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Abstract

A new method for efficient Monte Carlo simulations is developed, and used to es-
timate the reliability of dependent and independent systems. The method consists
of Monte Carlo simulations on parametrized systems, where the robust qualities in
the simulations are preserved. The parametrized system corresponds to the given
system for set parameter values. By using the regularity of system reliability as
a function of the parameter, the original system reliability can be predicted accu-
rately with relative small samples. The estimate is obtained by using weighted least
squares to fit the parametrized simulations. Probabilities in the order 10−6 to 10−8

can be estimated very accurate with n = 105 as the sample size. For some systems,
even probabilities in the order 10−12 are estimated with 10% relative difference
from the analytic solution.
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Sammendrag

En ny metode for effektive Monte Carlo-simuleringer er utviklet, og brukt til å
estimere påliteligheten til avhengige og uavhengige systemer. Metoden består av å
gjøre Monte Carlo-simuleringer på parametriserte systemer, hvor de robuste egen-
skapene i simuleringene er bevart. Det parametriserte systemet svarer til det op-
prinnelige systemet for gitte parameterverdier. Ved å bruke regulariteten i system-
pålitelighet som funksjon av parameteren, kan det opprinnelige systemets pålite-
lighet forutsies nøyaktig med relativt få simuleringer. Estimatet er oppnådd ved å
bruke vektet minste kvadraters metode for å tilpasse de parametriserte simulerin-
gene. Selv med få genererte tall, n = 105, kan sannsynligheter i størrelsesorden
10−6 til 10−8 estimeres svært nøyaktig. For noen systemer, blir selv sannsyn-
ligheter i størrelsesorden 10−12 estimert med en prosentvis differanse på 10% fra
den analytiske løsningen.
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Problem Description

• Describe the statistical background in system reliability theory

• Analysis and further development of the Monte Carlo method

• Applying the method to models in system reliability

Assignment given: January 17, 2014
Supervisor: Arvid Næss, NTNU
Co-supervisor: Bo Friis Nielsen, DTU
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Chapter 1

Introduction

This thesis is a continuance of the project assignment [2] completed in the fall
semester 2013. The project assignment described a parametrized Monte Carlo
method applied to problems in system reliability. The project assignment solely
focused on independent systems, and the results from the estimations were promis-
ing. The method has been analysed further, both on independent and dependent
systems. Some of the theory described and developed in the project assignment [2]
is included in this thesis for completeness.

Standard Monte Carlo simulation forms a simple and robust alternative for es-
timating system reliability. One of the problems with the standard method is
however its slow convergence, O(n− 1

2 ). The standard method normally needs large
samples to get accurate results, and this is a time and memory consuming opera-
tion. Husby, Naustdal and Vårli [6] used conditional Monte Carlo methods to make
good estimates of system reliability. We will introduce a Monte Carlo method that
allows us to investigate parametrized systems where failures occur more often than
the original system. We can reduce the sample size for the parametrized simula-
tions, and still achieve a precise estimation of these. To estimate the reliability for
the original system, we minimize the least square errors between the parametrized
results and three chosen families of equations. The result is an efficient way to
determine system reliability, both for dependent and independent systems.

The four following chapters in the thesis presents the parametrized Monte Carlo
method by the following set up:

Chapter 2 gives a statistical approach to, and describes standard concepts in sys-
tem reliability. The two first sections are copied from the project assignment[2],
and defines reliability block diagrams and structure functions. Cut and path sets
are described further, and the use of Markov chains in system reliability is pre-
sented. The chapter presents construction of different independent and dependent
systems, and how one can specify Markov chains and cut sets for the systems. The
dependent systems consists of components with common cause failures or cascad-
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2 CHAPTER 1. INTRODUCTION

ing failures.

Chapter 3 introduces Monte Carlo simulations, with some brief examples of how
the method has been used in other applications. The chapter describes how we can
simulate failure of components, and how we can use this to simulate the systems
defined in Chapter 2. Calculations of mean, variance and confidence intervals for
simulations are presented, with results that highlight the importance of a large
sample size for original Monte Carlo simulation. The parametrized method is then
introduced and described. The independent parametrization is the same as for the
project assignment [2], but two parametrizations for the dependent systems are
presented. The description of the least squares fit is the same as in the project
assignment [2]. The chapter describes the optimization tools and weighting strat-
egy used to fit the parametrized system. The weighting strategy from the project
assignment [2] is presented, along with three other weighting strategies. The im-
plementation of these weighting strategy is presented. Finally, the implementation
of the different systems are presented. The implementation consists of different
dependent and independent systems.

Chapter 4 presents the results from the parametrized Monte Carlo simulations.
The independent systems are investigated with different number of components
and failure rates, and for all the introduced weights. The estimate of independent
systems are compared to the known analytic solution. The different dependent
systems are investigated, and the result is compared with the limiting probability
of Markov chain where this is possible. For the systems without Markov chains, the
estimations are compared to large simulations of the original Monte Carlo method.
The confidence intervals defined in chapter 3 are used to validate the accuracy of
the estimates. Results are presented in tables and figures. The aim of the chapter is
to show how the different systems affect the curve of the parametrized estimation.
This is done by comparing the different families of equations and weights. The chap-
ter also shows that the sample size can be reduced drastically when parametrizing
the Monte Carlo simulations.

Chapter 5 concludes the master thesis with a discussion of the observed results
and systems. The different weights and different families of functions are compares
in order to find out how different systems should be estimated and parametrized.
The chapter lists areas where the method can be analysed and improved even
further.



Chapter 2

System Reliability

2.1 Reliability Block Diagram
From the project assignment [2], we have that the standard ISO 8402 defines reli-
ability as

Definition 2.1.1. The ability of an item to perform a required function, under
given environmental and operational conditions and for a stated period of time.

We follow the notation in Rausand and Høyland [8], and let the term "item"
denote any component, subsystem, or system that can be considered as an entity.
A function may be a single function or a combination of functions that is neces-
sary to provide a specified service. By using a reliability block diagram, we are
able to establish deterministic models of structural relationships. The reliability
block diagram of s components in series can be seen in figure 2.1. When the com-

1 2 s

Figure 2.1: Series structure with s components.

ponents are in series, all of the components needs to function for the system to
be functioning. When all the components are in parallel, however, it is sufficient
that one component functions for the system to be functioning. The reliability
block diagram of s components in parallel can be seen in figure 2.2. A way to
combine combine components in series and parallel is to establish koon systems,
described in Rausand and Høyland [8] page 124. For these systems, k out of the
s components in the system needs to function for the system to be functioning.
In figure 2.3, a structure with 9 components is given. This function has two koon
sub-systems, both where k = 2 and s = 3. These are combined in series with three
other components.

3
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Figure 2.2: Parallel structure with s components.
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Figure 2.3: Structure with s components combined in parallel and series.

2.2 Structure Function
We also described the structure function in the project assignment [2], and it is
included here for completeness. The establishment of a system in a reliability block
diagram helps us to think of the system as a function, and to define the structure
function. Given a system consisting of s components where each component has
two distinguishable states, one functioning and one failed state. We can define the
state of component i, i = 1, 2, ..., s by

xi =
{

1 if component i is functioning
0 if component i is in a failed state

The state of the system can be described by the function

φ(x) = φ(x1, x2, ..., xs),

where x = (x1, x2, ..., xs) is called the state vector and

φ(x) =
{

1 if the system is functioning
0 if the system is in a failed state (2.1)
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φ(x) is called the structure function of the system. There are two main classes
of combining components in a structure: series structure and parallel structure. In
the series structure, the system is functioning if and only if all the n components
in the system are functioning. For a parallel structure, it is sufficient that at least
one of the n components in the system are functioning. It is shown in Rausand
and Høyland [8] that the structure function for a series structure is

φ(x) = x1 · x2 · · ·xs =
s∏
i=1

xi. (2.2)

The structure function for a parallel structure is

φ(x) = 1− (1− x1)(1− x2) · · · (1− xs) = 1−
s∏
i=1

(1− xi). (2.3)

Since we can not predict with certainty whether or not a component will be in a
failed state after t time units, we introduce random variables for the state vector
by

X1(t), X2(t), . . . , Xs(t).

The corresponding state vector will be denoted by

X(t) = (X1(t), X2(t), . . . , Xs(t), (2.4)

and corresponding structure function

φ(X(t)).

With this state vector, we can define following probabilities:

pi(t) = Pr(Xi(t) = 1) for i = 1, 2, . . . , s and (2.5)
pS(t) = Pr(φ(X(t)) = 1), (2.6)

where (2.5) is the probability that component i will be functioning at time t and
(2.6) is the probability that the system will be functioning at time t. The proba-
bility of a component to fail will be

qi(t) = 1− pi(t). (2.7)

2.3 Path and Cut Sets
We can arrange the different components in a system in cut and path sets. The def-
initions is given by Rausand and Høyland [8] page 129: Let the set of s components
be denoted

C = 1, 2, . . . , s.
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Definition 2.3.1 (Path Sets, Minimal Path Sets). A path set P is a set of com-
ponents in C which by functioning ensures that the system is functioning. A path
set is said to be minimal if it cannot be reduced without losing its status as a path
set.

Definition 2.3.2 (Cut Sets, Minimal Cut Sets). A Cut setK is a set of components
in C which by failing causes the system to fail. A cut set is said to be minimal if
it cannot be reduced without losing its status as a cut set.

Given the states of all the components, we can use the cut and path sets to find
the condition of the system. To use the minimal cut and minimal path sets is the
most efficient way to test calculate the state of the system. In our implementation,
we use the minimal cut and path sets defined by the stochastic variables to have
efficient algorithms. The minimal cut sets can also be used to define probability
block diagrams for systems. All the components in a cut set can be represented by
a parallel structure. The different sets are represented by a series structure.

The minimal path and cut sets for the system in figure 2.1 is given in table 2.1
For the system in figure 2.2 the minimal path and cuts sets are given in table 2.2.

Table 2.1: Minimal Path and Cut Sets in figure 2.1

Minimal path sets Minimal cut sets
{1,2,. . . ,s} {1}

{2}
...

{s}

The minimal cut ant path sets for the system in figure 2.3 is shown in figure 2.4.

Table 2.2: Minimal Path and Cut Sets in figure 2.2

Path sets Cut sets
{1} {1,2,. . . ,s}
{2}
...

{s}
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Table 2.3: Minimal Path and Cut Sets in figure 2.3

Path sets Cut sets
{1,2,4,5,6,7,9} {4}
{1,3,4,5,6,7,9} {5}
{2,3,4,5,6,7,9} {9}
{1,2,4,5,6,8,9} {1,2}
{1,3,4,5,6,8,9} {1,3}
{2,3,4,5,6,8,9} {2,3}
{1,2,4,5,7,8,9} {6,7}
{1,3,4,5,7,8,9} {6,8}
{2,3,4,5,7,8,9} {7,8}

Figure 2.4: Series structure with s components.

2.4 Independent systems
In the project assignment [2], we investigated independent systems, and defined
the stochastic variable

Xi :
{

Pr(Xi = 1) = pi = 1− 10−zi

Pr(Xi = 0) = 1− pi = 10−zi .
(2.8)

Xi represent the state of component i, and pi is the probability that the ith compo-
nent is functioning defined in equation (2.5). The failure probabilities are written
on the form 10−zi , where zi > 0

For the independent case, Xi is Bernoulli distributed, Xi  Bern(pi), with
mean pi and variance pi(1− pi).

The system reliability for a series of s components defined by the stochastic
variable becomes:

pS =
s∏
i=1

pi = (1− 10−z1)(1− 10−z2) · · · (1− 10−zs), (2.9)

while the system reliability for a parallel of s components is

pS = 1−
s∏
i=1

(1− pi) = 1− (10−z1)(10−z2) · · · (10−zs). (2.10)
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All independent systems can be divided into structures consisting of parallel
and series. By using equation (2.9) and (2.10) we can get the analytical solution
for the system reliability. This allows us to compare our simulation results with
the expected analytical result.

2.5 Dependent Systems
In the project assignment [2] we defined positive dependancy and negative depen-
dancy, but did not simulate any dependent systems. We described two examples
of negative dependencies, common cause failures and cascading failures, which we
will analyse further.

We will investigate systems with negative dependency, where one component
fail may lead to a higher probability for other components in the system to fail.
There are many ways to construct systems like this, and we will focus on the
mentioned common cause failures and cascading failures. The constructed systems
are intended to represent realistic systems and incidents.

2.5.1 Common Cause Failures
From the project assignment [2] we described common cause failures as: Common
cause failures are according to NUREG/CR-628 [8] a "dependent failure in which
two or more component fault states exist simultaneously, or within a short time
interval, and are a direct result of a shared case." One example of a common cause
failures is when a harsh environment makes multiple components fail simultane-
ously. Common cause failures may be modelled by a β-factor model, described
in Rausand and Høyland [8] page 217. This is done by introducing two possible
causes of component failure:

1. Circumstances that concern only the component (independent of the condi-
tion of the remaining components).

2. Occurrence of an external event (independent of the system) whereby all the
components fail at the same time.

Rausand and Høyland [8] uses a failure rate λ for each component, where

λ = λ(i) + λ(c). (2.11)

λ(i) represent the independent failures in case 1, and λ(c) represent the common
cause failures in case 2. By introducing the factor β as the "common cause factor"

β = λ(c)

λ
(2.12)

λ(c) = βλ (2.13)

It is easy to calculate and construct β-factor models, but it may be difficult to
determine the correct value for β for known systems. It is also a weakness that
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the common cause failures make all components fail. When we implement systems
that can fail due to common cause failures, we change Rausand and Høylands [8]
notation of failure rate, λ, with the probability of failure, q, defined in equation
(2.7). By doing this, we get the probability to fail for a given component, i,

qi = 1− (1− q(i)
i )(1− q(c)

i ). (2.14)

q
(i)
i describes the independent failure probability for component i, while q(c)

i is the
probability for common cause failures for component i. When we construct the
systems, we have the possibility to make the probability for common cause failures
different for each of the components. This is not a possibility in the original β-factor
model. We define βij to be

Pr(Common cause failure that effect component i | Failure on component j)
= βij

The stochastic variable that represent the state of component i is represented
by

Xi :



Pr(Xi = 1) = (1− q(i)
i )(1− q(c)

i )

= (1− 10−zi)
s∏

j=1,j 6=i
(1− βij(1− 10−zj ))

Pr(Xi = 0) = 1− (1− q(i)
i )(1− q(c)

i )

= 1− (1− 10−zi)
s∏

j=1,j 6=i
(1− βij(1− 10−zj ))

(2.15)

where s is the number of components in the system. βij is the probability that fail
of component j affects failure on component i. The system reliability is given as

pS = E(φ(X),

and the probability of failure for the system is given as

pF = 1− pS . (2.16)

2.5.2 Cascading failures
In the project assignment [2] we described cascading failures as: The cascading
failures are multiple failures initiated by a failure of one component, referred to
as a "domino effect" in Rausand and Høyland [8]. These failures may occur when
components share a common load, and that failure of one component increases the
load on the remaining components.

When we implement the cascading failures, the probability of failure for the
different components are dependent on the time, t. The stochastic variable that
represent the state of component i is represented by
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Xi(t,X−i) :
{

Pr(Xi(t,X−i) = 1) = pi(t,X−i) = 1− 10−zi(t,X−i)

Pr(Xi(t,X−i) = 0) = 1− pi(t,X−i) = 10−zi(t,X−i).
(2.17)

The vector X−i represent the state vector X1, X2, . . . , Xs without the i′th entry.
The system reliability is given as

pS(t) = E(φ(X(t)),

and the probability of failure for the system is given as

pF (t) = 1− pS(t). (2.18)

We will investigate two ways to construct a realistic dependent probability
of failure pi(t,X−i). For the independent systems and common cause failures, we
have automatically repaired the systems for each run. This implies that the system
always is in its initial state for each run. By modelling cascading failures, previous
behaviour will affect the probability to fail forward in time. To construct such
systems in a good way, we need to have a repair interval or a condition that makes
us repair the components back to their initial state. Otherwise the system would
end up failing every time when it is run n→∞ times.

The different systems with cascading failures are described in section 3.4.2 to
3.4.5, and follow this procedure:

• If one component fails, it is removed from the system until the system fails
or all components are repaired

• If one component fails, the probability of other components to fail increases

The two steps in the procedure are combined for the different components in a way
that represent realistic systems.

2.6 Markov Chains
Some of the dependent systems may be represented by Markov chains. Let the
stochastic process

Yn, n = 0, 1, 2, . . .

represent the different states the system is in at different times, n. From Ross [9]
page 185 we have that if Yn = i, then the system is in state i. If the Markov chain
should be valid, there must be a fixed probability Pij that the system will go from
state i to state j in the next time step. This is expressed in [9] page 185 as

Pr(Yn+1 = j|Yn = i, Yn−1 = in−1, . . . , Y1 = i1, Y0 = i0) = Pij (2.19)

for all states i0, i1, . . . , in−1, i, j and n ≥ 0.
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Equation (2.19) is visualised for a system with S states in figure 2.5

Figure 2.5: Markov chain of a system with S states. Pij denotes the fixed proba-
bility defined in equation (2.19)

The transition probabilities in a Markov chain can also be visualised by a matrix.
The matrix of one step transition probabilities for a Markov chain with S states is
given in equation (2.20).

P =


PSS PS(S−1) . . . PS0

P(S−1)S P(S−1)(S−1) . . . P(S−1)0
...

...
...

...
P0S P0(S−1) . . . P00

 (2.20)

The matrix in equation (2.20) can be used to calculate the limiting probability
of the Markov chain. Theorem 4.1 in Ross [9] page 205 states
Theorem 2.6.1 (Limiting Probabilities). For an irreducible ergodic Markov chain
limn→∞ Pnij exists and is independent of i. Furthermore, letting

πj = lim
n→∞

Pnij , j ≥ 0

then πj is the unique nonnegative solution of

πj =
∞∑
i=0

πiPij , j ≥ 0,

∞∑
j=0

πj = 1
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If we have systems of components defined as a Markov chain, we can use the
limiting probabilities to find the probability of failure for the system. This is done
by adding πj for the j states where the system is not functioning.

One example of an independent system represented by a Markov Chain is a
parallel structure with three components, figure 2.2 with s = 3. The states can be
formed as

3. Three components functioning

2. Two components functioning

1. One component functioning

0. None components functioning

To find the limiting probabilities of the states, the conditions in theorem 2.6.1 and
equation (2.19) needs to be satisfied. This means that the Markov chain needs to
be aperiodic, all states needs to communicate with each other with fixed transition
probabilities, and if starting in state i, the expected time until the process returns
to state i should be finite. For a standard parallel structure, state 0 is the only
state where the system has failed. If the necessary conditions are satisfied, the
probability of failure in the system would be pF = π0.



Chapter 3

Monte Carlo simulation

3.1 Monte Carlo method
3.1.1 Monte Carlo Definition
Monte Carlo methods are a class of mathematical models based on random sam-
pling. The idea behind the Monte Carlo simulation is to evaluate an integral as an
expected value. The integral we want to estimate is

I = Eµ[φ(X)] =
∫

Ω
φ(x)dµ(x), (3.1)

where ψ is a function on Ω ∈ Rn over R and X = (X1, . . . , Xn) an n-dimensional
vector of random variables from the same distribution with law µ. The method is
based on the Strong Law of Large Numbers and the Central Limit Theorem, given
by Ross, [9] page 79, and provides an unbiased estimator:
Theorem 3.1.1 (Strong Law of Large Numbers). Let φ(X1), φ(X2), . . . be a se-
quence of independent random variables having a common distribution, and let
E[φ(Xi)] = µ <∞. Then, with probability 1,

φ(X1) + φ(X2) + · · ·+ φ(Xn)
n

→ µ, as n→∞ (3.2)

Theorem 3.1.2 (Central Limit Theorem). Let φ(X1), φ(X2), . . . be a sequence
of independent, identically distributed random variables, each with mean µ and
variance σ2. Then the distribution of

φ(X1) + φ(X2) + · · ·+ φ(Xn)− nµ
σ
√
n

(3.3)

tends to the standard normal as n→∞. That is,

P

{
φ(X1) + φ(X2) + · · ·+ φ(Xn)− nµ

σ
√
n

≤ a
}
→ 1√

2π

∫ a

−∞
e−x

2/2dx (3.4)

13
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as n→∞.

Let µ = E[φ(X)]. With standard Monte Carlo, the unbiased estimator of I for
sample size n is

µ = 1
n

n∑
i=1

φ(xi) (3.5)

3.1.2 Buffon’s needle
Experimental Monte Carlo methods have been used to approximate the mathe-
matical constant π, where one of the experiments is Buffon’s needle experiment
stated in the 18th century. Buffon’s needle [11] experiment consists of tossing a
needle with length l, n times on a grid with equidistant parallel lines. The distance
between the parallel lines should be d ≥ l. The experiment is sketched in figure
3.1. Each needle toss can be described by two random variables:

Y : distance from the center of the needle to the closest line
Θ : angle of the needle with response to the lines

where 0 ≤ Y ≤ d/2 and 0 ≤ Θ ≤ π.
Each toss where the needle crosses one of the parallel line is counted. By defining

h : number of needles that cross a line
n : number of needle tosses

we can use probability theory and geometry to define the approximation of π

π̂ = 2ln
dh

. (3.6)

Mario Lazzarini performed the Buffon’s needle experiment in 1901 [11], and got the
approximation π̂ ≈ 355

113 by tossing a needle 3408 times, which differs from π with
less than 3× 10−7. This result is remarkably accurate, and has a better accuracy
than one can expect with only 3408 tosses.

d

l

l

Figure 3.1: Visualisation of the Buffon’s needle experiment. d is the distance
between the parallel lines and l is the length of the needle. The red needle shows
a needle that crosses a line, and the green shows a needle that does not.
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3.1.3 Modern Monte Carlo
The modern version of Monte Carlo method was initiated by Stanislaw Ulam [7] in
the late 1940s, and methods have been used to study many phenomena since. For
instance may the mathematical constant π now be estimated by generating samples
of two random independent uniform variables (X,Y ) ~ U(0, 1), and calculate the
fraction of the samples where x2 + y2 ≤ 1. By multiplying this fraction with 4, we
obtain an estimate for π. The two mentioned examples of estimating π shows the
idea behind the Monte Carlo methods, and we can establish a four step procedure
that can be applied to most Monte Carlo methods.

1. Define input domain

2. Generate results from the random variables over the domain

3. Sort the different input into their respective outcomes

4. Calculate the result by using the coherence between the defined domain and
the random variables

The first step is to define input domain. In Buffon’s needle experiment the
input is a grid with equidistant parallel lines. The distance, d, between the lines is
larger than the length of the needle, l. For the other case, the domain is the square
[0, 1] × [0, 1]. The second step is to generate results from the random variables
over the domain. This would be the tossing of a needle in Buffon’s needle experi-
ment. For the second case this is to generate x and y from the random variables
(X,Y ) ~ U(0, 1). The third step is to sort different input into their respective out-
comes. In the needle experiment we count the needles that cross one of the parallel
lines. For the other case, we count the incidents where x2 + y2 ≤ 1. The fourth
step is to calculate the result by using the defined domain, random variables and
outcomes. For the needle experiment, the combination of geometry of probability
theory gives the result (3.6). For the second case we multiply the fraction of results
where x2 + y2 ≤ 1 by 4. By following the same procedure, we can define the four
step procedure we will use in our Monte Carlo simulations:

1. Input domain is [0, 1]

2. Generate, n random variables, Xn uniformly distributed over the input do-
main, X ~ U(0, 1)

3. Count the incidents where the components fail, X > pi, for all the compo-
nents in the system. pi is the i’th components reliability, defined in equation
(2.5).

4. Calculate the system reliability from the results in step 3. The fraction of
system failures divided by n provides the Monte Carlo estimate for system
failure probability, p̂F n
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The random events we represent with the random variables is whether or not
a component in our system is functioning. By following step 1 to 4 we can get an
estimate of the probability of failure, p̂F , for a specified system. The simulations are
based on the stochastic variable defined in 2.8, and we simulate n Bernoulli trials
for each component in the system. The result for each components is combined to
decide the state of the system.

3.1.4 Generation of pseudo random numbers
To implement the simulations, we need to generate random numbers. We assume
that the components we want to investigate have a known probability to fail. The
best way to simulate fails of these components is to generate random variables from
the uniform distribution, and to compare each number with the probability to fail
for the components. We generate the vector u ~ U(0, 1), where the length of u is
the size of the sample, n. For each of the n values in u, we compare u(j) > pi with
pi from equation (2.5) and j = 1, 2, . . . , n. This gives two outputs for a component,
i

• u > pi → component i fails

• u ≤ pi → component i is functioning

The procedure is repeated for all n random variables in the sample. The vector of
uniform random variables is created with the function rand(n) in Matlab. The
call rand(n) generates a sequence of n pseudo random scalars between 0 and 1.
The generated scalars are not truly random, but follow a given sequence defined
in Matlab. The sequence is a list of numbers that approximates the behaviour
of random numbers. Since the generated numbers follow a given sequence, it is
possible to generate vectors containing the same numbers many times. This allows
us to test different methods with the same random variables without storing all
the numbers. It is also possible to sample from the standard normal distribution
and to use the Box-Muller transform to generate u ~ U(0, 1), but this is not done
in this thesis.

3.2 Convergence rate and confidence interval
3.2.1 Experimental
By applying the Monte Carlo method on the system reliability pS from (2.6), we
get an estimator of I for N trials,

p̂SN = 1
N

N∑
i=1

φ(Xi), (3.7)

where p̂SN is the estimator of pS obtained with N trials. Xi are the independent,
identically distributed random variables defined in (2.8), and φ the structure func-
tion of the system. By the Law of Large Numbers, theorem 3.1.1, the estimator p̂S
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is unbiased. The variance of the estimator is

σ2
N = σ

N
(3.8)

which is estimated by

σ̂2
N = 1

N − 1

[
1
N

N∑
i=1

φ(Xi)2 − p̂S2
N

]
. (3.9)

Since Xi is binary, (3.9) can be simplified to

σ̂2
N = 1

N − 1

[
1
N

N∑
i=1

φ(Xi)− p̂S2
N

]
. (3.10)

Equation (3.10) can be simplified to

σ̂2
N = 1

N(N − 1)
(
S(1− p̂S2

N )− F p̂S2
N

)
, (3.11)

where F is the number of failures for the system and S = (N − F ) is the number
of successes in N trials. From equation (3.11)

lim
N→∞

σ̂2
N = 0

We can define confidence intervals of the estimator by applying the Central Limit
Theorem [5], which yields

CI = [p̂SN − zασN , p̂SN + zασN ], (3.12)

where zα is found from the tables in [13]. For a given α, we get

Pr(pS ∈ CI) = 1− 2α (3.13)

Chosen α = 2.5% provides a 95% confidence interval

CI95 = [p̂SN − 1.96σN , p̂SN + 1.96σN ] (3.14)
Pr(pS ∈ CI95) = 0.95 (3.15)

With σN from equation (3.9), we see that the convergence rate of the estimator is
O(N− 1

2 )

3.2.2 Chebychev Confidence Interval
In the project work [2] we used Chebychev’s inequality to etablish a crude confi-
dence interval for the estimator. To define this confidence interval we do not need
to know anything about the system. We had that for any λ > 0,

Pr

(
|p̂S − pS | ≤ λ

√
pS(1− pS)

n

)
= 1− Pr

(
|p̂S − pS |) > λ

√
pS(1− pS)

n

)
,

≥ 1− 1
λ2
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To make a 95% confidence interval, let λ2 = 20.

Pr

(
|p̂S − pS | ≤

√
20
√
pS(1− pS)

n

)
≥ 1− 1

20

Pr

(
|p̂S − pS | ≤

√
20
√
pS(1− pS)

n

)
≥ 0.95.

The standard deviation used in the interval is maximized by setting pS = 1
2 . By

doing this simplification the specified confidence interval is maximized, and it only
depends on the size of n. We then get with probability 95%

|p̂S − pS | ≤

√
20( 1

4 )
n

|p̂S − pS | ≤
√

5
n
,

and we can define confidence intervals

Pr

(
p̂S −

√
5
n
≤ pS ≤ p̂S +

√
5
n

)
> 0.95, (3.16)

3.2.3 Precision Results
The table 3.1 from the project assignment [2] shows precision results of Monte
Carlo simulations of a series structure for different values n. The series structure
consists of three independent components, each with probability to fail, q1 = q2 =
q3 = 10−7. This will give a theoretical probability to fail from equation (2.9)
pF ≈ 3 · 10−7.

Table 3.1: Comparison of Monte Carlo simulation for different n

n Fails pF n Difference
104 0 0 + 100 %
106 0 0 + 100 %
107 4 4 · 10−7 + 33.3 %
108 27 2.7 · 10−7 - 10.0 %
109 314 3.14 · 10−7 + 4.67 %
1010 2945 2.945 · 10−7 - 1.83 %
1011 30195 3.02 · 10−7 +0.65 %
1012 299823 2.998 · 10−7 -0.059 %
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3.3 Curve fitting

3.3.1 Parametrization

Since Monte Carlo simulation has a slow convergence rate, we would like to parametrize
the stochastic variables defined in equation (2.8), (2.15) and (2.17). Table 3.1 shows
ut that increasing the sample size, n gives good precision results. The simulation
results where n > q = 10a, a > 2 have relative difference less than 5% from the
analytical solution. The idea behind the parametrization is to investigate the sys-
tem for different failure probabilities. We want to increase the failure probabilities
for each component in order to take advantage of the robustness of the method.
When the failure rate increases, we need fewer simulations to get a descent result
from Monte Carlo simulations. The goal is that it should be possible to fit a curve
from the simulation results when 0 < λ ≤ 1, and draw a conclusion of the original
system reliability, which is obtained for λ = 1.

Independent Systems

The parametrization for independent systems is copied from the project work [2].
Define a parametrized stochastic variable, Xi,λ as

Xi,λ :
{

Pr(Xi,λ = 1) = pi,λ = 1− (1− pi)10zi(1−λ)

Pr(Xi,λ = 0) = 1− pi,λ = (1− pi)10zi(1−λ) (3.17)

where
0 < λ ≤ 1. (3.18)

By inserting the expression for pi and 1 − pi from equation (2.8), this can be
simplified to

Xi,λ :
{

Pr(Xi,λ = 1) = piλ = 1− 10−ziλ

Pr(Xi,λ = 0) = 1− pi,λ = 10−ziλ 0 < λ ≤ 1. (3.19)

This enables us to investigate how the system responds to different failure prob-
abilities. By inserting λ = 1 to equation (3.19), we get

Xi,λ=1 :
{

Pr(Xi,λ=1 = 1) = 1− 10−zi = pi
Pr(Xi,λ=1 = 0) = 10−zi = 1− pi

(3.20)

which is the same stochastic variable as we defined in equation (2.8). When λ goes
to zero we get the limit

Xi,λ→0 :
{

Pr(Xi,λ→0 = 1) = 1− 10−0zi = 0
Pr(Xi,λ→0 = 0) = 10−0zi = 1 (3.21)
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Common cause failures

The parametrized stochastic variable, Xi,λ for common cause failures becomes

Xi,λ :



Pr(Xi,λ = 1) = (1− q(i)
i,λ)(1− q(c)

i,λ)

= (1− 10−ziλ)
s∏

j=1,j 6=i
(1− βij(1− 10−zjλ))

Pr(Xi,λ = 0) = 1− (1− q(i)
i,λ)(1− q(c)

i,λ)

= 1− (1− 10−ziλ)
s∏

j=1,j 6=i
(1− βij(1− 10−zjλ))

(3.22)

where
0 < λ ≤ 1. (3.23)

By inserting λ = 1 in (3.22), we get

Xi,λ=1 :



Pr(Xi,λ=1 = 1) = (1− q(i)
i,λ=1)(1− q(c)

i,λ=1)

= (1− 10−zi)
s∏

j=1,j 6=i
(1− βij(1− 10−zj ))

Pr(Xi,λ=1 = 0) = 1− (1− q(i)
i,λ=1)(1− q(c)

i,λ=1)

= 1− (1− 10−zi)
s∏

j=1,j 6=i
(1− βij(1− 10−zj ))

(3.24)

which is the same stochastic variable as we defined in (2.15). When λ goes to zero
we get the limit

Xi,λ→0 :



Pr(Xλ→0 = 1) = (1− q(i)
i,λ→0)(1− q(c)

i,λ→0)

= (1− 10−0·zi)
s∏

j=1,j 6=i
(1− βij(1− 10−0·zj )) = 0

Pr(Xλ→0 = 0) = 1− (1− q(i)
i,λ→0)(1− q(c)

i,λ=1)

= 1− (1− 10−0·zi)
s∏

j=1,j 6=i
(1− βij(1− 10−0·zj )) = 1

(3.25)

Cascading failures

The parametrization of the stochastic variable, Xi,λ(t,X−i), for cascading failures
becomes

Xi,λ(t,X−i) :
{

Pr(Xi,λ(t,X−i) = 1) = pi,λ(t,X−i) = 1− 10−ziλ(t,X−i)

Pr(Xi,λ(t,X−i) = 0) = 1− pi,λ(t,X−i) = 10−ziλ(t,X−i).
(3.26)

where
0 < λ ≤ 1. (3.27)
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By inserting λ = 1 in (3.26), we get

Xi,λ=1(t,X−i) :
{

Pr(Xi,λ=1(t,X−i) = 1) = 1− 10−zi(t,X−i) = pi(t,X−i)
Pr(Xi,λ=1(t,X−i) = 0) = 10−ziλ(t,X−i) = 1− pi(t,X−i)

(3.28)
which is the same stochastic variable as we defined in equation (2.17). When λ
goes to zero we get the limit

Xi,λ→0(t,X−i) :
{

Pr(Xi,λ→0(t,X−i) = 1) = 1− 10−0·zi(t,X−i) = 0
Pr(Xi,λ→0(t,X−i) = 0) = 10−0·zi(t,X−i) = 1 (3.29)

The results from simulations of a parametrized system is shown in figure 3.2. The
system is the dependent system with cascading failures, defined in section 3.4.2.
Since the range of the estimated probability of failure, p̂F , is from 0.14 to 10−7,
we use logarithmic y-axis to present the results. The original system is obtained
for λ = 1, and the behaviour of the log(p̂F (λ)) seems to be close to linear. The
estimations of p̂F (λ) are calculated by n = 108 samples for each λ. The number of
fails in the different simulations is given in equation (3.30),

0.2
0.289
0.378
0.467
0.556
0.644
0.733
0.822
0.911

1


fails(λ) =



14101098
5270988
1921357
694723
249901
89568
32338
11677
4122
1489


(3.30)

This parametrization was done by a relatively large sample size, n = 108. By
decreasing the sample size to n = 105, the number of fails when λ → 1 will be 0,
but we will have good estimates for p̂F for the small values of λ. We want to use
these good estimates to predict how the system will behave for the values of λ with
no fails.



22 CHAPTER 3. MONTE CARLO SIMULATION

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

λ

P
ro
b
a
b
il
it
y
o
f
fa
il
u
re
,
p̂
F

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
0

λ

P
ro
b
a
b
il
it
y
o
f
fa
il
u
re
,
p̂
F

 

 

p̂F n(λ), n = 108

p̂F n(λ), n = 108

Figure 3.2: Simulated probability failure, p̂F n, as a function of λ. Simulations are
done with n = 108 for the model described in section 3.4.2. and p = 1 − 10−7

for each component. Parametrized system, so the original system is obtained for
λ = 1. The logarithmic plot shows a behaviour that looks quite linear.

3.3.2 Least squares fit

This section is copied from the project assignment [2] for completeness. When we
obtain results for a given system from the different values of λ in the parametriza-
tion, we want to fit a curve to these results in order to obtain the probability of
failure for the non-parametrized system. To do this curve fitting, we do m = 10
simulations of size n for each value of λ. From the mean of each simulation we fit
a curve by using minimization of least squares. We investigate different families of
functions from the form

p̃F = 10a(b+λ)c+d, (3.31)
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where p̃F denotes the probability of failure defined in (2.16) and a, b, c and d are
parameters in R. The standard minimization of least squares can be written as

min
a,b,c,d

1
2

l∑
i

(f(xi)− yi)2,

where yi is the observation from the simulations for the different l values of λ, and
f(xi) is the family of functions we would like to fit the model for. For our family
of functions (3.31), we would get the following minimization problem

min
a,b,c,d

1
2

l∑
i

(10a(b+λi)c+d − yi)2.

To simplify the calculations and make it easier to visualize the results, we choose to
do the minimization of the logarithmic model. The transformed family of functions
is

log10(10a(b+λ)c+d) = a(b+ λ)c + d,

and the minimization becomes

min
a,b,c,d

1
2

l∑
i

(a(b+ λi)c + d− log10(yi))2. (3.32)

We want to investigate three cases of the family of functions (3.31). If c = 1,
the family of functions can be written as a family of linear functions,

log10(p̃FL(λ)) = aλ+ b. (3.33)

If c = 2, the family of functions can be written as a family of quadratic functions,

log10(p̃FQ(λ)) = aλ2 + bλ+ c. (3.34)

The last case is where c is not fixed, and we get four parameters

log10(p̃FG(λ)) = a(b+ λ)c + d. (3.35)

3.3.3 Weighted fit
The intention with the weighting is as described in the project assignment [2],
but three additional weighting strategies are added and investigated. To make a
more accurate result, the different values for λ are given different weights in the
minimization. We assign large weights to the most describing values of λ and small
weights to the least describing values of λ. With an unweighted fit the simulations
with λ > 0.5 often force an unnatural behaviour of the fitted curve at the tail.
When weights are added to our problem, we want to minimize the following:

min
a,b,c,d

1
2

l∑
i

wi(a(b+ λi)c + d− log10(yi))2, (3.36)
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where w is the proportion each value of λ should be weighted. We want to assign
large weights to some λs so the most significant results have larger weights.

To make the minimization, the Matlab function lsqcurvefit [12] is used.
This function find coefficients x that for given input data xdata and observations
ydata best fit the equation

min
x

1
2
∑
i

(F (x, xdatai)− ydatai)2. (3.37)

If we define the inline function in Matlab to be

F = @(x, xdatai)
√
wi(x(1)(x(2) + xdatai)x(3) + x(4)), (3.38)

where
x =

[
a b c d

]
To get the minimization on the same form as (3.36), we need to send in the vec-
tor ydata =

√
w log10(y) to the Matlab call in (3.37) The minimization proce-

dure lsqcurvefit uses one of two optimization methods: Trust region method or
Levenberg-Marquardt. We will only use the Trust region method as this gives the
most accurate results. When the initial point is far away from the solution, the
trust region method will move faster to the desired area than Levenberg-Marquardt
[1]. We need to define the initial point [a,b,c,d], which is set to [0,0] for the linear
fit, [0,0,0] for the quadratic fit and [0,0,1,0] for the general fit.

Coefficient of variance, weightN

One way to represent the weights is by the inverse logarithmic difference of the co-
efficient of variance for the different λs. The coefficient of variance of our Bernoulli
trials may be written as

CV (λ) = 1− p̂F n(λ)
np̂F n(λ)

, (3.39)

where p̂F n(λ) is the mean over the m = 10 samples of the simulated probability
to fail, p̂F n(λ) and n is the sample size. The coefficient of variance describes
the proportion of variation relative to the sample mean. By constructing a 95 %
confidence interval for the coefficient of variance, we get the following representation
for the different λs.

CI(λ) = p̂F n(λ)(1± 1.96
√
CV (λ)) (3.40)

Then the weights can be defined as

w(λ) = 1
(log10(CI+(λ))− log10(CI−(λ)))2 , (3.41)

where

CI+(λ) = p̂F n(1 + 1.96CV (λ))
CI−(λ) = p̂F n(1− 1.96CV (λ))
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For some of the weights, wi(λ), CI−(λ) is negative. This happens near the tail,
where the value of p̂F (λ) is small compared to the variance coefficient. For negative
values of CI−(λ), (3.41) is not a good measurement of the weights. To solve this,
the weights are calculated, for each of the l values of λ by algorithm 1:

Algorithm 1 Assigning weights coefficient of variance
Input: Pf (λ), n
CV (λ) = 1−Pf (λ)

nPf

CI+(λ) = Pf (λ)(1 + 1.96
√
CV (λ))

CI−(λ) = Pf (λ)(1− 1.96
√
CV (λ))

k=0
for i=1 to length of Pf (λ) do
if Pf (i) > 0 then
k = k+1
if CI−(i) > 0 then
wi(k) = 1

(log10(CI+(i))−log10(CI−(i)))2

else
wi(k) = wi(k−1)

(Pf (k−1)/Pf (k))
end if

end if
end for
Output: wi = wi

sum(wi)

By using this weighting algorithm, we adjust the weights in the tails, where
often CI− < 0. The factor (Pf (k − 1)/Pf (k)) will in most cases be between 1.5
and 6, and ensures that the simulations with few fails have less to say for the fitted
curve.
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Mean times inverse empirical standard deviation, weightS

Another way to assign weights is to directly divide the mean of the simulations by
the empirical standard deviation,

w(λ) = fails(λ)
std(fails(λ)) . (3.42)

fails(λ) is the mean of the vector with number of fails, fails(λ), and std(fails(λ)
is the empirical standard deviation of the same vector.

For this weighting strategy, results with many fails will be given high weights,
but will be adjusted by the empirical standard deviation from the simulations. The
standard deviation is usually larger for the large values of λ. The weighting strategy
must a contain a special condition for the cases where the empirical standard
deviation is 0. This may be a possibility, especially for small values of λ. The
weight for these values of λ is set to be the sum of the fails, sFails(λ).

Algorithm 2 Mean times inverse
Input: fails(λ)
sFails(λ) = sum(fails(λ))
k=0
for i=1 to length of sFails(λ) do
if sFails(i) > 0 then
k = k+1
if var(fails(i)) = 0 then
wi(k) = sFails(i)

else
wi(k) = fails(i)

std(fails(i))
end if

end if
end for
Output: wi = wi

sum(wi)
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Empirical coefficient of variance, weightN2

It is also possible to calculate the empirical coefficient of variance by dividing the
empirical variance by the number of fails for the given values of λ This is the same
procedure as 1, but the coefficient of variance is calculated by empirical variance
and mean,

CV (λ) = var(fails(λ))
sFails(λ) . (3.43)

fails(λ) is the vector with the m fails for a given λ and sFails(λ) is the sum of
the this vector.

This weighting strategy will be more affected by variations in the m simulations
for each λ than the weights in 1. The algorithm contains special cases for negative
values of CI− and when the variance of fails(λ) = 0, constructed the same way as
for 1 and 2.

Algorithm 3 Assigning weights relative empirical variance
Input: Pf (λ), n, fails(λ)
sFails(λ) = sum(fails(λ))
CV (λ) = var(fails(λ))

sFails(λ)
CI+(λ) = Pf (λ)(1 + 1.96

√
CV (λ))

CI−(λ) = Pf (λ)(1− 1.96
√
CV (λ))

k=0
for i=1 to length of Pf (λ) do
if Pf (i) > 0 then
k = k+1
if CI−(i) > 0 then
wi(k) = 1

(log10(CI+(i))−log10(CI−(i)))2

else
wi(k) = wi(k−1)

(Pf (k−1)/Pf (k))
end if

end if
if Var(fails(i)=0 then
wi(k) = sFails(i)

end if
end for
Output: wi = wi

sum(wi)
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Inverse empirical variance, weightQ

The inverse empirical variance is the most common weighting strategy in least
squares [3] It is common since it makes the uncertain results less important to the
fit. The most common use is however when there is little variation in the order of
the mean. The weights are calculated by

w(λ) = 1
var(fails(λ)) , (3.44)

with the vector fails(λ) as before.
This weighting strategy does not take the mean into consideration, so we expect
that that the fit will do the opposite of our intentions. It may however be interesting
to see how the results are affected by this.

Algorithm 4 Assigning weights inverse empirical variance
Input: fails(λ)
sFails(λ) = sum(fails(λ))
k=0
for i=1 to length of sFails(λ) do
if sFails(i) > 0 then
k = k+1
if var(sFails(λ)) = 0 then
wi(k) = fails(i)

else
wi(k) = 1

var(fails(i))
end if

end if
end for
Output: wi = wi

sum(wi)

No weights

For some of the systems, we will investigate how the least squares fit is without
weighting. This did not give good results in the project [2], but it will be interesting
to analyse the behaviour of different systems without weighting as well.
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3.4 Implementation of systems
Implementation of the different systems simulated

3.4.1 Independent components in series
A direct algorithm for simulating a series structure with s components is given in
algorithm 5. The reliability block diagram of the system can be seen in figure 2.1

Algorithm 5 Calculation of system failure for s components in series
Input: n,s,p
Require: n,s ∈ N+, 0 < p(j) < 1, j = 1, 2, . . . , s
A = Generate matrix of (n× s) random variables  U(0, 1)
fails = 0
for i = 1 to n do
for j = 1 to s do
if A(i, j) > p(j) then
fails = fails+ 1
break

end if
end for

end for
Output: p̂F = fails

n

n is the sample size, s is the number of components in series and p is a vector
of length s with the probability to fail for each component 1, 2, . . . s.

This system was used to generate all the independent results given in section
4.1

3.4.2 Cascading failure on 2003-system
Consider the 2003-system in figure 3.3. Let the components be defined by the
stochastic variable in equation (2.17). The system can represent a case where the
components each share a common load. When one of the components fail, the
other components need to take a larger share of the load. The implementation of
the system from figure 3.3 is given in algorithm 6. The system is functioning when
2 components are functioning. When the first components in the system fail, the
probability to fail for the two other components increase with 50%. The component
that failed remains failed until it gets repaired. In the implemented system, the
components only get repaired when the system has failed. That is, when 2 or 3 of
the components are not functioning.
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Figure 3.3: Logarithmic plot of the simulated probability failure, Pf , as a function
of λ.

Consider the following four states of the system:

3. Three components functioning - System functioning

2. Two components functioning - System functioning

1. One component functioning - System failed

0. None components functioning - System failed

Figure 3.4: Logarithmic plot of the simulated probability failure, Pf , as a function
of λ. Simulations are done in 10 samples with n = 104 for a structure with 1
component and p1 = 1− 10−7. Original system is obtained for λ = 1.

Since the transition probabilities are fixed, we can define the Markov chain
of the system, given in figure 3.4. From the Markov Chain, we see that all the
components gets repaired at the moment the system fails. We have included the
probabilities that two components fail simultaneously, but when we have q ≈ 10−7,
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Algorithm 6 Calculation of system failure of the described 2003-system
Input: n,p
Require: n, ∈ N+, 0 < p(j) < 1, j = 1, 2, 3
A = Generate matrix of (n× 3) random variables  U(0, 1)
fails = 0
pfailed = zeros(3, 1)
ps=p
for i = 1 to n do
if (A(i, 1) > ps(1) and A(i, 2) > ps(2)) or
(A(i, 1) > ps(1) and A(i, 3) > ps(3)) or
(A(i, 2) > ps(2) and A(i, 3) > ps(3)) then
fails = fails+ 1

end if
if A(i, 1) > ps(1) and pfailed(1) == 0 then
ps(2) = 1− (1− ps(2)) · 3/2
ps(3) = 1− (1− ps(3)) · 3/2
ps(1) = 0
pfailed(1) = 1

end if
if A(i, 1) > ps(2) and pfailed(2) == 0 then
ps(1) = 1− (1− ps(1)) · 3/2
ps(3) = 1− (1− ps(3)) · 3/2
ps(2) = 0
pfailed(2) = 1

end if
if A(i, 1) > ps(3) and pfailed(3) == 0 then
ps(1) = 1− (1− ps(1)) · 3/2
ps(2) = 1− (1− ps(2)) · 3/2
ps(3) = 0
pfailed(3) = 1

end if
end for
Output: p̂F = fails

n

q2 and q3 is negligible. When we do this simplification the last state is removed.
This allows us to define a new, shorter Markov chain with following states:

2. Three components functioning - System functioning

1. Two components functioning - System functioning

0. One component functioning - System failed

This Markov chain is shown in figure 3.5. This Markov chain is irreducible and
ergodic, and we can use theorem 2.6.1 to find the limiting probabilities.
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Figure 3.5: Logarithmic plot of the simulated probability failure, Pf , as a function
of λ. Simulations are done in 10 samples with n = 104 for a structure with 1
component and p1 = 1− 10−7. Original system is obtained for λ = 1.

Let P be the one step transition probability matrix introduced in equation
(2.20), The original 4 state matrix from figure 3.4 is

P =


1− 3q − 3q2 − q3 3q 3q2 q3

0 1− 3q − ( 3q
2 )2 3q ( 3q

2 )2

1 0 0 0
1 0 0 0

 , (3.45)

which is simplified to

P =

1− 3q 3q 0
0 1− 3q 3q
1 0 0

 (3.46)

when we neglect q2 and q3. The system of equations for the limiting probabilities
is given in equations (3.47) to (3.50).

π2 = (1− 3q)π2 + π0 (3.47)
π1 = 3qπ2 + (1− 3q)π1 (3.48)
π0 = 3qπ1 (3.49)
π2 + π1 + π0 = 1 (3.50)

Equation (3.48) gives
Π1 = Π2,

and by combining equation (3.49) and (3.50)
2π1 + π0 = 1( 2

3q + 1
)
π0 = 1

π0 = 1
2
3q + 1

π0 = q

q + 2
3
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Since 0 was the only state, where the system is not functioning, the probability
to fail for the system is

pF = π0 = q

q + 2
3

(3.51)

3.4.3 Cascading failure on two 2003-systems and three inde-
pendent components in series.

This system is on the same form as figure 2.3, where the 2003-sub systems are
identical to the 2003 system defined in figure 3.3. The other three components in
the system act independently. This system is also possible to monitor by Markov
chains, to get an analytical solution for the probability to fail, pF . Let p4, p5 and
p9 be the reliability for the three independent components in series, 4,5 and 9. The
probability of system failure, pF , for this system can be expressed by

pF = 1− (1− π0)1(1− π0)2(p4)(p5)(p6), (3.52)

where (1 − π0)1 is the reliability of the first 2003-sub system and (1 − π0)2 the
reliability of the second.

3.4.4 Cascading failures with repair interval combined in se-
ries

The reliability block diagram for this system is shown in figure 3.6. The single com-
ponents, 3 and 6 are independent, but the other four components are implemented
with dependencies. When one of the dependent components fail, it is taken out of
the system until it is repaired. The dependent components 1 and 2 are repaired
simultaneously when both fail, and when at least one of the two components have
been functioning for n = 1

1−p runs. The dependent components 4 and 5 are only
repaired when both of them have failed. The implementation is given in algorithm
7.

1

2

3

4

5

6

Figure 3.6: Logarithmic plot of the simulated probability failure, Pf , as a function
of λ. Simulations are done in 10 samples with n = 104 for a structure with 1
component and p1 = 1− 10−7. Original system is obtained for λ = 1.
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Algorithm 7 Cascading failures with repair interval combined in series
Input: n,p
Require: n, ∈ N+, 0 < p(j) < 1, j = 1, 2, . . . , 6
A = Generate matrix of (n× 6) random variables  U(0, 1)
fails = 0
j = 0
ps=p
for i = 1 to n do
j = j+1
if A(i, 3) > ps(3) or A(i, 6) > ps(6) then
fails = fails+ 1

else
if A(i, 1) > ps(1) and A(i, 2) > ps(2) then
fails = fails+ 1
j = 0

else
if A(i, 4) > ps(4) and A(i, 5) > ps(5) then
fails = fails+ 1

end if
end if

end if
for q = 1, 2, 4, 5 do
if A(i, q) > ps(q) then
ps(q) = 0

end if
if mod(j, 1

1−p(1) ) == 0 then
ps(1) = p(1)
ps(2) = p(2)

end if
if ps(4) == 0 and ps(5) == 0 then
ps(4) = p(4)
ps(5) = p(5)

end if
end for

end for
Output: p̂F = fails

n
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3.4.5 Cascading failures in parallel structure with repair in-
terval

The reliability block diagram for this system is shown in figure 3.7, where all
the components needs to fail for the system to fail. The model is implemented
by removing the components that fails. The repair interval is unique for all the
components, 1

1−p(i) and corresponds to the components expected time to fail. If the
system fails, all components are repaired simultaneously. The algorithm is given
in 8.

Figure 3.7: Logarithmic plot of the simulated probability failure, Pf , as a function
of λ. Simulations are done in 10 samples with n = 104 for a structure with 1
component and p1 = 1− 10−7. Original system is obtained for λ = 1.

3.4.6 Common cause failure
The common cause failures are introduced by the stochastic variable in equation
(2.15). We introduced the factor βij that describes the probability for component i
to fail if component j fails. The model consists of two parallel structures in series.
Failure on a component in one of the parallels affect the probability that the two
components in the other parallel fail. The components are "repaired" back to the
initial state after every run. The implementation is shown in algorithm 9
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Algorithm 8 Cascading failures in parallel structure with repair interval
Input: n,p
Require: n, ∈ N+, 0 < p(j) < 1, j = 1, 2, 3
A = Generate matrix of (n× 3) random variables  U(0, 1)
fails = 0
j = 0
ps=p
for i = 1 to n do
j = j + 1
if (A(i, 1) > ps(1) and A(i, 2) > ps(2)) and A(i, 3) > ps(3)) then
fails = fails+ 1
j = 0

end if
if A(i, 1) > ps(1) then
ps(1) = 0

end if
if A(i, 2) > ps(2) then
ps(2) = 0

end if
if A(i, 3) > ps(3) then
ps(3) = 0

end if
if mod(j, 1

1−p(1) ) == 0 then
ps(1) = p(1)

end if
if mod(j, 1

1−p(2) ) == 0 then
ps(2) = p(2)

end if
if mod(j, 1

1−p(3) ) == 0 then
ps(3) = p(3)

end if
end for
Output: p̂F = fails

n
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Algorithm 9 Calculation of system failure in figure
Input: n,p,β
Require: n, ∈ N+, 0 < p(j) < 1, 0 ≤ β(i, j) ≤ 1 i, j = 1, 2, 3, 4
A = Generate matrix of (n× 4) random variables  U(0, 1)
fails = 0
for i = 1 to n do

ps=p
if A(i, 1) > p(1) then
if rand(1) < β(3, 1) then
ps(3) = 0

end if
if rand(1) < β(4, 1) then
ps(4) = 0

end if
end if
if A(i, 2) > p(2) then
if rand(1) < β(3, 2) then
ps(3) = 0

end if
if rand(1) < β(4, 2) then
ps(4) = 0

end if
end if
if A(i, 3) > p(3) then
if rand(1) < β(1, 3) then
ps(1) = 0

end if
if rand(1) < β(2, 3) then
ps(2) = 0

end if
end if
if A(i, 4) > p(4) then
if rand(1) < β(1, 4) then
ps(1) = 0

end if
if rand(1) < β(2, 4) then
ps(2) = 0

end if
end if
if (A(i, 1) > ps(1) and A(i, 2) > ps(2)) or
(A(i, 3) > ps(3) or A(i, 4) > ps(4)) then
fails = fails+ 1

end if
end for
Output: p̂F = fails

n
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Chapter 4

Results

The results from all the tests is presented in this chapter. The result highlights
the different precisions achieved by the different weights and fits. The results are
presented in tables and figures, with the aim to describe the overall behaviour for
each variant for the different models. The notation linspace(a,b,c) is used, and it
describes a vector which starts at a, has b equidistant entries, and ends at c.

4.1 Independent Systems
For the independent systems, Monte Carlo simulations of the parametrized models
are compared with the known analytical solution of the different systems. The
simulations where we compare different properties of a given system use the same
generated random variables. This makes it easier to find out how the different meth-
ods behave for similar conditions. Section 4.1.1 shows how changing the parameter
λ changes the estimate for a single component system. The weighting strategy is
the original, weightN. In section 4.1.2, the different weights are presented, with
fixed parameters λ. The different weights are tested on a single component model.
The last single component model is presented in section 4.1.3. This model is tested
with a very a low probability to fail (10−12). In section 4.1.4, we increase the num-
ber of components to 6, and analyse the effect of different parameters λ for two of
the most interesting weights.

4.1.1 One component with different values of λ
The results presented in this section shows us that the best parameter λ for this
problem is λ=linspace(0.05,10,1). The linear fit is the fit that is least affected by
changing the parameter λ, which can be desrcribed with the linearity in this fit.
For the quadratic fit, the starting point is more crucial for the fit, and this fit is
very affected by increasing λ. The general fit is also quite stable with different λs,
but the best result is achieved for λ=linspace(0.05,10,1). See figures 4.1 to 4.3 and
tables 4.1 to 4.3.

39
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WeightN, λ =linspace(0.05,10,1)

Table 4.1: Comparison of the three fits when s = 1, p1 = 1 − 10−7, λ =
linspace(0.05, 10, 1) and simulation size is 10 samples with n = 104. The least
squares fit is weighted with weightN, described in algorithm 1. δp̃F (1) = p̃F (1)−pF (1)

pF (1) ,
where pF (1) = 10−7 is the analytically calculated probability to fail.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -7.0328 0.0030 9.337 · 10−8 -0.066
aλ2 + bλ+ c -0.1893 -6.9773 0.0004 6.820 · 10−8 -0.310
a(b+ λ)c + d -7.0329 0.0002 1.0011 0.0030 9.302 · 10−8 -0.070
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Figure 4.1: Logarithmic plot of the different fits of the simulated probability failure,
p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for a
structure with 1 component and p1 = 1 − 10−7. wi = weightN and λ(1) = 0.05.
Original model is obtained for λ = 1.
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WeightN, λ =linspace(0.1,10,1)

Table 4.2: Comparison of the three fits when s = 1, p1 = 1 − 10−7, λ =
linspace(0.1, 10, 1) and simulation size is 10 samples with n = 104. The least squares
fit is weighted with weightN, described in algorithm 1. δp̃F (1) = p̃F (1)−pF (1)

pF (1) , where
pF (1) = 10−7 is the analytically calculated probability to fail.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -7.0520 0.0094 9.066 · 10−8 -0.093
aλ2 + bλ+ c -0.5750 -7.2818 0.0274 2.092 · 10−7 1.092
a(b+ λ)c + d -7.0518 -0.0008 0.9966 0.0095 9.194 · 10−8 -0.081
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Figure 4.2: Logarithmic plot of the different fits of the simulated probability failure,
p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for a
structure with 1 component and p1 = 1 − 10−7. wi = weightN and λ(1) = 0.1.
Original model is obtained for λ = 1.
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WeightN, λ =linspace(0.2,10,1)

Table 4.3: Comparison of the three fits when s = 1, p1 = 1 − 10−7, λ =
linspace(0.2, 10, 1) and simulation size is 10 samples with n = 104. The least squares
fit is weighted with weightN, described in algorithm 1. δp̃F (1) = p̃F (1)−pF (1)

pF (1) , where
pF (1) = 10−7 is the analytically calculated probability to fail.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -7.0007 -0.0019 9.805 · 10−8 -0.020
aλ2 + bλ+ c 1.9206 -8.1389 0.1504 8.551 · 10−7 7.551
a(b+ λ)c + d -7.0056 -0.0176 0.9457 0.0006 1.293 · 10−7 0.293
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Figure 4.3: Logarithmic plot of the different fits of the simulated probability failure,
p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for a
structure with 1 component and p1 = 1 − 10−7. wi = weightN and λ(1) = 0.2.
Original model is obtained for λ = 1.
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4.1.2 One component with different weights
The results presented in this section shows that the linear fit with weighting
weightN is the most accurate solution. From table 4.4, we see that this fit was
the most accurate in 288 of 1000 cases. The weighting strategy weightN2 is also
quite good, especially for the general fit. By looking at table 4.5, we see the sum of
squared errors for the 1000 simulations. The linear and general fits with weighting
weightN and weightN2 are best in this measurement as well. The traditional least
squares weighting, weightQ gives as we expected, bad results. These weights are
not relative to the mean of the simulations, and this is not beneficial for our use.
Figures and tables from the tests are given in figure 4.4 to 4.7 and table 4.6 to 4.9.

Table 4.4: Sum of the combinations of fit and weighting that give an estimate, p̃F ,
closest to the analytical solution, pF = 10−7, for 1000 realisations.

WeightN WeightS WeightN2 WeightQ
Linear fit 288 72 133 9
Quadratic fit 45 33 37 4
General fit 120 88 159 12

Table 4.5: Sum of squares for each combination of fit and weighting for 1000
realisations. The sum of squares are calculated by (p̃F − pF )2, where pF = 10−7 is
the analytical solution.

WeightN WeightS WeightN2 WeightQ
Linear fit 8.10·10−14 1.18·10−12 8.26·10−14 2.33·10−9

Quadratic fit 8.70·10−12 2.26·10−10 1.20·10−11 1.36·10−6

General fit 8.41·10−14 6.70·10−12 8.59·10−14 3.32·10−9
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WeightS, λ =linspace(0.05,10,1)

Table 4.6: Comparison of the three fits when s = 1, p1 = 1 − 10−7, λ =
linspace(0.05, 10, 1) and simulation size is 10 samples with n = 104. The least
squares fit is weighted with weightS, described in algorithm 2. δp̃F (1) = p̃F (1)−pF (1)

pF (1) ,
where pF (1) = 10−7 is the analytically calculated probability to fail.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -6.9327 -0.0078 1.147 · 10−7 0.147
aλ2 + bλ+ c 1.055 -7.4248 0.0239 4.512 · 10−7 3.512
a(b+ λ)c + d -6.9277 -0.0038 0.9823 -0.0073 1.232 · 10−7 0.232
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Figure 4.4: Logarithmic plot of the different fits of the simulated probability failure,
p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for a
structure with 1 component and p1 = 1 − 10−7. wi = weightS and λ(1) = 0.05.
Original model is obtained for λ = 1.
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WeightN2, λ =linspace(0.05,10,1)

Table 4.7: Comparison of the three fits when s = 1, p1 = 1 − 10−7, λ =
linspace(0.05, 10, 1) and simulation size is 10 samples with n = 104. The least
squares fit is weighted with weightN2, described in algorithm 3. δp̃F (1) =
p̃F (1)−pF (1)

pF (1) , where pF (1) = 10−7 is the analytically calculated probability to fail.

log10(p̂F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -7.0333 0.0028 9.3202 · 10−8 -0.068
aλ2 + bλ+ c -0.1166 -6.9990 0.0012 7.682 · 10−8 -0.232
a(b+ λ)c + d -7.0334 -0.0001 1.0008 0.0027 9.297 · 10−8 -0.070
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Figure 4.5: Logarithmic plot of the different fits of the simulated probability failure,
p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for a
structure with 1 component and p1 = 1 − 10−7. wi = weightN2 and λ(1) = 0.05.
Original model is obtained for λ = 1.
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WeightQ, λ =linspace(0.05,10,1)

Table 4.8: Comparison of the three fits when s = 1, p1 = 1 − 10−7, λ =
linspace(0.05, 10, 1) and simulation size is 10 samples with n = 104. The least
squares fit is weighted with weightQ, described in algorithm 4. δp̃F (1) = p̃F (1)−pF (1)

pF (1) ,
where pF (1) = 10−7 is the analytically calculated probability to fail.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -5.1410 -0.8984 9.133 · 10−7 8.133
aλ2 + bλ+ c 5.7876 -11.6718 96.551 9.755 · 10−6 -0.232
a(b+ λ)c + d -5.3780 0.0749 0.8548 -0.1581 1.323 · 10−6 12.225
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Figure 4.6: Logarithmic plot of the different fits of the simulated probability failure,
p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for a
structure with 1 component and p1 = 1 − 10−7. wi = weightQ and λ(1) = 0.05.
Original model is obtained for λ = 1.
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Unweighted fit, λ =linspace(0.05,10,1)

Table 4.9: Comparison of the three fits when s = 1, p1 = 1 − 10−7, λ =
linspace(0.05, 10, 1) and simulation size is 10 samples with n = 104. The least
squares fit is unweighted. δp̃F (1) = p̃F (1)−pF (1)

pF (1) , where pF (1) = 10−7 is the analyti-
cally calculated probability to fail.

log10(p̂F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -6.5437 -0.1048 2.246 · 10−7 8.133
aλ2 + bλ+ c 2.2191 -8.1710 0.0946 1.389 · 10−6 -0.232
a(b+ λ)c + d -7.0567 0.2951 0.8725 2.3880 3.509 · 10−7 12.225
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Figure 4.7: Logarithmic plot of the different fits of the simulated probability failure,
p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for a
structure with 1 component and p1 = 1 − 10−7. Unweighted fit and λ(1) = 0.05.
Original model is obtained for λ = 1.
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4.1.3 Single component with reliability p1 = 1− 10−12

This section presents the method applied on a system with a very small probability
to fail. This is done to investigate how accurate simple systems like the one com-
ponent system can be. The model has probability to fail, pF = 10−7, and results
from the simulations are quite good. For the linear fit, we have obtained estimates
that only differs 10% and 20% from the analytical solution. This is achieved by 10
samples with sample size n = 104 each. The results for the quadratic and general
fit were not as stable as the linear, but for some of the runs, they were quite accu-
rate as well. The results presented in figure 4.8 and table 4.10 shows a fit where
the general fit was very bad. This shows that the general fit is not the most stable
method when we have as extreme probabilities as 1012. The quadratic fit differs
with more than 100%. In figure 4.9 and table 4.11 we see that the linear fit is very
good once more, and that all the fits are very accurate. It is worth noticing that
the general fit in this case approximated a fit identical to the linear, with c = 1 and
b = 0. All the fits are done with λ=linspace(0.05,10,1) and wi = weightN, which
gave the best results.
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Realisation with a bad general fit, p̃FG

Table 4.10: Comparison of the three fits when s = 1, p1 = 1 − 10−12, λ =
linspace(0.05, 10, 1) and simulation size is 10 samples with n = 104.The least
squares fit is weighted with weightN, described in algorithm 1. δp̃F (1) = p̃F (1)−pF (1)

pF (1) ,
where pF (1) = 10−12 is the analytically calculated probability to fail.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -12.0529 0.0048 8.952 · 10−13 -0.105
aλ2 + bλ+ c 0.5310 -12.1707 0.0094 2.343 · 10−12 1.343
a(b+ λ)c + d -10.0637 -0.04037 0.8740 -0.4206 7.443 · 10−11 73.428

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−15

10
−10

10
−5

10
0

λ

P
ro
b
a
b
il
it
y
o
f
fa
il
u
re
,
p̂
F

 

 

p̂F n(λ), n = 104

pF = 10−12λ

p̃FQ = 10aλ
2+bλ

p̃F L = 10aλ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−15

10
−10

10
−5

10
0

λ

P
ro
b
a
b
il
it
y
o
f
fa
il
u
re
,
p̂
F

 

 

p̂F n(λ), n = 104

pF = 10−12λ

p̃FG = 10a(b+λ)c+d

Figure 4.8: Logarithmic plot of the different fits of the simulated probability failure,
p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for a
structure with 1 component and p1 = 1 − 10−12. wi = weightN and λ(1) = 0.05.
Original model is obtained for λ = 1.



50 CHAPTER 4. RESULTS

Realisation with a good general fit, p̃FG

Table 4.11: Comparison of the three fits when s = 1, p1 = 1 − 10−12, λ =
linspace(0.05, 10, 1) and simulation size is 10 samples with n = 104.The least
squares fit is weighted with weightN, described in algorithm 1. δp̃F (1) = p̃F (1)−pF (1)

pF (1) ,
where pF (1) = 10−12 is the analytically calculated probability to fail.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -11.9136 -0.0036 1.210 · 10−12 0.210
aλ2 + bλ+ c -0.3115 -11.8444 -0.0063 6.884 · 10−13 -0.311
a(b+ λ)c + d -11.9136 0 1 -0.0036 1.210 · 10−12 0.210
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Figure 4.9: Logarithmic plot of the different fits of the simulated probability failure,
p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for a
structure with 1 component and p1 = 1 − 10−12. wi = weightN and λ(1) = 0.05.
Original model is obtained for λ = 1.
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4.1.4 Six components in series
The result presented in this section shows that the linear fit with weighting weightN
has the most accurate solutions, shown in tables 4.12 and 4.13. This combination
has the estimate closest to the analytical solution in 216 of the 1000 realisations
tested. The sum of squares for the linear fits with weighting weightN and weightN2
are similar, and the smallest of the combinations. The results are obtained by
letting the parameter λ start at 0.25. This differs from the single component
models, where λ = 0.05 clearly was the best option. The section will present
different realisations of the weights weightN and weightS, where the parameter λ
starts at λ(1) = 0.1 and λ(1) = 0.25. The results of the realisations are given in
figures 4.10 to 4.11 and tables 4.14 to 4.15. We see that all the weights vary when
changing the parameter λ. The weighting strategy weightN has good estimates for
all the fits.

Table 4.12: Sum of the combinations of fit and weighting that give an estimate,
p̃F , closest to the analytical solution, pF = 6 · 10−7, for 1000 realisations.

WeightN WeightS WeightN2 WeightQ
Linear fit 216 140 105 37
Quadratic fit 90 37 51 16
General fit 122 40 109 37

Table 4.13: Sum of squares for each combination of fit and weighting for 1000
realisations. The sum of squares are calculated by (p̃F − pF )2, where pF = 6 · 10−7

is the analytical solution.

WeightN WeightS WeightN2 WeightQ
Linear fit 2.11·10−11 7.53·10−11 2.11·10−11 6.73·10−9

Quadratic fit 2.41·10−10 1.97·10−9 3.30·10−10 9.19·10−8

General fit 3.38·10−11 7.51·10−10 3.82·10−11 7.66·10−9
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WeightN, λ = 0.25

Table 4.14: Comparison of the three fits when s = 6, pi = 1− 10−7, i = 1, 2, . . . , 6,
λ = linspace(0.25, 10, 1) and simulation size is 10 samples with n = 104.The least
squares fit is weighted with weightN, described in algorithm 1. δp̃F (1) = p̃F (1)−pF (1)

pF (1) ,
where pF (1) = 6 · 10−7 is the analytically calculated probability to fail.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -6.8861 0.7330 7.028 · 10−7 0.171
aλ2 + bλ+ c 0.0734 -6.9362 0.7410 7.555 · 10−7 0.259
a(b+ λ)c + d -6.8861 0 1 0.7330 7.028 · 10−7 0.171
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Figure 4.10: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for
a structure with 6 component and pi = 1−10−7 ∀i. wi = weightN and λ(1) = 0.25.
Original model is obtained for λ = 1.
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WeightS, λ = 0.25

Table 4.15: Comparison of the three fits when s = 6, pi = 1− 10−7, i = 1, 2, . . . , 6,
λ = linspace(0.25, 10, 1) and simulation size is 10 samples with n = 104.The least
squares fit is weighted with weightS, described in algorithm 2. δp̃F (1) = p̃F (1)−pF (1)

pF (1) ,
where pF (1) = 6 · 10−7 is the analytically calculated probability to fail.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -6.8423 0.7199 7.544 · 10−7 0.257
aλ2 + bλ+ c 0.2972 -7.0887 0.7650 9.409 · 10−7 0.568
a(b+ λ)c + d -6.8422 -0.0105 0.9693 0.7214 8.884 · 10−7 0.481
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pF = 1− (1 − 10−7λ)6

p̃FG = 10a(b+λ)c+d

Figure 4.11: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for
a structure with 6 component and pi = 1−10−7 ∀i. wi = weightS and λ(1) = 0.25.
Original model is obtained for λ = 1.
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WeightN, λ = 0.1

Table 4.16: Comparison of the three fits when s = 6, pi = 1− 10−7, i = 1, 2, . . . , 6,
λ = linspace(0.1, 10, 1) and simulation size is 10 samples with n = 104.The least
squares fit is weighted with weightN, described in algorithm 1. δp̃F (1) = p̃F (1)−pF (1)

pF (1) ,
where pF (1) = 6 · 10−7 is the analytically calculated probability to fail.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -5.9805 0.4876 3.214 · 10−6 4.357
aλ2 + bλ+ c 0.2972 -7.0887 0.7650 9.642 · 10−9 -0.984
a(b+ λ)c + d -6.8422 -0.0105 0.9693 0.7214 1.346 · 10−6 1.243
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p̃FG = 10a(b+λ)c+d

Figure 4.12: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for
a structure with 6 component and pi = 1− 10−7 ∀i. wi = weightS and λ(1) = 0.1.
Original model is obtained for λ = 1.
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WeightS, λ = 0.1

Table 4.17: Comparison of the three fits when s = 6, pi = 1− 10−7, i = 1, 2, . . . , 6,
λ = linspace(0.1, 10, 1) and simulation size is 10 samples with n = 104.The least
squares fit is weighted with weightS, described in algorithm 2. δp̃F (1) = p̃F (1)−pF (1)

pF (1) ,
where pF (1) = 6 · 10−7 is the analytically calculated probability to fail.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -6.2870 0.5213 3.214 · 10−6 1.858
aλ2 + bλ+ c -2.345 -4.9774 0.3940 9.642 · 10−9 -0.804
a(b+ λ)c + d -6.5283 -0.1067 1.0475 -0.1629 1.346 · 10−6 0.812
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p̃FG = 10a(b+λ)c+d

Figure 4.13: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for
a structure with 6 component and pi = 1− 10−7 ∀i. wi = weightS and λ(1) = 0.1.
Original model is obtained for λ = 1.



56 CHAPTER 4. RESULTS

4.2 Dependent Systems
The dependent systems, the Monte Carlo simulations of the parametrized mod-
els are compared with standard Monte Carlo simulations with large sample sizes.
We introduce the confidence intervals of the standard Monte Carlo simulations,
and compare our estimates to this. For the cases where we were able to formu-
late the models by Markov chains, the analytical solution was found by limiting
probabilities.
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4.2.1 Cascading failures on 2003-system
In this section, we construct the model described in section 3.4.2, and compare
the results with the analytical solution obtained by limiting probabilities from
equation (3.51). The probability to fail, qi for the components i = 1, 2, 3 were set
to q = 10−7. Equation (3.51) gives

pF ≈ 1.50 · 10−7 (4.1)

In table 4.18, the combination of weights and fits are compared for 1000 realisations.
We see that the linear fit with weighting strategy weightN is best, with more than
50% of the best rest results. Table 4.19 tells the same story, where the linear fits
with weightN and weightN2 have the smallest squared error. The general fit with
weightN is also much better than many of the other fits. Figure 4.14 and table 4.20
shows a realisation where all the fits are very accurate, and the general fit obtained
a precision only 1.2% from the analytic solution. Notice that the general fit is close
to being linear.

Table 4.18: Sum of the combinations of fit and weighting that give an estimate,
p̃F , closest to the analytical solution, pF = 1.50 · 10−7, for 1000 realisations.

WeightN WeightS WeightN2 WeightQ
Linear fit 507 59 114 23
Quadratic fit 26 7 39 14
General fit 103 23 60 25

Table 4.19: Sum of squares for each combination of fit and weighting for 1000
realisations. The sum of squares are calculated by (p̃F−pF )2, where pF = 1.50·10−7

is the analytical solution.

WeightN WeightS WeightN2 WeightQ
Linear fit 4.71·10−13 2.00·10−12 5.32·10−13 1.30·10−10

Quadratic fit 1.49·10−11 3.79·10−11 1.57·10−11 1.33·10−5

General fit 7.87·10−13 8.69·10−12 1.03·10−12 1.48·10−10
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Table 4.20: Comparison of the three fits for the model described in section 4.2.1
with p1 = p2 = p3 = 1−10−7 and λ = linspace(0.2, 10, 1). The system is simulated
by 10 samples with n = 104. The least squares fit is weighted with weightN,
described in algorithm 1. δp̃F (1) = p̃F (1)−pF MC(1)

pF MC(1) , where pFMC(1) = 1.500 · 10−7

is the probability to fail estimated by Markov chain limiting probabilities.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -6.9569 0.1576 1.587 · 10−7 0.058
aλ2 + bλ+ c -0.4888 -6.6756 0.1203 9.035 · 10−8 -0.398
a(b+ λ)c + d -6.9571 0.0027 1.0083 0.1572 1.518 · 10−7 0.012
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p̃FG = 10a(b+λ)c+d

Figure 4.14: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for
the model described in section 4.2.1 wi = weightN and λ(1) = 0.2. Original model
is obtained for λ = 1.
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4.2.2 Cascading failure on two 2003-systems and three inde-
pendent components in series.

In this section, we construct the model described in section 3.4.3, with a probability
to fail, qi = 10−7 for the dependent components 1, 2, 3, 6, 7 and 8 and qi = 10−8

for the other components, 4, 5 and 9. The analytical solution of the probability of
failure, pF , is from equation (3.52)

pF ≈ 3.30 · 10−7. (4.2)

The table 4.21 shows that once again, the weighting strategy, weightN has best
estimate most times. The general fit is the best for 281 of the 1000 realisations.
In table 4.22, we see that the linear fit with weighting strategy weightN2 has the
least sum of squared error. A realisation of simulating the parametrized model is
presented in figure 4.15 and table 4.23. This is generated with weighting strategy,
weightN and λ(1) = 0.2. The linear and general fit are accurate, but the quadratic
fit is as good as it was for 4.20.

Table 4.21: Sum of the combinations of fit and weighting that give an estimate,
p̃F , closest to the analytical solution, pF = 3.30 · 10−7, for 1000 realisations.

WeightN WeightS WeightN2 WeightQ
Linear fit 207 84 220 4
Quadratic fit 5 3 8 1
General fit 281 5 176 6

Table 4.22: Sum of squares for each combination of fit and weighting for 1000
realisations. The sum of squares are calculated by (p̃F−pF )2, where pF = 1.50·10−7

is the analytical solution.

WeightN WeightS WeightN2 WeightQ
Linear fit 1.66·10−12 5.60·10−12 1.24·10−12 6.35·10−10

Quadratic fit 5.13·10−11 8.44·10−11 5.34·10−11 1.94·10−6

General fit 1.29·10−12 4.35·10−11 1.75·10−12 8.82·10−10
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Table 4.23: Comparison of the three fits for the model described in 4.2.2 with
p1 = p2 = p3 = 1 − 10−7 and λ = linspace(0.2, 10, 1). The system is simulated by
10 samples with n = 104. The least squares fit is weighted with weightN, described
in algorithm 1. δp̃F (1) = p̃F (1)−pF MC(1)

pF MC(1) , where pFMC(1) = 3.300 · 10−7 is the
probability to fail estimated by Markov chain limiting probabilities in series.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -7.1395 0.6778 3.454 · 10−7 0.047
aλ2 + bλ+ c -1.2438 -6.4342 0.5852 8.076 · 10−8 -0.755
a(b+ λ)c + d -7.1399 0.0058 1.0177 0.6770 3.129 · 10−7 -0.052
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Figure 4.15: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104

for the model described in section 4.2.2, wi = weightN and λ(1) = 0.2. Original
model is obtained for λ = 1.
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4.2.3 Cascading failures with repair interval combined in se-
ries

In this section, we construct the model described in section 7, with a probability
to fail, qi = 10−7 for the dependent components, i = 1, 2, 4, 5 and qi = 10−6 for
the independent components,i = 3, 6. The estimation of the parametrized model is
compared to estimates from standard Monte Carlo simulations with large sample
sizes. The estimates with standard Monte Carlo have been done with both n = 8
and n = 11 sample sizes, and we have estimated the corresponding confidence
to these estimates. The parametrized method still uses 10 samples with n = 104

random variables in each sample. The tables 4.24 and 4.25 and figures 4.17 and 4.25
that the different fits are accurate. The estimates are done with weighting strategy
weightN2 and λ(1) = 0.2, and compared to the estimations with larger sample size,
p̂F n, where n = 108 and n = 1011. The confidence interval of these estimates are
added to the figure. The experimental confidence interval is calculated by equation
3.15 and Chebychev confidence interval is calculated by equation (3.16). Notice
that the estimate with the general fit is inside the 95% confidence interval obtained
for p̂F n, n = 108.
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Chebychev Confindence Interval, n = 1011

A plot with the estimates compared to the Chebychev confidence interval is pre-
sented in figure 4.16. We see that our estimates are inside the confidence interval,
even though the confidence interval is calculated with n = 11. This is since the
interval is a crude and maximized confidence interval.
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Figure 4.16: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104

for the model described in section 4.2.3, wi = weightN and λ(1) = 0.2. Original
model is obtained for λ = 1.
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Confidence Interval, n = 1011

Table 4.24: Comparison of the three fits for the system described in section 4.2.3.
p1 = p2 = p4 = p5 = 1 − 10−7, p3 = p6 = 1 − 10−6 and λ = linspace(0.2, 10, 1).
The system is simulated by 10 samples with n = 104. The least squares fit is
weighted with weightN, described in algorithm 1. δp̃F (1) = p̃F (1)−p̂F N (1)

p̂F N (1) , where
p̂FN (1) = 2.085 · 10−6 is the probability to fail estimated by original Monte Carlo
simulation with sample size N = 1011.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -6.0764 0.4448 2.335 · 10−6 0.120
aλ2 + bλ+ c -0.8323 -5.5663 -0.0063 9.450 · 10−7 -0.547
a(b+ λ)c + d -6.0772 0.0109 1.0335 0.4430 1.984 · 10−6 -0.048
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Figure 4.17: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104

for the model described in section 4.2.3, wi = weightN and λ(1) = 0.2. Original
model is obtained for λ = 1..
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Confidence Interval, n = 108

Table 4.25: Comparison of the three fits for the system described in section 4.2.3.
p1 = p2 = p4 = p5 = 1 − 10−7, p3 = p6 = 1 − 10−6 and λ = linspace(0.2, 10, 1).
The system is simulated by 10 samples with n = 104. The least squares fit is
weighted with weightN, described in algorithm 1. δp̃F (1) = p̃F (1)−p̂F N (1)

p̂F N (1) , where
p̂FN (1) = 2.130 · 10−6 is the probability to fail estimated by original Monte Carlo
simulation with sample size N = 108.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -6.0764 0.4448 2.335 · 10−6 0.096
aλ2 + bλ+ c -0.8323 -5.5663 -0.0063 9.450 · 10−7 -0.556
a(b+ λ)c + d -6.0772 0.0109 1.0335 0.4430 1.984 · 10−6 -0.069
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Figure 4.18: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104

for the model described in section 4.2.3, wi = weightN and λ(1) = 0.2. Original
model is obtained for λ = 1.
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4.2.4 Cascading failures in parallel structure with repair in-
terval

In this section, we construct the model described in section 3.4.5, with probability
to fail, q = 10−7 for all the three components. The parametrized method is com-
pared to simulations of original Monte Carlo simulations, with larger sample size.
The result in table 4.26 shows that the combination with weightS and linear fit
had the most accurate estimates. The sum of squared error in 4.27 shows that the
linear and the general fit with weighting strategy weightN have a smaller squared
error. Results from a realisation of the parametrized system is given in figures 4.19,
4.20 and 4.21 and tables 4.28 and 4.29. The confidence intervals are calculated and
included as for section 4.2.2. We see that our general and linear fit is inside the 95%
confidence interval for n = 108, and that all the estimates are in the Chebychev
confidence interval with n = 1011.

Table 4.26: Sum of the combinations of fit and weighting that give an estimate,
p̃F , closest to the simulated estimate, p̂F n = 3.158 · 10−8, n = 1011, for 1000
realisations.

WeightN WeightS WeightN2 WeightQ
Linear fit 47 289 71 14
Quadratic fit 1 42 5 4
General fit 272 159 89 7

Table 4.27: Sum of squares for each combination of fit and weighting for 1000
realisations. The sum of squares are calculated by (p̃F − p̂F n)2, where p̂F n =
3.158 · 10−8, n = 1011, is the simulated estimate.

WeightN WeightS WeightN2 WeightQ
Linear fit 1.11·10−14 1.79·10−14 1.18·10−14 2.10·10−12

Quadratic fit 2.43·10−11 1.53·10−12 2.18·10−12 3.60·10−4

General fit 9.79·10−15 2.94·10−14 1.06·10−14 3.93·10−12
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Chebychev Confidence Interval, n = 1011
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Figure 4.19: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104

for the model described in section 4.2.3, wi = weightN and λ(1) = 0.05. Original
model is obtained for λ = 1.
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Confidence Interval, n = 1011

Table 4.28: Comparison of the three fits for the system described in section 4.2.4.
p1 = p2 = p3 = 1 − 10−7 and λ = linspace(0.05, 10, 1). The system is simulated
by 10 samples with n = 104. The least squares fit is weighted with weightN,
described in algorithm 1. δp̃F (1) = p̃F (1)−p̂F N (1)

p̂F N (1) , where p̂FN (1) = 3.158 · 10−8 is
the probability to fail estimated by original Monte Carlo simulation with sample
size N = 1011.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -7.3917 -0.1858 2.645 · 10−8 -0.162
aλ2 + bλ+ c 0.5967 -7.5619 -0.1782 7.188 · 10−8 1.276
a(b+ λ)c + d -7.3915 0.0004 0.9979 -0.1858 2.664 · 10−8 -0.157
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Figure 4.20: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104

for the model described in section 4.2.3, wi = weightN and λ(1) = 0.05. Original
model is obtained for λ = 1.
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Confidence Interval, n = 108

Table 4.29: Comparison of the three fits for the system described in section 4.2.4.
p1 = p2 = p3 = 1 − 10−7 and λ = linspace(0.05, 10, 1). The system is simulated
by 10 samples with n = 104. The least squares fit is weighted with weightN,
described in algorithm 1. δp̃F (1) = p̃F (1)−p̂F N (1)

p̂F N (1) , where p̂FN (1) = 3.000 · 10−8 is
the probability to fail estimated by original Monte Carlo simulation with sample
size N = 108.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -7.3917 -0.1858 2.645 · 10−8 -0.118
aλ2 + bλ+ c 0.5967 -7.5619 -0.1782 7.188 · 10−8 1.396
a(b+ λ)c + d -7.3915 0.0004 0.9979 -0.1858 2.664 · 10−8 -0.112
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Figure 4.21: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104

for the model described in section 4.2.3, wi = weightN and λ(1) = 0.05. Original
model is obtained for λ = 1.
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4.3 Common cause failure
In this section, we construct the model described in section 3.4.6, with a probability
to fail, q = 10−7 for all the four components in the model. The parametrized model
is compared to the estimation of standard Monte Carlo simulation with a large
sample size. The table 4.30 is quite different from the previous tables of the best
weights. The general fit combined with weightS was the best fit for 227 of 1000
realisations. The linear fit with weightN was never the best combination. Table
4.31 gives the relative error of each simulation, and we see that all the weights
except weightQ differ a lot from the simulated estimate, p̂F n, n = 1011. The
weights weightQ was however quite good for this realisation. The realisation with
weightN is presented in figure 4.22 and for weightQ in figure 4.23. The confidence
interval obtained with n = 1011 is added to the figures. The unweighted fit was
also tested on this problem, and the result is presented in 4.24 and 4.34.

Table 4.30: Sum of the combinations of fit and weighting that give an estimate,
p̃F , closest to the simulated estimate, p̂F n = 1.101 · 10−7, n = 1011, for 1000
realisations.

WeightN WeightS WeightN2 WeightQ
Linear fit 0 12 3 124
Quadratic fit 159 167 52 37
General fit 7 227 32 180

Table 4.31: Relative difference, δp̃F (1), for each of the combinations, where δp̃F (1) =
p̃F (1)−p̂F n

p̂F n
. p̂F n = 1.012 · 10−7 is simulated by n = 1011

WeightN WeightS WeightN2 WeightQ
Linear fit -0.986 -0.959 -0.983 -0.266
Quadratic fit 2.419 1.887 1.951 18.30
General fit -0.978 -0.973 -0.96 -0.043
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Table 4.32: Comparison of the three fits for the system described in section 4.3.
p1 = p2 = p3 = p4 = 1−10−7 and λ = linspace(0.2, 10, 1). The system is simulated
by 10 samples with n = 104. The least squares fit is weighted with weightN,
described in algorithm 1. δp̃F (1) = p̃F (1)−p̂F N (1)

p̂F N (1) , where p̂FN (1) = 1.012 · 10−7 is
the probability to fail estimated by original Monte Carlo simulation with sample
size N = 1011.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -9.0077 0.1752 1.471 · 10−9 -0.985
aλ2 + bλ+ c 4.6061 -11.574 0.5066 3.460 · 10−7 2.42
a(b+ λ)c + d -9.0067 -0.0199 0.9383 0.1774 2.183 · 10−9 -0.978
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Figure 4.22: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for
the model described in section 4.3, wi = weightN and λ(1) = 0.2. Original model
is obtained for λ = 1.
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Table 4.33: Comparison of the three fits for the system described in section 4.3.
p1 = p2 = p3 = p4 = 1−10−7 and λ = linspace(0.2, 10, 1). The system is simulated
by 10 samples with n = 104. The least squares fit is weighted with weightQ,
described in algorithm 4. δp̃F (1) = p̃F (1)−p̂F N (1)

p̂F N (1) , where p̂FN (1) = 1.012 · 10−7 is
the probability to fail estimated by original Monte Carlo simulation with sample
size N = 1011.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -5.9631 -1.1659 7.430 · 10−8 -0.266
aλ2 + bλ+ c 7.2010 -13.840 0.9292 1.953 · 10−6 18.3
a(b+ λ)c + d -5.9623 -0.0199 0.9306 -1.1626 9.678 · 10−8 -0.043

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−6

10
−4

10
−2

10
0

λ

P
ro
b
a
b
il
it
y
o
f
fa
il
u
re
,
p̂
F

 

 

p̂F n(λ), n = 104

p̂F n(1), n = 1011

p̃FQ = 10aλ
2+bλ

p̃F L = 10aλ

95% CI, n = 1011

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−6

10
−4

10
−2

10
0

λ

P
ro
b
a
b
il
it
y
o
f
fa
il
u
re
,
p̂
F

 

 

p̂F n(λ), n = 104

p̂F n(1), n = 1011

p̃FG = 10a(b+λ)c+d

95% CI, n = 1011

Figure 4.23: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for
the model described in section 4.3, wi = weightQ and λ(1) = 0.2. Original model
is obtained for λ = 1.
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Table 4.34: Comparison of the three fits for the system described in section 4.3.
p1 = p2 = p3 = p4 = 1 − 10−7 and λ = linspace(0.2, 10, 1). The system is
simulated by 10 samples with n = 104. The least squares fit is unweighted. δp̃F (1) =
p̃F (1)−p̂F N (1)

p̂F N (1) , where p̂FN (1) = 1.012 · 10−7 is the probability to fail estimated by
original Monte Carlo simulation with sample size N = 1011.

log10(p̃F (λ)) a b c d p̃F (1) δp̃F (1)
aλ+ b -6.8406 -0.5424 4.140 · 10−8 -0.591
aλ2 + bλ+ c 10.968 -17.078 1.4496 2.456 · 10−5 242
a(b+ λ)c + d -12.8815 0.4242 0.4904 8.3860 1.163 · 10−7 0.149
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Figure 4.24: Logarithmic plot of the different fits of the simulated probability
failure, p̃F , as a function of λ. Simulations are done in 10 samples with n = 104 for
the model described in section 4.3, The fit is unweighted and λ(1) = 0.2. Original
model is obtained for λ = 1.



Chapter 5

Concludinig remarks

The result shows that the we can estimate the probability of failure efficiently and
accurately by using Monte Carlo simulations on parametrized systems. The sample
size can be reduced from 108 in standard Monte Carlo simulation to 105, and still
achieve results with the same precision. The parametrization seems to work good
for a wide range of model types.

The results from the independent system shows us that the weighting strategy
weightN has the best results, and that the linear and "general fit" defined in (3.35)
are the most accurate. The linear fit seems to be the most accurate for many mod-
els, and especially for the system with probability to fail, pF = 10−12. The linear
fit is the easiest of the three to implement and optimize. There has been made two
changes in the implementation of the general fit from the project assignment [2].
The first change is the starting point in the optimization. This has been changed
to be the initial condition [0,0,1,0]. In the project assignment, we used knowledge
about the systems to define a more describing initial condition. The other change
that has been done is to change the tolerance function ’TolFun’ in Matlab. This
denotes how much the parameters estimated [a, b, c, d] should differ from the
optimum. We reduced this tolerance to 10−4, which gave very good results for
the general fit. These two changes results in a general fit that is more stable and
more accurate than it was in the project assignment. The general fit is however
the hardest fit to optimize.

In the results from the dependent systems, there was a difference in the achieved
accuracy for systems with cascading failures and systems with common cause fail-
ures. Estimation of the parametrized cascading failures had the same precision as
the independent systems, but the system with common cause failures did not get
good estimations. The best fits for the common cause systems were the ones with a
weighting strategy we did not expect: The unweighted fit, and the fit with weightQ
from algorithm 4. This indicates that the parametrization may not be suitable as
it was defined. It seems like the parametrized system had to little fails, and that
the linear and general fits were estimated to be too small in every run. The general

73



74 CHAPTER 5. CONCLUDINIG REMARKS

fit seemed to be the best for many of the systems with cascading failures. This
might be because this fit has more flexibility than the linear fit, and that it is able
to make a better extrapolation because of this.

The different weights introduced in this thesis shows that our strategy, weightN is
a stable and accurate weighting to choose. The other weights have been varying a
lot in accuracy and stability. The weighting strategy weightQ should especially be
avoided.

5.1 Further Work
It would be interesting to parametrize more dependent systems, systems that cover
a wide range of practical applications. The systems with common cause failures
may be improved, perhaps by letting the parameter λ affect the β parameter intro-
duced for the systems. Different conditions in the systems with cascading failures
can be further investigated.

The estimation of some of the systems were dependent of the starting point of
λ. It would be interesting to do a more thorough analysis of the effects of changing
λ. This could be done together with an analyse of the optimal sample size for
different systems.

The accurate result of the system with probability to fail, pF = 10−12, was very
surprising, and it would be interesting to investigate which type of systems that
can be estimated so accurately despite the low sample size used 105.

A further task may be to establish an understanding of how to determine the relia-
bility of a component, based on mean residual life, failure rate and other concepts
from Rausand and Høyland [8]. It is also possible to include human interaction
to the models we have. That there can be human errors, either in repairing or
maintaining systems.

Further work may also consist of a framework to ease the implementation of sys-
tems. A framework that can handle dependencies and different structures, and
automatically generates how the different components affects the system.
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Appendix A

Matlab Code

This example of simulating the model defined in section 3.4.5 is included to make
the implementation more understandable.

The function parasysrem.m is the standard Monte Carlo simulation of the
model defined in section 3.4.5.

Listing A.1: Parasysrem
%%This f u n c t i o n counts the f a i l s and the est imated p r o b a b i l i t y to f a i l ←↩

f o r
%%the model d e f i n e d in s e c t i o n 3 . 4 . 5 .
f u n c t i o n [ fails , estimated ] = parasysrem ( n , p , A )

% Input :
% n : Sample s i z e
% p : R e l i a b i l i t y o f components
% A: Generated matrix o f (n , 3 ) random v a r i a b l e s
%Output :
% f a i l s : number o f f a i l s counted s imulated
% est imated : est imated p r o b a b i l i t y to f a i l

% I n i t i a l i z i n g

fails = 0 ;
p1=p ;
p2=p ;
p3=p ;
j = 0 ;

% For loop that counts the f a i l s
f o r i = 1 : n

j = j +1;
% Al l components in f a i l e d s t a t e
i f A ( i , 1 )>p1&& A ( i , 2 )>p2 && A ( i , 3 )>p3

fails = fails + 1 ;
j = 0 ;

end
% Component 1 f a i l e d and i s removed
i f A ( i , 1 )>p1

p1 = 0 ;
end
% Component 2 f a i l e d and i s removed
i f A ( i , 2 )>p2

p2 = 0 ;
end
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% Component 3 f a i l e d and i s removed
i f A ( i , 3 )>p3

p3 = 0 ;
end
% This w i l l be t ru e i f j = 0 ( f a i l in system ) or j = a ∗10^ z , where z ←↩

i s
% the exponent in the r e l i a b i l i t y p = 1 − 10^−z o f the component and ←↩

a
% i s an i n t e g e r . I t i s rounded to the n e a r e s t i n t e g e r .
i f ~ mod ( j , round (1/(1−p ) ) )

p1=p ;
p2=p ;
p3=p ;

end

end

estimated = fails /n ;

end

This script utilizes the function parasysrem.m to get simulations for the parametrized
model. The different weights are calculated and the different fits are estimated.

Listing A.2: Compareweights in parasysrem
m = 1 0 ; % Number o f s i m u l a t i o n samples
Ls = 1 0 ; % Number o f e n t r i e s in the parameter lambda
z = 7 ; % z in p= 1−10^−z , where p i s the component ←↩

r e l i a b i l i t y
n = 10000; % Sample s i z e in each o f the m samples
lambda = l i n s p a c e ( 0 . 0 5 , 1 , Ls ) ; % V e c t o r i z e the parameter lambda
plambda = 1−10.^−(z∗ lambda ) ; % C a l c u l a t e the parametr ized r e l i a b i l i t y
L = l e n g t h ( lambda ) ;
A=rand ( s∗n , 3 ) ; % Generate random s ∗n v a r i a b l e s U( 0 , 1 ) f o r←↩

3
% components

% I n i t i a l i z i n g m a t r i c e s that counts number o f f a i l s and est imated
% p r o b a b i l i t y to f a i l f o r the t e s t e d system
fails = z e r o s ( s , L ) ;
estimated = z e r o s ( s , L ) ;

% Double loop that t e s t e s a l l random v a r i a b l e s , and r e t u r n s two m a t r i c e s :
% The number o f f a i l s in every sample f o r every lambda
% The est imated p r o b a b i l i t y to f a i l in every sample f o r every lambda
% The t e s t e d system i s now parasysrem

f o r j = 1 : m
f o r i = 1 : L
[ fails ( j , i ) , estimated ( j , i ) ] = . . .

parasysrem ( n , plambda ( i ) , A ( ( j−1)∗n +1: j∗n , : ) ) ;
end

end

% C a l c u l a t e the mean o f the s i m u l a t i o n r e s u l t s and c o e f f i c i e n t o f ←↩
v a r i a n c e

% f o r weightN
m e a n e s t i m a t e d = sum( estimated ) /s ;
covi = s q r t ( ( 1 . / ( m e a n e s t i m a t e d .∗(1− m e a n e s t i m a t e d ) ) ) . / n ) ;

% C a l c u l a t e the sum o f the f a i l s f o r each lambda and the c o e f f i c i e n t og
% v a r i a n c e f o r weightN2
sumfails = sum( fails ) ;
covi2 = std ( fails ) . / s q r t ( sumfails ) ;
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% I n i t i a l i z i n g weights
k = 1 ;
NZ = nnz ( m e a n e s t i m a t e d ) ;
weightN = z e r o s ( 1 , NZ ) ;
weightN2 = z e r o s ( 1 , NZ ) ;

% I n i t i a l i z e the v e c t o r o f s imulated f a i l s with c o r r e c t l e n g t h
po ses tim ate d = z e r o s ( 1 , NZ ) ;
poslam = z e r o s ( 1 , NZ ) ;

% Confidence i n t e r v a l f o r weightN
CINplus = m e a n e s t i m a t e d . ∗ ( 1 + 1.96∗ covi ) ;
CINminus = m e a n e s t i m a t e d . ∗ ( 1 − 1 .96∗ covi ) ;

% Confidence i n t e r v a l f o r weightN2
CINplus2 = m e a n e s t i m a t e d .∗(1+1.96∗ covi2 ) ;
CINminus2 = m e a n e s t i m a t e d .∗(1−1.96∗ covi2 ) ;

% C a l c u l a t e the weights weightN and weightN2 f o r the v a l u e s o f lambda
% where the weights should be d e f i n e d . The implementation has s p e c i a l
% c a s e s when CI− i s n e g a t i v e

f o r i = 1 : L
i f m e a n e s t i m a t e d ( i ) ~= 0

po ses tim ate d ( k ) = log10 ( m e a n e s t i m a t e d ( i ) ) ;
poslam ( k ) = lambda ( i ) ;
i f i == 1 && CINminus ( 1 ) < 0

weightN ( k ) = 1/( log10 ( CINplus ( i ) ) − . . .
r e a l ( ( log10 ( CINminus ( i ) ) ) ) ) ^ 2 ;

e l s e i f i == 1 && CINminus ( 2 ) < 0
weightN ( k ) = 1/( log10 ( CINplus ( i ) ) − . . .

r e a l ( ( log10 ( CINminus2 ( i ) ) ) ) ) ^ 2 ;
e l s e

i f CINminus ( i )<0
weightN ( k ) = weightN ( k−1) /( sumfails ( k−1)/ sumfails ( k ) ) ;

e l s e
weightN ( k ) = 1/( l o g ( CINplus ( i ) )−(( l o g ( CINminus ( i ) ) ) ) ) ^ 2 ;

end
i f CINminus2 ( i )<0

weightN2 ( k ) = weightN2 ( k−1) /( sumfails ( k−1)/ sumfails ( k ) ) ;
e l s e

weightN2 ( k ) = 1/( l o g ( CINplus2 ( i ) )−(( l o g ( CINminus2 ( i ) ) ) ) )←↩
^ 2 ;

end

end
k = k +1;

end
end

%C a l c u l a t e the weights weightQ and weightS
weightQ = 1 . / var ( fails ( : , 1 : NZ ) ) ;
weightS = mean( fails ( : , 1 : NZ ) ) . / std ( fails ( : , 1 : NZ ) ) ;

%S p e c i a l c o n d i t i o n s i f s td ( f a i l s ( : , i ) ) i s ze ro
f o r i = 1 : NZ

i f s td ( fails ( : , i ) ) == 0
weightS ( i ) = mean( fails ( : , i ) ) ;
weightQ ( i ) = mean( fails ( : , i ) ) ;

end
end

%Normal ize ing the weights
weightS = weightS . / sum( weightS ) ;
weightN = weightN . / sum( weightN ) ;
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weightN2 = weightN2 . / sum( weightN2 ) ;
weightQ = weightQ . / sum( weightQ ) ;

%Sets the wanted o p t i o n s f o r the l s q c u r v e f i t−algor i thm
opts = optimset ( ' Algorithm ' , ' t r u s t−reg ion−r e f l e c t i v e ' , . . .

' TolFun ' ,1 e−4, ' MaxFunEvals ' , 500) ;

%Optimizes the l i n e a r , q u a d r a t i c and g e n e r a l curve f o r weightN
x02 = [ 0 , 0 ] ;
F2x = @ ( x2 , xdata ) s q r t ( weightN ) . ∗ ( x2 ( 1 ) ∗ xdata+x2 ( 2 ) ) ;
[ x2 , resnorm2 , ~ , exitflag2 , output2 ] = lsqcurvefit ( F2x , x02 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightN ) , [ ] , [ ] , opts ) ;

x03 = [ 0 , 0 , 0 ] ;
F3x = @ ( x3 , xdata ) s q r t ( weightN ) . ∗ ( x3 ( 1 ) ∗ xdata .^2+ x3 ( 2 ) ∗ xdata+x3 ( 3 ) ) ;
[ x3 , resnorm3 , ~ , exitflag3 , output3 ] = lsqcurvefit ( F3x , x03 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightN ) , [ ] , [ ] , opts ) ;

x04 = [ 0 , 0 , 1 , 0 ] ;
F4x = @ ( x4 , xdata ) s q r t ( weightN ) . ∗ ( x4 ( 1 ) ∗( x4 ( 2 )+xdata ) . ^ x4 ( 3 )+x4 ( 4 ) ) ;
[ x4 , resnorm4 , ~ , exitflag4 , output4 ] = lsqcurvefit ( F4x , x04 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightN ) , [ ] , [ ] , opts ) ;
x4 = r e a l ( x4 ) ;

%Optimizes the l i n e a r , q u a d r a t i c and g e n e r a l curve f o r weightS
y02 = [ 0 , 0 ] ;
F2y = @ ( y2 , xdata ) s q r t ( weightS ) . ∗ ( y2 ( 1 ) ∗ xdata+y2 ( 2 ) ) ;
[ y2 , resnorm2y , ~ , exitflag2y , output2y ] = lsqcurvefit ( F2y , y02 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightS ) , [ ] , [ ] , opts ) ;

y03 = [ 0 , 0 , 0 ] ;
F3y = @ ( y3 , xdata ) s q r t ( weightS ) . ∗ ( y3 ( 1 ) ∗ xdata .^2+ y3 ( 2 ) ∗ xdata+y3 ( 3 ) ) ;
[ y3 , resnorm3y , ~ , exitflag3y , output3y ] = lsqcurvefit ( F3y , y03 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightS ) , [ ] , [ ] , opts ) ;

y04 = [ 0 , 0 , 1 , 0 ] ;
F4y = @ ( y4 , xdata ) s q r t ( weightS ) . ∗ ( y4 ( 1 ) ∗( y4 ( 2 )+xdata ) . ^ y4 ( 3 )+y4 ( 4 ) ) ;
[ y4 , resnorm4y , ~ , exitflag4y , output4y ] = lsqcurvefit ( F4y , y04 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightS ) , [ ] , [ ] , opts ) ;
y4 = r e a l ( y4 ) ;

%Optimizes the l i n e a r , q u a d r a t i c and g e n e r a l curve f o r weightN2
z02 = [ 0 , 0 ] ;
F2z = @ ( z2 , xdata ) s q r t ( weightN2 ) . ∗ ( z2 ( 1 ) ∗ xdata+z2 ( 2 ) ) ;
[ z2 , resnorm2z , ~ , exitflag2z , output2z ] = lsqcurvefit ( F2z , z02 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightN2 ) , [ ] , [ ] , opts ) ;

z03 = [ 0 , 0 , 0 ] ;
F3z = @ ( z3 , xdata ) s q r t ( weightN2 ) . ∗ ( z3 ( 1 ) ∗ xdata .^2+ z3 ( 2 ) ∗ xdata+z3 ( 3 ) ) ;
[ z3 , resnorm3z , ~ , exitflag3z , output3z ] = lsqcurvefit ( F3z , z03 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightN2 ) , [ ] , [ ] , opts ) ;

z04 = [ 0 , 0 , 1 , 0 ] ;
F4z = @ ( z4 , xdata ) s q r t ( weightN2 ) . ∗ ( z4 ( 1 ) ∗( z4 ( 2 )+xdata ) . ^ z4 ( 3 )+z4 ( 4 ) ) ;
[ z4 , resnormzy , ~ , exitflagzy , outputzy ] = lsqcurvefit ( F4z , z04 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightN2 ) , [ ] , [ ] , opts ) ;
z4 = r e a l ( z4 ) ;

%Optimizes the l i n e a r , q u a d r a t i c and g e n e r a l curve f o r weightQ

w02 = [ 0 , 0 ] ;
F2w = @ ( w2 , xdata ) s q r t ( weightQ ) . ∗ ( w2 ( 1 ) ∗ xdata+w2 ( 2 ) ) ;
[ w2 , resnorm2w , ~ , exitflag2w , output2w ] = lsqcurvefit ( F2w , w02 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightQ ) , [ ] , [ ] , opts ) ;

w03 = [ 0 , 0 , 0 ] ;
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F3w = @ ( w3 , xdata ) s q r t ( weightQ ) . ∗ ( w3 ( 1 ) ∗ xdata .^2+ w3 ( 2 ) ∗ xdata+w3 ( 3 ) ) ;
[ w3 , resnorm3w , ~ , exitflag3w , output3w ] = lsqcurvefit ( F3w , w03 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightQ ) , [ ] , [ ] , opts ) ;
w04 = [ 0 , 0 , 1 , 0 ] ;

F4 = @ ( w4 , xdata ) s q r t ( weightQ ) . ∗ ( w4 ( 1 ) ∗( w4 ( 2 )+xdata ) . ^ w4 ( 3 )+w4 ( 4 ) ) ;
[ w4 , resnorm4w , ~ , exitflag4w , output4w ] = lsqcurvefit ( F4 , w04 , poslam , . . .

po ses tim ate d . ∗ s q r t ( weightQ ) , [ ] , [ ] , opts ) ;
w4 = r e a l ( w4 ) ;


