the properly ordered Bratteli diagram (Ṽ , Ẽ, ≥) that eventually arises in the
proof of Theorem 1.1 of [S2] will have all the properties listed in Lemma 4.5. �
Proof of Theorem 2.1. Let (X, T ) be a Toeplitz flow (with h(T ) = t). By Theorem
3.13, (X, T ) is an almost one-to-one extension of an odometer (Y, S), the factor
map being π : X → Y . By Theorem 3.36, π∗ : K0(Y, S) → K0(X, T ) is an order
embedding sending the distinguished order unit of K0(Y, S) to the one in K0(X,
T ). Set G = K0(X, T ), H = π∗(K0(Y, S)). Then H is a noncyclic subgroup of G
of rank one such that H ∩ G+ 
= {0}.

Conversely, assume that (G, G+) is a simple dimension group containing the
noncyclic subgroup H such that H ∩ G+ 
= {0}. Let u ∈ H ∩ G+ be any non-zero
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element. We consider the simple dimension group (G, G+, u) with distinguished
order unit u. Now H is a subgroup of the rational subgroup Q(G, u) of G. In
fact, if h ∈ H then there exists m, n ∈ Z such that nh = mu, since H is of rank
one. (We may assume without loss of generality that n ∈ N.) In particular, we
get that Q(G, u) is noncyclic. Now we apply Lemma 4.4 with J = Q(G, u) and
ι : J → G the inclusion map. We keep the notation of Lemma 4.4. Apply Lemma
4.5 to the properly ordered Bratteli diagram (V, E, ≥) constructed in Lemma 4.4
to get (Ṽ , Ẽ, ≥) with the properties listed in Lemma 4.5. Set X = X(Ṽ ,Ẽ) and
T = T(Ṽ ,Ẽ). Then K0(X, T ) ∼= K0(Ṽ , Ẽ) ∼= K0(V, E) ∼= G as ordered groups with
distinguished order units. This completes the proof of Theorem 2.1. �
Proof of Theorem 2.2. Set J = Q(G, u). By assumption J is a noncyclic rational
group (hence of rank one). The inclusion map ι : J → G is an order embedding, and
by Proposition 3.25, G/J is torsion free. Let (Y, S) be an odometer system such
that K0(Y, S) ∼= J (as ordered groups with distinguished order units). Applying
Lemma 4.4 we get a properly ordered Bratteli diagram (V, E, ≥) satisfying the
properties listed in Lemma 4.4. Now apply Lemma 4.5 to (V, E, ≥) to get (Ṽ , Ẽ, ≥)
satisfying the properties listed in Lemma 4.5. Let (X, T ) = (X(Ṽ ,Ẽ), T(Ṽ ,Ẽ)). By
Lemma 4.1 we get that (X, T ) is a Toeplitz flow. Finally, invoking Proposition 3.30,
we get that (X, T ) satisfies all the properties listed in Theorem 2.2. (Recall that
by Remark to Proposition 3.25 we have (Q(G, u) ∼=)Q(K0(V, E), [1]) ∼= Q(K0(Ṽ ,

Ẽ), [1]).) �
Proof of Theorem 2.3. By Theorem 2.2 we get the inclusion G ⊆ Tt. The inclusion
Tt ⊆ G is a consequence of Theorem 3.13 and Proposition 3.31. Hence we have
G = Tt.

The inclusion B ⊆ G follows from Lemma 4.3. The inclusion Tt ⊆ B follows
from the main result, Theorem 8, of [GJ]. Altogether this implies that Tt = G = B.
�
Proof of Theorem 2.4. We prove the first part: Let H be a dense rational subgroup
of Q. Let x0 be any point in K, and let E be a countable set in Aff(K), the
continuous, real-valued affine functions on K, such that E is a dense (in the uniform
topology) subset of {a ∈ Aff(K) | a(x0) = 0}. Let G be the (countable) additive
subgroup of Aff(K) generated by H and E , where we identify every element in
H with a constant affine function. Then (G, G+, 1) is a simple dimension group
with order unit the constant function 1, and G+ is the obvious positive cone;
furthermore, Inf(G) = {0}, and the state space S1(G) is affinely homeomorphic
with K (cf. Theorem 3.22). It is a simple matter to check that Q(G, 1) = H. By
Theorem 2.2 there exists a Toeplitz flow (X, T ) such that (G, G+, 1) ∼= (K0(X, T ),
K0(X, T )+,1) and h(T ) = t. By Theorem 3.32 we get that M(X, T ) is affinely
homeomorphic to S1(G), and so to K. Now if (G1, G+

1 , 1) ∼= (G2, G+
2 , 1), where
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G1 and G2 are constructed as G above, then Q(G1, 1) ∼= Q(G2, 1) as ordered
groups by a positive map sending 1 to 1. Clearly one can choose an uncountable
family of non-isomorphic groups H of the type described above. Hence there
exists an uncountable family of non-isomorphic dimension groups (G, G+, 1) of
the type constructed above. The corresponding uncountable family of Toeplitz
flows (X, T ) are then pairwise non-orbit equivalent by Theorem 3.34.

We prove the second part: Let (Y, S) be associated to the a-adic group Ga,
where a = (a1, a2, . . . ). Choose H to be the rational group associated to a, i.e.
H =

{
m

a1a2···an
| m ∈ Z, n ∈ N

}
. As above we identify H with constant affine

functions on K in an obvious way. Let E be as above, and let G be generated
by H and E as above. Let N be any countable torsion-free abelian group, and
let G̃ = G ⊕ N , with G̃+ = G+ ⊕ 0 and order unit u = 1 ⊕ 0. It is easily seen
that Q(G̃, u) ∼= Q(G, 1) ∼= H as ordered groups with distinguished order units.
Clearly Inf(G̃) = 0 ⊕ N ∼= N . Also, Su(G̃) ∼= S1(G) ∼= K. By Theorem 2.2 there
exists a Toeplitz flow (X̃, T̃ ) such that K0(X̃, T̃ ) ∼= G̃ (as ordered groups with
distinguished order units) and h(T̃ ) = t. By Proposition 3.31 we get that the
maximal equicontinuous factor of (X̃, T̃ ) is (Y, S), and by Theorem 3.32 we get
that M(X̃, T̃ ) ∼= K. Clearly there exists an uncountable family of pairwise non-
isomorphic groups N of the above type. The associated simple dimension groups
G̃ = G ⊕ N are then pairwise non-isomorphic. (Note that if (G1, G+

1 , u1) ∼= (G2,

G+
2 , u2), then InfG1 ∼= InfG2.) The corresponding Toeplitz flows (X̃, T̃ ) are then

pairwise non-strong orbit equivalent by Theorem 3.33. This finishes the proof of
Theorem 2.4. �

5 Examples
We will first state some results that – combined with our theorems – will provide
a rich source of examples of Toeplitz flows. We first need a definition.

Definition 5.1. Let (V, E) be a simple Bratteli diagram such that |Vn| ≤ l < ∞
for all n. We say that (V, E) is of finite rank. If |Vn| = k for all n = 1, 2, . . . , we
say that (V, E) is of rank k.

Remark. If (V, E) is of finite rank we may telescope (V, E) to get a new Bratteli
diagram of rank some k. It is easily seen that if (V, E) is of rank k, then the
dimension group K0(V, E) has rank ≤ k. Furthermore, the state space S[1](K0(V,
E)) of K0(V, E) has at most k extreme points, and so is a (finite-dimensional)
m-simplex for some m ≤ k.
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Theorem 5.2 ([DM]). Let (V, E, ≥) be a properly ordered Bratteli diagram such
that (V, E) is of finite rank. Then (X(V,E), T(V,E)) is either expansive or it is an
odometer.
Theorem 5.3. Let (V, E, ≥) be a properly ordered Bratteli diagram such that
(V, E) has finite rank. Then the entropy of (X(V,E), T(V,E)) is zero.

We will prove Theorem 5.3 at the end of this section. Combining Theorem 5.2
and Theorem 5.3 with Lemma 4.1 we get the following result.
Theorem 5.4. Let (V, E, ≥) be a properly ordered Bratteli diagram with the
following two properties:

(i) (V, E) is of finite rank (and so K0(V, E) is of finite rank).

(ii) (V, E) has the ERS property (and so Q(K0(V, E), [1]) is noncyclic).
Then (X(V,E), T(V,E)) is either an odometer or a Toeplitz flow of entropy zero. In
particular, if K0(V, E) is not a (noncyclic) rational group, then (X(V,E), T(V,E))
is a Toeplitz flow.

There is a partial converse to Theorem 5.4 due to Handelman [H, Theorem 8.5].
(Incidentally, the paper [H] treats a more general situation under the assumption
that the dimension groups in question have a unique state.) We formulate his
result using our terminology and notation.
Theorem 5.5. Let (G, G+, u) be a simple dimension group with order unit u.
Assume Q(G, u) is noncyclic and that Su(G) is a one-point set. (We say that
G has a unique state, the order unit being understood.) Assume rank(G) = k.
There exists a simple Bratteli diagram (V, E) of rank at most k + 1 with the
ERS property, such that (G, G+, u) ∼= (K0(V, E), K0(V, E)+, [1]) and (V, E) is an
ERS realization of G with respect to Q(G, u). (Cf. Remark after Lemma 4.3.)
Giving (V, E) a proper ordering the associated Bratteli-Vershik system is either
an odometer or a uniquely ergodic Toeplitz flow of zero entropy.
Remark. In particular, the scenario described in Theorem 5.5 occurs when
G = H ⊕ Zm, where H is a noncyclic rational group, and G+ = H+ ⊕ 0, with
u = 1 ⊕ 0. Clearly Inf(G) = 0 ⊕ Zm ∼= Zm, and Q(G, u) ∼= H (as ordered
groups with order unit u and 1, respectively). Clearly G has a unique state and
rank(G) = m + 1. So by Theorem 5.5 there exists an ERS realization (V, E) of G
with respect to H such that (V, E) has rank at most m + 2.

Another example where Theorem 5.5 applies is G = Q + Qα ⊆ R, where α is
an irrational number, and G inherits the ordering from R, i.e. G+ = G ∩ R+, the
order unit being 1. Then Q(G, 1) = Q and rank(G) = 2. So by Theorem 5.5, G
has an ERS realization (V, E) with respect to Q, with (V, E) of rank at most 3.
(In fact, in this particular case it suffices with a rank equal to 2, cf. Example 5.6.)

We will give explicit examples below illustrating some of these scenarios.
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Example 5.6. Let G = Q + Qα ⊆ R with G+ and order unit 1 as above, and so
Q(G, 1) = Q. We may assume without loss of generality that 0 < α < 1

2 . Let

α = 1
a0+

1
a1+

1
a2+

· · ·

be the continued fraction expansion of α. Then Q+Qα is order isomorphic to the
inductive limit

Q
A1−→ Q2 A2−→ Q2 A3−→ Q2 A4−→ · · · (*)

where the incidence matrices are

A1 =
[
a0
1

]
, Ai =

[
ai−1 1
1 0

]
, i ≥ 2,

and the order unit is the canonical one, i.e. represented by 1 ∈ Q. This follows
from the fact that the dimension group Z + Zα ⊆ R is represented by (*) with
the Q’s replaced by Z’s. (Cf. [Sk, 3.3, Example (ii)].) We will assume a0 = 1 and

so A1 =
[
1
1

]
. (We make this assumption just for convenience; nothing essential is

changed by this, but the ensuing construction becomes more streamlined.) We
will show that the inductive limit in (*) is order isomorphic to the inductive limit

Z
B1−→ Z2 B2−→ Z2 B3−→ Z2 B4−→ · · · (**)

where the incidence matrices Bn have equal row sums – hence the associated
simple Bratteli diagram has the ERS property. The Bn’s are obtained from
the An’s by the following procedure, where we have adapted the construction
in the proof of Theorem 11 in [GJ] to our setting: Let A2

[
1
1

]
=

[
α1
α2

]
. Then

J ′
2A2

[
1
1

]
=
[
1
1

]
, where J ′

2 is the diagonal 2 × 2 matrix diag(α−1
1 , α−1

2 ). Let m2

be the least common multiple of the denominators of the entries of J ′
2A2, and let

k2 = 2m2. Set J2 = k2J ′
2. Then all entries of J2A2 are in N and are divisible by 2.

Furthermore, J2A2

[
1
1

]
=
[
k2
k2

]
. Assume we have constructed J2, . . . , Jn−1. Let J ′

n

be the appropriate diagonal matrix over Q+ such that J ′
nAnJ−1

n−1

[
1
1

]
=
[
1
1

]
. Let

mn be the least common multiple of the denominators of the entries of J ′
nAnJ−1

n−1,
and let kn = nmn. Set Jn = knJ ′

n. Then all entries of JnAnJ−1
n−1 are in N and

are divisible by n. Furthermore, JnAnJ−1
n−1

[
1
1

]
=
[
kn

kn

]
, where we observe that

n is a divisor of kn. Set Bn = JnAnJ−1
n−1. Setting J0 = id, J1 = id, we get the

commutative diagram
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Q Q2 Q2 Q2

Q Q2 Q2 Q2

· · ·

· · ·

G :

H :

A1 A2 A3 A4

B1 B2 B3 B4

J0 = id J1 = id J2 J3

which establishes an order isomorphism between the two associated inductive limits
G and H (respecting the distinguished order units). Now H is order isomophic to
the dimension group associated to (**) since the latter is a divisible group (because
n is a divisor of each entry of Bn). We conclude that G = Q + Qα ∼= K0(V, E)
(as ordered groups with distinguished order units), where (V, E) is the Bratteli

diagram associated to (**). Since Bn

[
1
1

]
=
[
kn

kn

]
, we see that (V, E) has the ERS

property. Furthermore, since n divides kn we observe that (V, E) is a rank 2 ERS
realization of G with respect to Q(G, 1) (= Q).

Finally, any proper ordering of (V, E) will yield a Bratteli-Vershik (BV-)
system which is a uniquely ergodic Toeplitz system of entropy zero. An intriguing
question is if by considering all proper orderings there arises an uncountable
family of pairwise non-conjugate BV-systems? These BV-systems are of course
all strong orbit equivalent, having the same K0-group Q + Qα.

Example 5.7. 2-symmetric Bratteli diagrams (V, E) and their associated simple
dimension groups. Let |Vn| = 2 for all n ≥ 1 and let the incidence matrix Mn

between levels n − 1 and n be 2-symmetric, i.e. of the form

Mn =
[

ln kn

kn ln

]
, where 1 ≤ kn < ln

for all n ≥ 2, and M1 =
[
1
1

]
. (See Figure 3.) So rank(V, E) = 2 and (V, E) has

the ERS-property (as well as the ECS property, i.e. equal column sums). (The
2-symmetric Bratteli diagrams were studied in [FM] in connection with classifying
the symmetries of UHF C∗-algebras. Cf. also [B, Chapter III, Section 7.7.4].) It
will be convenient to write for n ≥ 2:

ln = qn + rn

2 , kn = qn − rn

2 , where qn and rn have the same parity,

and so qn = ln + kn, rn = ln − kn. By a simple computation we get that

MnMn−1 · · · M2 = 1
2

[
sn + tn sn − tn

sn − tn sn + tn

]
, where sn =

n∏
i=2

qi, tn =
n∏

i=2
ri.
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V0

E1M1 =

[
1
1

]

V1

E2M2 =

[
3 2
2 3

]

V2

E3M3 =

[
5 1
1 5

]

V3

Figure 3: A 2-symmetric Bratteli diagram

We note that sn and tn have the same parity and that

sn

tn
=

n∏
i=2

qi

ri
↗

∞∏
i=2

qi

ri
= α.

Two scenarios can occur. Firstly, if α < ∞ then the state space S[1](K0(V, E)) of
K0(V, E) has two extreme points. Specifically,

K0(V, E) =
{(

k

2sn
,

l

2tn

)∣∣∣∣ k, l ∈ Z with the same parity, n ∈ N

}
⊆ Q2 ⊆ R2.

K0(V, E)+ consists of those elements in K0(V, E) that lie inside the cone deter-
mined by the two half-lines with slopes α and −α respectively. The canonical
order unit [1] of K0(V, E) is represented by (1, 0)

(
=
( 2

2 , 0
))

and the two extreme
states are determined by projecting orthogonally to the two lines with slopes α
and −α, respectively. We note that K0(V, E) does not split as a direct sum of
two (noncyclic) rational groups, although it ”almost” does. (More on that when
describing the unique state case below.) Furthermore, Q(K0(V, E), [1]) is the
subgroup of K0(V, E) represented by{(

k

2sn
, 0
)∣∣∣∣ k ∈ Z even, n ∈ N

}
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and so is order isomophic to the noncyclic rational group G(m), where m =∏∞
i=1 qi.
The second scenario occurs when α = ∞. Then S[1](K0(V, E)) = {τ} is a

one-point set. The unique state τ is intimately related to the Perron-Frobenius
(P-F) eigenvalues and eigenvectors of the incidence matrices {Mn}∞

n=2. In fact,
qn is the P-F eigenvalue og Mn with left (right) eigenvector (1, 1) ((1, 1)tr). The
other eigenvalue is rn with left (right) eigenvector (1, −1) ((1, −1)tr). The state τ
is determined by

τ(vn) =
1

q1q2 · · · qn
(1, 1) →

vn

where vn denotes the element in K0(V, E) represented by the column vector →
vn∈ Z2

at level n of the Bratteli diagram, and where we for normalization purposes have
set q1 = 2 so that τ([1]) = 1. In particular we get that

τ(K0(V, E)) =
{

m

q1q2 · · · qn

∣∣∣∣m ∈ Z, n ∈ N

}
= Q (⊆ Q).

Furthermore, τ(H) =
{

m
q1q2···qn

∣∣∣m ∈ Z, n ∈ N
}

where H = Q(K0(V, E), [1]),
since H is represented as ”constant” vectors at each level of (V, E), cf. Lemma
4.3. We notice that τ(H) = 2τ(K0(V, E)) = 2Q. Now we focus on the interesting
special case where rn = 1, for all n ≥ 2. Hence ln = kn + 1, and qn is odd for all
n ≥ 2. In particular, Q = τ(K0(V, E)) is not 2-divisible. Now ker(τ) = Inf(K0(V,
E)) and K0(V, E)+ = τ−1(R+ −{0}). We observe that ker(τ) ∼= Z since τ(vn) = 0
for all n ≥ 1, where →

vn= (1, −1)tr (cf. the notation above), and Mn(1, −1)tr = (1,
−1)tr for all n ≥ 2. Thus we get the short exact sequence

0 −→ Z −→ K0(V, E) τ−→ Q −→ 0

However, there is no splitting K0(V, E) = Q ⊕ Z, with τ the projection onto Q,
the reason being that Q is not 2-divisible. In fact, if such a splitting occurred
then clearly Q would be equal to the rational subgroup H. This would imply
that τ(H) = Q and, combining this with τ(H) = 2Q, we would get that Q is
2-divisible which is a contradiction. (For more details, cf. [H, Section 8].)

Remark. By our results we know that all proper orderings of a 2-symmetric
Bratteli diagram yield Bratteli-Vershik maps that are Toeplitz flows. One can
show that when rn = 1 (n ≥) and (V, E) is given the left-right ordering (meaning
that we order the edges ranging at the same vertex from left to right), then the
Toeplitz sequence that corresponds to the (unique) minimal path is regular (cf.
Definition 3.14).
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Proof of Theorem 5.3 By telescoping we may assume that k = |V1| = |V2| =
· · · (= rank(V, E)), where V = {V0, V1, V2, . . . }, E = {E1, E2, . . . }. By Theorem
5.2 we may assume that (X(V,E), T(V,E)) is expansive, since if not it would be
an odometer which has zero entropy. This implies in particular that we may
assume that k ≥ 2. By telescoping the initial part of (V, E) we may assume that
(X(V,E), T(V,E)) is conjugate to (X1, S1) (and hence conjugate to (Xn, Sn) for all
n ≥ 1) by the map π1 : X(V,E) → X1 (= π1(X(V,E)) ⊆ EZ

1 (= P Z
1 )) defined by

π1(x) =
(

τ1(T n
(V,E)x)

)∞

n=−∞
, where τ1 : X(V,E) → E1 (= P1) is the truncation

map. (Cf. Proposition 3.35 and the description of key constructions associated
to (V, E, ≥), as well as notation and terminology preceding the proposition.) For
v ∈ Vn we consider all the paths, say {p1, p2, . . . , pl} from v0 ∈ V0 to v, which will
be a subset of Pn. Let those paths have the ordering p1 < p2 < · · · < pl, say, in
the induced lexicographic ordering. Then w(v) = τ1(p1)τ1(p2) · · · τ1(pl) will be a
word over E1. Let Wn = {w(v) | v ∈ Vn}. Notice that |Wn| = k for all n. Define
(XWn

, SWn
) to be the subshift of the full shift on EZ

1 , where XWn
is the set of

all bisequences formed by concatenation of words in Wn. Now we observe that
EZ

1 ⊇ XW1 ⊇ XW2 ⊇ · · · ⊇ X1. In fact, this is an immediate consequence of how
the Vershik map is defined.

Recall that the entropy of a subshift (X, T ) is h(T ) = limq→∞ 1
q log |Bq(X)|,

where Bq(X) is the set of words of length q occurring in X. (Cf. [Wa, Theorem
7.13].) Clearly h(S1) ≤ h(SWn) for all n, and so it suffices to show that h(SWn) → 0
as n → ∞. Let ln be the length of the shortest word in Wn. (Clearly ln → ∞
as n → ∞.) Assume w ∈ XWn

is a subword of length m of a concatenation of s
words from Wn. Then we easily see that

s ≤
⌈

m

ln

⌉
+ 1

where �x� is the smallest integer which is larger or equal to x. There is at most
ks different ways to concatenate s words in Wn, and so we get

|Bm(Wn)| ≤
� m

ln
�+1∑

s=0
ks = k� m

ln
�+2 − 1

k − 1 ≤ k� m
ln

�+2 ≤ k
m
ln

+3.

This implies that 1
n log |Bm(Wn)| ≤

m
ln

+3
n log k → 0 as n → ∞. Hence h(SWn

) → 0
as n → ∞, thus completing the proof. �
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