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1 Introduction

Usage of multi-agent systems gains more popularity in solving optimization-involved

problems. Multi-agent approach implies joining a number of autonomous agents (nodes,

paricles) in a group, network or swarm for solving problems such as clustering, UAV

soaring, adaptive scheduling of road transport, data mining, semantic processing, grid energy

management and other Granichin et al. (2015); Elamine et al. (2016); Kumar et al. (2015);

Rzevski and Skobelev (2014). Load balancing is an important practical problem in network

systems. It may arise in such network systems as computer, production, transport, logistics,

and other service networks. In computational networks load balancing can be applied to

improve the system efficiency. A multi-agent approach is used to address this problem in

network systems. A possible control goal in such systems is to improve the network speed

of operation using communication among agents in the system. In Amelina at al. (2015b)

it was shown that the problem of almost optimal task distribution among agents could be

reformulated as a problem of the consensus achievement in the network.

The consensus approach was widely applied for solving various practical problems

such as cooperative control of multivehicle networks Granichin et al. (2012); Ren et al.

(2007), distributed control of robotic networks Bullo et al. (2009), flocking problem Virágh

et al. (2014); Yu et al. (2010a), optimal control of sensor networks Kar et al. (2010),
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distributed node scheduling in multihop wireless networks Vergados et al. (2017) and

others. Works Chebotarev and Agaev (2009); Lewis et al. (2014); Li and Zhang (2009);

Proskurnikov (2013); Ren and Beard (2007); Yu et al. (2010b) considered formulating the

conditions for achieving consensus in such systems.

In Amelina et al. (2015a) a choice of an optimal step-size of consensus-type protocol

for task redistribution among agents in a stochastic network with randomized priorities is

considered. It is shown that a trade-off is made between noise sensitivity and the rate of

convergence of control protocol while choosing its step-size. The paper proposes a way

of choosing step-size to maximize convergence precision. An optimal step-size of control

protocol could be chosen for the network system under certain conditions such as parameters

of noise during information exchange, system topology etc. In Amelin et al. (2016) we

proposed stochastic approximation type algorithm for choosing step-size of control protocol

which can be used for adjustment of the protocol step-size in the case of unknown system

parameter values. In this paper we consider dependence of behaviour of the system operating

by proposed protocol on the value of its step-size.

The paper is organized as follows. Notation used in the paper and the problem

formulation are given in Section 2. The control protocol for achieving the consensus is

introduced in Section 3. In Section 4 the main assumptions and main results are presented.

Simulation results are given in Section 5. Section 6 contains conclusion remarks.

2 Problem Statement

Let’s consider a dynamic network system of n agents, which exchange information among

themselves during tasks processing. Tasks may come to different agents of the system in

different discrete time instants t = 0, 1, . . .. Agents process incoming tasks in parallel. Tasks

can be redistributed among agents based on a feedback.

Without loss of generality, agents in the system are numbered. AssumeN = {1, . . . , n}
denotes the set of agents in the network system. Let i ∈ N be the number of an agent. The

network topology may switch over time. Let the dynamic network topology be modelled by

a sequence of digraphs {(N,Et)}t≥0, where Et ⊂ E denotes the set of edges at time t of

topology graph (N,Et). The corresponding adjacency matrices are denoted as At = [ai,jt ],
where ai,jt > 0 if agent j is connected with agent i and ai,jt = 0 otherwise. Here and below,

an upper index of agent i is used as the corresponding number of an agent (not as an

exponent). Denote GAt
as the corresponding graph.

To introduce some properties of the network topology, the following definitions from

the graph theory will be used. Define the weighted in-degree of node i as the sum of i-th
row of matrixA: indegi(A) =

∑n
j=1 a

i,j ; D(A) = diag{indegi(A)} is the corresponding

diagonal matrix; indegmax(A) is the maximum in-degree of graphGA. LetL(A) = D(A) −
A denote the Laplacian of graph GA; ·T is a vector or matrix transpose operation; ||A||

is the Euclidean norm: ||A|| =
√

∑

i

∑

j(a
i,j)2; Re(λ2(A)) is the real part of the second

eigenvalue of matrix A ordered by the absolute magnitude; λmax(A) is the maximum

eigenvalue of matrix A.

It is said that digraph GB is a subgraph of a digraph GA if bi,j ≤ ai,j for all i, j ∈ N .

Digraph GA is said to contain a spanning tree if there exists a directed tree Gtr =
(N,Etr) as a subgraph of GA which includes all vertices of GA.

The behaviour of agent i ∈ N is described by characteristics of two types:
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• lengths of queue of tasks at time instant t: qit,

• productivity: pi.

Let random variable ηj denote complexity (or a number of computational operations

needed to execute the task) of a task which came to the system. Dynamics of the system

can be written in the following way:

∑

qi
t+1

ηj =
∑

qi
t

ηj′ − pi +
∑

zi

t

ηj′′ +
∑

ui

t

ηj′′′ ,

where
∑

qi
t+1

ηj is number of computational operations needed to execute all tasks in

the queue of agent i at time instant t+ 1, pi is productivity of agent i or the number of

computational operations it can perform during one tact of the system (assume it is constant),
∑

zi

t

ηj′′ is the complexity of tasks which came to the system on agent i at time instant t and
∑

ui

t

ηj′′′ is the complexity of tasks which already came to other agents at previous time

instants and were redistributed to agent i according to control protocol.

Assume random variable η has mathematical expectation η̄ < ∞. Let’s take expectation

of left and right parts of the equation of system dynamics.

E





∑

qi
t+1

ηj



 = E





∑

qi
t

ηj′ − pi +
∑

zi

t

ηj′′ +
∑

ui

t

ηj′′′





∑

qi
t+1

η̄ =
∑

qi
t

η̄ − pi +
∑

zi

t

η̄ +
∑

ui

t

η̄

Left and right parts are now equal to number of tasks at agent i multiplied by their average

complexity.

η̄
∑

qi
t+1

1 = η̄
∑

qi
t

1− pi + η̄
∑

zi

t

1 + η̄
∑

ui

t

1

η̄qit+1 = η̄qit − pi + η̄zit + η̄ui
t

Divide both parts of the equation by constant value η̄. We get discrete model which allows

as to analyse system dynamics without information about complexities of each task in the

system (but with assumption their average value is bounded). For all i ∈ N, t = 0, 1, . . .,
the dynamics of the network system in a vector form is as follows

qit+1 = qit − p̃i + zit + ui
t, (1)

where p̃i = pi/η̄, zit the amount of new tasks, which came to the system and were received

by agent i at time instant t;ui
t is control action (redistributed tasks to agent i at time instant t),

which is chosen based on some information about queue lengths of neighbours qjt , j ∈ N i
t ,

where N i
t is the set {j ∈ N : ai,jt > 0}.

Denote

xi
t =

qit
p̃i

(2)
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the load of agent i ∈ N . Assume, that p̃i 6= 0, ∀i ∈ N . In Amelina at al. (2015b) it was

proven that from all possible options for the redistribution of all tasks the minimum operation

time of the system is achieved when loads xi
t are equalized throughout the network. Hence,

it is important to consider the achievement of the following goal.

It is required to maintain balanced (equal) loads across the network under conditions

of changing network topology.

At this setting we can consider the consensus problem for states xi
t of agents, where xi

t

is a state of agent i ∈ N . We use the following definitions.

Definition 2.1: n agents of a network are said to reach a consensus at time t if xi
t =

xj
t ∀i, j ∈ N, i 6= j.

Definition 2.2: n agents are said to achieve asymptotic mean square ǫ-consensus for ǫ > 0
when

limt→∞E‖xi
t − xj

t‖
2 ≤ ǫ.

To ensure balanced loads across the network (e.g., in order to increase the overall

throughput of the system and to reduce the execution time), it is naturally to use a

redistribution protocol over time. We assume that to form the control (redistribution) strategy

each agent i ∈ N has noisy observations about its neighbours’ states

yi,jt = xj
t + wi,j

t , j ∈ N i
t , (3)

where wi,j
t is a noise occurring during transmission from node j to node i.

3 Control Protocol

In Amelina at al. (2015b), properties of a control algorithm, called local voting protocol,

were studied for stochastic networks in the context of load balancing problem. For each

agent the control (amount of redistributed tasks) was determined by the weighted sum of

differences between the information about the state of the agent and the information about

its neighbours’ states. Let’s consider a protocol as follows. We define

ui
t = γp̃it

∑

j∈N̄i

t

bi,jt (yi,jt − xi
t), (4)

where γ > 0 is a step-size of the control protocol and N̄ i
t ⊂ N i

t is the neighbour set of agent

i (note, that we could use not all the available connections, but some subset of them), bi,jt
are protocol coefficients.

Let Bt = [bi,jt ] be the matrices of task redistribution protocol for every time instant t.
(We set bi,jt = 0 when ai,jt = 0 or j /∈ N̄ i

t .) The corresponding graph GBt
may have the

same topology as graph GAt
of matrix At or more poor.

The dynamics of the closed loop system with protocol (4) will be as follows:

xi
t+1 = xi

t − 1 + z̃it + γ
∑

j∈N̄i

t

bi,jt (yi,jt − xi
t) =
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xi
t − 1 + z̃it + γ





∑

j∈N̄i

t

bi,jt xj
t



− γ indegi(Bt)x
i
t + γw̃i

t, i ∈ N, (5)

where w̃i
t =

∑

j∈N̄i

t

bi,jt wi,j
t and z̃it = zit/p̃

i.

Let us rewrite Eq. (5) in a more compact form. Define the R
n-valued vectors Xt =

[xi
t], 1n - vector with all elements equal to 1, Zt = [z̃it] and Wt = [

∑

j∈N̄i

t

bi,jt wi,j
t ]. The

dynamics of the closed loop system with protocol (4) may be represented as

Xt+1 = Xt + γ(Bt −D(Bt))Xt − 1n + Zt + γWt. (6)

Due to the view of Laplacian matrices L(Bt) we can rewrite the dynamics of the system

in the following vector-matrix form:

Xt+1 = Xt − γL(Bt)Xt − 1n + Zt + γWt. (7)

4 Main Results

4.1 Assumptions

Let (Ω,F , P ) be the underlying probability space corresponding to the sample space, the

collection of all events, and the probability measure respectively, and E be a mathematical

expectation symbol.

Assume that the following conditions are satisfied:

• A1. a) For all i ∈ N, j ∈ N i
t , observation noise vectors wi,j

t are zero-mean,

independent identically distributed (i.i.d.) random vectors with bounded variances:

E(wi,j
t )2 ≤ σ2

w.

b) GraphsGBt
, t = 1, . . . are i.i.d. (independent identically distributed), i.e.the random

events of appearance of of “time-varying” edge (j, i) in graph GBt
are independent

and identically distributed for the fixed pair (j, i), i ∈ N, j ∈ N i
max = ∪tN̄

i
t . For all

i ∈ N, j ∈ N i
t weights bi,jt in the control protocol are independent random variables

with mean values (mathematical expectations): Ebi,jt = bi,jav , and bounded variances:

E(bi,jt − bi,jav)
2 ≤ σ2

b . Let Bav be the corresponding adjacency matrix.

c) For all i ∈ N, t = 0, 1, . . . random values zit are independent with expectations:

Ezit = z̄ which do not depend on i, and variances: E(zit − z̄)2 ≤ σ2
z .

Additionally, all mentioned in Assumption A1 independent random variables and

vectors are mutually independent.

• A2. Graph GBav
has a spanning tree (for the consensuses to be achievable throughout

the system Chebotarev and Agaev (2009)).

• A3. For step-size γ of control protocol (4) the following conditions are satisfied:

0 < γ <
1

indegmax(Bav)
, |δ(γ)| < 1, (8)

where δ(γ) = 1− γRe(λmax(L(Bav)))− γ2λmax(L(Bav)
TL(Bav)).



Local Voting Protocol Step-Size Choice for Consensus Achievement 7

4.2 Averaged Models

Let x⋆
0, be the weighted average of the initial states

x⋆
0 =

∑

i gix
i
0

∑

i gi

where gT is the left eigenvector of matrix Bav Lewis et al. (2014) (x⋆
0 = 1

n

∑n
i=1 x

i
0 in the

case of balanced topology graph GBav
) and {x⋆

t } is the trajectory of averaged systems

x⋆
t+1 = x⋆

t + z̄ − 1. (9)

where z̄ is expectation defined by Assumption A1.c.

4.3 Theoretical result

Consider vector X⋆
t ∈ R

n, t = 0, 1, . . . which consists of x⋆
t at all places.

Theorem 1: If Assumptions A1–A3 hold then for averaged squared difference νt =
E||Xt −X⋆

t ||
2 of trajectories of closed-loop systems (5) and (9) following inequalities are

satisfied:

νt ≤
γ2H + S

1− δ(γ)
+ (δ(γ))t

(

ν0 −
γ2H + S

1− δ(γ)

)

, (10)

H = σ2
w||Bav||

2, S = nσ2
z , i.e. if additionally ν0 < ∞, then the asymptotic mean square

ǫ-consensus in (5) is achieved with ǫ = γ2H+S
1−δ(γ) .

The proof is a particular case of the proof in Amelina et al. (2013).

Theorem 2: If Assumptions A1–A3 hold then optimal step-size γ⋆ of control protocol (4)

can be calculated by formula:

γ⋆ = −
S

H
∆+

√

S2

H2
∆2 +

S

H
(11)

where ∆ = λmax(L(Bav)
TL(Bav))

Re(λmax(L(Bav)))
.

The proof is similar to proof given in Amelina et al. (2015a).

5 Simulation Results

Let’s consider network on n = 10 agents connected as a directed circle. Amount of tasks

coming to the system at time instant t is a Poisson random variable distributed with parameter

σz = 10. Complexity of incoming tasks equals 1.Agent productivities pi, i = 1 · · ·n are

constant and have values distributed uniformly in interval [0.9, 1.1]. Noise occurring during

information exchange between agents wi,j
t is a random variable with uniform distribution
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on interval [−15, 15]. The agents have initial queue lengths uniformly distributed in interval

[0, 1000].

Consider behaviour of the given system. Fig. 1 shows how the average value of squared

norm of difference between system state vectorX and vectorX⋆ depends on step-size value

of the control protocol. Here, X⋆ is [1× n]-vector with all elements equal to the consensus

valuex⋆. The value ‖X −X⋆‖2 was calculated at each of time instants of system operation

with chosen step-size. Averaged value ‖X −X⋆‖2av was computed by taking average of

‖X −X⋆‖2 at all T time instants, T = 100. The faster and more precisely the consensus is

achieved, the smaller is the value of ‖X−X⋆‖2av. Actual values depend on initial conditions

but the form of graph differs little for the same system topology.Figures 2–7 show behaviour

of the system operating by proposed protocol with different step-sizes in stationary and

non-stationary case (in absence and presence of incoming task flow). Figures 2, 3, 4 describe

the system behavior in stationary case. If the step-size is less than optimal value (Fig. 2) the

system becomes less noise-sensitive but the agents reach consensus considerably slower.

Step-size larger than optimal (Fig. 3) (but when the agents still converge to consensus value)

gives better speed of convergence, but worse convergence precision since the influence of

noise in communication channels grows when step-size increases. The choice of step-size

close to optimal value (Fig. 4) provides a balance between noise sensitivity of the system and

speed of agents’ states convergence to the consensus value (which corresponds to averaged

system load). Figures 5, 6, 7 describe system in presence of incoming task flow. The choice

of step-size also influences the ability of the system to cope with incoming task flow (which

unbalances agents’ loads). If the step size is smaller than optimal (Fig. 5) the agents are not

able to balance their states since tasks exchange rate is too slow because of small step-size.

When step-size value is larger than optimal, (Fig. 7) agents don’t maintain small deviation

from the consensus value. Though the consensus is reached rather quickly, the increased

noise sensitivity prevents the agents to achieve (and maintain) equal load. The agents in

the system operating by protocol with the optimal step-size (Fig. 6) are able to achieve and

maintain consensus of their state with the smallest deviation in given conditions i.e. the

intensity of incoming task flow, statistical characteristics of noise, system topology.

6 Conclusion

In this paper we considered dependence of network system operating by proposed algorithm

on its step-size value. The network model was assumed to have noise in measurements.

A proposed control strategy is based on of a local voting protocol for load balancing of

network system. A simulation of the system operating by introduced control strategy is

provided. Both stationary and non-stationary cases are considered. Analytically obtained

estimated optimal value of step-size is given.
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Figure 1 Dependence of average deviation of agent states from consensus value on γ for ring-type
topology.
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Figure 2 Consensus achievement in the system with step-size γ = 0.5 without incoming tasks.
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Figure 3 Consensus achievement in the system with step-size γ = 0.7 without incoming tasks.
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Figure 4 Consensus achievement in the system with step-size γ = 0.9 without incoming tasks.



Local Voting Protocol Step-Size Choice for Consensus Achievement 15

0 20 40 60 80 100
0

200

400

600

800

1000

t

x

Figure 5 Consensus achievement in the system with step-size γ = 0.5 with incoming tasks.
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Figure 6 Consensus achievement in the system with step-size γ = 0.7 with incoming tasks.
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Figure 7 Consensus achievement in the system with step-size γ = 0.9 with incoming tasks.


