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Abstract—Accurate detection of the channel quality degrada-
tion is crucial for applying effective remedial actions to ensure the
reliability of IEEE 802.15.4 links. Without knowing the channel
quality is degraded, remedial actions may lead to more packet
losses, e.g., increasing transmission power may cause even more
interference. In this work, we aim to detect the channel quality
degradation that turns a good link into a bad one, based on the
received signal strength of radio links. The detection should be ac-
curate and robust to diverse channel characteristics and dynamic
environmental changes. To achieve this, we propose RADIUS, a
lightweight approach that lays its foundation on a thresholding
technique based on Bayesian decision theory and combines it
with techniques for adapting to environmental changes. Extensive
evaluation of RADIUS on a testbed shows that the employed
Bayes thresholding technique outperforms two relevant state-of-
the-art thresholding techniques by providing a higher accuracy
consistently for all links across the network. Besides, RADIUS
is able to keep a low error rate of detection (5.78% on average)
in a 72-hour experiment, adapting to environmental changes.
Furthermore, we developed an exemplary application of RADIUS
to show how an existing transmission power tuning scheme can
benefit from using RADIUS as an accurate and robust trigger
for taking remedial actions.

I. INTRODUCTION

The performance of Wireless Sensor Networks (WSNs)
can be heavily affected by packet losses over radio links
due to different causes, e.g., external interference [1], packet
collisions [2], and degraded channel quality [3]. Applying
appropriate remedial actions [4] [5] on the lossy links may
enhance link performance. However, actions performed with-
out diagnosis or based on erroneous diagnosis may have no
effect or even negative effects, e.g., increasing output power
can cause even more interference. Therefore, it is essential for
a WSN to accurately diagnose link packet losses for taking
effective actions in order to ensure link and network reliability.

In this paper, we focus on one of the major causes for the
packet losses of IEEE 802.15.4 links, that is the degradation in
channel quality experienced by radio links. We aim to provide
an approach to detect the channel quality degradation based
on a direct measurement of the channel at the radio hardware
– Received Signal Strength Indicator (RSSI). Many previous
studies revealed the degradation in both RSSI and link Packet
Reception Rate (PRR) under the impact of temperature [6],
human presence [7], climate condition and terrains [8], etc.
To differentiate from the inherent random fluctuation in RSSI,
we refer the RSSI degradation that turns a good link (high
link PRR) into a bad one (low link PRR) as anomalous RSSI
degradation or RSSI anomaly throughout the paper.

Detecting such anomalous RSSI degradation of radio links
with a high accuracy is not as simple as one might imagine.
Many empirical studies [3] [9] show that RSSI is not well
correlated with PRR, and hence, not an accurate indicator
of PRR. Other works [4] [5] prove the existence of RSSI
thresholds, over which the RSSI results in a PRR of good links.
This allows us to use RSSI to estimate whether a link is a good
link. However, RSSI dropping below those thresholds does not
necessarily mean that a good link turns into a bad link. Finding
the RSSI thresholds to accurately indicate a transition from a
good link into a bad one is indeed a challenging task.

To demonstrate this challenge, we evaluate an intuitive ap-
proach, in which the runtime averaged RSSI of each link over a
sliding window is compared with a predefined RSSI threshold
to make decisions about RSSI anomalies. We apply such an
approach to real data traces and vary the RSSI threshold in a
wide range. The resultant detection error rates are presented
in Figure 1. The figure shows the typical performance of such
an approach: independent of the sliding window size, while a
predefined RSSI threshold may work well for one link (e.g.,
−85 dBm for Link 2-1), the same threshold may not work
well for different links (e.g., Link 1) or the same link at a
different time (Link2-2).

Fig. 1: The performance of an intuitive approach based on
predefined thresholds. SW refers to sliding window size.

The reason for this is that the channel characteristics
experienced by radio links (e.g., RSSI mean and variance)
may differ from link to link and also vary over time due to
environmental changes [10]. Hence, the best RSSI threshold
that discriminates between RSSI values from a good link and
those from a bad link may vary both spatially and temporally,
depending on the specific channel characteristics of each link.
In fact, there is still a lack of such an approach that takes
the spatio-temporal characteristics of the radio channel into
account to detect anomalous RSSI degradation accurately.



The main question investigated in this paper is therefore:
Is it possible to design an approach to detect anomalous
RSSI degradation of radio links, which fulfills the following
requirements? First, the approach shall be lightweight due to
resource-constrained sensor nodes. Second, it should provide
a high detection accuracy. Third, the high accuracy should
be consistent for all links across the network and robust over
time. In other words, manually tuning the performance of the
approach for each link or at different times should be avoided.

To answer this question, we propose RADIUS, a lightweight
yet accurate and robust approach to detect locally at sensor
nodes the anomalous RSSI degradation of inbound radio
links. Central to the design is a thresholding method based
on the Bayesian decision theory to achieve high detection
accuracy, generating an RSSI threshold for each individual link
according to its specific channel characteristics. In addition,
RADIUS employs techniques to capture accurate channel
characteristics within a short time, when the performance
of the network satisfies the user requirements. Furthermore,
RADIUS employs techniques for accurate detection and also
the techniques for continuously updating the thresholds to
adapt to environmental changes.

We implement RADIUS and evaluate its performance and
overhead on an indoor testbed of 32 sensor nodes. We compare
the employed Bayes thresholding method with two relevant
state-of-the-art thresholding methods from the literature [11]
[12]. The comparison results show that the Bayes thresholding
provides the highest accuracy among all three methods. Unlike
the other two methods, the accuracy for Bayes thresholding is
consistent for all links across the network without the need
of fine-tuning of its performance for each link. In a 72-hour
experiment, the RADIUS system keeps a low error rate robust
to environmental changes over time. Overall, it achieves an
averaged error rate of 5.78% for all links of the testbed.

Finally, RADIUS can be used as an accurate and robust
trigger for remedial actions to restore link and network per-
formance. To demonstrate this, we developed an exemplary
application that utilizes RADIUS as a trigger to adjust the
transmission power of sensor nodes to maintain link PRR.
The outcome is compared with a transmission power tuning
scheme from the literature [4] to show an example of how
existing works can benefit from the capability of RADIUS.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the RADIUS
approach in details. Section IV presents the experimental eval-
uation of different thresholding methods, the overall system
and an exemplary application of RADIUS. Finally, Section V
concludes the paper and discusses future work.

II. RELATED WORK

Most existing diagnosis approaches in sensor networks
focus on network-wide diagnosis [13] [14] [15]. They are able
to detect and localize lossy links by monitoring metrics such
as link PRR or other software-based LQEs [3]. However, such
approaches are unable to determine the underlying cause of
link packet losses, e.g., whether a loss is due to degraded

channel quality or the internal interference caused by sensor
nodes themselves. Without truly knowing the cause, applying
the most direct remedial action such as increasing transmission
power [4] may create more interference, leading to more
packet losses. In order to determine the cause of low link PRR,
e.g., the degradation in channel quality, we need information
from the PHY layer. In RADIUS, we use RSSI, a direct
channel quality attribute resident within every received packet.

The accuracy of detecting the channel quality degradation is
also important for the effectiveness of remedial actions. E.g.,
for a transmission power tuning scheme, a wrong detection
decision indicates it either fails to improve the PRR or wastes
energy. Many previous studies [3] [6] [7] [8] [9] analyzed the
relation between RSSI and link PRR in different scenarios.
They revealed that RSSI is not well correlated with PRR,
especially in the transitional region. This fact together with the
random nature of RSSI [3] makes our problem a challenging
task. Data smoothing may mitigate the problem, but it is not
very effective in our case, as showed in Figure 1. In RADIUS,
we tackle this problem from a different angle, that is to find
the best possible thresholds tailored to each link. As Figure 1
shows, a good threshold (or thresholding method) is very
effective to increase the detection accuracy.

Problems like detecting anomalous behaviors (in our case,
anomalous degradation in RSSI) are typically solved using
anomaly detection techniques. Powerful machine learning-
based techniques such as clustering [16], neural networks [17]
and support vector machine [18] are resource-hungry and thus
do not fit the resource-constrained sensor nodes. Decision tree
classifiers, on the other hand, consist of a set of simple rules
once the classifiers are trained. In [1], sensor nodes identify
the type of interference based on a decision tree. Nevertheless,
for numeric attribute such as RSSI, we still need to find the
optimal threshold for classification purposes, which is exactly
what we aim to solve with this work.

Measure-based statistical techniques (e.g., mean, variance,
maximum) are the most widely used techniques for threshold-
ing in WSNs due to their low overheads. Two popular tech-
niques of this category are Percentile-based and Chebyshev
inequality-based thresholding techniques. An example of the
former technique is Memento [19], which uses an empirical
CDF of missing heartbeat numbers to detect sensor failures.
Another example is RASID [12], which defines a threshold
at a given percentile after the density function is estimated.
In other cases, when the underlying probability distribution
is not known a priori, the Chebyshev thresholding technique
has often been applied. For instance, it is used in [11] to
troubleshoot the network performance issues and in [20] for
target detection in WSNs. However, our investigation, as to
be shown later in this paper, reveals that both Percentile and
Chebyshev thresholding methods do not achieve high accuracy
when links experience diverse channel characteristics.

Bayesian decision theory [21] has been found useful in
many scientific and engineering fields. A classical example is
the detection of binary digits “0” and “1” in a noisy channel.
In RADIUS, we employ the Bayesian decision theory to derive



the optimal RSSI thresholds for each monitored link, through
which a minimal error rate is mathematically guaranteed with
a low overhead. Additionally, RADIUS employs different
techniques to improve the accuracy and maintain it by adapting
to environmental changes.

III. THE RADIUS APPROACH

In this section, we give the details of the RADIUS approach.
We start with an overview of the approach, followed by the
details of the system modules.

A. RADIUS Overview
Figure 2 shows an overview of the RADIUS system archi-

tecture. Such a system is implemented on each sensor node to
monitor the inbound links and report to high-level applications
the detected degradation in channel quality experienced by the
monitored links, based on the RSSI values of the messages
received from each link. RADIUS handles the message stream
of each inbound link independently. However, it can process
different types of messages received from the same link, e.g.,
the application packets either originated from direct child
nodes in the routing tree or forwarded by them, beacon
messages of routing protocols, and if needed, the probing
messages initiated by RADIUS itself.

The RADIUS approach runs in two phases: (1) A short
training phase, during which RADIUS constructs a normal
profile of RSSI values for each inbound link when the perfor-
mance of the deployed network (e.g., end-to-end PRR) satisfies
the user requirements. An RSSI threshold is generated accord-
ingly for each link based on its specific normal profile. (2)
A detection phase, in which RADIUS compares the runtime
smoothed RSSI with the generated threshold to decide whether
there are RSSI anomalies or not. It also updates the stored
normal profiles so that it can adapt to environmental changes.

During the training phase, the Profile Construction Module
records for each inbound link the RSSI values of incoming
packets and estimates the number of RSSI values required
by each link to capture the various channel characteristics
within a short time. At the end of this phase, this module will
create for each link a normal profile consisting of the average
and standard deviation of the recorded RSSI values. The
profiles of all links are constructed concurrently in this short
training phase. Based on the generated normal profiles, the
Thresholding Module computes for each monitored inbound
link an RSSI threshold that is used later by other modules to
detect RSSI anomalies with a minimal error rate.

During the detection phase, the Detection Module examines
the RSSI values of each inbound link and decides whether
there are RSSI anomalies or not. This operation is applied
to each link independently. If needed, the module notifies
the detected RSSI anomalies to the network administrator or
higher-level software modules. The Profile Update Module up-
dates the normal profiles constructed in the training phase. The
RSSI thresholds are updated accordingly by the Thresholding
Module in order to adapt to environmental changes.

We now introduce the core module of RADIUS – the
Thresholding Module, followed by other system modules.
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Fig. 2: The RADIUS approach.

B. RSSI Thresholding: The Bayes Threshold

The purpose of the Thresholding Module is to generate for
each inbound link the optimal RSSI threshold such that the
rate of making wrong decisions about whether there are RSSI
anomalies is minimized. Such error rate is expressed in terms
of a false positive rate (FPR) and a false negative rate (FNR).
The former is the rate of false alarms, i.e. the ratio of detecting
RSSI anomalies while the link is still a good link (PRR above
a threshold); the latter is the rate of missing events, i.e. the
ratio of no-anomaly decisions while the link has turned into a
bad link (PRR below a threshold).

Mathematically, minimizing the error rate of such a decision
problem has been comprehensively studied under the Bayesian
decision theory. Let Hg and Hw respectively denote a link
being a good link and a bad link. Let E denote an error
(either a false positive or a false negative). Then, based on the
Bayesian decision theory, P (E), the probability of error, can
be expressed in terms of conditional probabilities as follows:

P (E) = P (E|Hg)P (Hg) + P (E|Hw)P (Hw), (1)

where P (Hg) is the a priori probability of a link being a good
link, and P (Hw) = 1 − P (Hg). Consequently, P (E|Hg) is
the probability of error when the link is a good link, i.e. the
false positive rate, and P (E|Hw) is the probability of error
when the link is a bad link, i.e. the false negative rate.

We assume that RSSI follows a normal distribution N(µ, σ),
which has been experimentally validated for low-power radio
links of WSNs [5] [22]. We further assume for simplicity
that the RSSI distributions of the same link being as a good
link and as a bad link, while with different means µg and
µw respectively, have similar standard deviation σ. With such
assumptions, the probability density functions of RSSI for the
good link fg(x) and for the bad link fw(x) are as follows:

fg(x) =
1√
2πσ

exp
{
−(x− µg)

2/2σ2
}

(2)

fw(x) =
1√
2πσ

exp
{
−(x− µw)

2/2σ2
}

(3)

Based on Equations 2 and 3, the Bayes error P (E) can be



expressed as a function of the threshold τ :

PE(τ) =

∫ τ

−∞
fg(x)dx ·P (Hg)+

∫ ∞

τ

fw(x)dx ·P (Hw) (4)

An example of the above error rates is plotted in Figure 3,
where the false positive rate and the false negative rate are
marked as shaded areas with respect to an RSSI threshold τ .

We minimize P (E) by letting d
(
PE(τ)

)
/dτ = 0. We

can then obtain the optimal RSSI threshold TBayes and the
resultant minimized error rate PE as follows:

TBayes =
1

2
(µg + µw) +

σ2ln(P (Hw)/P (Hg))

µg − µw
(5)

PE(α) = Q

[
α− 1

2
α−1ln

(
P (Hw)/P (Hg)

)]
P (Hg)

+Q

[
α+

1

2
α−1ln

(
P (Hw)/P (Hg)

)]
P (Hw) (6)

where Q(x) is a Q-function [23] and α is defined as:

α = (µg − µw)/2σ. (7)

We refer the RSSI threshold that is computed using Equa-
tion 5 as the Bayes threshold. The Thresholding Module
computes the Bayes threshold for each inbound link to achieve
minimized error rates of detecting RSSI anomalies.

If we set µw in Equation 5 to the RSSI value of the border
of the transitional region (e.g., -89 dBm) reported in previous
experimental studies [4] [24], the Bayes threshold then simply
depends on two factors: (1) the normal profile of the link, i.e.
(µg , σ), and (2) a thresholding parameter P (Hg). While the
normal profile of each link is generated locally at sensor nodes,
the setting of P (Hg) is a user-defined value for all sensor
nodes across the network. In Section IV-B, we will study the
impact of the thresholding parameter P (Hg) on the detection
performance and compare the Bayes threshold with two other
state-of-the-art thresholding techniques.

C. Profile Construction: Estimating Training Set Size

The purpose of the Profile Construction Module is to
capture, within a short time, the RSSI characteristics of each
link while the link is still a good link. Specifically, it constructs
a normal profile (µg , σ) for each link based on a set of RSSI
values collected in the training phase in which we assume all
links are good links directly after on-site deployment of the
network. The user can decide when the training phase shall
start by checking e.g., the end-to-end PRR.

The size of the training set for profile construction has a
direct impact on the training delay (i.e. the time needed for
each link to construct the normal profile) and the estimation
error of µg and σ, and hence a great impact on the system
accuracy. In addition, such training set size shall be link
dependent, e.g., a small training set may suffice for a stable
link while a larger size is required for links with highly
fluctuating RSSI readings.

To address these challenges, the Profile Construction Mod-
ule utilizes the confidence interval to allow sensor nodes them-
selves to compute for each inbound link an appropriate training
set size, depending on the different RSSI characteristics.

Fig. 3: The false positive rate and false negative rate with respect
to a given RSSI threshold τ in a Gaussian channel. µw

and µg are the means of the RSSI distributions of a bad link
and a good link, respectively.

According to the Central Limit Theorem, for an attribute x
with any type of underlying distribution, the margin error of
the confidence interval for the mean x̄ is eµ = z · σp/

√
n,

where z is the z-score (z = 2.58 for a confidence level of
99%), n is the number of samples and σp is the population
standard deviation. We transform the equation of eµ, apply it
to our problem and obtain the training set size as follows:

Nts =

(
z · σp

Eµ

)2

(8)

where Eµ is a user-defined error of the estimated RSSI mean
µg . The population standard deviation σp can be approximated
by the standard deviation of a small set whose size has to be
larger than 30 [25]. We set this number to 50 in our case.

When the training phase starts, the Profile Construction
Module computes the RSSI standard deviation σp for each
inbound link after collecting the first 50 RSSI measurements.
Then, the module uses Equation 8 to estimate the specific
training set size Nts for each link with a user-defined setting of
Eµ. In Section IV-C, we will show the impact of the parameter
Eµ on the training delay and detection accuracy.

D. Anomaly Detection: Data Smoothing

The Detection Module runs during the detection phase after
the profile construction of the monitored link is complete. As
RSSI is random in nature, transient RSSI fluctuations may
increase the error rate of RADIUS. To overcome this limitation
and make RADIUS more robust, the Detection Module applies
a sliding window of size l to compute a short-term average
of RSSI and compares the l-averaged RSSI with the Bayes
threshold to trigger a detection of RSSI anomaly.

The choice of l has a trade-off on the system performance. A
smaller l makes the detection more responsive, but it may not
be sufficient to clean the noise. On the other hand, a larger l
may be a better choice for data cleaning, but overly smoothing
may fail to capture the real anomalous degradation in RSSI.
In Section IV-C, we will evaluate the impact of the sliding
window size l on the system performance and discuss the
detection delay, i.e. the time between the degradation in link
PRR and the detection of the RSSI anomaly.



E. Profile Update: Adapting to Environmental Changes

Due to the dynamic changes in the environment, e.g.,
transition between day and night or change of the surrounding
obstacles, the stored normal profiles of inbound links may not
capture the real normal state. Therefore, the Profile Update
Module needs to update the normal profile (µg , σ) during the
detection phase. The technique we use to update the profiles
is to continuously update the training set with the “normal”
RSSI readings measured during the detection phase.

To identify whether an RSSI value is normal or not,
RADIUS assigns an anomaly score s for it, indicating the
significance of the anomalous behavior. s is calculated by
s = µl/TBayes, where µl is the l-averaged RSSI value and
TBayes is the Bayes threshold. During the detection phase,
RADIUS collects consecutive RSSI readings in disjoint groups
of size lupdate and also their anomaly scores to compute the
average anomaly score. The group of RSSI readings with an
average anomaly score of less than one is added to the training
set. Through this, the training set is updated, and accordingly,
the normal profile and the Bayes threshold are updated. In
Section IV-C, we will evaluate the profile update technique
and study the effect of lupdate on the system performance.

To avoid increasing memory usage during the process of
profile construction and update, we implemented this in a
memory-friendly way, i.e., to compute µ and σ with a single
pass without storing the previous measurements of RSSI. To
do so, we reformulate µ and σ in the following way:

µ =
s

n
, σ =

√
1

n− 1

(
q − s2

n

)
(9)

where s and q are defined as follows:

s =

n∑
i

xi, q =

n∑
i

x2
i (10)

in which xi is the i-th RSSI reading. In this way, RADIUS
stores only 2 counters (s and q) for each inbound link to
compute and update µ and σ, rather than storing the entire
training set. By doing so, the RAM consumption of RADIUS
has a complexity of O(m), where m is the number of inbound
links, remaining independent from the number of RSSI values.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the Bayes
threshold on an indoor testbed and compare it with two state-
of-the-art thresholding techniques, followed by the evaluation
of the overall RADIUS system. Furthermore, we demonstrate
an exemplary application to show how existing approaches,
e.g., a transmission power tuning scheme from the litera-
ture [4], can benefit from RADIUS.

A. Testbed Setup

We implement RADIUS based on TinyOS 2.1.2 and eval-
uate its performance on an indoor testbed that consists of 32
TelosB nodes mounted on the walls and ceilings, spreading
over an entire office floor (Figure 4). The experiment environ-
ment is a typical indoor environment where packet losses over
radio links may be caused by factors such as people walking

Fig. 4: Indoor testbed. Node 15 is the base station.

around, shadowing effects of furnitures and doors, resulting in
anomalous degradation in signal strength of radio links.

For evaluation purposes only, we minimize in all experi-
ments the packet losses caused by factors other than channel
quality degradation, so that we know the ground truth on the
cause. All experiments use TDMA MAC for transmissions
to reduce collisions, even though RADIUS is independent
from the employed MAC (as to be shown in Section IV-D).
In addition, all sensor nodes operate at the default channel
of CC2420 (Channel 26), which is known to have minimal
interferences from WiFi signals.

B. Evaluation and Comparison of the Thresholding Methods

We now evaluate the performance of the Bayes thresh-
old and compare it with two state-of-the-art thresholding
techniques: Percentile-based and Chebyshev inequality-based
thresholds. Besides their popularity in the literature [11] [12]
[19] [20], we choose these two thresholding methods for com-
parison because they compute thresholds based on the same
RSSI statistics (average and standard deviation) as the Bayes
threshold, implying that all three thresholding techniques incur
similar computation and memory overhead.

Specifically, the Percentile-based threshold is defined as the
x-th percentile of the underlying RSSI distribution of a good
link while the Chebyshev threshold is defined as follows:

Tcheby = µg + σ ∗

√
1− Ptarget

Ptarget
, (11)

where µg and σ are the mean and standard deviation of the
RSSI values collected in the training phase when the link is a
good link and Ptarget is a user-defined target probability.
Comparison perspectives. We evaluate the detection accu-
racy of all three thresholding methods from two perspectives.

First, we study the impact of the thresholding parameter on
the detection accuracy, namely the x-th percentile for the Per-
centile threshold, Ptarget for Chebyshev threshold and P (Hg)
for the Bayes threshold. How the accuracy is influenced by the
thresholding parameter determines whether the thresholding
method requires a fine-tuning process of its thresholding
parameter for each radio link. An ideal thresholding method
can choose a parameter setting flexibly from a wide range and
yet achieve good accuracy for all links across the network.

Then, we investigate the performance of the thresholding
methods when the RSSI distribution of a good link overlaps
with that of a bad link. The more the two distributions overlap,
the more difficult is to identify whether RSSI values are from



Fig. 5: Comparison of three thresholding methods: Impact of thresholding parameters. The choice of the thresholding parameter has
a significant impact on the performance of Percentile or Chebyshev threshold while it has minimal impact on the Bayes threshold.

Fig. 6: Comparison of three thresholding methods: Performance under different detection difficulty levels, with typical thresholding
parameter values. A smaller α indicates more overlapping of the two RSSI distributions, hence a higher difficulty level.

the distribution of a good link or a bad one. We quantify the
degree of overlapping with a so-called detection difficulty level
α defined in Equation 7. A smaller α indicates that the RSSI
mean of a good link (µg) gets closer to the RSSI mean of a bad
link (µw) and/or the standard deviation σ increases, implying
a higher detection difficulty level to identify RSSI anomalies.
Impact of the thresholding parameters. For this purpose,
we collected RSSI and PRR traces from exemplary radio
links. We apply all three thresholding methods with varying
thresholding parameters individually to the same data traces,
i.e., the normal profiles and the RSSI anomalies experienced
by each link are the same for all three methods. The PRR
threshold of a good link, used as a reference to decide whether
a detection decision is a false positive or a false negative, is
set to 80%. The resultant error rates (sum of FPR and FNR)
for 5 exemplary links using the three thresholding methods
are presented in Figure 5.

We can clearly see from Figure 5 that the accuracy for both
Percentile and Chebyshev thresholds varies dramatically with
their thresholding parameters. The error rate for the Percentile
threshold is in general higher than the other two methods. This
is most likely because the Percentile threshold tends to provide
tight RSSI bounds of good links, easily resulting in a high FPR
in case of RSSI fluctuations. The Chebyshev threshold can
achieve a very low error rate only if its thresholding parameter
Ptarget is carefully selected. However, such optimal Ptarget

varies significantly from link to link, implying that fine-
tuning of Ptarget for each link is necessary for the Chebyshev

threshold to achieve a high accuracy across the network.
In contrast, the accuracy achieved by the Bayes thresh-

old is insensitive to the value of P (Hg) (unless P (Hg) is
approaching the extreme, e.g., 1) and is consistently robust
for every link. Furthermore, even with a coarse setting of
P (Hg), Bayes threshold provides close to the minimal error
rate among all three methods for the analyzed links. Similar
results are observed for all testbed links. Thanks to such
features, RADIUS can employ a parameter setting of P (Hg)
from a wide range (e.g., between 0.7 and 0.9) for all links
and achieve high accuracy for all links across the network
without the need of tuning its thresholding parameter for every
individual link.
Performance under different detection difficulty levels. We
now examine how each threshold performs under various de-
tection difficulty levels indicated by α (Equation 7), especially
for small α values when the RSSI distributions of the good
link and the bad link highly overlap with each other.

We select from the testbed representative links with different
α values ranging from a low difficulty level (α = 20.1)
to an extremely difficult one (α = 2.04). We apply each
thresholding method with three typical thresholding parameter
settings, based on the analysis of the Figure 5, to the RSSI
and PRR traces collected from these links. The resultant error
rates under different α values are plotted in Figure 6.

Figure 6 shows that when α deceases, the error rates
increase in general for all three methods, as expected. Among
the three thresholding methods, the Bayes threshold provides



TABLE I: Testbed experiment: Error rates of all three thresh-
olding methods with typical thresholding parameter
settings. (P1=0.00001, P2=0.001, P3=0.05, C1=0.001,
C2=0.04, C3=0.29, B1=0.7, B2=0.8, B3=0.9)

Techniques Average Deviation Minimum Maximum
Percentile–P1 38.79% 23.69% 11.50% 100%
Percentile–P2 36.39% 17.68% 9.19% 92.70%
Percentile–P3 38.99% 14.27% 16.34% 83.81%

Percentile–Avg 38.06%
Chebyshev–C1 77.95% 38.10% 4.90% 100%
Chebyshev–C2 44.11% 29.45% 10.12% 100%
Chebyshev–C3 39.46% 18.83% 16.64% 86.26%
Chebyshev–Avg 53.84%

Bayes–B1 15.20% 6.63% 9.69% 23.68%
Bayes–B2 12.78% 4.77% 9.23% 16.67%
Bayes–B3 11.83% 4.69% 6.26% 16.13%
Bayes–Avg 13.27%

TABLE II: Overhead of all three thresholding techniques.
Techniques RAM (bytes) ROM (bytes) Computation (ms)
Percentile 66 2850 8.3
Chebyshev 66 3052 8.9

Bayes 68 4688 10

the best performance. The error rate for the Bayes threshold
increases only slightly with smaller α except a notable increase
for the most difficult case (α = 2.04). Furthermore, the
Bayes threshold provides the lowest error rate among the three
thresholding methods for every difficulty level.
Testbed experiment. Finally, we evaluate how all three
thresholding methods perform in real implementations running
on sensor nodes. Specifically, we install on each sensor node
the modules for thresholding, detection and a partial profile
construction (using fixed training set size).

We ran a data collection application on each sensor node
to periodically send data at a 2 second interval to the base
station following the topology depicted in Figure 4. Note that
RADIUS can also be applied to dynamic routing with several
modifications. We will show in Section IV-D how RADIUS
can be extended for a state-of-the-art routing protocol.

We let each experiment run for about 3 hours, in which
only one of the three thresholding methods is employed. In all
experiments, the PRR traces of radio links and the alarms that
report the detected RSSI anomalies are recorded for analysis
purposes. The resultant error rates for a total of 9 experiments
are listed in Table I. The results in Table I confirm our previous
analysis. The Bayes threshold provides the lowest averaged
error rate (13.27%) among all three thresholds. Furthermore,
the small standard deviations of the error rates (between
4.69% and 6.63%) indicate that the performance of the Bayes
threshold is robust for all links across the network with diverse
channel characteristics.

The overheads of the three thresholding methods are pre-
sented in Table II. The RAM consumption required by all three
thresholds does not increase with the number of RSSI values
needed for profile construction, due to the memory-friendly
implementation (Section III-E). The extra ROM overhead for
the Bayes threshold is due to the additional mathematic library
required by the logarithmic operation (Equation 5).

Fig. 7: Impact of system parameter Eµ of the Profile Construc-
tion Module. Eµ = 1 dBm provides a good tradeoff between
the training set size (i.e. training delay) and the error rate.

Fig. 8: Impact of system parameter l (sliding window size) of the
Detection Module. l = 3 packets provides a fast response
time to RSSI anomalies and a low error rate.

C. Evaluation of the Overall System

From the evaluation of the Bayes threshold, we have ob-
served that with a coarse setting of P (Hg) from a wide range,
the Thresholding Module can achieve a low error rate for all
links across the network. We set P (Hg) = 0.9 for our system.
In this section, we investigate the impact of system parameters
of the remaining RADIUS modules. Then, we evaluate a
complete implementation of RADIUS on the testbed in a 72-
hour experiment. Finally, we analyze the system overhead.
System parameters. We now study the impact of the system
parameters required by other RADIUS modules, namely, the
RSSI error Eµ for estimating the training set size in the
Profile Construction Module, the sliding window size l for data
smoothing in the Detection Module, and the update window
size lupdate for profile updating in the Profile Update Module.

In Figure 7, we plot the training set sizes estimated using
different Eµ values and the corresponding error rates for 5
exemplary links. The impact of parameter Eµ shows a tradeoff:
smaller Eµ indicates higher estimation accuracy of the normal
profiles and thus higher system accuracy while it may also
increase the training set size significantly. To achieve a good
tradeoff, we choose Eµ = 1 dBm. With such setting, the
resultant size of the RSSI training set is typically between 100
and 200, i.e., a training delay of 3 to 6 minutes for an inter-
packet interval of 2 seconds. In practice, RADIUS can utilize
the packets from different traffic, e.g., packets forwarded by
direct child nodes, to reduce the training delay significantly.



Furthermore, we choose sliding window size l = 3 to
smooth RSSI values during the detection phase, which gives
RADIUS a short response time to RSSI anomalies and a low
error rate, as depicted in Figure 8. Finally, we notice that,
by setting the update window size lupdate to 50, the profile
updating technique can significantly reduce the error rate, i.e.,
the error rate can be reduced of 3% to 8% in all experiments.
System performance. We configure the RADIUS system
with the aforementioned parameter settings and install it on
every sensor node in the testbed. In the experiments, each
node sends a data packet to the base station every 10 seconds
as depicted in Figure 4. We ran the experiment for 72 hours.

Figure 9 demonstrates how the RADIUS system behaves
during the 72 hours for one exemplary link (from node 6 to
node 9). From the PRR trace depicted in Figure 9(b), we can
observe that the link experienced high packet losses in three
time periods during the experiment. This is most likely caused
by people crossing the link, resulting in anomalous RSSI
degradations (see Figure 9(a)). The logged alarms that reported
such RSSI anomalies are marked in red in Figure 9(d).
Figure 9(c) shows that the RSSI threshold is updated during
the whole experiment adapting to the environmental changes
(e.g., transition between day and night, with and without
human activities). Consequently, RADIUS keeps a low error
rate for this link over the whole experiment period, as shown
in Figure 9(e), with an overall error rate of 8.9%.

Then, we plot the error rate for every link in the testbed in
Figure 10. Among all the links, the link from node 30 to node
19 shows the highest error rate (13.6%). This is most likely due
to a small α (Equation 7) caused by three walls and a wide
corridor between the sender and the receiver node, making
it difficult to identify RSSI anomalies. Overall, RADIUS
achieves a low error rate for every link in the network (5.78%
on average). Based on these results, we demonstrate that
RADIUS can achieve high accuracy in detecting anomalous
RSSI degradation of all links across the network while such
high accuracy is robust to changes in the environment.
Impact of data rate. We repeat the experiment with different
date rates, i.e. with inter-packet interval of 5 seconds and
30 seconds, respectively. From the experimental results, we
observe that there is no clear impact of data rates on the
detection accuracy. The averaged error rates for 5 seconds and
30 seconds intervals are 6.32% and 5.96%, respectively.

The training delay, on the other hand, clearly increases
with the inter-packet interval. In the experiments, we allow
RADIUS to incorporate forwarding packets for both training
and detection, significantly reducing the training delay and also
the detection delay for those nodes close to the base station.

We also observe that the detection delay is affected by not
only the data rate but also the packet losses of monitored
links. During the detection phase, RADIUS makes a decision
for every newly arrived packet based on a short-term (over
3 packets) RSSI average. From the experimental results, we
observe that the detection delay increases with the link loss
rate. For a link of 70% loss rate, we observed a detection delay
equal to the time required for the transmission of 8 packets.

Fig. 9: 72-hour experiment: Results for the link from node 6 to
node 9 (Figure 4). Experiment started at 13:00 on Day 1.
Day 3 is a public holiday (no human activities).

Fig. 10: 72-hour experiment: Error rates for every link in the
testbed. Node ID refers to the sender node ID of each link
and node 15 is the base station (Figure 4).

Overhead. Finally, we analyze the overhead of the RADIUS
implementation. Due to the memory-friendly implementation
of profile construction and update (Section III-E), the memory
consumption of RADIUS only increases with the number of
monitored links. For two inbound links, the whole RADIUS
system consumes 176 bytes RAM and approximately 6 KB
ROM (in comparison to 10 KB RAM and 48 KB ROM in a
TelosB device). As all operations of RADIUS are performed
locally on sensor nodes, RADIUS incurs no communication
overhead unless it requires additional probing messages to
construct or update profiles (more discussion on this in
Section IV-D). The main computation overhead of RADIUS
comes from the processing of the Bayes threshold, which we
have already presented in Table II.

D. Application of RADIUS: A Case Study

Applicability. RADIUS is a system to detect the degradation
in channel quality experienced by inbound links. Monitoring
a link in both directions requires RADIUS running on nodes
at both sides of the link. Besides that, RADIUS is neither
limited to a specific communication topology (e.g., tree-based
or mesh) nor to a MAC protocol (e.g., TDMA or CSMA).

Nevertheless, RADIUS requires several modifications to
accommodate dynamic routing protocols. In the training phase
before the application starts, we let each sensor node broadcast
probing messages one after another so that each node can
construct profiles for all neighbors in the communication



TABLE III: Literature-based vs. RADIUS-assisted Tx-power tuning

Schemes Avg. PRR Avg. Energy (µJ/bit)
CTP + medium Tx-power 78.2% 0.55

CTP + literature-based tuning 81.4% 0.61
CTP + RADIUS-assisted tuning 89.1% 0.63

range. During the detection phase, we can utilize the beacon
messages of the routing protocols to update thresholds for
those links that are used in the current routing paths.

We notice that the performance of RADIUS may degrade
due to excessive link packet losses. However, we consider such
case as another type of failure (disconnected link), which can
be detected by checking e.g., inter-packet arrival time [19].
An exemplary application. To demonstrate the potential of
this work, we present an example of how existing approaches
can benefit from using RADIUS as an accurate and robust
trigger to perform remedial actions.

We take the transmission power (Tx-power) tuning scheme
from [4] as an example. In [4], Tx-power adjustment is trig-
gered when the runtime RSSI is below a predefined threshold
(-89 dBm). In our exemplary application, we employ RADIUS
as the trigger instead. We implement both the literature and
RADIUS-assisted Tx-power tuning schemes on sensor nodes
with standard TinyOS CSMA at the MAC layer and the
Collection Tree Protocol (CTP) [26] at the routing layer.

We ran on the testbed the following experimental configu-
ration individually for 24 hours: (1) CTP and fixed medium
Tx-power (-5 dBm) for all nodes, (2) CTP and the literature-
based Tx-power tuning scheme, and (3) CTP and RADIUS-
assisted Tx-power tuning scheme. The training procedure in
(3) takes about 5 minutes in total when probing messages
for the profile construction are sent at a 10 ms interval. The
resultant averaged end-to-end PRR and energy consumption
per transmitted bit for each experiment are listed in Table III.

From the table, we can see that the literature-based tuning
scheme improves the averaged end-to-end PRR by only 3.2%
while the RADIUS-assisted tuning scheme improves the PRR
by 10.9% with slightly more energy consumption. The rea-
son for this is that RADIUS provides a higher accuracy of
detecting RSSI anomalies than a predefined RSSI threshold
(-89 dBm in this case). As presented in Figure 1, a predefined
RSSI threshold may not work well for all network links nor in
the cases when the RSSI characteristics of links change over
time. As a consequence, the Tx-power tuning scheme from
the literature may suffer from a high FNR (i.e. miss to detect
RSSI anomalies and thus fail to improve link PRR) and/or
a high FPR (i.e. increase Tx-power for good links and thus
achieve only limited improvement of link PRR).

V. CONCLUSION

This paper presents RADIUS, an approach to detect anoma-
lous degradation in signal strength of IEEE 802.15.4 links,
which enables sensor nodes to decide locally whether the
experienced channel quality degradation is the cause for link
packet losses. To achieve this, RADIUS (1) lays its foundation
on a Bayes thresholding scheme, integrated with dedicated

techniques for (2) fast yet accurate profile construction, (3)
accurate detection with data smoothing, and (4) profile up-
date to adapt to environmental changes. Extensive testbed
evaluation shows that RADIUS has fulfilled its design re-
quirements: lightweight, accurate and robust to a diversity of
channel characteristics and dynamic environmental changes.
To demonstrate the potential of this work, we showed that an
existing transmission power tuning scheme can benefit from
the capability of RADIUS as an accurate and robust trigger for
taking remedial actions. Currently, we are investigating further
how existing works, e.g., a cross-layer tuning scheme in [5],
can benefit from RADIUS. Furthermore, we plan to study how
RADIUS can be combined with existing techniques to detect
external interference [1] and packet collisions [2], allowing a
comprehensive diagnosis of link-level packet losses.
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