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Abstract. Success in coding exercises is deeply related to the strategy
employed by the students to solve coding tasks. In this contribution,
we analyze the programming patterns of 600 students from an intro-
ductory university course in object-oriented programming. The students
were provided unit tests for the assessment of their codes, and their
editing and testing actions were recorded using an Eclipse plug-in. The
primary motivation for this study is to discover the programming strate-
gies used by the students for coding exercises with different difficulty
levels, and find out if any relation exists between these strategies and
the success in solving the coding tasks. More insights into this process
will enable educators to provide future students timely, appropriate and
constructive feedback on their coding process. Thus, to predict the suc-
cess in the coding exercises, we used indicators from students’ testing
behaviour reflecting the time and the effort differences between two suc-
cessive unit test runs. The results show a clear difference in the strategies
employed by the students within different success levels. Moreover, the
results also highlight the potential ways of providing actionable feedback
to the students in a timely and appropriate manner.

Keywords: programming strategies · personalized feedback · computer
science education

1 Introduction Katerina

Programming is considered to be a problem-solving skill. Therefore, it is im-
portant for educators to be responsive to ”the problem-solving skills students
bring to programming, and to those required by programming” because stu-
dents are influenced by the facilitated strategies [37]. Soloway et al. managed
to show that students’ sensitivity to strategies while learning to program has
significant effect on their performance [37]. However, first year students lack va-
riety of skills and also ability to read code [24]. Therefore, besides choosing the
most appropriate programming approach, programming environment and tools,
the educators should consider conveying and teaching problem-solving strate-
gies (e.g. hill climbing, trial and error, top down, and bottom up) that students
could exploit and apply while learning coding [2, 22]. In addition, Felder says,
the students ”should be given the freedom to devise their own methods of solving
problems rather than being forced to adopt the teacher’s strategy” (p.679) [17].
But all strategies are not equally good, so students need feedback from educa-
tors in order to learn and improve. Moreover, the strategy that students employ
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to solve a coding problem cannot be observed directly but must be inferred.
Therefore, this study aims to analyze the program submission patterns of 600
students from an Introductory Java University course. Consequently, we want
to investigate the early behavior of first year students learning to program by
utilizing more fine-grained data to reveal their strategies in the coding activities,
so that the educators could offer actionable real-time feedback [4, 35]. Enhancing
the learning experience of students with carefully designed coding assignments
and support in assessing the required knowledge, should aid first year students
to face the difficulties with syntax and semantics, and understand error messages
and control flow.

To get more insight into the students’ problem-solving strategies, the authors
extended the Eclipse IDE (Integrated Development Environment) used in the
course with a data collection facility (i.e. Eclipse plug-in) that allows us to iden-
tify students’ strategies that lead to success in learning to program. Furthermore,
the widespread collection of data with the use of technology, unlock opportu-
nities for educators to engage learning analytics and derive models of student
behavior to develop early indicators when students struggle to successfully finish
a coding task. The predictive models need to offer educators a rich set of rele-
vant measures and more insight into the learning process considering students’
individual differences (e.g. prior knowledge, meta-cognitive skills, learning strate-
gies, etc.) and predict the student performance. Thus, the ultimate goal of this
study is to enhance the learning and programming environment with relevant
learning analytics and predictive models that improve the feedback by consid-
ering personalization and adaptation. This way, the educators could forward a
meaningful personalized feedback to promote reflection and support students to
improve their programming strategies. Consequently, the study addresses the
following research questions:

– RQ1: What type of programming strategies do first year students employ
to succeed in assignments?

– RQ2: What variables could predict students’ programming behavior and
support educators to early detect struggling students?

2 Related Work

2.1 Student academic performance and success Serena

Previous research has shown a multitude of individual factors influence academic
achievement at various educational levels (e.g. primary, secondary, university).
Some of these factors include self-efficacy [15, 39], personality traits (e.g. consci-
entiousness) [32, 3], cognitive ability [7], prior knowledge and experience [15, 39],
motivational and strategic (e.g. learning strategies) aspects [34].

Consciousness has been shown to be the personality trait that is most influ-
ential on academic achievement according to past studies [14, 32, 3, 9]. Moreover
it is the dimension most closely linked to the will to achieve [14]. Another key
predictor of student learning and academic performance is the self-regulated
learning (SRL) [12, 13, 31, 25]. SRL leads to a deeper cognitive engagement with
the learning resources [12] which in turn transitions the extrinsic motivational
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behaviour to behaviour that is driven by intrinsic motivation [13]. This path
of deeper cognitive engagement to high levels of intrinsic motivation was found
to be correlated with student learning and academic achievement [44]. Another
behavioural factor found to be correlated with student learning (e.g. mastering
the content) and academic achievement is performance approach [15] or deep
strategy [34]. Deep learning strategies result in mastering the content [15] which
might lead to higher examination success [34]. In past studies, researchers show
the difference between strategies (deep vs. surface) and their relation to aca-
demic achievement, and concluded that deep and surface strategies were posi-
tively and negatively correlated with academic achievement [8, 5], respectively.
Finally, previous research had shown that intellectual (cognitive/mental) ability
have an influence on academic performance. Intellectual abilities can be mea-
sured in different ways such as IQ [1], general mental ability (American College
Test scores) [39] and logical reasoning [10]. Although multiple different factors
can influence student academic achievement, when it comes to programming,
problem solving ability demonstrates the most significant correlation with stu-
dent performance in solving coding tasks [23, 30]. This correlation does not con-
sider multiple choice assessment but constructed response assessment which fits
appropriately in measuring thinking and problem solving capacities.

2.2 Assessment in computer science education Katerina

The evaluation process in computer science education is still following the tra-
ditional outcome-based assessment [11]. However, programming is a problem-
solving skill and not just a capability to generate code. Past research has shown
that this assumption has been neglected, leading to a gap in students’ abil-
ity to apply core programming concepts in real-world computing tasks [36, 41].
Moreover, without educators’ support to teach students what is the right strat-
egy and when to abandon an inefficient one, students are not able to efficiently
identify problems [18]. Thus, researchers collected more fine-grained data and
explored the processes by which students arrived at the final solution [38]. This
idea has become reality with the increase in popularity and usage of automated
assessment in computer science education. Automated assessment systems aid
educators to assess various features of coding assignments and scale it up for
large courses [16]. However, even with the vast amounts of collected data, not
until recently were researchers looking into understanding how humans actually
solve coding tasks. Thus, Jadud introduced the idea of researching students’ com-
pilation behaviour (i.e. ”the programming behaviour students engage in while
repeatedly editing and compiling their programs”), to better understand how
students progress through a programming task, so that appropriate interven-
tions can be applied [20]. Following this idea, Blikstein utilized code snapshots
to uncover differences between novices and experts’ programming strategies [4].
Other studies also looked at students programming behaviour [19]. Expanding
on these past research studies, we extended the Eclipse IDE used in the course
with a data collection facility (i.e. Eclipse plug-in) to collect data about stu-
dents’ programming activity. The goal is to explore students strategies when
solving coding tasks and their success in doing so. Moreover, exploring students
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strategies in combination with their personality traits and motivational choices
as described in the previous section, could be used to develop models of student
behavior that will assist educators in predicting students’ programming steps
so that they can intervene by offering actionable and personalized feedback to
struggling students.

2.3 Personalized feedback in learning programming Katerina

Learning is interchangeably connected with feedback, as processes that support
acquisition of knowledge. However, feedback does not help much if it conveys
a message of right or wrong. It needs to me meaningful and actionable in or-
der to help the learning process. Traditionally, in computer science education,
students receive basic level of feedback, usually from the compiler [33]. But this
feedback carries limitations. Compiler messages are not helping students under-
stand why they fail to solve the coding task. Moreover, every coding task can
have multiple paths a student can take to arrive at a solution. And every stu-
dent can apply strategies that build on their previous knowledge [21]. This led
researchers to categorize students based on their programming behavior and em-
ployed strategies. Perkins et al. classify novice programmers as ”stoppers” and
”movers” based on the strategy they choose when facing a problem [28]. Turkle
and Papers proposed two categories, ”tinkerers” and ”planners” [40], while Bruce
et al. identified five: ”followers”, ”coders”, ”understanders”, ”problem solvers”,
and ”participators” [6]. Turkle and Papert’s idea was not only related to cate-
gorizing the novice programmers, but also wanted to convey the epistemological
pluralism. Epistemological pluralism highlights that students can have different
approaches to the same problem and communicate different behavior (e.g. ”tin-
kerer” or ”planner”) without achieving better results. Consequently, educators
recognize the importance of the students learning process how to program, and
developed tools and systems that support their learning progress [43, 33, 26].
However, researchers still work to personalize and automate the feedback when
learning programming [27, 33, 26]. Thus, this study contributes to a data-driven
development of timely and actionable feedback in programming by using the
writing and testing behavioural indicators of the students while they attempt to
solve coding exercises. Our aim, for this contribution, is to keep the behavioural
indicators as semantic-less as possible to attain a greater generalizability and
reproducibility of results.

3 Methodology

3.1 Research objectives Hallvard

The context of this research is a bachelor course in object-oriented programming
(with Java). The course has 600+ students and is a mandatory second semester
course for most of them, while some choose it in later semesters. There is a
substantial variation in motivation, skills and talent, and since this course is the
basis for later software development courses, it is important to identify strug-
gling students early, provide appropriate feedback and help them develop good



Evidence for programming strategies in university coding exercises 5

strategies for solving programming problems. Hence, the goal of the research is
twofold (is this aligned with what has been written earlier?):

1. identify coding strategies that lead to success in solving exercises
2. find ways of detecting struggling students early

Note that the coding strategies we look for are not necessarily the same as those
employed by mature developers, as the learning process is different from profes-
sional development and the exercises are different from real-world programming
problems.

3.2 Assignment structure Hallvard

The course has 10 assignments with a reward of 100 points for completing each
successfully, and the students need 750 points to qualify for the exam. 7 of the
assignments (1-3, 5-6 and 8-9) are composed of smaller exercises with specific
requirements about what to code that allow us to use unit tests for automatic
grading and collect detailed data about what they do and their progress. The
other 3 (4, 7 and 10) give the students more freedom, and are not considered
here, since they are less suited for the kind of data collection we need.

The size (number of Java classes and methods) and difficulty level vary,
and the students are to a certain degree allowed to choose based on their (self-
assessed) skill level. Statistics indicate that they spread out pretty evenly and
use approximately the same amount of time each week.

3.3 Data collection Hallvard

We have limited the data collection to the latest 4 assignments, since the students
needed some time to get used to the Eclipse programming tool. For each of these
exercises we provided Eclipse with detailed instructions about which files and
activities it should collect data about. Currently, we can collect the following
data:

1. snapshots of files when they are saved, with compiler errors and warnings
2. student programs that are launched, typically for testing their own code
3. unit tests that are run and whether they pass or fail
4. the use of certain commands and panels, typically those used for debugging

All data are time-stamped and most of them are limited to the relevant files of
a specific exercise, both for practical and privacy reasons. A special “Exercise
panel” shows in detail what data has been collected, hence, the students may
track their progress and review their process. When the exercise is finished or
the deadline reached, they submit the collected data the e-learning system.

There are some issues with last year’s data set used in this research. First,
data is only recorded when the Exercise panel is open, and if students forget to
do so, data will be missing. Also, code snapshots are only available when the
students save it, so the time between snapshots will vary. At least, the code will
be saved when the launch their code or the provided tests. Finally, if the students
develop on several machines and don’t share files across, data may be lost.

Before being used for research, the data is made anonymous, but with iden-
tifiers corresponding to exam result, so they can be correlated at a later stage.
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3.4 Hypothesis

Although the collected data may support research in many directions, this re-
search focuses on categorizing and identifying students’ programming strategies.
From observing students and manually inspecting the data, we have noticed
distinct modes of working which we believe can be used for categorization:

– Productive: characterized by code growth and increase in passed tests in
large chunks, as if the programmer is good and confident

– Incremental: also characterized by code growth and increase in passed
tests, but in smaller chunks, as if the programmer is good, but cautious

– Debugging: characterized by little or no code growth and slow increase in
passed tests, as if the programmer is fixing bugs

– Struggling: similar to debugging, but more based on trial and error than a
plan

During the work on an exercise, a student will typically switch between modes,
and the pattern will depend on several characteristics of both the student and
exercise, e.g. how the skilled and confident the programmer is, and how tricky
and big the exercise is. E.g. a skilled programmer will in general be productive,
but if the exercise is tricky s/he may nevertheless have periods of debugging.
A less skilled but still confident student, may write code in large chunks, but
end up struggling a lot. The characteristics of these modes overlap, e.g. frequent
testing is typical of all but the first mode. Here we are not interested in the
modes the themselves, but our hypothesis is that we may understand more about
programming strategies, by looking at variables related to these modes.

3.5 Variables Kshitij

To analyze the behaviour and predict the outcome of each assignment, we cap-
tured the following measures:

1. Number of test runs: is the total number of times students ran the unit
tests to check their code. This is counted for each exercise in every assign-
ment.

2. Improvement in unit test success: every time students ran the unit
tests, they passed and/or failed a certain number of tests. The score they
obtained is the number of passed tests divided by the total number of tests.
As a result, the authors computed the improvement (or lack thereof) in this
score between two consecutive test runs.

To predict and analyze the students’ programming behaviour in terms of the
above mentioned measures, the authors also computed the following variables
from the student unit test running time series:

1. Time difference launch: is the average time difference between two con-
secutive student program launches before students run another unit test.

2. Time difference edit: is the average time difference between two consec-
utive logs of saving the file(s).
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3. Size difference: is the difference in number of lines of code between two
consecutive unit test runs, i.e. code growth

4. Improvement in errors: is the reduction in number of errors and warnings
between two consecutive unit test runs.

5. First attempt score: is the unit test success score for the very first time
students ran a unit test for each exercise in every assignment.

4 Results Kshitij

In this section, we first present the prediction results and then the behavioural
analysis based on the student categorization using an explanatory model.

Prediction results. To predict the dependent variables, improvement in
unit test success and the number of test runs, we used four different predic-
tor variables: time difference launch, time difference edit, size difference, and
improvement in errors utilizing a Generalized Additive Model (GAM). On one
side, considering the improvements in the unit test success, in Table 1 we can
see that the overall prediction error considering the combined data of the four
assignments is 0.11; and the average prediction error considering data from each
assignment separately is 0.18 (SD = 0.03). On the other side, in the same table,
considering the number of attempts, we can see that the overall prediction error
is 0.18 and the average prediction is 0.24 (SD = 0.04). Tables 2 and 3 show the
coefficients of the explanatory variables.

Table 1. Prediction results for the final score in a given assignment and the total
number of attempts using data from individual assignments and the complete data
sets.

Data used
RMSE for
final score

RMSE for
number of attempts

Assignment 5 0.13 0.21

Assignment 6 0.20 0.26

Assignment 8 0.20 0.21

Assignment 9 0.18 0.28

Overall 0.11 0.18

Regarding the number of test runs for each individual assignment, we ex-
plored the fact how early can we predict. Figure 1 shows that the prediction
results from as early as the 4th attempt show Root Mean Square Error (RMSE)
of 0.10.



8 No Author Given

Fig. 1. Caption

Table 2. Linear model for average improvement all the exercises combined in one data
set

Estimate Std. error t value p value

intercept 1.786e-01 1.520e-02 11.75 .00001

Time diff launch 1.737e-06 2.958e-07 5.82 .0001

Diff size 5.300e-07 1.797e-07 2.95 .003

Time diff edit 1.928e-04 1.415e-03 0.13 0.89

Diff error -3.740e-02 2.089e-02 -1.79 0.07

Diff warning -4.743e-02 5.008e-02 -0.94 0.34

Explanatory models. Table 2 shows the linear model fitted over the com-
plete data set for the improvement in unit test success. We can observe that the
time difference launch and the difference in size are positively correlated with
the improvement in unit tests success. These results support the assumption
that the students who made larger and less frequent changes in the code showed
more improvement in the unit test success. Furthermore, Table 3 shows the lin-
ear model fitted over the the complete data set for the number of attempts. Here
we can observe that the time difference launch and the difference in code size
are negatively correlated to the number of attempts. These results support the
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assumption that the students who made larger and less frequent changes in the
code had fewer number of attempts.

Table 3. Linear model for number of attempts with all the exercises combined in one
data set

Estimate Std. Error t value p value

intercept 4.764e+01 4.279e-01 111.33 .00001

Time diff launch -2.945e-05 8.320e-06 -3.54 .0004

Time diff edit -4.511e-05 5.063e-06 -8.91 .00001

Diff size -2.975e-01 3.990e-02 -7.45 .0001

Diff error 3.694e-01 5.890e-01 0.62 .53

Diff warning 1.491e+00 1.413e+00 1.05 .29

4.1 Categorization

In order to explain the coding behaviour of the students in more details, we
categorized the whole student population into three categories (i.e. intellects,
thinkers, and probers) based on the total number of unit test runs from every
student. Table 4 presents the number of students in each category for every
assignment and Figure 4 shows the change in category between two consecutive
assignments.

Assumptions for the suggested three categories of students:

1. Intellects: run tests less frequently, because they are skilled and confident.
2. Thinkers: run tests more frequently, to get an early feedback about progress.
3. Probers: run tests even more frequently, because they struggle.

Table 4. Number of students in the different categories for the different assignments.

Data used Thresholds Intellects Thinkers Probers

Assignment 5 5, 14 131 129 131

Assignment 6 5, 10 224 163 193

Assignment 8 8, 19 123 106 109

Assignment 9 7, 13 119 90 105

The difference from the perspective of the three categories. The
following are the differences between the three categories in terms of the ex-
planatory and dependent variables (Figures 2 and 3; Tables 6,7,8). These results
hold for the individual assignments as well (barring a few exceptions) as shown
in Table 5.

– Significant difference on time between two student program launches (F
[1,383] = 70.27, p = .00001); post-hoc pairwise comparisons show that in-
tellects have higher time difference than thinkers; and thinkers and probers
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have no significant difference based on time between two student program
launches (Figure 2 top-right).

– Significant difference on change in code between two tests (F [1,383] =
198.85, p = .00001) post-hoc pairwise comparisons show that intellects have
more code changed than thinkers; and thinkers have more code change than
the probers (Figure 2 bottom-left).

– Significant difference on the average improvement in success (F [1,383] =
121.51, p = .00001); post-hoc pairwise comparisons show that intellects have
more success improvements than thinkers; and thinkers have more success
improvements than the probers (Figure 2 top-left).

– Significant difference on average change in number of errors and warnings (F
[1,383] = 5.79, p = .01); post-hoc pairwise comparisons show that intellects
reduce more errors than thinkers; and thinkers and probers have no signifi-
cant difference based on reducing the number of errors in the code (Figure
2 bottom-right).

– Significant difference on average success in first attempt (F [1,383] = 16.60,
p = .001); post-hoc pairwise comparisons show that intellects score more in
the first attempt than thinkers; and thinkers and probers have no significant
difference based on first attempt scores.

Table 5. My caption

Assignment5 Assignment6 Assignment8 Assignment9

F p F p F p F p

Time diff launch 37.95 .0001 24.41 .0001 66.28 .0001 2.6 .10

Diff size 17.95 .0001 56.00 .0001 50.01 .0001 45.41 .0001

Diff success 94.87 .0001 39.99 .0001 60.93 .0001 31.00 .0001

Diff error 4.7 .03 2.13 .14 0.61 .43 0.65 .41

Score 1st attempt 2.4 .11 4.65 .03 10.46 .001 5.07 .02

Table 6. Linear model for improvement with all the exercises combined in one data
set – intellects

Estimate Std. error t value p value

intercept 2.952e-01 2.869e-02 10.29 .00001

Time diff launch 1.727e-06 4.592e-07 3.76 .0001

Time diff edit 8.786e-07 2.855e-07 3.07 .002

Diff size -2.303e-03 2.241e-03 -1.02 0.30

Diff warning -6.971e-02 3.796e-02 -1.83 0.06

Diff error -1.145e-02 9.524e-02 -0.12 0.90
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Fig. 2. Caption

Figure 3 shows the explanatory variables for the three categories as the
progress based on the number of test runs. What is evident from the Figure
3 (left panels) is a clear difference in the time between two student program
method launches and the average improvement between the intellects (shown
with red) and the other two categories for the attempts 5–15 (i.e. time between
main method launches) and 15–25 (i.e. improvement). However, the other dif-
ferences are not as pronounced.

From the explanatory models for each category (Tables 6,7,8), we observe
that the behaviour of the students in each category is subtly different than the
other two categories. The intellects have two positively significant coefficients:
the wait between two tests with main methods and the change in code. That
means intellects take their time to alter the code and remove errors and bugs.
The thinkers have only one positively significant coefficient: the wait between
two tests using the main method. That means the thinkers take time to test,
but nothing clearly can be said about the other parameters. Finally, the probers
have change in code as a negative and significant coefficient, meaning that they
make smaller changes to the code between two unit tests.

Finally, we can say that it is expected students to belong to more than
one category while attempting to solve the programming assignments. Figure
4 shows how the students move between intellects, thinkers and probers for
different assignments. For example, one can observe that intellects are a larger
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group (233) than the thinkers (54) and probers (23) for the assignment 5 (a5);
for the next assignment (i.e., a6) we see that 66 students did not attempt to solve
a6; similar to a5, the largest category is intellect followed by thinkers and then
probers, also the largest part of intellects did not change; most of the thinkers
and probers either stayed the same or they interchanged categories.

Fig. 3. Caption
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Table 7. Linear model for improvement with all the exercises combined in one data
set – thinkers

Estimate Std. error t value p value

intercept 1.688e-01 2.648e-02 6.36 .00001

Time diff launch 1.412e-06 6.433e-07 2.19 .02

Time diff edit -7.058e-08 3.311e-07 -0.21 .83

Diff size -1.277e-03 2.420e-03 -0.52 .59

Diff error -7.698e-04 3.169e-02 -0.02 .98

Diff warning 4.564e-02 8.672e-02 0.52 .59

Table 8. Linear model for improvement with all the exercises combined in one data
set – probers

Estimate Std. error t value p value

intercept 8.504e-02 2.293e-02 3.70 .0002

Time diff launch 1.510e-06 4.822e-07 3.13 .001

Time diff edit -4.872e-08 3.328e-07 -0.14 .88

Diff size -6.289e-03 3.033e-03 2.07 .03

Diff error -5.213e-02 3.989e-02 -1.30 .19

Diff warning -1.501e-01 7.507e-02 -2.00 .04

Fig. 4. Caption

5 Conclusion and Discussion

In this study we analyzed the programming patterns of 600 students from an
introductory university course in object-oriented programming using an Eclipse
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plug-in to collect data. The results from the performed analyses supported our
two assumptions, 1) there are different programming strategies that lead students
to success when they attempt to solve coding exercises, and 2) we can early
identify struggling students. Using semantic-less measures from students’ coding
and debugging behavior (e.g. time difference launch, time difference edit) and
one code-base measure (i.e. growth in size) we managed very early (from the 4th
attempt) to predict improvement in unit test success at a low granularity level
of one student one assignment. Our focus on semantic-less-ness lead to better
reproducibility and generalizability of the results, because we can not, at lest
with the current state-of-art, know without explicitly asking students if they are
having troubles with the coding constructs (e.g. loops or recursion) or they are
having difficulty in the domain (e.g. Fibonacci numbers). Moreover, our study
also adds to the growing body of research utilizing low granularity data compared
to previous studies that have done good job with predictive models that either
looked at the students’ level as a whole class, or focused only into code-based
variables [4, 29, 42]. In addition, none of the previous studies managed to do an
early prediction.

Furthermore, we also presented behavioral analysis of students practicing
different programming strategies. Thus, we can say that intellects as a group are
characterized by having the highest first attempt score; the highest improvement
in unit test success; the lowest total number of attempts among the three cate-
gories; the longest wait time between two student program method launches; and
finally, most changes in the code between two JUnit tests. The thinkers char-
acteristics are: low first attempt score; low waiting time between two student
program method launches; lower number of changes in code than those of the
intellects but higher than those of the probers; and not a higher improvement
in unit test success than the intellects but also not a lower than the probers.
Finally, the probers as a group are characterized by having low first attempt
score; low waiting time between two student program method launches; least
changes to code between two successive tests; and finally, the least improve-
ment in unit test success. The key difference between thinkers and probers is the
modifications they make to the code in a similar amount of time. The thikers
appear to have a strategy to fix the errors and the bugs in the code, while the
probers appear to have a trial and error approach to tackle the same problem.
This is also evident from the Figure 3 (bottom-left), where we can see that for
a big set of attempts, the probers have a slow growth (close to 0.25, that is, 4
attempts for passing one unit test); where as, after certain attempts students
from the other two categories require one or two attempts to pass one unit test.
This exponential improvement can be seen earlier for the intellects than for the
thinkers, meaning that intellects make fewer mistakes to begin with and hence
they need fewer attempts to pass all of the unit tests. However, thinkers show
more regulated and informed behaviour of testing the code than probers, and
this might be a plausible reason why probers require more attempts to pass
all of the unit tests. Consequently, from past studies we know that the weaker
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students have less understanding of what is tested by each test, and that make
them more likely to use a trial and error approach [28].

Finally, the prediction results presented in this study could support educators
in providing motivational feedback, that might be an incentive to students to
test the code a few more times before they give up. For example, we can predict
the number of attempts a student would carryout at an early stage and we can
also predict the improvement in the unit test success at each attempt. Given the
current attemptID and unit test score of the student, we could provide him/her
with a target number of attempts at his/her given pace of improvement which
might motivate the student to change the strategy (from probing to thinking) or
to keep testing the code (if he/she is too close to the target attempt number).

5.1 Limitations and Future work Kshitij

The approach in this study carries a few limitations that we plan to overcome
in the next studies. First of all, this is a black box approach because we do not
look at the actual code at all. We look into the students behavioral patterns
when they solve coding tasks. In future, we plan to analyze the mistakes made
by the students and observe what category makes what kind of mistakes. Next,
we also did not consider any semantic features computed from the code; however
adding features from abstract syntax tree into the analysis could improve the
prediction results. Finally, we do not have any additional information about
students personality traits (e.g. consciousness, SRL) or their motivation during
the course, which hinders us into providing personalized feedback yet. Thus, we
plan to incorporate this information in the next study to be able to provide
not just timely and actionable feedback as we can now, but personalized and
adaptive as well.
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