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Abstract: Flexible distributed energy resources, such as energy storage systems (ESSs), are increasingly
considered as means for mitigating challenges introduced by the integration of stochastic, variable
distributed generation (DG). The optimal operation of a distribution system with ESS can be
formulated as a multi-period optimal power flow (MPOPF) problem which involves scheduling of the
charging/discharging of the ESS over an extended planning horizon, e.g., for day-ahead operational
planning. Although such problems have been the subject of many works in recent years, these works
very rarely consider uncertainties in DG, and almost never explicitly consider uncertainties beyond
the current operational planning horizon. This article presents a framework of methods and models
for accounting for uncertainties due to distributed wind and solar photovoltaic power generation
beyond the planning horizon in an AC MPOPF model for distribution systems with ESS. The expected
future value of energy stored at the end of the planning horizon is determined as a function of the
stochastic DG resource variables and is explicitly included in the objective function. Results for a case
study based on a real distribution system in Norway demonstrate the effectiveness of an operational
strategy for ESS scheduling accounting for DG uncertainties. The case study compares the application
of the framework to wind and solar power generation. Thus, this work also gives insight into how
different approaches are appropriate for modeling DG uncertainty for these two forms of variable
DG, due to their inherent differences in terms of variability and stochasticity.

Keywords: multi-period optimal power flow; dynamic optimal power flow; battery storage;
distribution network; distribution grid; operational planning

1. Introduction

The increasing penetration of variable distributed generation (DG) introduce challenges to the
distribution system hosting them [1,2]. Variable renewable sources of electric power such as wind
power and solar photovoltaic (PV) power are associated with variability and uncertainty on multiple
time scales, both within each hour, within each day, and over the year [3]. This variability comes in
addition to the already existing variability of load and electricity prices. Distribution system operators
(DSO) may, therefore, have to consider new flexible resources in both the operation and planning of
the distribution system [2,4]. Energy storage systems (ESSs) is a class of flexible resources that has
received considerable attention lately by the research community as well as by system operators and
end-users [5,6]. The introduction of ESSs implies a multi-period operational planning problem since
an amount of energy discharged by the ESS at one time step will have to be charged at a previous time
step. When the optimal operation of a distribution system is formulated as an alternating current (AC)
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optimal power flow (OPF) problem, the time-coupling introduced by grid-connected ESSs therefore
transforms the problem to a dynamic or multi-period OPF (MPOPF) problem over an operational
planning horizon comprising multiple time steps [7,8].

Although such AC MPOPF problems in recent years have been the subject of a large number
of works (that are reviewed in more detail below), and although a few of these works also consider
uncertainties associated e.g., with DG within the operational planning horizon, almost no previous
work considers uncertainties beyond the planning horizon. This means that when optimizing the
schedule of ESS charging/discharging in the distribution system, typically over a daily (24 h) planning
horizon, the amount of energy stored in the ESS at the end of the day (or, in general, planning horizon)
is not explicitly assigned any value. Effectively setting this end-value to zero implicitly incentivizes
the MPOPF models to deplete the ESS at the end of each day, or to fix it to a predefined value, e.g.,
50% of the energy capacity. Depending on the realization of uncertain variables in the future, this may
be sub-optimal from the perspective of future planning horizons.

Motivated by the shortcoming described above, our objective has been to explicitly account for
uncertainties due to DG beyond the operational planning horizon in the optimal scheduling of ESSs
in distribution systems. The main contribution of this article is a general framework of methods
and models for accounting for these uncertainties in a consistent manner by explicitly valuating the
energy stored at the end of the planning horizon in the objective function. We furthermore describe
and implement models representing uncertainties for (i) wind power generation and (ii) solar PV
generation in the framework. This allows us to compare these two stochastic renewable energy sources
and understand how differences in their stochasticity implies differences in the value of stored energy
in the grid and accordingly in the optimal operation of ESSs. We also describe how the general
framework is applicable to uncertain variables other than DG generation.

The preliminary development of this framework was previously reported in Reference [9], which is
limited to only consider distributed wind power generation. The present article extends this work by
the following additional contributions: (1) A new model for accounting for uncertainties in distributed
solar PV as well as wind power generation; (2) a more complete and general formulation of the
framework; (3) a more complete and structured overview of the state of the art of MPOPF for
distribution systems; and (4) a comparison with a rolling horizon approach to consider (although
only implicitly) the end-value stored energy. Finally, although emphasis in the present article is on
methodology rather than applications, we also include (5) a new case study based on a real Norwegian
distribution system.

The proposed approach to valuating the stored energy in ESS scheduling is, in part, inspired by
principles applied in hydropower scheduling for estimating the value of water stored in hydropower
reservoirs. For hydropower scheduling, it is essential to implement accurate models of the stochasticity
of inflow beyond the planning horizon to avoid shortage or spillage of stored water [10,11]. However,
hydropower scheduling models cannot be directly applied to ESS scheduling considering wind and
solar power uncertainty. Appropriate models for the stochasticity and time correlations of these energy
resources must, therefore, be investigated. Whereas previously developed methods for hydropower
scheduling consider long-term uncertainty (i.e., weeks to years), uncertainties over much shorter time
scales (hours to days) are relevant for methods applicable to DG and ESS, such as batteries. One of the
research questions posed in this work is, therefore, to what extent the principles from hydropower
scheduling are applicable to the analogous case of ESS scheduling in distribution systems with wind
and solar power. To address this question, we make a first step in this work by considering relatively
basic models of the stochasticity; through investigating these models we aim to obtain more insight
into the level of sophistication that is appropriate for modeling DG stochasticity for the purpose of ESS
scheduling in distribution systems. This, in turn, allows us to suggest whether investment in more
sophisticated models is warranted in future work.

The remainder of the article is organized as follows. Section 2 reviews related work on MPOPF
models for distribution systems and the modeling of stochasticity in wind and solar power generation.
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The general method proposed for end-value setting accounting for DG uncertainties is presented in
Section 3 together with implementations of exemplary models for wind and solar PV power uncertainty.
Section 4 demonstrates the methods in a case study, comparing the results for distributed PV and wind
power generation. The article is concluded in Section 5 with remarks on the implications of the work
and suggestions for useful extensions and applications of the framework.

2. State of the Art of Multi-Period Optimal Power Flow for Distribution Systems with
Energy Storage

Motivated primarily by the potential for optimizing the operation of grid-connected energy
storage systems [5,6,12], the amount of literature on multi-period optimal power flow models has
been increasing over the last several years. Therefore, although we cannot claim it to be exhaustive,
we provide in this section an extensive and updated overview of the state of the art of multi-period
OPF models applicable to ESSs in distribution systems. This section extends and systematizes the
overview given in Reference [9], and to the authors’ best knowledge, no other review on this topic
currently exists in the literature. For a more general survey of academic as well as industrial OPF
methods and their application to distribution systems with energy storage, we refer to Reference [8].
For a survey of real-time OPF methods that also discusses the operation of battery storage systems
under wind power uncertainty, we refer to Reference [13].

An overview of references on multi-period OPF models is given in Table 1. The default
model formulation for a multi-period OPF with full AC power flow formulation is “AC MPOPF”,
which means that OPF models with full AC power flow constraints for individual time steps
are coupled with temporal constraints without any relaxation or decomposition of the problem.
Unless otherwise stated, the OPF models assume a balanced system, i.e., that the currents and voltages
of all three phases are balanced. To limit the scope to models applicable to distribution systems, models
employing DC power flow are excluded from Table 1 and we refer to Reference [8] for a more complete
overview. When not otherwise stated, the model formulation is deterministic.

Table 1. Overview of literature on AC multi-period optimal power flow models.

Reference OPF Model and Application Handling of Stored Energy At The End Of Planning Horizon

[14] AC MPOPF with small voltage angle approximation (convex problem),
formulated as a finite-horizon optimal control problem

Linear penalty function in the objective function (proportional to
the deviation of the amount of stored energy at the end of the

planning horizon from the maximal energy capacity); 24 h horizon

[15] AC MPOPF; applied to power system with wind power Rolling horizon (24 h look-ahead horizon)

[16] AC MPOPF for optimal charging of EVs Requiring that all EVs are charged at the end of 10 h planning
horizon

[17] AC MPOPF (coupled real-reactive) ET = E0 (24 h horizon or 120 h horizon)

[18] Semidefinite programming relaxation of AC MPOPF ET ≥ Emin
T (8 h horizon)

[19] AC MPOPF; applied to power system with wind power Rolling horizon (10 × 5 min look-ahead horizon)

[20]
Scheduling of ESS (not including power flow constraints) solved by

dynamic programming; genetic algorithm for sizing and siting problem
as an outer loop (including checking of power flow constraints)

ET = E0 (24 h horizon)

[21] AC MPOPF with linearized power flow constraints; genetic algorithm
for sizing and siting problem as an outer loop ET = E0 (24 h horizon)

[22] Stochastic security-constrained AC MPOPF; implemented in the
MATPOWER Optimal Scheduling Tool [23]

Linear penalty function (that is a linear combination of charged and
discharged power for all time steps)

[24] AC MPOPF Rolling horizon (24 h look-ahead horizon)

[25]
Dynamic programming search in the time domain combined with

conventional PF solver in the network domain; grid-connected
microgrid with DG

n/a (72 h horizon)

[26]
Combined ESS scheduling and sizing problem for distribution system
with PV; no power flow constraints but including linearized voltage

constraints from base case power flow sensitivities
ET ≥ Emin

T (16 week horizon)

[27] AC MPOPF; applied to distribution system with DG ET = E0 (24 h horizon)

[28] AC MPOPF with second-order cone programming relaxation Rolling horizon (72 h look-ahead horizon)

[29] AC MPOPF for unbalanced 3-phase distribution network ET = E0 (24 h horizon)

[30] AC MPOPF for distribution system with wind power
Linear penalty function in the objective function for each time step
(proportional to the deviation of the amount of stored energy from

the maximal energy capacity); 24 h horizon
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Table 1. Cont.

Reference OPF Model and Application Handling of Stored Energy At The End Of Planning Horizon

[31,32] AC MPOPF; applied to distribution system with wind power
Linear penalty function in the objective function for each time step

proportional to energy stored, and implicitly through rolling
horizon (24 h look-ahead horizon)

[33] AC MPOPF n/a (72 h horizon)

[34] AC MPOPF (comparing with solving each time step in isolation) ET = E0 (24 h horizon)

[9] AC MPOPF; applied to distribution system with wind power (which is
treated as stochastic for the next planning horizon)

Explicit valuation of the future value of stored energy at the end of
24 h planning horizon

[35] MPOPF with linearized AC power flow equations for radial
distribution grids; compared with full AC power flow n/a (up to 744 h horizon)

[36] Robust MPOPF with linearized AC power flow equations for radial
distribution grids; applied to LV grid with high PV penetration

Rolling horizon (24 h look-ahead horizon) combined with real-time
control within each hour

[37] AC MPOPF for radial distribution systems based on convex relaxation;
optimizing EV charging

Requiring fully charged EV at the end of the 24 h planning horizon
[31]

[38]

Finite-horizon optimal policy problem for Markov decision process for
distribution system with PV generation, solved by stochastic dynamic

programming, explicitly checking for violations of power flow
constraints

Taken into account within each daily planning horizon through
stochastic dynamic programming approach (not explicitly

discussing the storage level at the end of the planning horizon)

[39] AC-Quadratic Programming MPOPF
A quadratic penalty function penalizing the deviation from a
reference storage level (with penalty coefficient and reference

storage level varying over the day); up to 8 h horizons

[40] AC MPOPF; optimal scheduling of EVs in distribution system with PV
and wind power Requiring fully charged EV at the end of the 33 h planning horizon

[41] AC MPOPF, applied to minimizing generation costs n/a (2 h horizon)

[42]
Conditionally exact convex MPOPF embedded in model for optimal

sizing and siting with stochastic load, electricity prices and PV; applied
to distribution system with PV

ET = E0 (24 h horizons for separate days with time series for the
stochastic variables)

[43] AC MPOPF ET = E0 (up to 2880 time steps)

[44] Robust AC MPOPF for unbalanced 3-phase distribution network,
applied to EV charging scheduling Requiring fully charged EV at the end of the 24 h planning horizon

[45] Chance-constrained AC MPOPF for radial distribution systems n/a (24 h planning horizon)

The third column of Table 1 describes the approach to handling the end-value of energy stored
in the ESS, i.e., whether it is being considered explicitly or otherwise handled implicitly in the
optimization. If the end-value is not considered, there is, depending on the application of the ESS,
usually no incentive for the model to avoid depleting the ESS at the end of each planning horizon.
The conventional approach to implicitly valuate the stored energy is to require that the energy stored
in the ESS at the end of the planning horizon should equal the initial value (i.e., periodic boundary
conditions): ET = E0. Instead of this equality constraint, some works handle the value of stored energy
by an inequality constraint on the form ET ≥ Emin

T . Another common way of implicitly handling the
energy stored at the end of the planning horizon is by a rolling (or receding) horizon approach in
which the initial solutions for ET are updated as the planning horizon recedes.

Many of the references above consider a 24-h planning horizon, and some consider a rolling
horizon approach to ESS scheduling. Only a few of the references explicitly assigns a value to stored
energy in the objective function, and they typically use an arbitrarily chosen linear penalty function.
These findings also hold when considering MPOPF models with DC instead of AC power flow [8].
The reviewed references in Table 1 all employ either local optimization methods (that generally do
not guarantee obtaining a globally optimal solution to the optimization problem) or solve linearized
versions or convex relaxations of the optimization problem (which may guarantee obtaining a globally
optimal solution to the relaxed optimization problem but not necessarily to the original non-convex
AC MPOPF problem); for more discussion, we refer to Reference [8] and references therein. All but
two of the reviewed references [29,44] assume a balanced system.

Moreover, only a small number of references consider stochasticity in their problems. The modeling
of the variability and stochasticity in wind and solar energy is reviewed in Reference [46] in the context
of DG optimization and by References [3,47] from more general perspectives. The application of ESS for
wind and solar energy integration is reviewed in References [4,48,49], respectively, but these reviews
discuss neither optimization nor stochasticity in any detail. Reference [12] reviews the optimization
of ESS operation in general and include separate discussions of stochastic optimization methods and
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applications to solar energy integration. In addition, Reference [50] and references within discuss
modeling of wind uncertainty in the context of distributed ESSs. However, none of the above references
on the stochasticity of wind and solar power consider the optimal scheduling of ESSs taking into
account the power flow constraints in distribution systems

3. Methodology

This section presents the proposed framework for accounting for uncertainties due to DG beyond
the daily planning horizon in the optimal scheduling of ESSs in distribution systems. The components
of the framework are described in the following subsections: Section 3.1 formulates a multi-period
optimal power flow model for a distribution system with energy storage and distributed generation.
The objective function of this MPOPF model includes a novel term explicitly accounting for the
expected future value of stored energy but is otherwise comparable to many of the deterministic
models found in the literature and reviewed in the previous section. Section 3.2 introduces the
parameterization chosen for the expected future value function, and Section 3.3 describes the method
based on stochastic dynamic programming for determining the parameters of this value function.
To determine these parameters, the framework requires stochastic models that can use measured
(historic) data to generate synthetic time series representing possible realizations of future DG power
output. Sections 3.4 and 3.5 present relatively basic examples of such models for wind and solar
power, respectively.

3.1. Multi-Period Optimal Power Flow Model for Distribution System with Energy Storage

The objective function of the multi-period optimal power flow problem considering ESS and DG
can generally be stated as

f =
T

∑
t=1

c0Lt∆t− α(ET , x) (1)

where c0Lt∆t is the operational cost for time step t and α(ET , x) is the future value of storing the energy
ET at the terminal time step t = T of the operational planning horizon, given the value x of the state
variable underlying distributed generation at the end of the planning horizon. Here, the terms of the
objective function are given in units of €, and the electricity price parameter c0 with units €/MWh is
used to set the scale of the cost contributions of Lt. It is assumed that each time step has duration ∆t.
In this article, the operational cost Lt represents the total cost of operating the distribution system:

Lt = cimp
t · Pimp

t − cexp
t · Pexp

t + crat
t ∑

i∈Iload

Prat
i,t . (2)

Minimizing Lt corresponds to optimising the social welfare for the system. In this objective
function, the first two terms are the cost and revenue associated with importing or exporting electric
power, respectively, with the constraints Pimp

t ≥ 0 and Pexp
t ≥ 0 imposed on the fictitious import and

export generators. The cost of grid losses is implicitly accounted for through these terms, as an increase
in grid losses typically increases the imported power Pimp

t or reduces the exported power Pexp
t and

thus increases the operational costs. The third term represents the cost associated with rationing or
shedding load for all load buses Iload ⊂ Ibus. The power prices cimp

t and cexp
t are the prices of electric

energy imported to the system and exported from the system, respectively, at time step t. We regard
the electricity prices to be exogenous variables. The unit cost associated with load rationing is denoted
by crat

t . All the price parameters cimp
t , cexp

t , and crat
t are dimensionless and measured relative to the

electricity price parameter c0 so that all terms of Lt are given in units of MW. The decision variables of
the MPOPF problem include the power output Pt for all generators (real or fictious) and the energy Et

stored in the ESS for all time steps t ∈ {1, 2, . . . , T}.
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The distribution system is assumed to have distributed generation connected to buses IDG ⊂ Ibus
that satisfy the constraints

0 ≤ PDG
i,t ≤ PDG, max

i,t (yt). (3)

The maximal theoretical DG output PDG, max
i,t at each time step is a function of yt, which is the

value of the DG resource variable, i.e., either wind speed or solar irradiance. DG power curtailment is
represented by solutions with PDG

i,t < PDG, max
i,t . As is common in MPOPF models previously reported

in the literature, we assume the DG time series y = {y1, y2, . . . , yT} within the planning horizon to
be deterministic. However, as our objective is to consider uncertainties beyond the current planning
horizon, the stochasticity of yt for t > T will be accounted for in the next subsections.

Energy storage dynamics, i.e., the evolution in time of the energy stored in the ESS, is expressed
by the energy balance equation

Et = Et−1 −
∆t

ηout
PESS,d

t − ηin ∆tPESS,c
t (4)

where PESS,c
t and PESS,d

t is the power charged and discharged at time step t, respectively. The total
efficiency of charging and discharging the ESS, also including inverter losses etc., is denoted ηin and ηout,
respectively. The amount of energy in the ESS can never be negative or above the energy capacity Emax:

0 ≤ Et ≤ Emax. (5)

In addition, we require that
Emin

T ≤ ET , (6)

i.e., that the amount of energy stored at the end of the planning horizon should be at least at a minimum
value Emin

T . Furthermore, the ESS is subject to power capacity limits for charging and discharging,

0 ≤ PESS,d
t ≤ PESS

max, PESS
min ≤ PESS,c

t ≤ 0. (7)

The grid constraints we consider are the AC power flow equations as given in Reference [51],
voltage limits, and apparent power flow limits, and the power system should be within its operational
limits at all times. This means we enforce the upper and lower voltage magnitude limits for all buses
i ∈ Ibus,

Vmin
i ≤ Vt,i ≤ Vmax

i , (8)

and the upper and lower limits for apparent power for all branches j ∈ Jbranch,

Smin
j ≤ St,j ≤ Smax

j . (9)

3.2. Expected Future Value Function for Stored Energy

The value function α(ET , x) denotes the expected future value of the energy stored in the ESS
at the end of the planning horizon, t = T, given the value x of the stochastic variable underlying
distributed generation. In the context of a multi-stage decision problem, with the first stage being
the planning horizon t ∈ {1, . . . , T}, α(ET , x) can be understood as the profit-to-go function and
−α(ET , x) is to be understood as a (non-positive) cost-to-go or future expected cost function. To use
the analogy with hydropower scheduling [11], the slope of this function,

π(ET , x) =
∂α

∂E

∣∣∣∣
E=ET

, (10)

corresponds to the incremental water value of a hydropower reservoir, i.e., the expected shadow
price or marginal value of an additional unit of water added to the reservoir at the end of the current
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planning horizon. The so-called incremental water value method of hydropower scheduling [11]
accounts for the expected future value through the marginal value in Equation (10). In that case,
the stochastic variable x underlying hydropower generation would typically correspond to reservoir
inflow. In our formulation, we assume that a single state variable x for each planning horizon can
be used to describe the stochasticity of the DG resource variables y (wind speed or solar irradiance
time series) in the next planning horizon. In this article, we limit ourselves to a distribution system
with one ESS, but the framework can be extended to consider multiple ESSs similarly to how multiple
reservoirs are treated in hydropower scheduling [10,11].

Explicitly including an expected future value term in the objective function may avoid myopic
operation such as unnecessarily depleting the ESS at the end of each planning horizon when the energy
could be more valuable in the next planning horizon. Taking into account DG stochasticity through an
explicit dependence on x could also avoid unnecessarily filling the ESS in the current planning horizon
when large DG output is expected in the next planning horizon; in that case, it could be better to have
more capacity available to store the excess energy and then export it during hours of higher electricity
prices. Thus, the inclusion of a value function α(ET , x) can be understood as a control measure for
ensuring (on average) optimal operation also beyond the current planning horizon.

The functional form of the value function is, in general, unknown and must be determined for
each problem. Based on Reference [9] we here assume a simple quadratic functional form for the value
function and determine its coefficients through the method described below. Conventional approaches
to representing the value function include piecewise linear functions formed by generating Benders
cuts [10,52], but in Reference [9] it was shown that the value function was well approximated by a
quadratic function in a similar case as those considered here. Furthermore, this functional form has the
additional advantage that it is simple to implement and interpret. Thus, we propose to parameterize
the value function in the following way as a quadratic function of stored energy ET :

α(ET , x) = γ(x)β(x)ET −
γ(x)[β(x)− 1]

Emax
E2

T . (11)

In this parameterization, the dependence of the future expected value on the distributed
generation in the current planning horizon is contained in the parameters γ(x) and β(x). For a
given value of x, the parameter γ can be interpreted as the average unit value of stored energy of a
fully charged ESS, as α(ET = Emax, x) = γ(x)Emax. The parameter β determines the curvature of the
value function for a given value of x, with β(x) = 1 giving a linear function α(ET , x) = γ(x)ET where
the value of the stored energy is proportional to the amount of stored energy. The parameter β needs
to fulfil 1 ≤ β ≤ 2 to avoid α(ET , x) becoming non-concave and the term −α(ET , x) in the objective
function becoming non-convex.

With this parameterization, the marginal value of stored energy defined in Equation (10) takes
the form

π(ET , x) = γ(x)β(x)− 2γ(x)[β(x)− 1]ET
Emax

= π0(x)− π1(x)ET . (12)

For a linear value function with β(x) = 1, the marginal value of stored energy equals π(ET , x) =
γ(x) for all values of ET , whereas for β(x) > 1 the marginal value of stored energy decreases as ET
increases. A decreasing marginal value could represent that higher storage level increases the chance
for spillage of distributed energy resources, for example, because of curtailment of DG due to grid
constraints. A similar trend is also generally valid in the case of market operation in unconstrained
grids: Since the highest price variations during the planning horizon are exploited first, the marginal
value of moving a unit of energy from one time step to another is decreasing as more energy is added
to the ESS.
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3.3. Determining the Value Function

To present how we set the end-value of stored energy, i.e., determine the value function,
we consider in this section the multi-period OPF problem described above as a multi-stage decision
problem, where each planning horizon corresponds to one stage. The objective is to maximize social
welfare when operating the distribution system, not only for the current planning horizon p, but also
for multiple planning horizons (p, p + 1, . . . , Np) into the future:

f =
Np

∑
p′=p

T

∑
t=1

Lt,p′c0∆t. (13)

Here, Lt,p′ corresponds to the term of the objective function for time step t and planning horizon
p′. For a given planning horizon p, the objective function for the first-stage problem can be written as

fp =
T

∑
t=1

Lt,pc0∆t− αp+1
(
E0,p+1

)
, (14)

where αp+1
(
E0,p+1

)
is the future value of the energy E0,p+1 stored at the beginning of planning

horizon p + 1. Solving the multi-stage decision problem amounts to determining αp+1
(
E0,p+1

)
,

which corresponds to an optimal scheduling policy for each planning horizon.
For the first-stage problem, E0,p is known, and the problem is to determine the schedule{

E1,p, E2,p, . . . , ET,p
}

given the value of stored energy at the end of the planning horizon,
αp+1

(
ET,p

)
. The second-stage problem is to determine the schedule for planning horizon p + 1,{

E1,p+1, E2,p+1, . . . , ET,p+1
}

, given a realization of the uncertain DG resource variables (y) and given
the initial stored energy E0,p+1 determined by solving the first-stage problem. In this two-stage decision
problem, we choose as state variables the stored energy ET,p = E0,p+1 and in addition a DG state
variable xp describing the stochasticity of the underlying DG resource variables. These state variables
are being passed from one stage to the next, meaning that E0,p+1 = ET,p and that xp+1 is determined
by xp and by a stochastic process governing the transition between the stages.

Our method builds upon a stochastic dynamic programming approach as presented in
Reference [11] in the context of hydropower scheduling. The main principle here is solving a recursive
Bellman equation on a form similar to

αp+1
(
ET,p, xp

)
= E

yk

{
f ∗p+1

(
E0,p+1, xp+1

)}
. (15)

Here f ∗p+1
(
E0,p+1, xp+1

)
= min fp+1

(
E0,p+1, xp+1

)
is the optimal objective value for planning

horizon p + 1, including also the future value term. The expectation is taken over possible realizations
of yk, which represents stochastic variables for the next planning horizon p + 1 that are assumed
to be known (realized) in planning horizon p + 1 but uncertain in the current planning horizon p.
We require that the stochastic processes underlying the variables yk are stationary and do not depend
on p. For our application, this condition is fulfilled when considering sufficiently short time periods,
e.g., within the same month or season. This needs to be checked when pre-processing historic energy
resource time series used to generate yk. Since the physical system is static between different planning
horizons, the optimal scheduling policy is also stationary. For stationary processes, one can regard
the multi-stage decision problem as a static infinite-horizon problem with Np → ∞ . Solving this
infinite-horizon problem by backwards recursion corresponds to iteratively solving a series of identical
two-stage decision problem, as illustrated in Figure 1: For each next iteration, one inserts for αp+2

the function αp+1 found in the previous iteration. For the first iteration, one needs to make a guess
at an initial value function, in our case αp+2 = 0. This iteration procedure is repeated until reaching
convergence, i.e., αp+2 ≈ αp+1. with sufficient accuracy. The value function determined through
this iteration procedure can then be used in the objective function (Equation (1)) to represent the
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optimal scheduling policy for any planning period within the time period (e.g., month or season) it is
determined for.
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Similarly to the incremental water value method described in Reference [11], we construct
the future value function to use in the next iteration using the marginal values of stored energy
π = ∂α/∂E|E=ET

instead of the values α from Equation (15) directly. Assuming a concave form of the
value function as in Equation (11), one can construct a value function to use for the first-stage problem
from dual values obtained from the second-stage problem. This approach is analogous to constructing
Benders cuts of the decomposition of stochastic multi-stage optimization problems [52]. From the
optimal solution for the second-stage planning horizon, we extract the dual value π corresponding to
the energy balance constraint Equation (4) for t = 1:

E1,p+1 − E0,p+1 +
∆t

ηout
PESS,d

1 + ηin∆t PESS,c
1 = 0. (16)

This corresponds to the marginal value of energy stored at the beginning of planning horizon
p + 1. The dual value π

(
E0,p+1, x

)
as a function of the initial amount of stored energy is evaluated for

the discrete set of values E0,p+1 ∈ SE for a number of realizations of yk, and parameter values γ(x)
and β(x) to use for the next iteration are estimated by fitting the linear function of Equation (12) to
the data. This is repeated for different values of x ∈ Sx, and the iterations proceed until acceptable
convergence is reached for γ(x) and β(x). The procedure is described in the Algorithm 1 below.

The methods for generating synthetic time series representing possible realizations of stochastic
DG variables in the next planning horizon p + 1 given the state variable xp will be made more concrete
in Sections 3.4 and 3.5 for wind power and solar PV, respectively.
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Algorithm 1: Determining Value Function for Stored Energy

Input: Grid data for the distribution system model in Section 3.1, historic DG resource (wind speed or solar
irradiance) time series data, selection of a discrete set Sx of DG state variable values x; selection of a discrete set
SE of initial stored energy values E
Output: Estimates of value function parameters γ(x) and β(x) for all DG state variables x ∈ Sx

1: Initialize value function parameters γ(x) = 0, β(x) = 1 for all x ∈ Sx

2: Generate kmax synthetic time series yk for the stochastic DG resource variables for each value of x ∈ Sx

3: while β and γ not converged for all x ∈ Sx

4: for jx = 1 to |Sx| do
5: Set DG state variable x to the jxth value in Sx

6: for jE = 1 to |SE| do
7: Set initial stored energy E0,p+1 to the jEth value in SE
8: for k = 1 to kmax do
9: Use DG resource time series yk for state variable value x
10: Solve second-stage problem for planning horizon p (t = 1, 2, . . . , T) with value
function parameterized by γ(x) and β(x) for initial stored energy E0,p+1 and
DG resource time series yk
11: Evaluate dual value π(x, E0,p+1)
12: end for
13: end for
14: Fit dual values π(x, E) to a linear function of E
15: Determine updated values of γ(x) and β(x)
16: end for
17: end while

3.4. Modeling Stochasticity of Wind Power Generation

In this section, we consider the case of wind power generation where the stochastic variables yk

in the next planning horizon are the wind speed time series vk =
{

v1,p+1,k, v2,p+1,k, . . . , vT,p+1,k

}
.

The mathematical expectation in Equation (15) is therefore taken over possible realizations
k = 1, 2, . . . , kmax of this wind speed time series. In determining the value of stored energy at the
end of the current planning horizon, we want to account for the time correlations between the wind
speeds at the end of the current planning horizon p and at the beginning of the next planning horizon
p + 1. High values of vT,p are correlated with high wind speeds vt,p+1 and thus high wind power
output in the next planning horizon. This, in turn, increases the probability of wind power curtailment
if the ESS does not have the capacity to accommodate the part of this distributed generation that cannot
be exported from the grid. One would therefore expect that the future value of stored energy at t = T
should decrease with increasing vT,p, which motivates including a state variable xp in Equation (15).

As in Reference [9], we use the terminal wind speed as state variable, i.e., xp = vp, T and capture
the time correlation and stochasticity in wind speed by generating synthetic wind speed time series
for planning horizon p + 1 using a discrete-state Markov chain model. Wind speed time series do not
generally satisfy the Markov property, but Markov chain models may reproduce the autocorrelation
of historic wind speed time series with acceptable accuracy if the timesteps are longer than around
40 min [53]. This condition is satisfied in our case.

Due to the potentially strong seasonal patterns in wind speed variation, transition matrices[
P
(
Vt+1 = vi

∣∣Vt = vj
)]

i,j are first constructed separately for historic data for each month or season
(e.g., combining data from multiple months if they represent similar wind speed statistics). An element
in these transition matrices is the estimated probability that the wind speed in the next time step (the
stochastic variable Vt+1) has the value vi, given that the wind speed in the current time step has the
value vj. Next, for each value of vT,p ∈ Sx, synthetic time series vk =

{
v1,p+1,k, v2,p+1,k, . . . , vT,p+1,k

}
for k = 1, 2, . . . , kmax are generated using the transition matrix for the season and initializing the
Markov chain from v0,p+1 = vT,p. This model for the stochasticity and time correlations of wind
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speed is illustrated schematically in Figure 2 for a few possible wind speed realizations vk. Note that
the purpose in this work is emphatically not to exactly represent accurate wind speed forecasts,
but rather to generate a representative set of realizations of future (t > T) stochastic wind power
output, capturing time correlations sufficiently accurately for the estimation of the value the energy
stored at t = T. The time series for wind power output are generated based on the time series for the
wind speed vt, a power curve function f (vt) ∈ [0, 1], and the rated power Prated

i of the wind turbine at
bus i, i.e.,

PDG, max
i,t = Prated

i · f (vt). (17)
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Figure 2. Schematic illustration of the model of stochasticity in wind speed beyond the planning
horizon t = T.

3.5. Modeling Stochasticity of Solar PV Power Generation

To model the stochasticity and time dependence of PV generation for the purpose of estimating
the future value of stored energy, we have chosen a Markov chain model with regime-switching
for the cloud cover (clearness) conditions, inspired by References [38,54], respectively. Following
Reference [54], we assume that the stochasticity of the actual (ground-level) solar irradiance wt follows
a regime-switching process in which periods of the time series for wt can be classified as belonging to
one of three clearness regimes r: overcast (r = 1), partly cloudy (r = 2), or sunny (r = 3). For time
series for wt within each regime, we have, following Reference [38], assumed that the stochasticity can
be described by a Markov chain model for the clearness ct, defined as

ct =
√

wt/st, (18)

together with a deterministic time series st for the expected irradiance given sunny conditions and
no cloud cover. Note that in some other works [54], a clear-sky-index αt = c2

t is used instead of the
clearness ct to describe the relationship between the actual and expected irradiance.

To generate synthetic time series for wt based on historic data for wt, we first find the time series
for the expected irradiance st over a period of a day. Instead of calculating the deterministic st profile
theoretically based on geometry, latitude, date, etc., we estimate it empirically using the simple model
as proposed in Reference [55]:

st = a + b cos
(

2π
(t− ∆t/2)

24 h

)
. (19)

First, for each month of the year and each time step of the day from sunrise (t = tr) to sunset
(t = ts), the highest observed value wmax

t in the irradiance data set is found. Sunrise and sunset for
the month are determined empirically as the first and last time steps, respectively, for which all days
in the data set have nonzero irradiance. Next, Equation (19) is fitted to the time series {wmax

t }ts
t=tr

to
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determine the parameters a and b. For the purposes of this study, this is found to be a robust and
sufficiently accurate approach given that there are no substantial systematic shading effects.

A procedure based on that proposed in Reference [54] is used to classify the cloud cover conditions
(clearness regimes) for each day of the historic irradiance data set: A day p is classified as sunny if the
normalized error

Errorsunny =
ts

∑
t=tr

s2
t

(
1− c2

t

)2
/

ts

∑
t=tr

s2
t (20)

is below a certain threshold, Errorsunny ≤ τsunny. If not, one calculates

α̂p =
ts

∑
t=tr

(ctst)
2/

ts

∑
t=tr

s2
t , (21)

Errorovercast =
ts

∑
t=tr

s2
t

(
α̂p − c2

t

)2
/

ts

∑
t=tr

s2
t , (22)

and classifies the day as overcast if α̂ ≤ τα and Errorsunny ≤ τovercast. Otherwise, the day is classified
as partly cloudy. Time series for the clearness regime value r are thus created for the historic irradiance
data set for all sets of subsequent days, and these time series are used to construct 3× 3 transition
matrices

[
P
(

Rp+1 = r
∣∣Rp = r′

)]
r,r′ for the regime-switching process. Here, Rp denotes the stochastic

variable for the clearness regime for day p.
Transition matrices

[
P
(
Ct+1 = ci

∣∣Ct = cj
)]

i,j for the Markov chain model for clearness within each
day are constructed separately for each of the three clearness regimes. Here, Ct denotes the stochastic
variable for the clearness for time step t. As in Reference [38], clearness values ci are discretized in a set

of nclr values
{

ci =
i

nclr−1

}nclr

i=0
. As the daily expected irradiance time series st may vary substantially

from one month to the next, transition matrices for the regime-switching process between days and
the Markov process for clearness within days are estimated separately for each month.

As the state variable underlying the PV generation in planning horizon (day) p, we use the
clearness regime during this planning horizon, i.e., xp = rp. To generate a set of irradiance
time series representing possible realizations of uncertainty in the next planning horizon p + 1
within a given month and given a current clearness regime rp, we (1) use the transition matrix[
P
(

Rp+1 = r
∣∣Rp = r′

)]
r,r′ for the regime-switching process estimated for the month to draw a

pseudo-random regime value rp+1, (2) draw a pseudo-random clearness value ctr for the sunrise
time step of the next day from the clearness probability distribution for clearness regime rp+1

and the given season, (3) use this as the initial value in a Markov chain ck = {ct}ts
tr

generated
using the clearness transition matrix

[
P
(
Ct+1 = ci

∣∣Ct = cj
)]

i,j for regime rp+1, and 4) calculate the

synthetic irradiance time series wk = {wt}T
t=0 from wt = c2

t st with {st}ts
tr

as estimated for the given
month. This representation of the stochasticity and time correlations of the energy resource variables
underlying PV generation is illustrated schematically in Figure 3 for a few possible realizations ck and
wk for different clearness regimes.

Finally, to calculate the PV power output at bus i in time step t from the solar irradiance wt, we use
the simple model [56]

PDG, max
i,t = ηPV,tot Aiwt. (23)

Here, ηPV,tot is the total efficiency of the PV systems, and Ai is the total PV panel area connected
to bus i. Such a simple model is sufficient for the purpose of this article, but for more detailed models
we refer to References [56,57].
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Figure 3. Schematic illustration of the model of stochasticity in clearness (above) and solar irradiance
(below) beyond the planning horizon t = T.

4. Case Study

To demonstrate the framework, we implemented the MPOPF model described in Section 3.1 using
MATPOWER’s extensible optimal power flow architecture [51,58] and consider a case study based
on a real distribution system in Norway. The data set considered for the case study includes hourly
solar irradiance time series measured at the approximate location of the distribution system (around
latitude 64◦ 0′ N), and hourly wind speed time series measured in the same area is also considered for
comparison. The model and associated data sets of the distribution system are described in Section 4.1,
after which we present results for the determination of the expected value of stored energy for the
two forms of distributed generation in Section 4.2. Section 4.3 evaluates the effect on the distribution
system operation of explicitly considering the value of stored energy in the scheduling of the energy
storage. This is done by comparing this operational strategy with the conventional periodic boundary
condition approach (ET = E0) and a rolling horizon approach.

4.1. Distribution System Model

The grid model for the distribution system contains 147 buses and includes a 22-kV
medium-voltage (MV) grid and parts of the 230-V low-voltage (LV) grid. The system is depicted
schematically and described in more detail in Appendix A. The only point of common coupling (PCC)
between the distribution system and the high-voltage (HV) grid is a 66 kV/22 kV substation, through
which power is imported or exported. A small-scale hydropower generator is connected to the MV
distribution grid, and the distribution system is a net exporter of power for parts of the year. Based on
real power import/export and hydropower generation data from the year 2012, representative daily
load demand profiles for each month were established. Variation in hydropower generation within each
day was on the other hand negligible. Representative electricity price profiles were established based
on power market data for the same year. To illustrate the framework and models presented in Section 3,
the real distribution system model described above is augmented by the following hypothetical energy
storage scenario: In a part of the LV grid, high penetration of variable distributed generation (e.g.,
medium-scale rooftop PV on supermarkets, office buildings, or agricultural buildings) causes adverse
voltage rise in times with high PV power output relative to the load demand. This motivates the
installation of a community-level stationary grid-connected energy storage system at a suitable location
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in the LV grid to alleviate voltage problems while facilitating the integration of the renewable energy
into the system. It is not the aim of this article to study possible business models or ownership options
for such an ESS (see, for example Reference [59] for a recent and relevant discussion on this issue.)
Instead, we assume that the ESS is operated by some actor (e.g., the DSO or a third-party providing ESS
services to the DSO) according to the objective of maximizing social welfare by minimizing the cost of
importing energy to the distribution system while at the same time respecting technical constraints [9].
The means for flexibility (i.e., degrees of freedom) we focus on for the purpose of this article is the
active power of the ESS (i.e., charging or discharging). Although reactive power control of the ESS
or of the DG units (e.g., PV inverters) are also possible means of flexibility in reality, these degrees
of freedom are not considered in this article but could easily be accounted for in our model since it
is based on a full AC OPF formulation. However, we do assume that the ESS operator also has the
possibility to curtail parts of the power output of the DG units if necessary, to respect the technical
constraints of the system.

To investigate a time period with relatively high DG power output compared to the load demand,
especially for the PV case, the case study considers a typical weekday in July. To enable a consistent
comparison, equivalent parameters for the wind power case are determined such that, given no power
curtailment, the average daily production of electrical energy EDG from the DG resource time series
is the same for the wind power case as for the PV case. Whereas the DG resource time series for the
PV case includes July for the years 2010–2015, for the wind power case we use June–August in the
one-year time series that was available (2012) to ensure a sufficient number of observations, as these
months have approximately the same average wind speeds. Additional details, including descriptions
of data in the Supplementary Materials, is provided in Appendix A.

4.2. Results for the Expected Future Value of Stored Energy

In this section, we present results for the determination of the expected value of energy stored at
the end of the current planning horizon. The parameters chosen for this case study were as follows:
We consider a daily planning horizon with T = 24 h and time steps ∆t = 1 h. In units of m/s, the set
of initial DG state variable values chosen for the determination of the value function for wind power
is Sx = S vT = {3, 5, 7, 10, 12}. For the PV case, the corresponding set of state variables comprises
the three clearness regimes, Sx = Sr = {1, 2, 3}. On this basis, kmax = 50 synthetic DG resource
variable time series yk are generated for each value in Sx. The MPOPF problems are solved using the
fmincon solver of the MATLAB Optimization Toolbox with the default interior point algorithm [60].
Some further discussion of computational details is provided in Appendix A.

Figure 4 shows the values of the parameters γ(x) and β(x) of the value function determined
through the iterative algorithm described in Section 3.3. The results for wind power are shown on
the left-hand side of Figure 4 for the chosen values x = vT ∈ S vT , and the results for PV are shown
on the right-hand side for x = r ∈ Sr. Each cross represents the results after an iteration, and the
circles represent the fourth iteration, after which we regard the parameter values to have converged
to sufficient accuracy. For clarity, the values that the parameters were initialized to for the first
iteration (γ = 0, β = 1) are not shown. From Figure 4, we observe a remarkable difference between
the parameters for wind power and PV, showing that the end-value setting of the stored energy,
and thereby the optimal use of storage, is very different for the two distributed energy resources.

Figure 5 shows the resulting marginal (incremental) value of stored energy π(ET , x) corresponding
to the final iteration of the parameter values shown above in Figure 4. The values are presented in units
of the average electricity price c0. The markers indicate the obtained dual values and the dashed lines
the results of linear regression as explained in conjunction with Equation (16). The value of γ decreases
as the lines are lowered, and the value of β increases as the slope becomes steeper. These results
illustrate how the expected value of storing an additional unit of energy in the ESS at the end of the
planning horizon decreases as the energy storage gets more fully charged. For the case of wind power,
the marginal value of stored energy is, furthermore, strongly reduced as the wind speed vT increases,
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increasing the risk of wind power curtailment in the next planning horizon. A similar but much
weaker trend can also be observed for the case of PV, where the marginal value of stored energy at the
end of the day (i.e., planning horizon) is only slightly lower for a sunny day than for an overcast day.
The explanation is that there is a greater probability that the next day will be sunny if the current day
is sunny than if the current day is overcast, and if the next day is sunny, the expected value of having
energy stored is less because there is a greater probability that PV generation may have to be curtailed.
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Figure 5. Marginal value of stored energy at the end of the planning horizon as a function of the
amount of stored energy for different wind speeds for the case of wind power (a) and for different
cloud cover conditions (clearness regimes) for the case of PV (b).

Figure 6 shows the expected future value of stored energy α(ET , x) corresponding to the marginal
values shown in Figure 5 and as given by the parameter values γ(x) and β(x) determined above.
The curvature in Figure 6a increases as the wind speed increases, corresponding to the slope of the
marginal value in Figure 5a becoming steeper. These findings for wind power are the same when
considering a different distribution grid model and different wind power scenario as in Reference [9].
We have also confirmed that the findings for solar PV remain the same for the distribution grid model
in Reference [9] and with irradiance time series for another location in the region.
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The result that the expected value of stored energy is less dependent on the state variable
underlying PV generation (i.e., on cloud cover conditions) than the state variable underlying wind
power generation (i.e., wind speed) can be explained by two main effects. First, the time correlations
between one day (p) and the next (p + 1) are weaker for clearness than for wind speed: The modeled
autocorrelation coefficient is 0.38 for mean wind speed and 0.22 for mean clearness. This means that
the effect of taking into account the value of the DG state variable xp is smaller for solar power than
for wind power. We have checked that the effect for the PV case is even weaker if we neglect the
regime-switching process and simply use the clearness cts as the state variable xp in our stochastic
model instead of rp.

Second, since PV power output is determined by the deterministic diurnal patterns of the expected
solar irradiance st in addition to the clearness ct, PV power output is always zero for a period during the
night. In contrast, diurnal patterns for the wind speed vt are not existing for our dataset, as commonly
observed in Northern Scandinavia, see for example, Reference [61]. The diurnal pattern for solar power
means that even when the energy storage is fully charged at the end of a day (planning horizon),
PV power output is zero during the night, and there is almost always enough time to discharge the
energy before the power output starts increasing again the next day.

One modeling implication of Figure 6b is that the future value function considering PV generation
may be well approximated by a linear function, as assumed without justification by some MPOPF
models in the literature (see Table 1). However, such an assumption does not hold when considering
wind power generation.

4.3. Evaluation of Energy Storage Scheduling Considering the Value of Stored Energy

We evaluate the use of the value function α(ET , x) as a control signal for the scheduling of ESS
charging/discharging. As in Reference [9], we evaluate operational strategies by simulating the
operation of the distribution system over an extended simulation period spanning multiple 24-h
planning horizons. We use historic DG resource time series covering the full simulation period to
capture the time correlations of wind speed both within each planning horizon and between subsequent
planning horizons. The time periods for these time series are the same as described in Section 4.1.
The effectiveness of the distribution system operation is evaluated by the average of the total cost (the
objective value) for all planning horizons that are simulated.

In addition to comparing the proposed operational strategy to the conventional strategy requiring
ET ≥ Emin

T as in [9], we also consider a rolling horizon approach to ESS scheduling: For the latter
operational strategy, the look-ahead horizon for this deterministic MPOPF problem is still T = 24 h but
the planning horizon is T′ < T hours, so only the solution for the MPOPF problem for the first T′ < T
time steps is used when determining the schedule for the current planning horizon. When solving the



Energies 2019, 12, 1231 17 of 24

MPOPF for the next planning horizon, the simulation thus advances by only T′ time steps, and the
current solution for ET′ is used to initialize E0 for the next planning horizon. This rolling horizon
approach in effect allows for looking T − T′ hours beyond the planning horizon when solving the
MPOPF problem and thus implicitly valuates the energy stored at the end of each planning horizon.
For the rolling horizon approach, we choose T′ = 12 h. For the conventional operational strategy
without rolling horizon, on the other hand, T′ = T, and the look-ahead time does not extend beyond
the end of the current planning horizon.

Results for the average daily total cost are shown in Figure 7a,b for the case of wind power and
for the case of PV, respectively. In order to present the total cost as a convenient unitless measure of
the effectiveness of the operational strategy, the results are normalized by the average electricity price
c0 times the average daily potential DG electricity production EDG. The total cost for the distribution
system is negative in both cases because the distribution system is a net exporter of power during the
period due to high output from the hydropower generator relative to the load in the system. The ESS
is operated in such a way that it reduces the total cost (i.e., increases the social welfare) further by
ensuring that more distributed generation (wind or solar power) can be exported from the system and
that more power is exported at times of high electricity prices. For both cases, the total cost is shown
for the conventional approach for different values of minimum energy Emin

T stored at the end of the
look-ahead horizon for both using the rolling horizon approach and not. These two curves can be
compared with the total cost of operating the distribution system when including an explicit function
α(ET , x) for the expected value of energy stored at the end of the planning horizon. For the latter
operational strategy, only Emin

T = 0 is used in the evaluation, and the result is shown as a horizontal
line. The comparison shows that for both wind power and PV, including α(ET , x) in the objective
function is an effective operational strategy irrespective of which value one chooses for Emin

T . The total
cost obtained with the rolling horizon approach is comparable to explicitly considering α(ET , x) and is
slightly lower for some values of Emin

T . This can be understood by realizing that the look-ahead time
for which the DG resource time series y is assumed to be deterministic is 24 h for both operational
strategies. Therefore, in the rolling horizon approach, the look-ahead horizon extends T − T′ = 12 h
beyond the planning horizon each time the MPOPF problem is solved.
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Figure 7. Comparison of approaches to considering the expected value of stored energy at the end of
the planning horizon for distributed wind power (a) and PV (b) generation in terms of the total cost of
the distribution system over the simulation period.

Comparing the cases of wind power and PV in Figure 7, one can notice that the total cost overall
is lower for PV than for wind power. The main reason for this is that although the potential electric
energy production in the system from DG is the same for the two cases, more of this electric energy
production can be exported for the PV case than for the wind power case: More than 17% of the
potential production is curtailed for the wind power case compared to 1.3% for the PV case. The main
reason for this difference is the deterministic diurnal pattern for PV power output, which allows
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almost all energy that is stored in the ESS at the end of a day to be discharged and exported during
the following night. In general, the amount of curtailment also depends on the ratio of the maximal
power output to the average power output (i.e., the capacity factor), but for this case the ratio was
almost the same for wind and solar power. The diurnal patterns for the PV case mean that how the
stored energy ET is accounted for in the operational strategy has a much smaller impact on the level of
DG curtailment than for the wind power case. However, the operational strategy also determines the
extent to which the ESS can exploit price differences during the day. For instance, in this case with
relatively low electricity prices during the night and early morning, an operational strategy requiring
a higher value of ET would tend to result in a higher total cost because this energy would have to be
exported during low-price hours to make room for new electric energy from DG later in the day.

5. Conclusions and Further Work

We have presented models and methods for accounting for uncertainties in distributed wind and
photovoltaic generation beyond the current planning horizon in multi-period optimal power flow
models for the operation of distribution systems with energy storage. The variability and stochasticity
of wind and solar power have several inherent differences, including differences in autocorrelation,
diurnal patterns, and ratio of maximal to average power output. It is shown how these differences
imply that different approaches to modeling DG uncertainty are appropriate, and it is demonstrated
how these differences impact the end-value of stored energy in the grid. There was a markedly weaker
dependence of the future value function on the underlying state variable (cloud cover and wind
speed, respectively) for PV than for wind power. Consequently, for the purpose of ESS scheduling,
there appears to be less need for sophistication in the modeling of the stochasticity of PV generation
beyond the daily planning horizon. Nevertheless, the general methodology presented in this article is
not restricted to a particular renewable energy source, planning horizon or time resolution.

The effectiveness of the framework was evaluated in terms of the distribution system operational
cost compared to approaches previously considered in the literature. Explicitly accounting for
uncertainties in wind and PV generation beyond the current planning horizon is found to be a
more effective operational strategy than the conventional approach of requiring the energy stored
to be at or above a fixed level Emin

T at the end of the planning horizon. The proposed approach is
furthermore a robust operational strategy in the sense that it does not require a predefined value
for a parameter Emin

T to be effective. The proposed operational strategy is also competitive with an
operational strategy based on a rolling horizon approach, although the latter is more effective for most
values of the parameter Emin

T in the case study considered. A rolling horizon approach to solving
an ESS scheduling problem may be more straightforward to implement, but it also has drawbacks:
It assumes that updated point forecasts are made available at intervals significantly shorter than the
look-ahead horizon and does not explicitly consider forecast uncertainties.

Although the paper considers the stochasticity of distributed generation (wind and solar) in
particular, the general methodology is also applicable to accounting for the uncertainty in electricity
prices and in load. One interesting extension would be to consider the uncertainty in load due to
charging of electrical vehicles (EV), for instance for ESSs deployed in conjunction with fast EV chargers
with large but variable power demand. Furthermore, the presented MPOPF model also captures the
risk of rationing of the load, e.g., in case of microgrid applications, grid congestions, outages, and/or
sharp load peaks. Accounting for the expected value of lost load in setting the end-value of stored
energy is particularly relevant for ESSs installed for reliability of supply purposes. Finally, considering
separate electricity prices for import to and export from the system is relevant for considering how
different grid tariffs affect the end-value stored energy in the scheduling of behind-the-meter ESSs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/7/1231/
s1, Table S1: Relative load profile, Table S2: Relative electricity price profile, Tables S3–S8: Solar irradiance time
series (for 2010–2015); Table S9: Wind speed time series, Table S10: Power curve function.
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Appendix A

This appendix presents additional details on the case study described in Sections 4.1 and 4.2.
The distribution system grid and load data used for this case study were originally prepared for
Reference [62]. The distribution grid is depicted schematically in Figure A1. The LV grid that is
included in the model represents the grid supplied by one of the in total 32 distribution transformers
(22 kV/230 V); the LV grids supplied by the remaining distribution transformers are not modeled in
detail but represented as aggregated loads. Assuming a stiff HV grid, the voltage is fixed to 1 p.u. at
the 66-kV side of the 66 kV/22 kV substation. The small-scale hydropower generator connected to the
MV grid has nominal power capacity 2.4 MW.
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Figure A1. Schematic of distribution grid considered in the case study, prepared using the visualization
techniques of [63].

The details of the grid model cannot be published due to the confidentiality of the data, but both
the MV and the LV grid consist primarily of underground cables (typically TFXP 4x95/240 AL and
TFXP 4x50 AL cables, respectively). The model is a single-phase equivalent representation of a balanced
three-phase distribution system, which means that possible voltage imbalance effects and effects of
phase imbalances on losses in the real grid are not captured [64].

The total load demand in the distribution system varies from a minimum of around 1 MW in
summer to a maximum of around 5 MW in winter. The typical weekday in July considered in the
case study is represented by using a constant hydropower output of 1.572 MW and an average total
distribution system load demand of 1.398 MW. For simplicity and in absence of more detailed load data
for the system, the same daily relative load profile for a weekday in July (Supplementary Materials,
Table S1) is used for end-users at all load buses. The total system load demand is then distributed
on the individual load buses according to their annual energy consumption as in Reference [62].
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Representative electricity price profiles for July 2012 (Supplementary Materials, Table S2) are taken
from the Nord Pool day-ahead area prices for the same region of Norway as the distribution system [65].
The average electricity price of 13.72 €/MWh for this period was used to set the value of the scale
parameter c0 in the objective function.

The energy storage system is assumed to be located at bus 92 in the LV grid. We consider an
energy capacity of Emax = 210 kWh and a power capacity of PESS

max = −PESS
min = 50 kW, and the charging

and discharging efficiency is chosen to be ηin = ηout = 0.94. These parameter values correspond to the
specifications stated for a Tesla Powerpack battery storage system [66]. We assume that PV generators
are located at buses IDG = {93, . . . , 97} in the LV grid. These buses are all adjacent to bus 92, as shown
in Figure A1. We furthermore consider PV system parameters ηPV,tot = 0.1763 and Ai = 170.28 m2

for all i ∈ IDG and a unity power factor for the PV inverters. These parameter choices correspond to a
maximum total DG power output of 119.8 kW for the maximum solar irradiance of w = 795 W/m2

observed in July 2010–2015. The hourly solar irradiance time series (in units W/m2) are available in
the Supplementary Materials (Tables S3–S8).

The wind speed time series is based on measured data from 2012 for an actual wind farm in the
same area [62]. The wind speed data were extrapolated to a hub height of 30 m assuming a logarithmic
wind profile and a roughness length of 0.03 m. The hourly wind speed time series (in units m/s)
is available in the Supplementary Materials (Table S9). The power curve used was a downscaled
version of a Siemens SWT-2.3-93 [67], and the power curve function f (v). in Equation (17) is shown in
Figure A2. (See Supplementary Materials, Table S10; the first column gives the wind speed in units m/s
and the second column gives the power output relative to the rated power.) Based on this, and on an
average annual electrical energy production EDG

= 589.9 kWh for the PV case, an equivalent installed
wind power capacity was found to be 140.2 kW. A turbine with this rated capacity was assumed
to be connected to bus 92. The power factor of the wind turbine generator is set to unity as for the
PV generators.
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The resolution of the discrete state Markov model for wind speed is chosen to be 1 m/s. As in
Reference [54], the parameters in the algorithm for classifying the clearness regime are determined
heuristically, and in our case, τsunny = 0.4, τα = 0.5 and τovercast = 0.135 were chosen. To discretize
the clearness states, the same value nclr = 14 is used as in Reference [38]. The synthetic time series yk
reproduce the general autocorrelation characteristics of the historic time series, with autocorrelation
times around 14.4 h for wind speed and 8–9 h for clearness when averaged over sets {yk}.

Since the fmincon solver used in this case study is a local solver and AC MPOPF is a non-convex
optimization problem, one generally cannot guarantee that an obtained solution is globally optimal,
as discussed in Section 2, and as was also the case for the previous work on AC MPOPF reviewed there.
We also tested the MATPOWER Interior Point Solver [51], and although it typically converged to a
feasible solution more quickly than fmincon, this solution was, in a few cases, found to be sub-optimal
to the solution obtained by fmincon. In this sense, fmincon thus appears to be a robust solver for
this problem, but we found that overriding the default initialization procedure of the solver was
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necessary to ensure robustness. Further experimentation also showed that robustness and convergence
properties were improved by assigning a reference bus in the grid model for each time step t for the
multi-period optimization problem and by fixing Prat

i,t = 0 in the optimization for cases where it is
found that no load rationing occurs. The computation time for the solution of each T = 24 MPOPF
problem lies around 5.5 s on a computer with an Intel Core i7-7600U CPU @ 2.8 GHz, MATLAB
(R2015b, MathWorks®, Natick, MA, USA), and tolerances (decision variables and objective value) set
to 10−6. Based on tests for T ∈ [12, 48], the computation time increases with the number of time steps
T approximately according to O

(
T1.4).
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