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Abstract
This thesis presents a general three-dimensional method for pathfinding, based
on a partial differential equation. The method relies on a grid with hazard-values,
describing the risk associated with every point in the domain. Analogous to a
fluid flow problem, we construct an artificial permeability based on the hazard-
values, and we use this to calculate streamlines that constitute the potential paths
from a starting point α to the target β. We investigate the different parameters
and ways to manipulate the problem to yield sufficiently flyable streamlines.

The method is geared towards finding a terrain-following, flyable path for an
unmanned aerial vehicle(UAV) through a hostile terrain. In special, we consider
the potential for a program implementation to run on-board the UAV during
mission flight. For this application, the available memory and processor resources
can be restricted. This sets strict requirements on the pathfinding algorithm.
Particularly fast solvers exist for solving PDE’s discretized using finite differences
on regular grids. We implement a multigrid method for the resulting linear set
of equations, with optimal memory usage, linear complexity and a potential for
parallelization.
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Sammendrag
I denne masteroppgaven presenteres en generell tredimensjonal metode for ruteplan-
legging, basert på en partiell differensialligning. Metoden er avhengig av et
grid med hasardrater, som beskriver risikoen assosiert ved hvert punkt innenfor
domenet. Analogt med et fluidproblem konstruerer vi en kunstig permeabilitet
basert på hasardratene, og denne brukes til å beregne strømlinjer mellom punkt
α og punkt β. Blant strømlinjene velges en bane som løsning. Vi undersøker
nærmere de ulike parametre og innfallsvinkler for å manipulere problemet slik at
vi kan finne tilstrekkelig flybare strømlinjer.

Metodens mål er å finne en flybar bane for en drone gjennom et fiendtlig
terreng. Spesielt vurderer vi potensialet for å implementere et program som
kan kjøres på dronen under oppdrag. For denne problemstillingen kan det være
begrenset ledig minne- og prosessorkapasitet, og dette setter strenge føringer på
ruteplanleggeren. Det finnes raske løsere for differensialligninger som er diskretis-
ert med endelig differansemetoder på regulære grid. Vi implementerer en multi-
gridmetode som løser det resulterende ligningssettet med optimal minnebruk,
lineær kompleksitet og et potensial for parallelisering.
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Notation

(ξ, η) Reference variables.

α Starting point.

β Target location.

∆ Error associated with the computational domain.

κ The thermal conductivity.

λ Represents a general eigenvalue of a matrix.

F A mapping from Ω to the reference domain Ω̂.

J The jacobian of a transformation.

K A Krylov subspace.

O(g) We say f = O(g) as x→ x0 provided there exists a constant C such that
|f(x)| ≤ C|g(x)| for all x sufficiently close to x0.[4]

µ The viscosity of a fluid.

ν The number of streamlines calculated. In the multigrid algorithm we use
ν1 and ν2 to represent the number of pre- and post-smoothings.

Ω The domain all paths between α and β can be in.

ω Parameter used in the weighted Jacobi method.

∂Ω The boundary of the domain Ω.

Φ The pressure in a fluid.

φ The porosity in a porous medium.

ρ The density of a fluid.
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σ Source function for the heat equation.

n Normal vector pointing out of Ω.

u A velocity vector field.

ζ The curvature of a path.

A Represents a matrix for a linear set of equations.

Cn(Ω) Space of continuous functions over Ω such that the 1st through nth order
derivatives are continuous.

COL Cut-off-level.

e The error in a numerical solution.

f A general source function in a PDE.

G(V,E) A graph with a set of vertices V , and a set of edges E. G is also used
to denote an iteration matrix.

H Scalar three dimensional cost grid containing risk or hazard data.

Ih2h An intergrid operator, 2h and h can also be switched.

K An artificial permeability based on the cost grid H.

k The permeability of a fluid.

Kc Cut-off-value.

L Length in general. Lx, Ly and Lz represents the length scales of the
domain Ω.

M A pre-conditioner.

m The total number of unknowns used in general.

N Even number for the size of the grid used in the multigrid algorithm.

P An arbitrary path through Ω.

P ? The optimal path.

Popt Approximation to the optimal path P ?.

r The residual.
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S(P ) Accumulated hazard over the path P .

si A set of seed points for the streamlines.

SN (P ) Numerically summed hazard over the path P .

T The temperature in the heat equation.

u Symbolizes the solution of an equation in general.

v Used in general to denote a vector. In the context of graphs, we use it as
a particular vertex v ∈ V .

w A weight function for the graph G.
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Chapter 1

Introduction

1.1 Motivation

The task of revealing the shortest path between two points, or pathfinding is a
very common problem in many fields of application. Although we talk about the
shortest path, this does not have to represent physical distance. In general, short-
est path-algorithms can be used to solve problems where we want to minimize a
quantity between two points. In practice, many problems can be transformed into
a shortest path-problem, and we enjoy the benefits of these types of applications
on a daily basis:

The obvious application of the shortest path-problem is for transport route
planning. Websites such as google maps use specialized shortest path-algorithms
to find the best route between two destinations. In other applications shortest
path algorithms can be used to solve sub-problems of a bigger problem, such as
when you compile a TEX-document, shortest path-algorithms are used to typeset
the text[11]. This means the typesetting of this thesis has at some level been
done with a shortest path algorithm.

Numerous algorithms have been invented with the aim of solving shortest
path-problems on graphs. In graph theory, we define the graph G(V,E) where V
is the set of all vertices, and E is the set of all edges between the vertices. The
graph has an associated weight function w : E → R, mapping edges to real-valued
weights. The path trough G which minimizes the sum of all the weights along its
edges is the solution to the shortest path problem. In figure 1.1 we see a simple
example of a graph where the shortest path between vertex a and g is indicated
by the red weights.

1
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Figure 1.1: A simple graph with 7 vertices and 10 edges. The shortest path
between a and g is indicated with red weights

In 1959, Dijkstra invented his famous algorithm, which carries his name. Di-
jkstra’s algorithm solves the single-source shortest path problem on a weighted di-
rected graphG = (V,E) for the case in which all edge weights are non negative[10].
There are many versions of Dijkstra’s algorithm and some can achieve a very
good runtime complexity. However, we must be able to represent the problem as
a graph.

In this project, we want to solve a path finding-problem; taking an Unmanned
Aerial Vehicle(UAV) with minimal risk from point α to point β. The path should
exploit the topography for stealth and avoid known threats to minimize the risk.
Furthermore, the UAV must follow a time- and fuel schedule, and the path must
take must-fly-zones and exclusion zones into account. In addition, the path must
satisfy the UAV’s manoeuvrability requirements. The total problem is complex
and has many technical challenges.

The aim of this thesis is to find an aerial path in three dimensions - this is
a continuous problem by nature. Traditionally, path finding problems are solved
with popular algorithms such as Dijkstra’s and A?, but we need an algorithm
that can run on a UAV with limited computational power in real-time. Parallel
shortest path-algorithms exist, but it can be hard to achieve good speedup with
these. Hence, there is a need for an efficient algorithm that scales satisfactory in
parallel.

To make the task parallelizable we can exploit the fact that our problem is
continuous by nature, by modelling it as a Partial Differential Equation(PDE).
The motivation for using a PDE comes from its analogies to physics. One analogy
is to fluid flow, and its ability to find a path of least resistance. In a porous
media the fluid will tend to flow through the high permeability zones. Similarly,
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Figure 1.2: Image of an example terrain around Oslo which we will use when
calculating shortest paths.

in a heat transport-problem, the energy will move in the zones of high thermal
conductivity.

Due to applications in the oil industry and technology in general, a great
amount of time and effort has been spent on optimizing the solution methods
for fluid problems. Because of this, highly parallelizable algorithms with good
complexity exist for solving such PDE’s.

For our path finding-problem we are given a cost grid H, containing weights
that symbolize the UAV’s risk or hazard. The cost grid is based on topographical
data, as seen in figure 1.2. Using information from this cost grid as an analogy
to permeability or conductivity, we will model the problem analogously to a fluid
or heat problem. The goal of this thesis is to solve the pathfinding problem,
such that a terrain following, flyable path can be found using a fast and memory
efficient algorithm.



4 CHAPTER 1. INTRODUCTION

1.2 Overview of the Thesis
Chapter 2

We cover the main theory that is relevant for the thesis. The problem is presented
in detail before we cover general theory on PDE’s and how to solve them. The
method we have developed is presented and finally we cover some aspects of
Dijkstra’s algorithm.

Chapter 3

We comment on our program implementation and we list some of the essential
parts of the source code.

Chapter 4

The results from our methods and implementations are presented. The results
mainly revolve around testing different aspects of the pathfinding algorithm, but
another big part is related to the specialized linear equation solver, the multigrid
algorithm.

Chapter 5

We make some further comments on the results from the previous chapter. We
discuss the properties of the set of streamlines which the path is chosen from.
We point out weaknesses and suggest some improvements for future work.

Chapter 6

We present the conclusions of our method for the pathfinding problem.



Chapter 2

Theory

In this chapter, our focus will be on describing the theory behind our path finding
algorithm and relevant background. The mathematics we rely on is mainly a
means to do satisfactory modelling of the problem, however we will try do be as
mathematically exact as possible.

2.1 Problem Statement

The key aspects which constitutes our problem is described in more detail in this
section. The main aim is to find a path from α to β with minimal risk, through a
hostile environment. The path will also have to fulfill the following requirements:

• Avoid terrain: The UAV must avoid crashing into the terrain and other
physical obstacles.

• Minimize threats: To minimize the risk of being detected, the path
should make use of the topography. Hiding in the contours of the topog-
raphy, the UAV is less likely to be ”seen” by radar and other devices. The
path should also avoid known threats, such as missile defence systems.

• Exclusion zones: Some zones are to be avoided completely and the ex-
pressions exclusion zone and no-flight-zone is used interchangeably in this
report to refer to these zones. An airport is one example of an exclusion
zone.

• Must-Fly-Zones: The path must be coerced to go via certain locations
we call must-fly-zones. In some cases communication with the UAV can
force us to introduce a must-fly-zone along the path.

5
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• Time- and fuel schedule: The UAV has limited amounts of fuel which
sets restrictions on path length. In some cases the time could also be set
explicitly to have an upper bound. If time is a critical element, one must
sometimes take a less optimal path with respect to risk.

• UAV Manoeuvrability: The UAV can only accelerate, respond and turn
at a certain level, and these restrictions in manoeuvrability must be consid-
ered in the path finding algorithm. This imply that an optimal path must
satisfy some smoothness and curvature requirements reflecting the UAV’s
capabilities.

2.2 Minimization Formulation

This path finding problem can be formulated as an optimization problem. We
want to find the path with minimal hazard along it, that also satisfies the problem
requirements defined above. Mathematically, we do not know if there exists a
unique solution, but we will assume that an optimal solution P ? of our problem
exists.

For a given path P ⊂ Ω we define the accumulated hazard along this path as

S(P ) =

∫
P

Hds. (2.1)

This line integral is a means to quantify the total risk along a given path, P .
Using equation (2.1) we can find P ? by solving

min
P∈Cd(Ω)

S(P ) (2.2)

subject to L(P ) ≤ Lmax
ζ(P ) ≤ ζmax

...

where L is the length of P and ζ is the curvature. We are minimizing over the
space of d-times continuously differentiable functions, the constant d is depending
on the manoeuvrability requirements. The distance, Lmax indicates that the path
length should be below a certain maximum, both with consumption of time and
fuel in mind. The length Lmax is coupled with the curvature, since the UAV
will burn fuel fast when accelerating rapidly. The ζmax indicates the maximum
curvature the UAV can follow, so we should expect this is intertwined with the
smoothness requirement.
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Problem (2.2) becomes increasingly complex to solve when we add many path
requirements and constraints.

Our intuition suggests that fluids will find the path of least resistance from α
to β, and this can be used as an analogy to minimize the hazard. This problem
can be formulated as a PDE. However, we cannot assume that the path Popt found
by the PDE will yield the optimal path P ?, which solves the problem defined in
equation (2.2).

2.3 Hazard

The physical domain we are working on has a discrete representation with an
associated hazard, H(x, y, z) that represents the risk in each point. The domain
is a box in three dimensions, where the bottom represents the physical ground.
We have access to the hazard which is based on the geographical data and is
preprocessed by KONGSBERG, it is represented as a regular grid with layers of
varying step size in the vertical direction, and stored as a three dimensional array
of hazard values. The array or matrix, is also referred to as the cost grid.

Figure 2.1: The cost grid H is a regular grid with varying step size in the vertical
direction.

In figure 2.2 we have plotted the topography map and the bottom layer of
the associated cost grid for the eastern part of Norway around the capital. The
hazard in a point (x, y, z) is based on the visibility from the neighbouring terrain;
in general H(x, y, z) will increase when z increases. This is reflected in the layers
in z-direction of H. The first layer in H has mean of 8.1 × 10−6, while the
second layer has a mean of 1.1 × 10−5. Notice in figure 2.2c that large areas
with open water is not very attractive, since the UAV is very visible, the valleys
however, represents potentially attractive areas. Since low level flight yields the
least risk, it is sufficient to only consider the first layer in the cost grid, and a
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two-dimensional model. Extension to three dimensions is not complicated, but
it will result in more computational time for little reward.

(a) The topography map.

(b) First layer in the cost grid. (c) Second layer in the cost grid.

Figure 2.2: On the top, the topography is visualized where brighter colors rep-
resent greater altitude. The first two layers in the cost grid is visualized. The
first layer in H has mean of 8.1 × 10−6, while the second layer has a mean of
1.1 × 10−5. The areas of the least risk are the blue regions in the first layer of
the grid.
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2.4 PDE Approach
Above we have briefly mentioned the motivation for modelling the problem by a
PDE. The idea is to exploit the analogy to physics and its well developed solution
methods. However, we must incorporate the above mentioned requirements into
the formulation.

Initially, we expect to avoid terrain, minimize the risk, go through must-fly-
zones and avoid exclusion zones simply by solving our PDE, given a sufficient
formulation. Consider the problem of going from α to β via the must-fly-zone β̃.
This can be split into two separate problems that can be solved successively as α
to β̃, then β̃ to β. There might be problems with the smoothness of incoming and
outgoing flight directions from the point β̃. An exclusion zone can be implemented
by increasing the hazard for every point in the exclusion zone.

The only requirements that is quite different in nature from the rest are those
on time and fuel. Ideally our solution will be a path that minimizes the hazard
sufficiently, but when we introduce a time schedule we can be forced to take a
more hazardous path. In general, the PDE might impose smoother solutions
then graph-algorithms depending on the implementation, but the drawback can
be the optimality of the solution. Depending on the specific hazard of a prob-
lem, the paths extracted from the solution may need post-processing to satisfy
manoeuvrability requirements. Before we go into the details of the path finding
algorithm we will present some relevant theory concerning the PDE’s and how
to solve them.

2.5 Partial Differential Equations
Solving PDE’s numerically is a central topic in computational science. Problems
in chemistry, biology and all of physics give rise to a vast number of different
PDE’s - these equations can be solved with high accuracy with the help of math-
ematics and computer science. In this section we will describe some relevant
partial differential equations for this thesis.

Poisson’s Equation

One of the most famous equations is without a doubt Poisson’s equation. This
simple equation is often used as a test equation for numerical methods, and in
many cases it has an analytical solution. The equation can be presented on the
following form:

−∇2u = f in Ω, (2.3)

where Ω in general denote the mathematical domain in which the equation govern.
As we will see in the equations below, they also have a second order derivative,
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similar to the left hand side of equation (2.3). When the source function is zero
f = 0, in Poisson’s equation, it is referred to as the Laplace equation, and the
term ∇2 is often referred to as the laplacian.

Flow in Porous Media:

By mass conservation we get the continuity equation in a porous medium;

(φρ)t +∇(ρu) = f in Ω (2.4)

where φ is the porosity, ρ is the density, u is the velocity and f is the source
function. From the continuity equation we can derive the flow equation using
Darcy’s law [2]

u = −k
µ
∇Φ in Ω, (2.5)

where k is the permeability, µ is the viscosity and Φ represents pressure. We
insert (2.5) into (2.4) and look at the steady state to obtain

−∇ · (ρk
µ
∇Φ) = f in Ω. (2.6)

Darcy’s law is valid for creeping, incompressible flows.

The Heat Equation:

Based on conservation of energy and Fourier’s Law, the anisotropic heat equation
is derived. For a full derivation, see [3]. We skip the steps and show the resulting
equation:

−∇ · (κ∇T ) = σ in Ω. (2.7)

Here κ is the thermal conductivity, T is the temperature and σ is the heat source
function.

Common for both the heat equation and the porous medium flow equation
above is the fact that when ρk

µ and κ are constants, they are both reduced to
Poisson’s equation, although the solution represents different physical quantities.

In the equations above we have not included boundary conditions, but in order
for a PDE to have a solution, boundary conditions must be defined in addition
do the governing equation. The governing equation is usually defined within a
domain Ω, while the boundary conditions are defined at the boundary ∂Ω of the
domain.
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2.6 Solving PDE’s

Partial differential equations are often used to model a physical process within
a given domain Ω. Some equations have continuous analytical solutions, but for
the most practical use, we are dependent on numerically approximated solutions.

A computer can only process discrete problems, this means the continuous
solution of a PDE must be approximated by a finite amount of points. The
continuous PDE, which holds for an infinite number of points in Ω must be
converted into a finite linear system of equations. The process of reducing a PDE
into a linear system of equations is called discretization.

2.6.1 Discretization

The most common forms of discretization techniques for solving PDE’s numeri-
cally are; finite differences, finite elements, finite volume and spectral methods.

The Finite difference method is applicable for simple geometries such as rect-
angles and cubes, where the internal data can be well represented on a regular
grid. This is the case if the values in the grid vary in a relatively smooth man-
ner. Finite difference stencils couples information from the neighbouring points
together, but there is no direct connection between data points further away.
This means that many parallel algorithms are well suited for solving the result-
ing equation sets from finite difference discretization. These sets of equations
typically result in a matrix which exhibits the following qualities:

• Positive definiteness: We say a matrix is positive definite if:

vTAv > 0 ∀v ∈ Rm, (2.8)

where A ∈ Rm×m.

• Diagonally dominance: A matrix A is diagonally dominant if

|ajj | ≥
i=m∑

i=1,i6=j

|aij |, j = 1, ...,m. (2.9)

• Symmetry: A is symmetric if A = AT .

• Sparsity: A sparse matrix consists of primarily zeros.

• Banded: The non-zero elements is located on diagonal bands through the
matrix.
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If a matrix A is both symmetric and positive definite, we say A is SPD. There
are several very effective algorithms that can be used to solve the resulting set
of equations possessing the characteristics mentioned above, among them is the
multigrid algorithm. For these reasons the Finite Difference (FD) method will be
used in this thesis. Discretization using FD is described in more detail at further
down in this section.

All of the discretization methods mentioned above will produce a linear system
of equations to be solved. Depending on the method used, the system of equations
will have different qualities. Every discretization method mentioned, except for
spectral methods, will tend to produce sparse matrices. For m unknowns the
discretized system will be represented on the form

Ax = b, (2.10)

where A ∈ Rm×m is a matrix and x, b ∈ Rm are vectors.
When we have defined an equation, discretized it and represented as in (2.10),

the rest is a matter of linear algebra. There are many algorithms for solving linear
systems, but this can only be done if the system has a solution. We can mention
two cases for which there exist a solution of (2.10) [9]:

1 If the matrix A is nonsingular, then there exist a unique solution given by
x = A−1b.

2 If the matrix A is singular, then there exist solutions if b ∈ Ran(A). If
Ax0 = b, then A(x0 + v) = b for all v ∈ Ker(A). The nullspace Ker(A)
is at least one-dimensional when A is singular, this means (2.10) has an
infinite amount of solutions.

For the sake of context we will mention some alternative discretization tech-
niques that are commonly used. The finite element method (FEM) is commonly
used in engineering applications with complex geometry. In this method, the
physical domain is approximated by a tessellation consisting of a finite number
of elements. The elements are often triangles in two dimensions and tetrahe-
drons in three dimensions. The method produces a linear system of equations for
the unknowns in the vertices where the elements are tied together. An example
of a finite element grid and the solution is plotted in figure 2.4. Figure 2.4b
shows how the element method can be used to solve problems on geometries with
curved edges, this would require a much more complex problem definition on the
boundary if we wanted to use finite differences. Figure 2.4a shows the solution
of the linear elasticity equation for a cubical region with tetrahedral elements.
The solution is the displacement of the vertices, and the stresses indicated by the
colour of the elements is calculated from the displacement.

The finite volume method, like the finite element method, has the advantage
that it can solve problems with complex geometries. The finite volume method is
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(a) Solution of the linear elasticity equation. (b) Two dimensional triangulation of a circle.

Figure 2.3: Finite element solution of the linear elasticity equation from contin-
uum mechanics. The solution is calculated on a course tetrahedral grid, showing
the displacement and stresses for a cube affected by gravity.

the preferred method for solving conservation laws [5], and the method is widely
used in computational fluid dynamics.

Finally we mention the concept of spectral methods, where the solution of
a PDE can be represented as a sum of special basis functions. These methods
are not as suited for complex geometries like the FEM-method is, but for certain
problems, spectral methods can exhibit excellent convergence rates.

2.6.2 Finite Difference Discretization

As mentioned, FD will be used in this thesis and there is many variations of finite
difference approximations, but we will only use the central difference in this thesis.
The finite difference method approximates the partial derivatives locally with a
low order Taylor series expansions [5]. As an example we derive a very common
approximation for the second order derivative, the central difference. We expand
u(x) with a Taylor series to the left and right of x.

u(x+ h) = u(x) + h
∂u(x)

∂x
+
h2

2!

∂2u(x)

∂x2
+
h3

3!

∂3u(x)

∂x3
+
h4

4!

∂4u(x)

∂x4
+ . . .

u(x− h) = u(x)− h∂u(x)

∂x
+
h2

2!

∂2u(x)

∂x2
− h3

3!

∂3u(x)

∂x3
+
h4

4!

∂4u(x)

∂x4
+ . . .

Where h is the step length between the grid points. When we sum together the
two equations above, the terms with odd powers in h will cancel and we are left
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-41 1

1

1

Figure 2.4: The central difference stencil for a two dimensional uniform grid.

with an approximation of the second order derivative.

u(x+ h)− 2u(x) + u(x− h) = h2 ∂
2u

∂x2
+O(h4) (2.11)

The big O notation O(h4) simply means a function that decreases asymptotically
as h4 when h→ 0. We divide the equation by h2 and rearrange to get the central
difference formula:

∂2u

∂x2
=
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2). (2.12)

This approximation is second order accurate, seen by the term O(h2). If we
halve the step size h, the error should be reduced by a factor of four. Higher
order schemes for the Laplacian may be used to improve accuracy.

The approximation uses information from neighbouring points straight to
the left and right. We can use the central difference formula in multiple spatial
directions, approximating functions in two and three dimensions as well. In figure
2.4 the two dimensional central difference stencil indicates how the approximation
couples information from the neighbouring points together.

2.7 Solving Linear Sets of Equations

A big part of this thesis revolves around solving the the linear system of equations
efficiently. Because of this we will spend some time introducing important the-
ory on linear equation-solvers. We split the methods into two categories; direct
methods and iterative methods. Direct methods will produce a solution after a
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number of floating-point operations(FLOPs) that is known in advance[6]. Direct
methods are robust and reliable, but this comes at the price of lower efficiency,
and they are not so easily parallelized.

Iterative methods will iterate a procedure on an initial approximation until
the satisfied accuracy of the solution is reached. Specialized effective iterative
methods can be tailored for a given problem, but in general they are not as
robust as direct methods.

When the number of unknowns in the coefficient matrix increases, the asymp-
totic runtime becomes increasingly important. For sparse systems, iterative meth-
ods can yield better runtime complexities and require less memory, in addition
they are easy to parallelize - this is why iterative methods is preferred for prob-
lems with a large number of unknowns.

2.7.1 Direct Methods

The most commonly used direct algorithms areGauss elimination, LU-factorization
and Cholesky’s method. Gauss elimination and LU-factorization will find the so-
lution given nonsingular matrix A. Cholesky’s method requires that the matrix
is SPD in addition to non-singular. Cholesky’s method is the fastest, but all of
the three direct methods mentioned have a complexity of O(m3) in general.

For the Poisson problem there exist methods with very good complexity in
the order of O(m log(m))[9]. This can be done by utilizing an analytic expression
for the eigenvalues of A and the discrete sine transform(DST) to calculate the
solution. Fast direct Poisson solvers are possible because of the simple matrix
structure, but this is a very special case. If we want effective solvers for more
complex problems, iterative methods can be the best choice.

2.7.2 Iterative Methods

For large sparse linear systems, iterative methods can be very attractive due
to the computational efficiency and low memory requirement, as well as being
parallelizable. We cover the basic details of some iterative solvers, since this will
be implemented in this thesis. We define the error with respect to equation (2.10)
as

ek = x− xk (2.13)

where xk represents the approximation to the solution x after k iterations. In
situations where we know x, we can measure the error e directly, and this is used
to make sure our implementations behave as expected.

To measure the quality of the approximation when x is unknown, the residual
is used:

rk = b−Axk. (2.14)
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Many iterative methods such as relaxation use information from the residual since
r = 0 imply that xk = x. When r → 0, usually xk → x. Finally we define the
residual equation which is defined from the error and residual as

Ae = r. (2.15)

The residual equation is used in the multigrid method[7] which we cover in section
2.7.2. We can distinguish between two classes of iterative methods; relaxation-
and projection methods.

Relaxation Techniques

These methods modify the components of a given approximation xk until con-
vergence of (2.10) is reached[9]. Separately these techniques do not yield very
good convergence, but great solvers can be built which make use of relaxation
methods. The most famous relaxation methods are the Jacobi iteration and
Gauss-Seidel iterations. To understand the Jacobi iteration, we will look at the
components of an approximation xk, denoted by ξ(k)

i for the ith component. We
want to annihilate the components of the residual vector rk in order to get the
next approximation xk+1. On component form we can write

(b−Axk+1)i = 0

which leads to the following iteration for the ith component

ξ
(k+1)
i =

1

aii

bi − m∑
j=1,j 6=i

aijξ
(k)
j

 , i = 1, ...,m. (2.16)

The Jacobi iteration can be written on vector form if we split the matrix A into
two. We let D be the diagonal entries of A, and we define Ā as

Ā = A−D. (2.17)

which yields
xk+1 = D−1(b− Āxk). (2.18)

Jacobi iterations can be implemented from both equation (2.16) and (2.18), but
we will focus on the latter. Vector operations are implemented faster in MATLAB
than point-wise iterations using for-loops.

Algorithm 1 Jacobi iteration on vector form
1: procedure Jacobi( A, b, x0)
2: for k = 0, 1, ..., until convergence do
3: xk+1 := D−1(b− Āxk)
4: end for
5: end procedure



2.7. SOLVING LINEAR SETS OF EQUATIONS 17

The Jacobi iteration uses information from the kth iterate to build the next
approximation xk+1. The Gauss-Seidel iteration is similar to the Jacobi iteration,
but utilizes the newly updated solution to get better convergence per iteration.
On component form the iteration is described:

ξ
(k+1)
i =

1

aii

bi − i−1∑
j=1

aijξ
(k+1)
j −

m∑
j=i+1

aijξ
(k)
j

 , i = 1, ...,m. (2.19)

In algorithm 2 we can see that ξ(k+1)
i is updated and used to calculate the next

components of xk.

Algorithm 2 Gauss-Seidel iteration on component form
1: procedure Gauss_Seidel( A, b, x0)
2: for k = 0, 1, ..., until convergence do
3: for i = 1, ...,m do
4: σ := 0
5: for j = 1, ...,m do
6: if i 6= j then
7: σ := σ + aijξj
8: end if
9: end for

10: ξi := (bi − σ)/aii
11: end for
12: end for
13: end procedure

The convergence rate of Jacobi and Gauss-Seidel is considerably reduced for
inhomogeneous systems, but both methods can be improved by utilizing Block
Relaxation Schemes, also called line relaxation. The solution vector x will often
be a global representation of the unknowns in a grid, and the block relaxation or
line relaxation scheme will update a sub-vector of the solution vector at a time.
It is common to split the solution vector column-major or row-major for a two
dimensional grid. When the solution vector has been split into sub vectors the
coefficient matrix A will consist of blocks Aii associated with each sub vector.
The block Jacobi iteration is showed in pseudo code in algorithm 3. For each
iteration with the block Jacobi we must do one matrix-vector product for the
global vector xk, and we solve a smaller set of equations for every block. In
algorithm 3, Wi is a projection operator for the ith block and Vi represents an
extension operator of the ith block into the global solution.
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Algorithm 3 Block Jacobi iteration
1: procedure Block_Jacobi( A, b, x0)
2: for k = 0, 1, ..., until convergence do
3: for i = 1, ...,number of blocks do
4: Solve Aiiσi = WT

i (b−Axk)
5: xx+1 := xk + Viσi
6: end for
7: end for
8: end procedure

With the block Jacobi iteration expressed, it is only a small change needed to
get the block Gauss-Seidel iteration. The block Jacobi updates the new global
vector for every block, but it does not use the updated solution to calculate
the next block. In block Gauss-Seidel we update the solution and perform the
matrix-vector product Ax for every block per iteration.

Relaxation methods are guaranteed to converge to a solution of (2.10), if the
matrix is diagonally dominant, but we may get convergence without this being
satisfied also.

We split projection methods into two classes; the orthogonal - and oblique
projections. Two of the most common projection methods are the conjugate
gradient(CG) method and the generalized minimal residual(GMRES) method.
These two methods are projection processes onto Krylov subspaces, and repre-
sent respectively an orthogonal- and an oblique projection method. The Krylov
subspace is defined as:

Kk(A, r0) = span{r0, Ar0, A
2r0, ..., A

k−1r0}. (2.20)

GMRES is the most general method of the two, requiring that the matrix A is
positive definite, where the CG in addition require that A is symmetric. We
will present the conjugate gradient algorithm, since this is implemented in our
multigrid algorithm for this project.

Conjugate Gradients

For the CG algorithm we search for the approximate solution xk ∈ x0 + Kk of
problem (2.10) by imposing the Petrov-Galerkin condition[9]

b−Axk ⊥ Kk. (2.21)

We simply state the best known formulation of CG for the general case. In section
2.7.2 we take a look at a more specialized formulation of CG.
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Algorithm 4 Conjugate Gradient
1: procedure CG( A, b, x0)
2: Calculate r0 := b−Ax0, p0 := r0
3: for j = 0, 1, ..., until convergence do
4: α := (rj , rj)/(Apj , pj)
5: xj+1 := xj + αjpj
6: rj+1 := rj − αjApj
7: βj := (rj+1, rj+1)/(rj , rj)
8: pj+1 := rj+1 + βjpj
9: end for

10: end procedure

We state the convergence result for the conjugate gradient, see [9] for a de-
tailed derivation. Given the solution x and approximation xk we get the following
bound

||x− xk||A ≤ 2


√

λmax

λmin
− 1√

λmax

λmin
+ 1

k ||x− x0||A, (2.22)

where λmax and λmin represent the largest and smallest eigenvalue of A and the
A-norm of x is defined as

||x||A = (Ax, x)1/2. (2.23)

From (2.22), we see that the convergence of CG is dependent on Eig(A). We know
A is SPD, such that all eigenvalues are positive. The ratio λmax

λmin
is referred to as

the condition number, and a smaller condition number means faster convergence
with CG. As a standalone solver, the CG-algorithm is seldom used in the form
stated in algorithm 4, but in combination with an effective preconditioner M ,
conjugate gradient can be a powerful solver. Suppose M is SPD and can be split
into

M = MLMR. (2.24)

Then we can change variables and solve the following problem:

M−1
L AM−1

R x = M−1
L b, x̃ ≡M−1

R x. (2.25)

Preconditioning is about reducing the condition number to decrease the number
of iterations needed to reach convergence. There is much more to preconditioning
then what we have mentioned, but our intention is to note the idea.

The Multigrid Method

As previously mentioned one can utilize relaxation techniques to build faster
methods. Multigrid methods are examples of specialized algorithms that can
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achieve extraordinary runtime complexities. Parallel implementations of the
multigrid method are often scalable, meaning that the speedup does not deterio-
rate fast when increasing the number of processors. The low runtime of multigrid
methods comes at the cost of less generality. The methods mentioned above have
in common that they solve general system of equations. Multigrid methods were
initially designed to solve discretetized elliptic PDE’s[9].

Multigrid methods employ a hierarchy of grids with varying resolution to get
optimal convergence using relaxation techniques. Grid transfer operations are
essential for multigrid methods since these methods rely on transferring informa-
tion between different grids. We start by looking at the simple case with two
grids where the finest Ωh have step size h and the coarsest grid Ω2h have double
the step size of Ωh. Moving from a coarse grid to a fine grid, is referred to as
prolongation. Restriction is used when we go from a fine grid to a coarse grid.
In the following we assume the grid is of size m + 1 in every spatial direction,
where m is even. More details can be found in [9]. When we prolong from a

Figure 2.5: A grid transfer operation: interpolation of a surface from the coarse
grid Ω2h to the finer grid Ωh.

coarse to a fine grid we use an interpolation operator. In figure 2.5 we illustrate
the interpolation operator on a surface in MATLAB.

The Interpolation Operator

We denote interpolation as Ih2h : Ω2h → Ωh. The grid is doubled in size for each
spatial direction and Ih2h finds the new function values in the half steps of the
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previous grid Ω2h by linear interpolation. For a given vector υ2h ∈ Ω2h we get
υh = Ih2hυ

2h in Ωh. For the one dimensional case Ih2h is defined as:{
vh2i = v2h

i

vh2i+1 = (v2h
i + v2h

i+1)/2
, i = 1, ...,

m

2
+ 1.

We move up to two-dimensions and the interpolation becomes
vh2i,2j = v2h

ij

vh2i+1,2j = (v2h
ij + v2h

i+1,j)/2
vh2i,2j+1 = (v2h

ij + v2h
i,j+1)/2

vh2i+1,2j+1 = (v2h
ij + v2h

i+1,j + v2h
i,j+1 + v2h

i+1,j+1)/4

for
{

i = 1, ..., m2 + 1
j = 1, ..., m2 + 1

The two-dimensional case can be described as the tensor product between the
one-dimensional interpolation in y- and x-direction:

Ih2h = Ihy,2h ⊗ Ihx,2h.

The stencil for the two dimensional case is

1

4

 1 2 1
2 4 2
1 2 1


The open brackets represent the fact the we prolong the previous grid by calcu-
lating the points in between.

The Restriction Operator

Defined by I2h
h : Ωh → Ω2h, the restriction operator have two common variations.

Since the grid is reduced with half the step size in each direction, we can simply
inject the values at every other grid point. The injection operator will simply
remove every other line in each direction. A better restriction that require a bit
more calculating is called full weighting(FW). In one spatial direction the FW is

υ2h
i =

1

4
(υh2i−1 + υh2i + υh2i+1). (2.26)

For a two dimensional problem the full weighting can be expressed as the tensor
product of equation (2.26) in x- and y-direction, and the stencil is:

1

16

 1 2 1
2 4 2
1 2 1

 .
With the intergrid operations described we turn the next important concept of
smoothing.
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Smoothing

The relaxation methods mentioned above can be written in the following form:

xk+1 = Gxk + f (2.27)

where G is the iteration matrix for a given method. To fully solve a linear system
of equations with a relaxation method will require many iterations, but there are
components of the error that are damped quickly with few iterations. Residuals
in the direction of the eigenvectors of G associated with the large eigenvalues are
reduced quickly. The eigenvectors mentioned are called high frequency modes,
while the smooth modes associated with the low frequency are slowly damped
with a relaxation method. In the context of multigrid, relaxation methods are
used to dampen the high frequency modes of the residual with a couple of itera-
tions - this is referred to as smoothing. A key principle is that when we restrict
the solution x to a coarser grid, many of the low frequency modes are mapped
into high frequency modes, which can be effectively reduced by smoothing.

Multigrid V-Cycle

Knowing that we can smooth different components of the residuals on different
grids, the multigrid V-cycle is quite intuitively defined. The residual equation
(2.15) is used to smooth the error. The V-cycle starts with an initial guess x0 in
the finest grid Ωh where it does ν1 numbers of pre-smoothing iterations with a
chosen relaxation method. The residual is calculated and restricted into a coarser
grid Ω2h, before it is used to smooth the error e2h. This procedure is recursively
done until we solve (2.15) exactly at the coarsest level. The method will update
the solution by correcting for the error, do ν2 numbers of post smoothing iter-
ations, and interpolate back to the original grid. The process of the V-cycle is
visualized in figure 2.6.

Algorithm 5 Multigrid V-cycle

1: procedure MGV( Ah, xh0 , bh)
2: if (level== maxLevel) then
3: Solve: A2hσ

2h = r2h

4: else
5: Pre-smooth: xh := smoothν1(Ah, x

h
0 , b

h)
6: Calculate residual: rh = bh −Ahxh
7: Coarsen r2h = I2hh rh

8: Recursion: σ2h = MGV(A2h, 0, r
2h)

9: Correct: xh := xh + Ih2hσ
2h

10: Post-smooth: xh := smoothν2(Ah, x
h, bh)

11: end if
12: end procedure
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Figure 2.6: The multigrid V-cycle iteration. This shows three levels of the recur-
sive algorithm.

When algorithm 5 is called, it will perform one V-cycle and return the nu-
merical approximation of the solution. In algorithm 6, we put the V-cycle into
an iteration which stops when the relative residual-norm reaches a wanted toler-
ance. In this way we can perform a number of iterations on the V-cycle to get a
satisfying solution.

Algorithm 6 The Multigrid Method

1: procedure MG_solver( A, xh0 , bh)
2: ||r0|| = ||b−Ax0||
3: x = x0
4: for k = 1, ...,∞ do
5: x = MGV(A, x, b)
6: ||rk|| = ||b−Ax||
7: if ||rk||/||r0|| < tol then
8: stop
9: end if

10: end for
11: end procedure

The V-cycle Complexity

For a general coefficient matrix Ah ∈ Rm×m there are csmh non zero elements.
The constant cs depends i.e. on the type of discretization used. The V-cycle will
smooth and restrict/prolong on each level. The cost of smoothing is csmh, and
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the cost of the intergrid operation is cgmh. The total cost at a level with mh

unknowns is given by

C(mh) = (cs(ν1 + ν2) + 2cg)mh + C(m2h).

For a two dimensional problem, we halve the step size in each spatial dimension,
yielding m2h = mh

4 . As expected from the recursive nature of the algorithm, we
get a recurrence relation for the cost:

C(m) = cm+ C(m/4),

where c = cs(ν1 + ν2) + 2cg. We let the number of levels go to infinity to obtain
an upper bound for the cost:

C(m) ≤ cm
∞∑
k=0

1

4k

=
4

3
cm. (2.28)

From equation (2.28) we see that the cost per V-cycle iteration is linear, O(m).
For our problem, the constant cs = 5, since we couple the unknowns according to
the stencil in figure 2.4. Using the full weighting operator and the interpolation
as defined above will both yield cg = 9. Based on this we can expect a cost per
iteration of:

C(m) =
4

3
(5(ν1 + ν2) + 18)m, (2.29)

in our multigrid implementation.

2.8 The Physical Analogy Method

We will now look into the details of the methods we are developing. Initially we
make the analogy to a fluid flow problem. Imagine a box containing a porous
media, a sink and a source. The source injects water, and the sink ejects water
from the box. The source and sink is located in α and β respectively. The box is
closed and we inject water in α at the same rate as we eject water in β.

If we could trace the water as it is pumped into the box, then we would see
that the water will travel the fastest in the areas of least resistance. That is,
the water will find the high permeability zones. This is the analogy we want to
utilize, using the hazard data as a measure of the permeability. Setting a source
in the starting point α, and a sink in the goal β, we can calculate different paths
and then look for the best one with respect to the path finding problem.
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We could also choose to use an analogy to heat diffusion since we will quali-
tatively get the same equations. As seen in (2.6) and (2.7), the only thing that
separates the equations are the physical interpretation and constants. For our
purpose it makes no difference which analogy we use, since equation (2.6) and
(2.7) are essentially the same from a mathematical point of view.

From here on we will refer to the Physical Analogy Method as the PAM and
mainly use the analogy to fluid flow.

2.8.1 The PAM Equation
The PAM will be based on the the same type of equation as in porous flow
problems except that the physical constants will not be included. We will use a
new function K which is based on the hazard H as an analogy to k or κ. The
equation will look like this,

−∇ · (K∇u) = f in Ω (2.30)

where the solution u is the potential we can extract paths from, and K is the
modified hazard or permeability. Equation (2.30) is referred to as the PAM
equation.

2.8.2 Discretization
Equation (2.30) has only one second order derivative that must be discretized.
In three dimensions fully written out, equation (2.30) looks like this:

−
[
∂

∂x

(
K
∂u

∂x

)
+

∂

∂y

(
K
∂u

∂y

)]
= f. (2.31)

To discretize we use a second order centered difference formula in each spatial
direction [9]. In the x-direction this becomes:

∂

∂x

(
K
∂u

∂x

)
=

Ki+1/2,j(ui+1,j − ui,j)−Ki−1/2,j(ui,j − ui−1,j)

h2
x

+ O(h2
x) (2.32)

where the indices represent the grid-points such that u(xi, yj) = ui,j . The step
size in the x-direction is denoted hx and should not be mistaken as the derivative
of h. We must use an averaging technique in the half step in K. Since this
second order derivative tends to smooth things out, we use a simple average
when evaluating half steps:

Ki+1/2,j =
Ki+1,j +Ki,j

2
(2.33)
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Applying (2.32) to all the terms we get the full set of discretized equations in two
dimensions.

fi,j = −
Ki+1/2,j(ui+1,j − ui,j)−Ki−1/2,j(ui,j − ui−1,j)

h2
x

−
Ki,j+1/2(ui,j+1 − ui,j)−Ki,j−1/2(ui,j − ui,j−1)

h2
y

(2.34)

for all i and j in our grid. The resulting matrix A will be a sparse band diagonal
matrix, with properties such as symmetry and positive definiteness depending on
the boundary conditions.

2.8.3 Modified Hazard
In equation (2.6), ρkµ represents the ground and fluid properties of the domain Ω.
In our model the hazard will be used as an analogy to the physical values.

The hazard has low values in the attractive areas, whereas ρk
µ has high values

in the areas the fluid will tend to go. To deal with this we must modify the hazard
with the functionK = K(H), which is a transformation of the hazard taking high
values of H to be low values in K. We will refer to K as the permeability in our
problem.

A possible transformation of the hazard is

K = C/Hp, (2.35)

where C, p ∈ R+ are constants, and p ∼ 1. If we set C = max(H) and p = 1 then
the resulting permeability will lie in the range

[
1, max(H)

min(H)

]
.

The hazard is not designed to be converted into permeability. To get useful
results with the PAM, further processing of K(H) must be expected. For fluid
problems, the permeability must vary with some order to get significant effect
on the solutions. We must make sure the K(H) will stop the streamlines from
going in areas with high hazard, while still keeping the system of equations as
well posed as possible.

To limit the streamlines from entering hazardous areas, we must transform
the permeability such that the difference inK(H) between wanted- and unwanted
areas is increased. One simple strategy is to set all permeabilities under a certain
limit even lower. The level we cut off the permeability at, is referred to as the cut
off-level COL. The permeabilities lower than COL is set to a new, lower level
Kc.

∀ (x, y) ∈ Ω : K(x, y) < COL

set K(x, y)→ Kc
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2.8.4 Extracting a Path from the Solution
To obtain a path we must process the solution of the PAM equation even further.
We can calculate the gradient of u in every grid point to get the velocity vector
u analogously to equation (2.5). With zero flux boundary conditions, all fluid
generated in α should flow into β due to conservation of mass. This means every
path from α should end up in β. We can find the streamlines in u and search for
the one which minimizes S in equation (2.1).

If we seed a number of ν streamlines near the starting point α, these will
follow the velocity field u through Ω and end up in β. The streamlines will be
the potential candidates for the approximated optimal path Popt that solves the
path finding problem.

Given a vector field u ∈ Ω we can use a variety of methods to find a streamline
through Ω. With Euler’s method we simply follow the vector field in small steps
of length h starting in a seed point p0. The path or streamline is found by
iterating this formula:

Pn+1 = Pn + hu(Pn), P0 = p0. (2.36)

The explicit Euler method is fast, simple and intuitive, but not the most accurate
method. If accuracy is important we can i.e. use the fourth order Runge-Kutta
Method [6], given by:

Algorithm 7 Explicit Runge-Kutta 4th order
1: procedure ERK4( u, p0, h,maxIt)
2: for n = 0, 1, ...,maxIt-1 do
3: k1 = hu(P

(x)
n , P

(y)
n )

4: k2 = hu(P
(x)
n + 1

2
h, P

(y)
n + 1

2
k1)

5: k3 = hu(P
(x)
n + 1

2
h, P

(y)
n + 1

2
k2)

6: k4 = hu(P
(x)
n + h, P

(y)
n + k3)

7: (P
(x)
n+1, P

(y)
n+1) = (P

(x)
n , P

(y)
n ) + 1

6
(k1 + 2k2 + 2k3 + k4)

8: end for
9: end procedure

In algorithm 7 we have explicitly written out the components, such that there
is no confusion that Pn = (P

(x)
n , P

(y)
n ). By solving the PAM equation and finding

ν streamlines, we have reduced the total search space of possible solutions to
a manageable number of possible paths. Given a sufficient formulation in the
PAM, the paths we have found so far will already tend to go in high permeable
zones; in other words: low hazard zones. To find the path that suits our problem
statement and requirements mentioned in section 2.1, we can employ different
strategies when selecting Popt in P = {P1, P2, . . . , Pν}. We will now mention
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some concepts for eliminating paths that can be used in combination to find
Popt.

Minimal Accumulated Hazard:

We can evaluate the cost grid along the candidate paths in P by interpolation,
and then use this to find the path of least accumulated hazard. We denote the
accumulated hazard over a path P by SN (P )

SN (P ) =
∑
k

H(Pk) (2.37)

The path is represented by two vectors with x and y components and we quantify
SN by simply summing up the hazard along P . We can also put restrictions on
the maximum hazard at any point along the path.

Shortest Path:

In addition to minimizing the hazard we can also base our selection on the total
length of the path. It is easy to calculate and compare the different path lengths
|Pi|, for i = 1, 2, . . . , ν. If the amount of fuel is a bottleneck, it might be useful
to choose among the shortest paths.

Energy Efficiency:

We can make a more advanced fuel consumption model if we evaluate the cen-
tripetal acceleration on the UAV, and the work performed against gravity. Elim-
inating the paths that erratically varies in height can help us find the most eco-
nomical paths with respect to fuel. This concept might also be used to find paths
that tend to go near the shoreline.

Manoeuvrability:

If the paths calculated contains jagged edges, post processing might be the best
solution to ensure the UAV can follow the path. The problem statement does
however tend to generate smooth paths when there is not extreme variations in
the permeability.

2.8.5 Boundary Conditions

Zero flux boundaries means that ∂u
∂n = 0 on ∂Ω, this is also called homogeneous

Neumann boundary conditions. The streamlines of u, which are the paths we
seek, will be forced to go parallel to ∂Ω when they are sufficiently close to it.
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The full path finding PDE when we use homogeneous Neumann conditions is
then given by:

−∇ · (K∇u) = f in Ω (2.38)
∂u

∂n
= 0 on ∂Ω.

If we discretize equation (2.38), the coefficient matrix A will be singular. The
resulting solution u from such a problem will only be defined up to a constant,
and u+D will also be a solution, for some constant D. This can be seen by the
fact that ∂(u+D)

∂n = ∂u
∂n in the Neumann condition. For the strategy mentioned

above, we can still use homogeneous Neumann condition because the gradient of
u is used to derive the paths. Homogeneous Neumann conditions on the whole
boundary will be practical in order to evaluate paths from α to β, but this will
not result in nice properties for the linear system of equations.

When we set a the solution directly to a certain value, we refer to this as
Dirichlet conditions. For many modelling cases, the solution is known at the
boundary, then the Dirichlet boundary conditions look like this:

u = g on ∂Ω,

where g is a function describing the values along ∂Ω. If we utilize Dirichlet
conditions along the boundary ∂Ω the streamlines of the solution u can go in
or out of Ω, this means that not every streamline will end up in B. This can
restrict the method, but it can also yield matrix properties such as symmetry
and positive definiteness.

2.8.6 Source Term vs. Boundary Condition

Point α and β can be implemented through the boundary conditions or with the
use of a source function, f . We can choose to omit f from the equation and
simply use Dirichlet boundary conditions on the points α and β. This means we
set the solution to certain values u(α) and u(β).

Qualitatively we do not expect the streamlines to be different whether we use
a source function or Dirichlet boundary, but this can have an effect on the linear
system of equations when we discretize. To implement two Dirichlet nodes inside
Ω we have to change this in the matrix A, but if we use the source function, A
remains the same.

Matrix properties such as symmetry, positive definiteness and diagonally dom-
inance will greatly affect which methods that can be used to solve the linear
system. Boundary conditions will often affect these matrix properties.
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2.8.7 Exclusion Zones
The exclusion zones can be treated by simply increasing the hazard values for
every grid point inside the exclusion zone. If the permeability in the exclusion
zones are sufficiently low, the paths will be forced to avoid these zones. In figure
2.7 we have illustrated the terrain with two exclusion zones as examples.

Ω
(2)
ex

Ω
(1)
ex

Figure 2.7: The domain Ω seen from above with two exclusion zones Ω1
ex and

Ω2
ex in the interior.

2.8.8 Optimality of the Solution
As was mentioned in the introduction, we do not know if the minimization for-
mulation (2.2) can be represented by the PAM equation or a partial differential
equation in general. The analogy to fluid flow and physics is merely a means to
see if we can solve the path finding problem to a satisfactory extent. We consider
some properties of the streamlines to see how the PAM set restrictions on the
solution.

The paths obtained with the PAM are all based on the streamlines of ∇u.
The streamlines are tangential to ∇u at every point in Ω and can only have one
value, implying that none of the streamlines are intersecting. The fact that no
streamlines intersect can be restricting for the purpose of finding the optimal
path.

Suppose we have a streamline that corresponds to the optimal path through
a part of the domain, then there is no guarantee that this streamline will go
through the optimal remaining part of the domain. Since no streamlines intersect,
a streamline that is optimal in a sub route of α to β, can be forced to go through
a low permeable zone on the remaining route to β. Based on this we have a
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concern that the PAM will find less optimal solutions when the distance between
α to β increases.

To test if the method finds the optimal solution we can inspect sub routes
of the solution Popt. The method finds a path Popt = P1 + P2 from α to β. If
the PAM really finds the optimal solution, then the sub routes should also be
optimal. We can check if the method calculates the same path when we only test
P1 or P2.

In addition, it is easy to check if the pathfinder is conservative, in the sense
that it will find the same path from α to β as from β to α. If Pα→β 6= Pα→β , the
pathfinder clearly does not find an optimal solution for this problem.

2.8.9 Computational Domain

The computational grid is represented as a regular grid, uniform in the xy-plane
and of varying step size in z-direction. By regular we mean that the grid is
composed of rectangular blocks as seen in figure 2.1. Our plan is to calculate
the optimal path on a regular grid, then add the elevation to the z-component of
Popt. This approach may be erroneous, as we will demonstrate below, but as long
as the error do not compromise the entire method we will gain simplicity from
using a regular grid. The alternative would be to use FEM on an unstructured
grid which would represent the physical domain, but this will complicate the task
of building a fast solver.

Depending on on how strongly the topography varies we will introduce an
error when we build the final solution by adding the z-coordinate to Popt. To
address the error we will consider the weak formulation of the Poisson problem:

−∇2u = f in Ω (2.39)
u = 0 on ∂Ω.

We will use (2.39) as an example to evaluate the error we introduce by not using
the exact physical domain in the calculations.

The weak form is derived by first multiplying equation (2.39) with an arbitrary
test function v. Then we utilize Green’s formula for the Laplacian[8]:

−
∫
Ω

∇2uvdΩ =

∫
Ω

∇u · ∇vdΩ−
∫
∂Ω

∂u

∂n
vdγ, (2.40)

The weak form of problem (2.39) is equivalent to finding a solution u ∈ H1
0 (Ω)

such that ∫
Ω

∇u · ∇vdΩ =

∫
Ω

fvdΩ ∀v ∈ H1
0 (Ω). (2.41)
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The function space H1
0 is a Sobolev space defined as[8]:

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}

H1(Ω) = {v : Ω→ R s.t v ∈ L2(Ω),
∂v

∂x
,
∂v

∂z
∈ L2(Ω)}

L2(Ω) = {v : Ω→ R s.t

∫
Ω

v2dΩ < +∞}.

We can transform this problem and do the calculations in a reference domain,
Ω̂. See figure 2.8. To represent a function in the reference domain we use the
following notation; u(x, z) = u(x(ξ, η), z(ξ, η)) = û(ξ, η), where (ξ, η) is a point in
Ω̂. With this notation we can express the gradient operator in terms of reference
domain variables

∇u =

(
ξx ηx
ξz ηz

)
∇̂û (2.42)

where
∇̂û =

(
ûξ
ûη

)
. (2.43)

We use (2.42) to express ∇u · ∇v in terms of ξ and η:

∇u · ∇v = (∇̂v̂)T
(
ξx ξz
ηx ηz

)(
ξx ηx
ξz ηz

)
∇̂û. (2.44)

We define J , the Jacobian of the transformation.

J = xξzη − xηzξ (2.45)

With the Jacobi transformation the matrix-matrix product in equation (2.44)
can be written as

G =
1

J

(
(x2
ξ + z2

η) −(xξxη + zξzη)

−(xξxη + zξzη) (x2
ξ + z2

ξ )

)
. (2.46)

The reformulation yields; find u ∈ H1
0 (Ω) such that:∫

Ω̂

(∇̂û)TG∇̂v̂dΩ̂ =

∫
Ω̂

f̂ v̂J dΩ̂ ∀v ∈ H1
0 (Ω) (2.47)

The mapping in figure 2.8 is of the form

F :
x(ξ) = Lx

2 (ξ + 1)
z(ξ, η) = Lz

2 (η + 1) + g(x(ξ))
(2.48)
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z

x

Ω

η

(−1,−1)

ξ

(1, 1)

Ω̂

g(x)

g(x) + Lz

F

F−1

Figure 2.8: The mapping between physical domain Ω and the reference domain
Ω̂.

where g ∈ C1(Ω) is a function representing the geographical profile. So by insert-
ing (2.48) into J and G we can rewrite our integrand. After some calculations
we get

(∇̂û)TG∇̂v̂ =
Lz
Lx

ûξ v̂ξ − g′(x(ξ))(ûη v̂ξ + ûξ v̂η) +
Lx
Lz

(1 + g′(x(ξ))2)ûη v̂η (2.49)

thus indicating that g gives a contribution to the integral. The size of the con-
tribution depends on the function g and the scales of the domain, Lx and Lz.

In comparison, we can consider the case where g(x) = 0, representing the
domain if the ground was completely flat. Then the integrand would be

(∇̂û)TGg=0∇̂v̂ =
Lz
Lx

ûξ v̂ξ +
Lx
Lz
ûη v̂η. (2.50)

We compare the difference between the two integrands by defining

∆ = (∇̂û)TG∇̂v̂ − (∇̂û)TGg=0∇̂v̂

∆ = −g′(x(ξ))(ûη v̂ξ + ûξ v̂η) +
Lx
Lz
g′(x(ξ))2ûη v̂η. (2.51)

Based on equation (2.51) it is reasonable to expect that ∆→ 0, as g′(x(ξ))→
0. This will certainly be the case when g ≡ 0, then g′ ≡ 0 and the methods are
the same. In those cases where g varies throughout Ω we can expect ∆ to be
small in the areas where the g′ is small, and in general g′ � 1 will yield ∆ > 1.
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In figure 2.9, we have plotted the section of our given example elevation that
yield the least variance in z with respect to x. This is an example of how g would
look like in the mapping (2.48) and error (2.51). The plot in 2.9b show the g′
will have large variations contributing to the error ∆.

(a) Plot of the elevation, g(x) for a constant y.

(b) The derivative: g′(x). In this case ||g′||∞ = 53.

Figure 2.9: The elevation data for a constant y in the test data. This is the row
with the least variance. This can be considered as g(x) for the error discussion.

2.9 Graph Algorithm
As mentioned in the introduction, there exist various shortest path algorithms
for weighted graphs. We can find a path that minimizes the hazard between α
and β applying a graph algorithm such as Dijkstra on the regular cost grid H.
We expect Dijkstra’s algorithm to find

P ? = min
P∈Ω

β∫
α

H(P )ds (2.52)

which is a global optimal solution. Dijkstra’s algorithm is a serial algorithm by
nature, and we require many unknowns to get a sufficiently smooth path using
a regular grid for a graph, considering this we expect a poor performance on a
multi-core processor, but this will serve as a reference for the PAM.
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i,ji-1,j i+1,j

i,j+1

i,j-1 i+1,j-1i-1,j-1

i+1,j+1i-1,j+1

Figure 2.10: Similar to a nine point stencil for a two dimensional uniform grid,
we couple each node to eight other nodes in this Dijkstra implementation.

2.9.1 Dijkstra on Cost Grid

We are solving the shortest path problem with Dijkstra on the regular cost grid
H. The cost grid will now represent the set of vertices or nodes V . Even though
we are using Dijkstra we will not go into algorithmic details. We will simply
describe the context around the algorithm and how we incorporate it to the path
finding.

The graph G(V,E) is built by connecting each node to 8 neighbours, similar
to what is known as the nine-point stencil, shown in figure 2.10. With m grid
points in the two dimensional cost grid, the size of V is |V | = m nodes. Connect-
ing the graph using the rule in figure 2.10 we will get roughly |E| = 4m edges,
not considering the boundary effects. The edge weights is given by the associ-
ated weight function w which simply is the average value of the hazard for the
connected vertices. For the edge E1 consisting of vertices v1 and v2, the weight
function will yield w(E1) = 1/2(H(v1) +H(v2)). After we assemble the graph G
and calculate all the weights, we can find the shortest path from a start point α
to the target β using Dijkstra’s algorithm.

There are different ways to implement Dijkstra and some methods are more ef-
ficient than others. Simple implementations have a runtime complexity ofO(|V |2)
while more efficient versions are O(|V | log |V |).
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2.9.2 Preprocessed Graph

An alternative approach to the path finding problem can be found by combining
a graph algorithm with the PAM. If we can reduce the cost grid to a reasonably
small graph with nodes placed on the right places, then the PAM can be used to
find the edges with corresponding weights and i.e. Dijkstra to find the optimal
combination of sub paths. In other words we create a hybrid algorithm where
the PAM is used to pre-process the cost grid into a graph G where the weights
and edges are stored. Then a graph algorithm can solve the problem efficiently
because of the reduced size of G compared to the full grid.

There is a challenge with the incoming and outgoing flight directions from a
node with this approach. With different paths connected in a node, the combi-
nation of paths for a total solution might not be sufficiently smooth in the nodes.
In [1] the author uses a similar approach to solve a pathfinding-problem. A graph
is preprocessed by a random process, placing nodes in an unstructured fashion
throughout the domain, then feasible paths are constructed with polynomials
satisfying the path requirements. Since the superposition of edges into a path
will satisfy every requirement, the UAV can simply solve a graph optimization
problem.

A hybrid approach of this mentioned form, seems as a viable approach for
solving pathfinding problems of this nature, but in our case it is difficult to make
the PAM satisfy flight directions toward a target location.

2.10 Post-Processing

After we have calculated a two dimensional path P (x,y) with the PAM or Dijkstra,
we need to find the horizontal component P (z) of the total path P . We interpolate
the horizontal components P (x,y) onto the terrain and get P (z)

T , which is the same
as the projection of P onto the terrain. A simple way to calculate P (z) is adding a
constant height to P (z)

T and remove the oscillations with a simple moving average
operator. This is done as an example in figure 2.11 where P (z)

T is plotted in the
blue line. The green line P (z) is shown lying above the terrain.

2.11 Code Environment

The path finding algorithm is meant to run on the UAV during flight, continuously
calculating a path. New threats can appear and the UAV must be able to adjust
to a dynamic scenery. This has implications for the path finding algorithm. We
assume the UAV has a multi-core processor to utilize parallelization, but with
limited available computational power. Due to the limited available resources,
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Figure 2.11: The vertical data for a path P . The green path P (z) is calculated
by averaging away the local variations of P (z)

T and translating the whole path up
from the terrain.

the UAV needs a cost efficient algorithm, preferably running close to real-time.
The data-handling and memory usage can also be a critical factor for the total
performance, and this should be addressed in an efficient implementation.
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Chapter 3

Implementation

In this chapter we will go through some details of our implementation. We will
present the PAM algorithmically as well as some details in the implementation
of algorithms mentioned in section 2.

We have presented the theory behind the PAM, and in algorithm 8 we state the
steps of the method symbolically. When we solve the PAM equation (2.38) in step
3 of algorithm 8, we do not actually form the inverse coefficient matrix A−1, this
is solved with MATLAB’s built in function or our multigrid implementation. The
multigrid implementation is presented in section 3.2. Step 4 and 5 is calculated
easily with the built in functions for gradient and streamlines, but for function
evaluatePaths we will present some more details. We start by presenting some
details concerning the calculation of u, with both the direct solver in MATLAB
and our multigrid implementation.

Algorithm 8 The PAM
1: procedure PAM( H,α, β)
2: Process Permeability: K := K(H)
3: Solve PAM equation: u = A−1b
4: Calculate gradient: u = ∇u
5: Calculate streamlines: [P1, ..., Pν ] = streamline(A)
6: Evaluate streamlines: Popt = evaluatePaths(P1, ..., Pν)
7: end procedure

When we solve the linear set of equations with the built in solver in MATLAB
we need to construct the matrix A explicitly, since this is input along with the
right hand side vector b. The matrix is sparse, consisting of five bands, which
is roughly 5m floating point numbers for a problem with m unknowns. Mem-
ory usage is also a problem when solving big problems, and in the multigrid

39
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implementation we get away with not forming the matrix A at all.

3.1 Linear Solver in MATLAB
The two dimensional grid is of size (N+1)×(N+1) including the boundary points.
This configuration of the grid is used to make the multigrid implementation as
simple as possible. The boundary is excluded and we get a problem of size
m = (N − 1)2. When solving Au = b with a direct solver, the solution u and
right hand side b must both be vectors. We use a global representation for the
unknowns; that u and b is stored row after row, in a global vector of length
(N − 1)2. Once b and the matrix A is assembled we can solve the system and
reshape the vector into a local representation:

%% Solve AU=b
U = A\b ;
U=reshape ( U , N−1,N−1) ;

The MATLAB solver is called mldivide, and it uses an appropriate direct
method depending on the properties of the matrix A.

3.2 The Multigrid Method
As mentioned we do not form the matrix in our multigrid implementation. We
use the multigrid V-cycle presented in algorithm 5 to solve Au = b, but in the
places where we need to apply the matrix-vector product we use the stencil the
matrix A represents. The simple structure that comes from the central difference
discretization makes it possible to perform the operation directly on the grid
without forming A. We remember from the V-cycle, discussed in algorithm 5, that
A is involved when we pre- or post-smooth and when we solve the equations for
the coarsest level, but we will avoid storing the matrix A in our implementation.
Since the matrix-free operations is an essential part of our code, we will look at
the specific implementations of relaxation and the CG iterations.

3.2.1 Matrix-Free Relaxation

We utilize a local representation in the multigrid implementation, which means
the unknowns is stored as a matrix or array of numbers. The implementation is
based on grids with size (N + 1)× (N + 1) where N = 2d and d ∈ N. This makes
restriction operations simple since we can halve N , d times.

When we do an iteration with GS and Jacobi, each unknown will use four
adjacent neighbours in a pattern to update the solution. In the following MAT-
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LAB code-snippet, we show one iteration with the Jacobi method, in a fashion
that does not require a stored matrix, A.

%% Jacobi i t e r a t i o n
index = 2 : N ;
U ( index , index ) = ( U ( index −1, index ) + U ( index+1, index ) + . . .

U ( index , index−1) + U ( index , index+1) + . . .
h^2∗b ( index , index ) ) /4

Remember from equation equation (2.17) that the Jacobi method performs one
matrix-vector operation per iteration. In our implementation, this is performed
with vectors instead of for-loops. There is also a convolution-function in MAT-
LAB that can apply a stencil on a matrix U really fast, and with this, the Jacobi
iteration becomes:

%% Jacobi i t e r a t i o n with convn ( )
% The s t e n c i l
Jacobi = [ 0 −1 0 ;

−1 0 −1;
0 −1 0 ] ;

U=h∗h∗b−convn ( U , Jacobi , ' same ' ) ) /4

Gauss-Seidel is similar to Jacobi, but we loop through the unknowns with
a double for-loop, and this will update the solution continuously during the it-
eration. The following code-snippet illustrate how GS is applied without ever
forming the matrix:

%% Gauss−Se i d e l i t e r a t i o n
f o r j = 2 : N

f o r i = 2 : N
U ( i , j ) = ( U ( i−1,j )+U ( i+1,j )+U ( i , j−1)+U ( i , j+1)+h^2∗b ( i , j ) ) /4 ;

end
end

For the case where we have variable material data, i.e. the cost grid, we
have to include some more terms when we apply A. The Gauss-Seidel with the
permeability becomes:

%% Gauss_Seidel i t e r a t i o n on cos t g r id
f o r j = 2 : N

f o r i = 2 : N
U ( i , j ) =((( K ( i−1,j )+K ( i , j ) ) ∗U ( i−1,j ) + . . .

( K ( i+1,j )+K ( i , j ) ) ∗U ( i+1,j ) + . . .
( K ( i , j−1)+K ( i , j ) ) ∗U ( i , j−1) + . . .
( K ( i , j+1)+K ( i , j ) ) ∗U ( i , j+1) ) /2+ . . .
h^2∗b ( i , j ) ) / ( ( K ( i+1,j )+K ( i−1,j )+K ( i , j−1)+K ( i , j+1) + . . .
4∗K ( i , j ) ) /2) ;

end
end
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Similar to GS, but must faster per iteration is the Jacobi iteration, implemented
with vector operations:

%% Jacobi on co s t g r id
U ( 2 : N , 2 : N ) = ( ( ( K ( 1 : N−1 ,2: N )+K ( 2 : N , 2 : N ) ) .∗ U ( 1 : N−1 ,2: N ) + . . .

( K ( 3 : N+1 ,2: N )+K ( 2 : N , 2 : N ) ) .∗ U ( 3 : N+1 ,2: N ) + . . .
( K ( 2 : N , 1 : N−1)+K ( 2 : N , 2 : N ) ) .∗ U ( 2 : N , 1 : N−1) + . . .
( K ( 2 : N , 3 : N+1)+K ( 2 : N , 2 : N ) ) .∗ U ( 2 : N , 3 : N+1) ) . / 2+ . . .

h^2.∗ b ( 2 : N , 2 : N ) ) . / ( ( K ( 3 : N+1 ,2: N ) + K ( 1 : N−1 ,2: N ) + . . .
K ( 2 : N , 1 : N−1) + K ( 2 : N , 3 : N+1) + 4∗K ( 2 : N , 2 : N ) ) . / 2 ) ;

We emphasize that these code snippets are specific implementations for the
matrix-vector products arising from the discretization in equation (2.34). We
also show how the matrix is applied for the CG iterations.

3.2.2 Conjugate Gradient

In our CG implementation we apply A on the current search direction vector
pj , one time per iteration, as seen in algorithm 4. With vector operations the
matrix-vector operation is performed as:

%% Matrix vec tor product A∗p performed in CG.
Ap ( 2 : N , 2 : N )=(− ( K ( 1 : N−1 ,2: N )+K ( 2 : N , 2 : N ) ) .∗ p ( 1 : N−1 ,2: N ) − . . .

( K ( 3 : N+1 ,2: N )+K ( 2 : N , 2 : N ) ) .∗ p ( 3 : N+1 ,2: N ) − . . .
( K ( 2 : N , 1 : N−1)+K ( 2 : N , 2 : N ) ) .∗ p ( 2 : N , 1 : N−1) − . . .
( K ( 2 : N , 3 : N+1)+K ( 2 : N , 2 : N ) ) .∗ p ( 2 : N , 3 : N+1) + . . .
( K ( 3 : N+1 ,2: N )+K ( 1 : N−1 ,2: N )+K ( 2 : N , 1 : N−1) + . . .
K ( 2 : N , 3 : N+1) + 4∗K ( 2 : N , 2 : N ) ) .∗ p ( 2 : N , 2 : N ) ) /(2∗ h^2) ;

In this algorithm pj is stored in a local representation when we apply A, but we
reshape pj to a global vector to perform the rest of the iteration.

3.3 Path Evaluation

The calculation of the gradient, streamlines and the evaluation of the streamlines
is done in one function in our implementation. In algorithm 9 we take the solution
u and the two locations α and β as input, then we seed the ν points in a circle
around α, and we calculate the gradient vector field ∇u. We set the minimum
hazard along a path, to infinity, and then we iterate over all streamlines/paths
and save the one yielding the least accumulated hazard. For every seed point si
we find the streamline corresponding to a path P . We check if P terminates at
the target location β and then sum up the hazard SN (P ). If SN (P ) is smaller
than the previous iterate we store the path as the best path Popt. Similar to this
approach, we can also get the lowest path through the domain, or the shortest.
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Algorithm 9 Path evaluation
1: procedure evaluatePaths( u, α, β )
2: [s1, ..., sν ] = seedCircle(α)
3: [Gx,Gy] = gradient(u)
4: Smin :=∞
5: for i = 1, ..., ν do
6: P = streamline(Gx,Gy, si)
7: if P → b then
8: SN =

∑
k

H(Pk)

9: if SN < Smin then
10: Smin := SN
11: Popt := P
12: end if
13: end if
14: end for
15: end procedure

3.4 Dijkstra on Regular Grid
We store all the nodes in our grid in a global vector v ∈ Rm, similar to what we
have done for the linear solver in MATLAB. With m nodes in the grid, the graph
is represented with an adjacency matrix AG ∈ Rm×m where AG(i, j) represent
the weight between node i and node j. The edge weight is calculated as a simple
average, as discussed in section 2.9.1, and we compensate for the diagonal edges
by scaling with

√
2. The cost of going from node i to j is the same as the cost

of going from node j to i, thus AG = AT

G. The adjacency matrix will be a sparse
banded matrix consisting of 9 bands, based on the stencil in figure 2.10.

We use two MATLAB source codes; dijkstra.m and pred2path.m, to find
the optimal path between point α and β. The Dijkstra-code uses pred2path.m
internally, to return the path represented as a vector of consecutive nodes. For
more information and the complete source, see [5]. After assembling AG we
simply use dijkstra.m as a black box solver to get Popt:

%% Di jk s t r a
[ D , P ] = dijkstra ( Ag , alpha , beta ) ;

In this code-snippet, P is the path from α to β and D is the summed hazard
SN (P ).
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Chapter 4

Results

In this chapter we present results from the method we are developing. Initially,
we present the simple test cases, then we advance and build on top of these. In
a more effective implementation, we test the multigrid V-cycle as a solver for
the linear system of equations. All of the results presented are based on the two
dimensional equations. Every result is run with MATLAB R2013a on a Lenovo
Thinkpad with 2.60GHz Intel Core i5 CPU and 5.6 GB of RAM.

4.1 The PAM with Homogeneous Neumann BC

In section 2.8.5 we covered the Neumann boundary conditions. The results pre-
sented in this section are calculated from the PAM-equation described in 2.38.
The matrix A is singular, but this does not hinder us from finding the streamlines
based on ∇u.

4.1.1 Isotropic Permeability

To begin with, we consider the case where K = 1 for all (x, y) ∈ Ω, then we are
left with the Poisson equation as in (2.3). The reason for doing this is to test the
PAM for the very simplest case. Intuitively we know that the optimal path from
α to β when the risk is constant is the euclidean distance between α and β, a
straight line.

The results from the PAM when we have uniform hazard are shown in figure
4.1, the scalar solution is on the left with the paths derived from it to the right.
The red path indicated in figure 4.1b shows the shortest of all the evaluated
paths. We notice that the homogeneous neumann boundary conditions makes
the paths go parallel near the boundary. Figure 4.1 indicates that the idea of the

45
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(a) The solution of Poissons equation, u. (b) Streamlines of u between α and β.

Figure 4.1: Results from the PAM with uniform cost grid in Ω. The red path
shows the shortest path between point α and β. The streamlines representing
the possible paths are calculated from ∇u.

PAM is working in a simple 2D case with constant hazard.

4.1.2 Anisotropic Permeability

The next step is to implement the case when K varies throughout the domain.
We use the set of discretized equations in (2.34). From the cost grid around
Oslo we define the permeability K(H). After we scale the permeability with the
maximal value, K lies within [1, 42.7]. Figure 4.2 illustrates the effect a varying
K has on the streamlines. The paths tend towards areas where the hazard is low,
but only locally. When we compare with the plot of the cost grid in figure 2.2, we
see that the paths in figure 4.2b cross the areas with high hazard. To make the
paths avoid areas with high hazard, we have to process the permeability further.

4.1.3 Processed Permeability

To force the streamlines of u to avoid areas with high hazard, we cut off all
the values of K under a certain level. In figure 4.3 we have set all Ki,j below
two standard deviations of mean(K) to 0.01. The results in figure 4.3b and 4.3c
clearly show that many areas are avoided, and the paths follow the contours of
the terrain. Out of all the evaluated paths in figure 4.3b, the green one has the
least sum of hazard along it.
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(a) The solution of the PAM equation, u. (b) Streamlines of u between α and β.

Figure 4.2: Results from the PAM with cost grid. Indicated in red is the physi-
cally shortest streamline between point α and β, and the green streamline has the
least risk associated with it. The permeability K(H) concentrate the streamlines
toward attractive areas in Ω

4.1.4 Evaluating Paths

The parameter space for this project is vast, there are many parameters that
can be manipulated and tuned to get what we need. We will now present some
results for the parameters used to process the paths.

Streamline Step Size:

The ν streamlines from α to β is calculated using a built in function in MATLAB
that is based on the gradient vector field from the solution u. We can set the
maximum number of steps and step length when finding a streamline with the
function stream2. In table 4.1 we compare the paths calculated between Kongs-
berg and Sinsen using the standard 2-norm and infinity norm. The results from
the table indicate that the difference between the paths decreases for smaller
step sizes. The infinity norm is relatively large compared with the 2-norm, thus
indicating a local variation between the paths.

The three different paths used in table 4.1 is plotted in figure 4.4 where we
have zoomed in on a local variation between the paths. The variation in the paths
may seem to be set off by a sharp gradient in the the vector field. In the bottom
of figure 4.4b there is an edge that separates the paths, before they converge
together at the top of the figure. This effect may be reduced with smaller step
sizes.
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(a) The solution of the PAM equation, u. (b) Streamlines of u between α and β.

(c) The best path plotted in the terrain.

Figure 4.3: Results of the PAM when we force the paths to avoid regions associ-
ated with high risk. The paths are calculated between Kongsberg and Sinsen.

‖ · ‖∞ ‖ · ‖2
P0.1 − P0.2 1.039 6.960
P0.2 − P0.4 3.019 23.79

Table 4.1: Comparison of the norm between paths calculated using different
step sizes. The subscript on P indicates the step size used when calculating the
streamlines. The paths are calculated between Kongsberg and Sinsen with the
cut-off value set at Kc = 0.01.
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(a) The total length of the paths. (b) Zoomed in on local variation.

Figure 4.4: Three approximations to Popt for the same route, calculated with
varying step length. P0.1 is blue, P0.2 is red and P0.4 is green.

Streamline Seed Points:

We seed ν streamlines uniformly along a unit circle with point α in the center,
such that every direction out from point A is tested. The subscript on P will
now refer to the distance between neighbouring seed points.

In table 4.2 we have done three comparisons of the paths calculated with four
different seed point densities. The results show that P0.1 = P0.05 and P0.01 =
P0.005. To find P0.005, 20 times as many paths have been checked compared to
finding P0.1, but there is not a very big difference in the paths.

‖ · ‖∞ ‖ · ‖2
P0.1 − P0.05 0 0
P0.05 − P0.01 5.439 30.39
P0.01 − P0.005 0 0

Table 4.2: Comparison of the norm between paths calculated using different
number of seed points. The subscript on the P ’s indicate the interval between
the seed points around the starting point A. The paths are calculated between
Kongsberg and Sinsen with the cut-off value at Kc = 0.01.

Height Profile:

For the same case as used above in figure 4.3 we will now look at the height
profile. Figure 4.5 shows the two paths PLP and PBP found by different selection
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strategies. The yellow path PLP has the lowest height profile in the terrain. The
summed hazard along the PLP is SN (PLP ) = 0.0150, while for the green path
PBP the summed hazard is SN (PBP ) = 0.0146. PBP represents the path with
the least evaluated summed hazard.

Figure 4.5: Two routes between Kongsberg and Sinsen chosen using different
strategies. The green has the least sum of hazard along it and the yellow has the
lowest height profile in the terrain.

To see the difference in elevation the two paths seen in figure 4.5 is interpolated
onto the topography. In figure 4.6 we see that the two paths PLP and PBP are
very similar in the beginning, but differ after the midpoint. When we compare
figure 4.5 and 4.6 we see that the main variation between the two paths occur
when crossing the terrain between Drammen and Sandvika, which is the part
with the highest elevation along the route.

Figure 4.6: Height profiles for the path with the minimal hazard PBP (red) and
the path with the minimal height profile PLP (blue).
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4.1.5 Optimality Tests
We want to test whether the PAM really finds the optimal solution. For the test
case from α to β, Kongsberg to Sinsen, we calculate a candidate for Popt. We
select a point lying roughly on the middle of Popt and call this center point β0.
Next we calculate the optimal path in two steps, from α to β0 and β0 to β.

Figure 4.7: The red path Pα→β is calculated with the PAM from α to β. The
green path Pα→β0→β is calculated with the PAM in two steps, α to β0, then β0

to β, where β0 ∈ Pα→β .

The summed hazards are SN (Pα→β) = 0.0146 and SN (Pα→β0→β) = 0.0139
The results show that we are able to find a better solution when evaluating the
sub routes, implying the the PAM does not find the optimal solution.

In figure 4.8 we test the PAM on a problem from α to β, then we test the
reverse problem; β to α. We get two different paths, where the upper path has
an accumulated hazard of 0.0020 and the lower path has 0.0023.

4.1.6 Exclusion Zones
In chapter 2 we discussed two methods of incorporating exclusion zones into the
model. The easiest way with respect to the implementation is to change the
permeability K directly. In figure 4.9 we can see how the exclusion zone added
in the cyan circle around Gardermoen airport affects the path. The red path is
calculated without any exclusion zone. After we change the permeability inside
the cyan circle, the new green path avoids the exclusion zone.

4.1.7 Permeability-Mapping
We run a series of simulations to check to what extent the exponent p in the
mapping, in equation (2.35) will affect the outcome. In figure 4.10 we vary the
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Figure 4.8: We have used the PAM from α to β, then from β to α. An optimal
method would find the same path when reversing the problem. SN (Pα→β) =
0.0023 and SN (Pβ→α) = 0.0020.

Figure 4.9: Exclusion zone using the permeability. In the area around Gar-
dermoen airport we have adjusted the permeability such that the paths will go
around this exclusion zone. When we add the cyan exclusion zone the new opti-
mal path(green) is forced in a different path than the red.

exponent p ∈ [1, 1.5] and plot the different paths and accumulated hazard. We
see that p ≈ 1 results in the least accumulated hazard for all the four cases.
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4.1.8 Permeability Cut-Off
When we cut off all values of K under a certain level we can drastically change
the solution u and all streamlines. We run simulations where we vary the level
the permeability is cut off. In figure 4.11 we have tested four different set ups
with α and β with multiple simulations to choose the best cut off-level.
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(a) Paths plotted with p = 1, 1.05, 1, 1.1 in exponent for colours green, cyan, purple/magenta
and red respectively.

(b) Accumulated hazard SN (P ) for paths calculated with varying exponent p in the permeability
mapping from equation (2.35) .

Figure 4.10: We vary the exponent p in the permeability-mapping to obtain the
one yielding the least accumulated hazard. All four cases seem to indicate that
p ≈ 1 is a good choice.
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(a) Paths corresponding to the best choices of cut off-level below.

(b) The cut off-level is varied to obtain the one yielding lowest accmulated hazard.

Figure 4.11: The cut-off-level is chosen based on the accumulated hazard for the
four different problems above. The pathfinder will take short cuts that represents
infeasible paths when the cut off-level is high, because of this we have chosen the
highest possible cut off-value still yielding a feasible path. Every path visualized
above is calculated with a cut off-level at 3 standard deviations from the mean
of K, except for the purple/magenta-colored which is at 2 standard deviations.
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4.2 The PAM with Homogeneous Dirichlet BC

The boundary conditions determine some properties of the linear set of equations.
We use Dirichlet boundary conditions on ∂Ω such that the matrix A is SPD and
we can employ more efficient solvers on Au = b.

4.2.1 The Multigrid Method

The multigrid method has a great potential for solving the linear set of equations
efficiently. We go through some basic testing of the algorithm before we apply
it on the PAM. As a test case for our implementation we start by solving a
homogeneous Poisson problem where the analytical solution is known. In this
way we make sure all of the tools are working as expected before we tackle
the slightly more involved problem that occurs when we introduce the variable
permeability. The test problem is defined as:

−∇2u = 2π2 sin(πx) sin(πy) in Ω (4.1)
u = 0 on ∂Ω

with exact smooth solution uexact = sin(πx) sin(πy). We solve equation 4.1 by
iterating on the multigrid V-cycle until convergence is reached.

In table 4.3 we examine the convergence of the V-cycle for various smoothers.
We run tests with k number of iterations on the V-cycle, which is stopped when
||rk||2
||r0||2 < 10−12. The convergence factor r[9] is calculated using the formula

r = exp

(
1

k
log
||rk||2
||r0||2

)
. (4.2)

Table 4.3 shows that the line relaxation with Gauss-Seidel has a smaller con-
vergence factor than both weighted Jacobi and ordinary Gauss-Seidel. For the
weighted Jacobi we use ω = 4/5. The tests are all done with N = 25 that is
312 unknowns and the smooth solution is visualized in figure 4.12. In figure
4.13 we plot the relative residual ||rk||2||r0||2 for every V-cycle until convergence. We
use (ν1, ν2) = (3, 3) and the tolerance is still set at 10−12. Line relaxation with
GS reduces the error more efficiently than both weighted Jacobi and GS, they
respectively need 6,7 and 8 iteratrions to reach the wanted tolerance.

Figure 4.14 shows the discretization error on a logarithmic scale. We compare
the numerical approximation with the exact solution in the infinity norm ||u −
uexact||∞. The second order convergence of the central difference approximation
is observed, as expected from equation (2.12).
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smoother (ν1, ν2) rMG (ν1, ν2) rMG

ω-Jac (0, 1) 0.501 (1, 1) 0.266
(0, 2) 0.262 (1, 2) 0.135
(0, 3) 0.132 (1, 3) 0.076

GS (0, 1) 0.309 (1, 1) 0.107
(0, 2) 0.088 (1, 2) 0.044
(0, 3) 0.037 (1, 3) 0.016

line-GS (0, 1) 0.269 (1, 1) 0.115
(0, 2) 0.092 (1, 2) 0.057
(0, 3) 0.016 (1, 3) 0.011

Table 4.3: Convergence testing for the multigrid V-cycle when solving Poissons
problem with three different smoothers. We measure the different convergence
factors. At the coarsest level the conjugate gradient method is used to solve
the residual equation. The variables ν1, ν2 represent the number of pre- and
postsmoothing steps. The restriction operation is done with the full weighting
operator.

Figure 4.12: The numerical solution of equation (4.1), uexact = sin(πx) sin(πy).
This serves as a test for our multigrid implementation.

V-cycle on the PAM

Next we introduce the cost grid and test the convergence of the V-cycle. We do
not have an analytical solution to compare the numerical solution with, but we
can use the direct solver as a reference. In figure 4.15 we see the convergence of
GS is a bit slower than for the case in figure 4.13, but line-GS converges equally
fast for the two cases. In addition the jacobi iteration does not converge when
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Figure 4.13: The relative residual is plotted on a logarithmic scale for every
V-cycle until the tolerance at 10−12 is reached. This plot help to visualize the
results found in table 4.3. Line relaxation with Gauss-Seidel is the most effective
smoother among the three tested with respect to convergence of the V-cycle.

Figure 4.14: The discretization error is measured using the infinity norm ||u −
uexact||∞ for various step sizes h. The convergence is of second order as expected
from equation (2.12), since the the error term is O(h2).

using the cost grid. The convergence testing is done with N = 25.
In figure 4.16 we present runtime results for the V-cycle. The figure shows

the runtime per V-cycle, plotted against the problem size on a logarithmic scale.
For each problem size, we run the V-cycle until convergence at tol = 10−6. This
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Figure 4.15: The relative residual for the for the V-cycle with cost grid. The
tolerance is 10−12 and the problem size is N = 25.

is averaged over 10 simulations and we divide by the number of iterations needed
to reach convergence. Because of the variance in the cost-grid associated with
the different problem sizes, the number of iterations to get convergence varies,
therefore, we look at the runtime per V-cycle to asses the complexity. We also
compare the results with the linear runtime O(m) based on the first runtime. We
observe the linear complexity as expected by equation (2.29).
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Figure 4.16: The runtime of the multigrid V-cycle is plotted on a logarithmic scale
vs. the problem size m = N2. The V-cycle is run and timed until convergence
at tol = 10−6. We take the average after 10 simulations and divide the total
runtime, on the numbers of iterations.
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4.2.2 Avoiding the Boundary
Dirichlet boundary conditions impose restrictions on the method because of
streamlines that will not terminate in the sink in point β. To test the Dirichlet
boundary conditions we run experiments where we measure the percentage of
streamlines that go from point α to point β when we vary the position of α. A
portion of the grid with size 400 × 400 is used to test paths starting along the
boundary and ending up in the center.

Source Strength

In figure 4.17 a surface plot of the terrain and permeability K is presented. We
have varied the starting points α around the boundary, but β is kept constant in
the center. The coloured circles in the plot indicate the percentage of streamlines,
seeded in that starting point that make it to the destination β.

0% > 40% > 50% > 60% > 70%
colour × red ◦ blue ◦ cyan ◦ yellow ◦ green

Table 4.4: The interpretation of the colours used in figure 4.17.

The effect of varying the strength of the source is seen when comparing the
two pairs of plot in 4.17. There is a higher percentage of paths reaching the
center in point β when we reduce the source strength compared to the sink. In
figure 4.17c and 4.17d the source is |f(α)| = 0.5 and the sink is |f(β)| = 1.

In the permeability plots on the right side of figure 4.17 we see that the method
fails for many starting points α. This is because the streamlines fail to reach β
before they vanish to the boundary ∂Ω. If there is very low permeability towards
the target compared with the direction of the boundary, many streamlines will
probably leave the domain. Because of this, the strength of the source and sink
alone, might not be enough to force the streamlines toward the target in point β.
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(a) The terrain, |f(α)| = |f(β)| = 1 (b) The permeability

(c) The terrain, |f(α)| = 0.5, |f(β)| = 1 (d) The permeability.

Figure 4.17: Paths from the boundary to the center is tested with Dirichlet
boundary conditions. The strength of the source is varied. The colors indicate
the percentage of streamlines that end up in β = (200, 200) rather than the
boundaries. Green: > 70%, yellow: > 60%, cyan: > 50% and blue: > 40%.
The red crosses mean that none of the seeded streamlines ended up in β. The
starting points are plotted on top of the terrain on the left and the corresponding
permeability to the right.
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4.3 Dijkstra’s Algorithm on Regular Grid

We consider the performance of Dijkstra’s algorithm for this path finding prob-
lem. We test the PAM and Dijkstra on a small portion of the grid in (x, y) ∈
[427, 777] × [650, 1000], the results are shown in figure 4.19. The green paths
shows the solution calculated with Dijkstra’s algorithm. The cyan colored path
is calculated with the PAM using homogeneous Dirichlet boundaries and a cut
off at 1.7 standard deviations. We notice that Dijkstra finds a path that can
only step in 45◦ angles since the edges E in the graph G is built according to
the stencil in figure 2.10. Figure 4.18 shows three different problems solved by
the PAM and Dijkstra, plotted as they traverse the cost-grid. The pairs of paths
differ to a great extent, but they all seem to be reasonable flight paths.

Figure 4.18: Paths for three different problems, solved with the PAM and Dijk-
stra. The hazard is visualized as a contour plot.

In figure 4.20 we present runtime results for this the Dijkstra-implementation.
Because of the varying hazard-rates associated with the grids of different sizes,
the runtime for each simulation is hard to measure ideally as m grows. We expect
Dijkstra to have a quadratic complexity, and this is reflected in the four biggest
simulations in figure 4.20.
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(a) Paths plotted in the topography.

(b) Height profiles for the paths found by with Dijkstra and the PAM.

Figure 4.19: We find two different paths with the PAM(blue) and Dijkstra’s
algorithm(green). We use a small portion of the grid since Dijkstra is not suited
for high resolution compared to the PAM. For the PAM we have cut off values
below 1.7×standard deviation of mean(K).

4.4 Preprocessed Graph
In figure 4.21, we have found the edges for a small graph with the PAM. The
nodes are handpicked and placed at favorable places in this case. The problem
regarding incoming and outgoing flight directions, mentioned in section 2.9.2,
is evident. The superposition of edges calculated with the PAM will become
discontinuous in many of the nodes.
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Figure 4.20: The runtime of Dijkstra is compared with O(m2) and O(m logm).
There are m = N2 unknowns in each simulation with α = (N4 ,

N
4 ) and β =

( 3N
4 , 3N

4 ).
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Figure 4.21: Graph with preprocessed edges, suited for a graph algorithm. The
paths are non-flyable in many of the nodes.



4.5. POST PROCESSING 67

4.5 Post Processing
In section 2.10 we have mentioned how get the three-dimensional path P from the
two-dimensional path. In figure 4.22 we have visualized the path(green) after it
has been lifted up from the terrain and smoothed. The red path PT in figure 4.22
shows the terrain straight underneath P ; we notice that P is smooth compared
to PT .

Figure 4.22: The processed terrain-following path is vizualized in the terrain.
The red path can be viewed as a projection of P onto the topography.

In figure 4.23 we have visualized the results for a bigger problem, compared
with 4.22. It is hard to see the green path in relation to the red path, but the
elevation is plotted in figure 4.23b for the same problem.
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(a) The topography with the solution P in green. The projection of P in the terrain is plotted
in red.

(b) The vertical component of the path is plotted over the terrain.

Figure 4.23: Resuts from the pathfinding problem from Kongsberg to Oslo.



Chapter 5

Discussion

In this chapter we discuss the results found in previous chapter and we will try
to shed some light on implications of the results.

5.1 Streamline Properties

The PAM consists of many different variables that can be tuned to yield a terrain-
following, flyable path. Throughout section 4.1 we have investigated how different
parameters affect the streamlines and the total ability to find a satisfactory path.

The most important parameter seems to be the COL - the processing ofK that
obstructs the streamlines from entering regions with high hazard. When the COL
is too high or too low, the streamlines will not follow the terrain. Since we cut
off values based on the mean and standard deviation of the hazard for the whole
cost grid, we can not distinguish properly between attractive and unattractive
areas at every scale in H. An improvement would be to iterate over segments of
H, reducing the permeability locally based on the hazard values relative to each
segment. The customization of K is key to getting good results from the PAM.

5.1.1 Optimality

We have shown that the Physical Analogy Method(PAM) does not find a global
optimal path. The results in figure 4.7 and 4.8 both dismiss the PAM as an
optimal pathfinder. In figure 4.7, we see that when we test a sub problem, it
will find a new path than the original. In figure 4.8, we see that the direction we
search for a path affects the result. Both of the plots seem to suggest that the
placement of the source will affect the outcome to a great extent.
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However, from what we can see in the different combinations of α and β we
have run, the PAM will often find paths that seem sufficiently smooth and locally
optimal for our purpose. Since the paths found with the PAM is relatively well
behaved with respect to flight path-requirement, the method should not be totally
dismissed based on the lack of optimality. A relatively good path can i.e. be post
processed and smoothed in certain regions to yield a sufficient flyable path.

5.1.2 Boundary Conditions

We have looked at two different ways of implementing the boundary conditions;
in section 4.1 we use Neumann boundaries in the simulations, and in section 4.2
the Dirichlet boundaries enables faster solvers such as multigrid. The Neumann
boundaries forces every streamline to terminate in the destination β; however,
this compromises the possibility of utilizing the multigrid or other parallelizable
algorithms. The Dirichlet boundaries will restrict the method, but this is neces-
sary, in order to satisfy the runtime requirements.

Dirichlet Boundary

The problem originating from the Dirichlet boundary conditions, is remedied to
a certain extent with adjusting the source and sink strength. However, we have
seen in figure 4.17 that the permeability of a certain problem in combination with
the source placement will be an important factor for the streamlines ability to
escape away from the boundary. Based on the results presented, a good practice
is to avoid placing the source too close to the boundary ∂Ω. The Dirichlet
boundary is what enables an efficient implementation, but it is also the thing
that compromises the reliability of the method.

5.1.3 Evaluating Paths

We have used three different methods to evaluate the streamlines in this the-
sis. We sum the hazard along the streamline, calculate the length and sum the
elevation along the path. The three methods result in paths with different char-
acteristics that might all be useful in different contexts. The calculation and
evaluation of streamlines is linear O(m) in complexity for m unknowns.

Further work can be done to improve the evaluation of streamlines. We can
accumulate the curvature along paths for a more general fuel consumption model,
and we can combine these different methods.

The calculation- and evaluation-process of the ν streamlines is intrinsically
parallel. We can simply distribute a portion of the ν seed-points to each of the
processes, each finding a suggestion for the best path, which is then compared
after the processes finish.
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5.2 The Multigrid Solver

The results presented in section 4.2.1 are twofold. We start by presenting a test
case for the mutigrid method on a two-dimensional homogeneous problem, where
the analytic solution is known. The results indicate the expected discretization
error, and we observe the different convergence factors for the different smoothers.
With the multigrid method working for the homogeneous test case, we extend
and customize the implementation for the inhomogeneous case with cost-grid.

With the cost-grid included in the implementation, the convergence of the
method is reduced in general. The weighted Jacobi does not converge, while the
convergence rate of Gauss-Seidel decreases slightly. Line-GS converges with the
same number of iterations in the homogeneous and inhomogeneous case.

Despite the reduced performance for Jacobi and GS, the method is fully func-
tionable with GS and line-GS. The multigrid method have optimal use of memory,
which is not the case for many solvers, and this is very important in some settings
where there is restrictions on the memory usage.

5.2.1 Parallelization

We have not utilized parallelization at any level in our implementation, but
the smoothing processes can be parallelized with different methods, i.e. multi-
colouring and domain decompositions, for a specific fast implementation.

5.3 Extension to 3D

We have only considered path optimization in the horizontal plane with the PAM
and Dijkstra in this thesis. However, since the cost grid is based on the topog-
raphy, the three-dimensional properties of the terrain is reflected in the two-
dimensional grid. Because of this, a two-dimensional approach is sufficient and
it is faster than a three-dimensional approach for the equations. When the 2D
path is lifted up from the terrain and smoothed, the final product is a 3D path
traversing the terrain.

An extension to three-dimensional numerical model would be more attractive
for a FEM-implementation. With the topography represented as an unstructured
grid, we would have a more accurate model of the problem, and get a streamline
representing a flyable path without post-processing. With FEM-discretization we
would have to implement a different solver for the linear set of equations since we
would lose the simple banded structure of the matrix. Algebraic Multigrid(AMG)
methods are suitable for discretizations on unstructured grids.
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5.4 Error from Grid Simplification
In section 2.8.9 we presented a theoretical result on the error we introduce when
not explicitly using the elevation in the domain. The error ∆ between using the
physical domain and our method, which is a flat domain, will be dependent the
gradient of the topography and the scales of the domain. In equation (2.51), g′
represents the gradient of the topography, and if |g′| is large, we assume |∆| > 0.

We have not directly been able to measure the effect of ∆ in any of our
simulations. With a FEM-implementation, the ∆ might be seen implicitly as a
change in the streamlines compared to our FD-implementation.

5.5 Runtime
The bottleneck for a pathfinding algorithm based on the PAM will be the linear
solver of Au = b. The computations related to finding the gradient ∇u, stream-
lines and the evaluation of streamlines are all of linear complexity, for constant
ν streamlines.

As seen in the theoretical complexity for the V-cycle in equation (2.29), and
backed by the results in figure 4.16, the runtime for the V-cycle scales as O(m).
The number of V-cycle iterations to yield convergence will depend on the problem,
but it is not proportional with m, meaning that the total multigrid solver is also
linear O(m).

In an efficient implementation, every level of a serial code should be optimized
to yield the best possible performance for a parallel implementation. When tai-
loring a program for a specific computer architecture; the compilation of code,
memory usage and data handling can be crucial for getting the best possible
performance. This thesis has not been geared towards the implementation of
a fully optimized code, we have only considered the problem algorithmically to
investigate the potential for an efficient implementation.
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Conclusion

This thesis explores the use of a PDE for solving a 3D pathfinding problem, via an
analogy to fluid flow. The method is called the Physical Analogy Method(PAM)
and it relies on hazard rates, describing the probability of survival in the domain,
which is converted to an artificial permeability. The method explores streamlines
in a velocity vector field to find low level, terrain-following, flyable paths through
a hostile terrain. The selection process of these streamlines can be weighted
towards finding the shortest, or the lowest path while keeping the probability of
survival high. The streamlines tend to be relatively smooth and they can also
avoid no-fly zones.

An important aspect of the thesis is the potential for solving the problem
efficiently on-board an unmanned aerial vehicle during flight. Due to the optimal
memory usage, linear complexity and potential for a parallel implementation, the
multigrid method was chosen for solving the linear set of equations. Homogeneous
Dirichlet boundary conditions are used to enable the multigrid method, but this
also restricts the method because streamlines may not terminate in the target
location. For a high performance implementation, the method must guarantee
a flyable path on request, so this problem should be further addressed in future
work. The PDE discretization is based on a two dimensional equation, but the
final path is found by extrapolation of the 2D streamlines and the topography in
the domain.

The PAM does not find a global optimal solution for the path finding prob-
lem, as many graph algorithms will for a shortest path problem. However, the
streamlines will tend to favour paths through the terrain with low hazard, and
in this way we find attractive aerial paths. The transformation of hazard rates
into permeability is essential, and the characteristics of the streamlines are set
by this transformation. A better handling of the permeability is interesting with
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respect to future work. The method is not capable of enforcing incoming- and
outgoing flight directions from a location. This will cause discontinuous first
derivatives when calculating paths from α to β via a must fly zone. Because of
discontinuous flight directions when calculating paths in multiple steps, a hybrid
implementation of the shortest path problem, on a graph preprocessed with the
PAM is dismissed.
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