
Non-Asymptotic Delay Bounds for Multi-Server
Systems with Synchronization Constraints

Markus Fidler , Senior Member, IEEE, Brenton Walker, and Yuming Jiang

Abstract—Parallel computing has become a standard tool with architectures such as Google MapReduce, Hadoop, and Spark being

broadly used in applications such as data processing and machine learning. Common to these systems are a fork operation, where

jobs are first divided into tasks that are processed in parallel, and a join operation where completed tasks wait for the other tasks of the

job before leaving the system. The synchronization constraint of the join operation makes the analysis of fork-join systems challenging,

and few explicit results are known. In this work, we formulate a max-plus server model for parallel systems which allows us to derive

performance bounds for a variety of systems in the GI jGI and G jG cases. We contribute end-to-end delay bounds for multi-stage

fork-join networks. We perform a detailed comparison of different multi-server configurations, including an analysis of single-queue

fork-join systems that achieve a fundamental performance gain. We compare these results to both simulation and a live Spark system.

Index Terms—Parallel computing, MapReduce, Hadoop, spark, performance analysis, stochastic network calculus

Ç

1 INTRODUCTION

THERE are many models and many implementations of
parallel computing systems. The simplest is a tradi-

tional load balancing system where jobs are submitted to
the system and dispatched to one of many servers. Other
architectures fork jobs into tasks which are processed in par-
allel by the servers, and the results joined once all tasks
complete. This join is a synchronization constraint on the
output of the system. In addition to the forking/non-forking
behavior of different parallel computing architectures, the
location and nature of the queueing of jobs and tasks can
have a dramatic effect. Specifically, whether the system has
a single centralized queue that dispatches jobs and tasks to
servers as they become available, or multiple queues, one at
each server.

These two dichotomies, load balancing versus forking
and single-queue versus multi-queue, create a matrix of four
types of parallel systems, and each is plausibe in different
situations. Under load balancing no job’s processing is sped
up, since each job is assigned in its entirety to a single server.
In a forking system jobs may finish faster than if they had to
run on a single server, but a job must wait for all of its tasks
to finish before departing the system; if one task is delayed
then the entire job suffers, and as the number of tasks
increases so does the chance that one of themwill be delayed.

There are also trade-offs in the queueing dimension.
Consider for example the MapReduce model of parallel
computation which has become extremely popular, with
implmentations such as Google’s MapReduce [2], Hadoop,
andApache Spark [3]. AMapReduce program typically oper-
ates on a large dataset that is divided into “slices” anddistrib-
uted amongst the servers. In amap stage a function is applied
in parallel to the records in these slices. In a single-queue sys-
tem, each task is assigned to the first available server. There-
fore the task processing a certain slice may not be assigned to
the server which holds that slice, requiring slices to be shuf-
fled between servers. A MapReduce system could therefore
reasonably be implemented to behave like either a single-
queue or multi-queue system. The default schedulers in both
Hadoop MRv2/Yarn and Apache Spark have a single task
queue, but the InputSplit interface in Hadoop MRv2 makes
slice location information available to the scheduler, which
would enable it to act as amulti-queue system.

In this paper we use the tools of max-plus network calcu-
lus to formulate a general definition of a parallel server and
ðs; rÞ burstiness constraints, and derive bounds on the wait-
ing and sojourn time distributions in the GI jGI and G jG
settings. We then show that this model applies to the entire
matrix of forking/non-forking and single-queue/multi-
queue systems, as well as multi-stage fork-join systems,
yielding specific performance bounds for each system type.
We compare the bounds to simulation and to experiments
run on a real Spark cluster. Additionally, we apply our
result for the fork-join system to arrival and service process
data extracted from publicly available cluster traces. We dis-
cover cases of significant correlations in some users’ arrival
processes, demonstrating the necessity of deriving bounds
for the G jG case.

The most intensely studied fork-join model is the multi-
queue one, depicted in Fig. 1. Jobs are forked into k tasks
and queued at k servers. The tasks are processed in order
of arrival, and then the results joined after all tasks are

� M. Fidler and B. Walker are with the Institute of Communications
Technology, Leibniz Universit€at Hannover, Hannover 30167, Germany.
E-mail: {markus.fidler, brenton.walker}@ikt.uni-hannover.de.

� Y. Jiang is with the Department of Information Security and Communication
Technology, NTNUTrondheim, Trondheim 7491, Norway.
E-mail: jiang@ntnu.no.

Manuscript received 7 Apr. 2017; revised 17 Oct. 2017; accepted 27 Nov.
2017. Date of publication 1 Jan. 2018; date of current version 13 June 2018.
(Corresponding author: Markus Fidler.)
Recommended for acceptance by R. Prodan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2017.2779872

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 7, JULY 2018 1545

1045-9219� 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3490-6399
https://orcid.org/0000-0003-3490-6399
https://orcid.org/0000-0003-3490-6399
https://orcid.org/0000-0003-3490-6399
https://orcid.org/0000-0003-3490-6399
mailto:
mailto:

complete. Exact results for the fork-join model are known
only for a few special cases, such as two parallel M jM j 1
queues [4], [5]. For more complex systems, approximation
techniques, e.g., [5], [6], [7], [8], [9], [10], [11], [12], and
bounds, using stochastic orderings [13], martingales [14], or
stochastic burstiness constraints [15], have been explored.
For a more elaborate discussion see also [14]. Given the dif-
ficulties posed by single-stage systems, few works consider
multi-stage networks. A notable exception is [10] where an
approximation for closed fork-join networks is developed.

In terms of the diversity of models studied, this paper is
similar to [16] which derives mean sojourn times for single-
queue fork-join systems using a bulk arrival M jM j k multi-
server model. In terms of mathematical tools employed, this
paper is in the same vein as three recent papers. In [15] the
authors consider single-stage fork-join systems with load
balancing, general arrivals of the type defined in [17], and
deterministic service. They use the concept of service curve,
see, e.g., the textbooks [18], [19], [20], to characterize fork-
join systems and derive statistical delay bounds. In [14] the
authors prove delay bounds for single-stage fork-join sys-
tems with renewal and Markov-modulated inter-arrival
times and independent and identically distributed (iid) ser-
vice times. They prove that delays for fork-join systems
grow as Oðln kÞ for k parallel servers, as also found in [13].
They also consider blocking systems, where no task of a job
can start until the entire previous job has departed, and
adapt their analysis to multi-path routing. In [21], the
authors evaluate different task assignment policies for par-
allel server systems with task replication, considering the
effects of correlated replicas. Task replication relates to the
more general concept of ðk; lÞ fork-join systems [1], where a
job is considered completed once l out of k tasks have fin-
ished service.

Compared to these previous studies, this paper considers
the G jG case, and uses our general formulation of parallel
system to derive delay bounds for the full matrix of fork-
join/load-balancing and multi-/single-queue models as well
as for multi-stage fork-join networks. We validate our results
with experiments on a real Spark systems and evaluate our
bounds based on empirical trace data from a real cluster.

The rest of this paper is structured as follows. In Section 2
we formulate general models of G jG and GI jGI systems in
max-plus system theory. In Section 3 we apply these results
to the multi-queue fork-join model, and to multi-stage sys-
tems. In Sections 4, 5, and 6 we derive bounds for the rest of
the matrix of system types, and compare the results to simu-
lation and experiments. We conclude with Section 7.

2 MAX-PLUS SYSTEM MODEL

We derive a set of results for a general parallel system in
max-plus system theory. Max-plus system theory [18], [19],
[22], [23], [24], [25], [26] is a branch of the deterministic [18],
[19], [27], respectively, stochastic network calculus [18],
[20], [28], [29], [30], [31] that can deal specifically with time-
stamps of jobs. In comparison to [14], which is focused
entirely on waiting and sojourn times of specific systems,
the more general max-plus approach enables us to derive
bounds for a wide variety of parallel systems as well as
multi-stage fork-join networks. This also generalizes the
Oðln kÞ scaling from [14] by considering general arrival and
service processes. Throughout this work, we consider only
the case of homogeneous servers, i.e., all servers have iden-
tical service time distribution. Heterogeneous servers can be
dealt with in the same way by a notational extension. We
show results for heterogeneous servers in [1].

2.1 Notation and Queueing Model

We label jobs in the order of arrival by n � 1 and let AðnÞ
denote the time of arrival of job n. It follows for n � m � 1
that AðnÞ � AðmÞ � 0. For notational convenience, we
define Að0Þ ¼ 0. Further, we let Aðm;nÞ ¼ AðnÞ �AðmÞ be
the time between the arrival of job m and job n for
n � m � 1. Hence, Aðn; nþ 1Þ is the inter-arrival time
between job n and job nþ 1 for n � 1. Similarly, DðnÞ
denotes departure times. To model systems, we adapt the
definition of g-server from [18, Definition 6.3.1] using a
notion of service process Sðm;nÞ that characterizes the
cumulated service time of jobsm to n.

Definition 1 (Max-plus server). A system with arrivals AðnÞ
and departures DðnÞ is an Sðm;nÞ server under the max-plus
algebra if it holds for all n � 1 that

DðnÞ � max
m2½1;n�

fAðmÞ þ Sðm;nÞg:

It is an exact Sðm;nÞ server if it holds for all n � 1 that

DðnÞ ¼ max
m2½1;n�

fAðmÞ þ Sðm;nÞg:

The following Lemma 1 [18, Example 6.2.3] shows that
the general class of G jG j 1 systems satisfy the definition of
exact server. We phrase the result as a lemma including a
proof as it serves as a template for subsequent systems. We
use V ðnÞ to denote the time at which job n starts service.

Lemma 1 (Work-conserving system). Consider a lossless,
work-conserving, first-in first-out system and let LðnÞ denote
the service time of job n, where n � 1. Define for n � m � 1

Sðm;nÞ ¼
Xn
n¼m

LðnÞ:

The system is an exact Sðm;nÞ server.
Proof. As the system is lossless, work-conserving, and

serves jobs in first-in first-out order, job n � 2 starts ser-
vice at

V ðnÞ ¼ maxfAðnÞ; V ðn� 1Þ þ Lðn� 1Þg; (1)

Fig. 1. Multi-queue fork-join system. Each job is composed of k tasks
with individual service requirements, that are distributed to k servers
(fork). Once all tasks of a job are completed, the job leaves the system
(join), i.e., the tasks of a job wait at the join step until all tasks of the job
are completed.

1546 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 7, JULY 2018

and job 1 at V ð1Þ ¼ Að1Þ. By recursive insertion of (1)

V ðnÞ ¼ max
m2½1;n�

AðmÞ þ
Xn�1

n¼m

LðnÞ
()

; (2)

for n � 1. Since DðnÞ ¼ V ðnÞ þ LðnÞ, it follows with (2)
thatDðnÞ ¼ maxm2½1;n�fAðmÞ þPn

n¼m LðnÞg, which proves
that the work-conserving system is an exact max-plus
server. tu
For the sojourn time of job n � 1, defined as T ðnÞ ¼

DðnÞ �AðnÞ, it follows by insertion of Def. 1 that

T ðnÞ ¼ max
m2½1;n�

fSðm;nÞ �Aðm;nÞg: (3)

The waiting time of job n � 1 is WðnÞ ¼ V ðnÞ �AðnÞ. As in
the case of work-conserving systems in Lemma 1,
V ðnÞ ¼ maxfAðnÞ; Dðn� 1Þg, so we have WðnÞ ¼ ½Dðn�
1Þ �AðnÞ�þ, where ½X�þ ¼ maxfX; 0g is the non-negative
part and Dð0Þ ¼ 0 by definition. With Definition 1, it holds
that

WðnÞ ¼
�

sup
m2½1;n�1�

fSðm;n� 1Þ �Aðm;nÞg
�þ

: (4)

Here, we use the supremum since for n ¼ 1 (4) evaluates to
an empty set. For non-negative real numbers the sup of an
empty set is zero. While we used the definition of an exact
server to derive the sojourn and waiting times, we note that
the upper bound specified by the definition of a server is
sufficient to provide upper bounds of sojourn and waiting
times.

2.2 Statistical Performance Bounds

Next, we derive statistical performance bounds for servers
as defined above. Throughout the paper, we generally
assume that the arrival and service processes are indepen-
dent of each other. Considering general arrival and service
processes, the server is a G jG j 1 queue. The results enable
us to generalize recent conclusions on the speed of the tail
decay obtained for iid service times, i.e., for a GI service
model, in [14].

We consider arrival and service processes that belong to
the broad class of ðs; rÞ-constrained processes [18]. The
parameters s and r specify an affine bounding function, i.e.,
intercept and slope, of the logarithm of the moment generat-
ing function (MGF), and can be thought of as a stochastic
version of the burst and rate parameters of a leaky-bucket
regulator. The MGF of a random variable X is defined as
MXðuÞ ¼ E

�
euX

�
where u is a free parameter. MGFs of a

variety of relevant sources are known including periodic,
regulated, Markov, and fractional Brownian motion pro-
cesses [32] as well as empirical MGFs obtained from data
traces [33]. In the following definition we adapt the ðs; rÞ
constraint [18, Definition 7.2.1] to max-plus systems.

Definition 2 (ðs; rÞ-Arrival and Service Envelopes).
An arrival process is ðsA; rAÞ-lower constrained if for all
n � m � 1 and u > 0 it holds that

E
h
e�uAðm;nÞ

i
� e�uðrAð�uÞðn�mÞ�sAð�uÞÞ:

Similarly, a service process is ðsS; rSÞ-upper constrained if for
all n � m � 1 and u > 0 it holds that

E
h
euSðm;nÞ

i
� euðrS ðuÞðn�mþ1ÞþsSðuÞÞ:

Considering the service times of jobs as in Lemma 1, we
also apply Definition 2 to characterize the cumulative ser-
vice process Lðm;nÞ ¼ Pn

n¼m LðnÞ by ðsL; rLÞ.
In the special case of GI arrival processes, Aðm;nÞ ¼Pn�1
n¼m Aðn; nþ 1Þ has iid inter-arrival times Aðn; nþ 1Þ. It fol-

lows that E
�
e�uAðn;nþ1Þ� ¼ E

�
e�uAð1;2Þ� for n � 1. Next, we use

that the MGF of a sum of independent random variables is

the product of their individual MGFs, i.e., E
�
e�uAðm;nÞ� ¼

E
�
e�uAð1;2Þ�n�m

to derive minimal traffic parameters from

Definition 2 as sAð�uÞ ¼ 0 and

rAð�uÞ ¼ � 1

u
lnE

h
e�uAð1;2Þ

i
: (5)

Similarly for GI service processes, Sðm;nÞ is composed of

iid service increments Sðn; nÞ, i.e., Sðm;nÞ ¼ Pn
n¼m Sðn; nÞ,

so that it has minimal parameters sSðuÞ ¼ 0 and

rSðuÞ ¼
1

u
lnE

h
euSð1;1Þ

i
: (6)

Parameter rAð�uÞ decreases with u > 0 from the mean to

the minimum inter-arrival time and rSðuÞ increases with

u > 0 from the mean to the maximum service time.

Theorem 1 (Statistical performance bounds). Consider a
server as in Definition 1, with arrival and service parameters
ðsAð�uÞ; rAð�uÞÞ and ðsSðuÞ; rSðuÞÞ as specified by Defini-
tion 2. For n � 1, the sojourn time T ðnÞ ¼ DðnÞ �AðnÞ satis-
fies

P½T ðnÞ > t� � aeurSðuÞe�ut;

and the waiting timeW ðnÞ ¼ ½Dðn� 1Þ �AðnÞ�þ satisfies

P WðnÞ > t½ � � ae�ut:

In the case of G jG arrival and service processes, the free
parameter u > 0 has to satisfy rSðuÞ < rAð�uÞ and

a ¼ euðsAð�uÞþsS ðuÞÞ

1� e�uðrAð�uÞ�rSðuÞÞ :

In the special case of GI jGI arrival and service processes,
u > 0 has to satisfy rSðuÞ � rAð�uÞ and a ¼ 1.

For the special case of GI jGI arrival and service pro-
cesses, Theorem 1 recovers the classical bound for the wait-
ing time of GI jGI j 1 queues [34] in the max-plus system
theory. Like [34] and subsequent works in the stochastic net-
work calculus [14], [21], [24], [30], [35], [36], the proof uses
Doob’s martingale inequality [37]. The proof for the G jG
arrival and service processes adapts the approach from [18,
Ch. 7], [29] to max-plus systems. The important property of
the G jG result is that it differs only by a constant factor a
from the GI jGI result and otherwise recovers the character-
istic exponential tail decay e�ut with the same maximal
decay u.

FIDLER ETAL.: NON-ASYMPTOTIC DELAY BOUNDS FOR MULTI-SERVER SYSTEMSWITH SYNCHRONIZATION CONSTRAINTS 1547

Proof. We only show the proof of the sojourn time, as the
proof of the waiting time follows similarly. G jG j 1 serv-
ers: We obtain from (3) for u > 0 that

E
h
euT ðnÞ

i
�

Xn
n¼1

E
h
euSðn;nÞ

i
E
h
e�uAðn;nÞ

i
;

where we estimated the maximum by the sum of its
arguments and used the statistical independence of arriv-
als and service.

By insertion of the ðs; rÞ-constraints from Definition 2
we have

E
h
euT ðnÞ

i
� euðsAð�uÞþsS ðuÞþrSðuÞÞ

Xn
n¼1

e�uðrAð�uÞ�rSðuÞÞðn�nÞ:

Next, for rSðuÞ < rAð�uÞwe estimate

Xn
n¼1

e�uðrAð�uÞ�rSðuÞÞðn�nÞ �
X1
n¼0

�
e�uðrAð�uÞ�rSðuÞÞ�n

¼ 1

1� e�uðrAð�uÞ�rSðuÞÞ :

With Chernoff’s bound P½X � x� � e�uxE
�
euX

�
we obtain

P½T ðnÞ � t� � euðsAð�uÞþsSðuÞÞ

1� e�uðrAð�uÞ�rS ðuÞÞ e
urSðuÞe�ut:

GI jGI j 1 servers: From (3) we have

T ðnÞ ¼ max
m2½1;n�

fSðn�mþ 1; nÞ �Aðn�mþ 1; nÞg:

It follows that P½T ðnÞ > t� ¼ P maxm2½1;n� UðmÞf g > eut
� �

for u > 0where

UðmÞ ¼ euðSðn�mþ1;nÞ�Aðn�mþ1;nÞÞ:

Using the representation of Aðm;nÞ ¼ Pn�1
n¼m Aðn; nþ 1Þ

and Sðm;nÞ ¼ Pn
n¼m Sðn; nÞ by increment processes, we

have

Uðmþ 1Þ ¼ UðmÞeuðSðn�m;n�mÞ�Aðn�m;n�mþ1ÞÞ:

The conditional expectation can be computed as

E½Uðmþ 1ÞjUðmÞ; Uðm� 1Þ; . . . ; Uð1Þ�
¼ UðmÞE½euSðn�m;n�mÞ�E½e�uAðn�m;n�mþ1Þ�;

where we used the independence of the inter-arrival
times and the service times. If rSðuÞ � rAð�uÞ, it holds
that E

�
euSðn�m;n�mÞ�E�e�uAðn�m;n�mþ1Þ� � 1 and

E½Uðmþ 1ÞjUðmÞ; Uðm� 1Þ; . . . ; Uð1Þ� � UðmÞ;

i.e., UðmÞ is a supermartingale. By application of Doob’s

inequality for submartingales [37, Theorem 3.2, p. 314]

and the formulation for supermartingales [24], [36] we

have for non-negative UðmÞ form � 1 that

xP max
m2½1;n�

fUðmÞg � x

� �
� E½Uð1Þ�: (7)

We derive

E½Uð1Þ� ¼ E
h
euðSðn;nÞ�Aðn;nÞÞ

i
¼ E

h
euSð1;1Þ

i
:

Letting x ¼ eut we have from (7) that

P T ðnÞ � t½ � � eurS ðuÞe�ut;

which completes the proof. tu
Example (The M jM j 1 Queue). The purpose of this

example is to illustrate the relative tightness of the GI jGI
and G jG bounds. We apply Theorem 1 to the M jM j 1
queue since exact reference results are available for this
case. We note that the relation of stochastic network cal-
culus and queueing theory has been investigated also
in [24], [35]. Given iid exponential inter-arrival and ser-
vice times with parameters � and m, respectively, (5) and
(6) evaluate to

rAð�uÞ ¼ � 1

u
ln

�

�þ u

� 	
; (8)

for u > 0, and

rSðuÞ ¼
1

u
ln

m

m� u

� 	
; (9)

for u 2 ð0;mÞ. From the condition rSðuÞ � rAð�uÞ it fol-
lows that u � m� � under the stability condition � < m.
By the choice of the maximal u ¼ m� � we have from
Theorem 1 that

P T ðnÞ > t½ � � m

�
e�ðm��Þt: (10)

Compared to the exact CCDF of the sojourn time of
the M jM j 1 queue, that is P T ðnÞ > t½ � ¼ e�ðm��Þt see,
e.g., [38], the bound (10) has the same tail decay and dif-
fers only by the pre-factor m=�. Therefore the bound
becomes tighter if the utilization is high, in which case
m=� approaches one.

In Fig. 2, we illustrate the bounds from Theorem 1 com-
pared to the exact M jM j 1 CCDF. Clearly, the curves show
the same tail decay, where the GI jGI j 1 bound provides bet-
ter numerical accuracy compared to the G jG j 1 bound that
has parameter a > 1. In the case of the G jG j 1 bound, the
parameter u is optimized numerically to obtain the smallest
delay bound.

Fig. 2. M jM j1 queue. The CCDF bounds show the true exponential tail
decay.

1548 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 7, JULY 2018

We note that the deviation of the bounds is due to relaxed
assumptions. Particularly, Theorem 1 provides results for
general, i.e., non-exponential and non-independent, inter-
arrival and service times by substitution of the MGFs of the
respective processes into Definition 2. We provide an exam-
ple of how to useMGFs of empirical trace data in Section 3.

3 MULTI-QUEUE FORK-JOIN SYSTEMS

The multi-queue fork-join system is the standard fork-join
model. We will generally refer to them simply as “fork-join”
systems. Later in Section 6 we will study a single-queue var-
iation on the standard fork-join model.

In a fork-join system, each job n � 1 is composed of k tasks
with service timesQiðnÞ for i 2 ½1; k�; i.e., the service require-
ments of the tasks may differ from each other and may or
may not be independent. The tasks are distributed (fork) to k
parallel servers and once all tasks of a job are served, the job
leaves the system (join), see Fig. 1. The parallel servers are
not synchronized; i.e., server i starts serving task i of job
nþ 1 (assuming it is already in the system), once it finishes
serving task i of job n, which departs from server i at DiðnÞ.
Job n has finished service once all of its tasks i 2 ½1; k� have
finished service. The following lemma shows that fork-join
systems are servers under themax-plus algebra.

Lemma 2 (Multi-queue fork-join system). Consider a fork-
join system with k parallel servers as in Lemma 1. Let QiðnÞ
denote the service time of task i of job n where i 2 ½1; k� and
n � 1. Define for n � m � 1

Sðm;nÞ ¼ max
i2½1;k�

(Xn
n¼m

QiðnÞ
)
:

The system is an exact Sðm;nÞ server.
Proof. Since a job departs from the system once all of its

tasks i 2 ½1; k� are completed, we have for n � 1 that

DðnÞ ¼ max
i2½1;k�

fDiðnÞg: (11)

By insertion of Definition 1 for each of the servers
i 2 ½1; k�, it follows that

DðnÞ ¼ max
i2½1;k�

max
m2½1;n�

fAðmÞ þ Siðm;nÞg

 �

:

After reordering the maxima

DðnÞ ¼ max
m2½1;n�

AðmÞ þ max
i2½1;k�

fSiðm;nÞg

 �

;

we conclude that the fork-join system is an exact
Sðm;nÞ ¼ maxi2½1;k�fSiðm;nÞg server. In the last step, we
invoke Lemma 1 with QiðnÞ for each of the servers
i 2 ½1; k�. tu
Performance bounds are obtained using the MGF of the

service process Sðm;nÞ. For Lemma 2, we estimate the MGF
for n � m � 1 by

E
h
euSðm;nÞ

i
�

Xk
i¼1

E
h
eu
Pn

n¼m
QiðnÞ

i
:

Assuming homogeneous tasks with parameters ðsQðuÞ;
rQðuÞÞ for i 2 ½1; k�, it follows by insertion of Definition 2
that

E
h
euSðm;nÞ

i
� keuðsQðuÞþrQðuÞðn�mþ1ÞÞ:

This shows that the service process of the fork-join system
has parameters

sSðuÞ ¼ sQðuÞ þ ln k

u
; (12)

and

rSðuÞ ¼ rQðuÞ: (13)

Corollary 1 (Multi-queue fork-join system). Consider a
fork-join system as in Lemma 2, with arrival and service
parameters ðsAð�uÞ; rAð�uÞÞ and ðsQðuÞ; rQðuÞÞ as specified
by Definition 2. For n � 1, the sojourn time satisfies

P½T ðnÞ > t� � kaeurQðuÞe�ut;

and the waiting time of the task that starts service last

P WðnÞ > t½ � � kae�ut:

In the case of G jG arrival and service processes, the free
parameter u > 0 has to satisfy rQðuÞ < rAð�uÞ and

a ¼ euðsAð�uÞþsQðuÞÞ

1� e�uðrAð�uÞ�rQðuÞÞ :

In the special case of GI jGI arrival and service processes,
u > 0 has to satisfy rQðuÞ � rAð�uÞ and a ¼ 1.

We note that Corollary 1 does not assume independence
of the parallel servers. Indeed, independence cannot be
assumed as the waiting and sojourn times of the individual
servers depend on the same arrival process [11], [13].

Proof. The proof depends on Lemma 2 that verifies that the
fork-join system is a max-plus server. Hence, Theorem 1
applies, and by insertion of (12) and (13) the result of Cor-
ollary 1 for G jG arrival and service processes is obtained.
We note that the waiting time of a job is defined to be that
of its task that starts service last. This follows by insertion
of (11) into the definition of waiting time WðnÞ ¼
½Dðn� 1Þ �AðnÞ�þ.

As the increment process of Sðm;nÞ in Lemma 2 is
non-trivial, we pursue a different approach1 to show the
result for the special case of GI jGI arrival and service
processes. With (11), we derive the sojourn time
T ðnÞ ¼ DðnÞ �AðnÞ of job n as T ðnÞ ¼ maxi2½1;k�fDiðnÞ�
AðnÞg for n � 1. Hence, the sojourn time of job n is
expressed as a maximum T ðnÞ ¼ maxi2½1;k�fTiðnÞg of the
sojourn times TiðnÞ ¼ DiðnÞ �AðnÞ of the individual
tasks i 2 ½1; k� of job n. Since the individual servers satisfy
Lemma 1, we can invoke Theorem 1 for each of the serv-
ers i 2 ½1; k� and use the union bound to obtain the result
of Corollary 1. The waiting time maxi2½1;k�fWiðnÞg where
WiðnÞ is given by (4) can be derived in the same way. tu

1. The approach applies also in the case of G jG arrival and service
processes. We showed the alternative approach via (12) and (13)
though, as it extends to multi-stage fork-join networks, see Section 3.2.

FIDLER ETAL.: NON-ASYMPTOTIC DELAY BOUNDS FOR MULTI-SERVER SYSTEMSWITH SYNCHRONIZATION CONSTRAINTS 1549

Scaling of Fork-Join Systems. To investigate the scaling of
fork-join systems with k parallel servers, we first note that
the stability condition rQðuÞ < rAð�uÞ is independent of k.
Hence, our first observation is that the speed of the tail
decay of the performance bounds u does not depend on the
number of parallel servers. Next, we equate the sojourn
time bound from Corollary 1 with " and solve for

t � rQðuÞ þ
ln kþ lna� ln "

u
; (14)

for u > 0 subject to the stability condition rQðuÞ < rAð�uÞ.
Eq. (14) expresses a sojourn time bound that is exceeded at
most with probability ". It exhibits a growth in Oðln kÞ. The
growth is larger for smaller u corresponding to a higher uti-
lization. The result applies for general arrival and service
processes subject to Definition 2 and generalizes the finding
of Oðln kÞ that is obtained in [13], [14] for iid service times.

In Fig. 3a, we consider a fork-join system with k � 1 par-
allel servers that serve jobs composed of k tasks each. For
reasons of space we avoid defining further workload mod-
els and consider jobs with iid exponential inter-arrival times
with parameter rAð�uÞ, see (8), and tasks with iid exponen-
tial service times with parameter rQðuÞ, (9), where we let
m ¼ 1. The parameters of other distributions can be straight-
forwardly obtained from their MGFs, see e.g., [31], [39]. We
show sojourn time bounds t, where P½T ðnÞ > t� � " and
" ¼ 10�6. The curves show the characteristic logarithmic
growth with k. This is also confirmed in simulation results
(exact results are not known) that agree well with the
sojourn time bounds.

3.1 Cluster Trace Data

Google’s publicly-available Cluster2011 trace [40] records
one month of activity in a cluster of approximately 12,000
machines, and includes events in the life-cycles of both jobs
and tasks. For each user we obtain an arrival processAðnÞ by
extracting the user’s job SUBMIT events. The number of
tasks per job in the trace is usuallymuch larger than the num-
ber of servers, and there are often failed and repeated tasks.
To obtain a task service time process, QðnÞ, we extract the
service time of the first successful task from each of the user’s
jobs. In order to produce comparable processeswe normalize
the processes to have the samemeans, 1=� and 1=m. Wemul-
tiply AðnÞ by 1=ð�AÞ and multiplyQðnÞ by 1=ðmQÞ, where A
and Q are the respective empirical averages. This scales the
processes, but does not affect their correlations.

In order to apply Corollary 1 we need to estimate
ðsA; rAÞ, ðsQ; rQÞ, and u > 0. Taking the log of the MGFs in
Definition 2 and dividing by �u and u, respectively, we have

� 1

u
lnE e�uAðm;nÞ

h i
� rA ðn�mÞ � sA; (15)

1

u
lnE euQðm;nÞ

h i
� rQ ðn�mþ 1Þ þ sQ: (16)

Let us focus on the arrivals. On the left side of (15) we
compute the empirical log-MGF [33] from the arrival data.
The right side of the inequality is a linear envelope func-
tion of the lag, ðn�mÞ. If the inter-arrival times were inde-
pendent, then the empirical log-MGF would be linear with
slope rA and intercept sA ¼ 0. Fig. 3b, however, shows an
example where the log-MGF is convex (user 68, u ¼ 0:27).
Therefore, there are a range of feasible ðsA; rAÞ lines satis-
fying (15). The empirical log-MGF of service times in this
example appears close to linear. Stability requires that
rQ < rA, i.e., the lines must intersect. For a given pair of
processes, A and Q, we search of the space of feasible
ðsA; rAÞ, ðsQ; rQÞ, and u > 0 to find the minimal G jG
bound in Corollary 1.

Fig. 3c demonstrates the practical task of capacity provi-
sioning for a desired sojourn time bound t with violation
probability " ¼ 10�6. The capacity of a server is m=�, the
inverse of the load. For two users with particularly corre-
lated arrivals, we normalize the arrival process to have
� ¼ 1 and scale the service process to have the desired
capacity m=� to compute corresponding delay bound quan-
tiles. We observe a dramatic increase in the sojourn times of
users 68 and 74 compared to the exponential model due to
the correlations of the job arrivals.

3.2 Multi-Stage Fork-Join Networks

We contribute a new bound on the growth of end-to-end
sojourn times for multi-stage fork-join networks, where we
consider h fork-join stages in tandem, each with k parallel
servers. We use subscript i 2 ½1; k� to distinguish the servers
of a stage and superscript j 2 ½1; h� to denote the stages.
Since jobs depart from each fork-join stage in the order of
their arrival, the following lemma can be obtained by
repeated application of [18, Theorem 6.3.6].

Lemma 3 (Multi-stage fork-join network). Consider a
multi-stage network of h fork-join systems as in Lemma 2 in
tandem. Define for n � m � 1

Fig. 3. Fork-join system with k servers. (a) Analytical CCDF bounds for "¼10�6 (thick lines) and simulation results (thin lines) for exponential inter-
arrival and service times. (b) Emperical log MGFs of inter-arrival and task service time trace data (user 68) and several feasible ðs; rÞ lines. (c) Ana-
lytical sojourn time bounds for "¼10�6 and k ¼ 16 for different server capacities.

1550 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 7, JULY 2018

Snetðm;nÞ ¼ max
nj:m�n1�n2�...�nh�1�n

fS1ðm; n1Þ þ S2ðn1; n2Þ þ � � � þ Shðnh�1; nÞg:

The fork-join network is an exact Snetðm;nÞ server.
Theorem 2 (Multi-stage fork-join network). Consider a

multi-stage fork-join network as in Lemma 3 with arrival and
service parameters ðsAð�uÞ; rAð�uÞÞ and ðsQðuÞ; rQðuÞÞ as
specified by Definition 2. Let the service times at each of the
stages be independent. For n � 1, the end-to-end sojourn time
satisfies

P½T ðnÞ > t� � khaeuhrQðuÞe�ut;

where u > 0 has to satisfy rQðuÞ < rAð�uÞ and

a ¼ euðsAð�uÞþhsQðuÞÞ�
1� e�uðrAð�uÞ�rQðuÞÞ�h :

Proof. First, we derive the MGF of Snetðm;nÞ as in Lemma 3.
It follows for u > 0 that

E
h
euS

netðm;nÞ
i
�

X
nj�0:

Ph

j¼1
nj¼n�m

E
h
euS

1ðm;mþn1Þ
i

E
h
euS

2ðmþn1;mþn1þn2Þ
i
� � �E

h
e
uShðmþ

Ph�1

j¼1
nj;mþ

Ph

j¼1
njÞi

;

where we used a variable substitution, estimated the
maximum by the sum of its arguments, and used the sta-
tistical independence of the stages. Given homogeneous
stages that are ðsS; rSÞ constrained as specified by Defini-
tion 2 and using [39, Prop. 6.2] to replace the sum by a
binomial coefficient, we have for u > 0 that

E
h
euS

netðm;nÞ
i
� n�mþ h� 1

h� 1

� 	
euðhsSðuÞþrSðuÞðn�mþhÞÞ:

Next, we derive for the MGF of the sojourn time from
(3) for u > 0 that

E
h
euT ðnÞ

i
�

Xn
n¼1

E
h
euS

netðn;nÞ
i
E
h
e�uAðn;nÞ

i
;

where we estimated the maximum by the sum of its
arguments and used the statistical independence of arriv-
als and service. Considering ðsA; rAÞ constrained traffic
as in Definition 2, we have

E
h
euT ðnÞ

i
� euðsAð�uÞþhsS ðuÞþhrS ðuÞÞ

Xn
n¼1

n� nþ h� 1

h� 1

� 	
e�uðrAð�uÞ�rSðuÞÞðn�nÞ:

Next, we estimate for rSðuÞ < rAð�uÞ that
Xn
n¼1

n� nþ h� 1

h� 1

� 	
e�uðrAð�uÞ�rS ðuÞÞðn�nÞ

�
X1
n¼0

nþ h� 1

h� 1

� 	�
e�uðrAð�uÞ�rSðuÞÞ

n

¼
�
1� e�uðrAð�uÞ�rSðuÞÞ

�h

;

where we used that the argument of the sum is expressed
as a negative binomial probability. With Chernoff’s
bound we have

P½T ðnÞ � t� � euðsAð�uÞþhsSðuÞÞ�
1� e�uðrAð�uÞ�rS ðuÞÞ

�h euhrSðuÞe�ut:

Finally, we insert the service parameters of the tasks
sSðuÞ ¼ sQðuÞ þ lnðkÞ=u and rSðuÞ ¼ rQðuÞ from (12) and
(13) for each of the fork-join stages to complete the
proof. tu
Scaling of Multi-Stage Fork-Join Networks. To evaluate the

growth of t with h and k, we equate the sojourn time bound
in Theorem 2 with " and solve for

t ¼ sAð�uÞ þ hðsQðuÞ þ rQðuÞÞ
þ 1

u
h ln k� h ln 1� e�uðrAð�uÞ�rQðuÞÞ

�
� ln "

�
that grows in Oðh ln kÞ. The result compares to a growth in
Oðh lnðhkÞÞ obtained previously in [1]. The improvement is
achieved by taking advantage of the statistical indepen-
dence of the stages, whereas [1] does not make this
assumption.

4 MULTI-QUEUE LOAD BALANCING SYSTEMS

We compare the performance of fork-join systems to that of
traditional load balancing systems, both with multiple
queues. A schematic of such a system with k servers is
depicted in Fig. 4. In this system jobs are not divided into
tasks; instead each job is assigned in its entirety to one of
the servers. Therefore, in the language of point processes,
the external arrival process AðnÞ is divided into k thinned
processes AiðmÞ. Thinning is an operation whereby some of
the points in the point process are removed. In the case of a
multi-queue load balancing system we have an external
arrival process AðnÞ, specifying the arrival time of job n,
and a collection of k thinned arrival processes, AiðmÞ,
i 2 ½1; k�, denoting the arrival time of the mth job of the ith
thinned process at server i. The corresponding service time
is LiðmÞ. The opposite operation, where multiple point pro-
cesses are combined, is called superposition. The thinned
processes have the constraint that the superposition of the
AiðmÞ must give the external arrival process, AðnÞ. That is,
each job is mapped to exactly one server. Superposition of
the departure processes DiðmÞ, i 2 ½1; k� gives the external

Fig. 4. Multi-queue load balancing system. Compared to a fork-join sys-
tem, jobs are not divided into tasks. Instead, entire jobs are assigned to
the servers, resulting in thinned arrival processes. The load balancing
system does not maintain the order of jobs unless a resequencing step
is added (dashed).

FIDLER ETAL.: NON-ASYMPTOTIC DELAY BOUNDS FOR MULTI-SERVER SYSTEMSWITH SYNCHRONIZATION CONSTRAINTS 1551

departure process DðnÞ that may optionally be resequenced
in the original order of AðnÞ.

In the case of random thinning, each job is assigned to
one of the k servers according to iid discrete (not necessarily
uniform) random variables with support ½1; k�. From the iid
property, the mapping of each job to a certain server
i 2 ½1; k� is an independent Bernoulli trial with parameter pi
where

Pk
i¼1 pi ¼ 1. Let XiðmÞ denote the number of the job

that becomes the mth job that is assigned to server i. It fol-
lows that XiðmÞ is a sum of m iid geometric random varia-
bles with parameter pi; i.e., XiðmÞ is negative binomial. The
arrival process at server i is

AiðmÞ ¼ AðXiðmÞÞ; (17)

for m � 1. Conversely, given jobs 1; 2; . . . ; n of the external
arrival process, let YiðnÞ denote the number of jobs assigned
to server i. It follows that YiðnÞ is binomial with parameter
pi. Further, it holds thatXiðYiðnÞÞ � n for n � 1.

In the case of deterministic thinning, a round-robin
assignment of the jobs of an arrival process AðnÞ to k servers
results in the processes AiðmÞ as in (17) where

XiðmÞ ¼ kðm� 1Þ þ i; (18)

for m � 1 and i 2 ½1; k�. Given jobs 1; 2; . . . ; n, the number of
jobs that are assigned to server i is

YiðnÞ ¼ n� iþ 1

k

� �
; (19)

for n � 1 and i 2 ½1; k�. To see this, note that job n of the
external arrival process becomes the m ¼ dn=keth job of
server j ¼ ðn� 1Þmod kþ 1. Hence, YiðnÞ ¼ m for i � j and
YiðnÞ ¼ m� 1 for i > j. The same is verified for (19).

Corollary 2 (Multi-queue load balancing). Assume arriv-
als with iid inter-arrival times and parameter rAð�uÞ for u > 0
as in (5). In the case of random thinning with probabilities pi for
i 2 ½1; k�, the thinned arrival processes have parameter

rAi
ð�uÞ ¼ � 1

u
ln

�
pie

�urAð�uÞ

1� ð1� piÞe�urAð�uÞ

	
;

where u > 0 so that e�urAð�uÞ < 1=ð1� piÞ.
In the case of deterministic thinning, for u > 0 the thinned

arrival processes have parameter

rAi
ð�uÞ ¼ krAð�uÞ:

Proof. The thinned arrivals are expressed by (17) as a dou-
bly random process that has increments Aiðn; nþ 1Þ ¼
AðXiðnÞ; Xiðnþ 1ÞÞ for n � 1. Considering iid inter-arrival
times, with [39, Ex. 7j] the MGF of the thinned process is

MAiðn;nþ1Þð�uÞ ¼ E ðMAð1;2Þð�uÞÞXið1Þ
h i

; (20)

for n � 1. After some reordering, it follows that

MAiðn;nþ1Þð�uÞ ¼ MXið1ÞðlnMAð1;2Þð�uÞÞ: (21)

Since Xið1Þ is a geometric random variable with MGF
MXið1ÞðuÞ ¼ pie

u=ð1� ð1� piÞeuÞ for u < � lnð1� piÞ, we
obtain by insertion of (21) into (5) that

rAi
ð�uÞ ¼ � 1

u
ln

piMAð1;2Þð�uÞ
1� ð1� piÞMAð1;2Þð�uÞ

� 	
; (22)

where u > 0 so thatMAð1;2Þð�uÞ < 1=ð1� piÞ.
In the case of deterministic thinning, (20) simplifies to

MAiðn;nþ1Þð�uÞ ¼ ðMAð1;2Þð�uÞÞk so that (5) evaluates to
rAi

ð�uÞ ¼ krAð�uÞ. tu
Since each of the servers in the load balancing system

serves its arriving jobs independently, statistical perfor-
mance bounds are obtained by insertion of the arrival
parameters from Corollary 2 into Theorem 1. Further, the
modularity of this approach allows for the case where
the servers themselves are fork-join systems, as could be
the case if a scheduler were performaning load balancing
between racks in a data center. This case is handled by
insertion of Corollary 2 into Corollary 1. We provide an
example of such a hybrid system in [41].

The main effect of load balancing is captured in the sta-
bility condition in Theorem 1, which becomes rLðuÞ <
rAi

ð�uÞ, where rAi
ð�uÞ increases with k. Given fixed rLðuÞ,

the increase of rAi
ð�uÞ permits larger u that yield a faster

tail decay.

4.1 Tail Decay of Random versus Deterministic
Load Balancing

For this comparison, we consider arrivals with iid exponen-
tial inter-arrival times and jobs with iid Erlang-k service
times with parameters � and m, respectively. This choice of
service time distribution will be motivated in Section 4.2.

Performance bounds for the multi-queue load balancing
system are obtained from Theorem 1 using the parameters
of the thinned arrival processes given in Corollary 2. Deter-
ministic thinning gives processes AiðmÞ where the inter-
arrival times are a sum of k exponential random variables;
that is, Erlang-k distributed. It follows by insertion of
rAð�uÞ from (8) into Corollary 2 that

rAi
ð�uÞ ¼ � k

u
ln

�

�þ u

� 	
; (23)

for u > 0. In the case of random thinning we have by inser-
tion of rAð�uÞ from (8) into Corollary 2 with pi ¼ 1=k that

rAi
ð�uÞ ¼ � 1

u
ln

�

�þ ku

� 	
; (24)

for u > 0. In this case, the inter-arrival times of the thinned
processes are exponentially distributed with parameter �=k.
Lastly, the Erlang-k service times of the jobs have parameter

rLðuÞ ¼
k

u
ln

m

m� u

� 	
; (25)

for u 2 ð0;mÞ. For deterministic thinning, the maximal u that
satisfies the stability condition rLðuÞ � rAi

ð�uÞ is u ¼ m� �.
Fig. 5a contrasts the tail decay of deterministic and ran-

dom thinning for m ¼ 1, � ¼ 0:5, and k 2 f4; 8; 12g. The
speed of the tail decay does not depend on k for determin-
istic thinning. In contrast, for random thinning the tail decay
becomes slower with increasing k. Deterministic thinning

1552 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 7, JULY 2018

generally outperforms random thinning. Hence, we only
include deterministic thinning in the next section.

4.2 Comparison to Multi-Queue Fork-Join Systems

In order to facilitate a comparison between fork-join sys-
tems, where jobs are divided into tasks, and load balancing
systems where they are not, the distribution of job sizes in
the load balancing case must be the same as the distribution
of the sum of the task sizes in the fork-join case. That is, the
total job sizes must have the same distribution. One exam-
ple of this is a fork-join system with exponential task service
times, and a load balancing system with Erlang-k job service
times, both with the same rate parameter, m. In general,
given iid task service times with parameter rQðuÞ for
i 2 ½1; k� as defined by (6), the job service times have param-
eter rLðuÞ ¼ krQðuÞ.

Considering the load balancing system, we obtain the sta-
bility condition krQðuÞ < krAð�uÞ by insertion of rLðuÞ and
rAi

ð�uÞ from Corollary 2 into Theorem 1. Hence, the maxi-
mal u that achieves the stability condition is independent of
k. As a consequence, thewaiting time bound fromTheorem 1
and the speed of the tail decay of the sojourn time bound do
not depend on k. Regarding the sojourn time, we equate the
bound fromTheorem 1with " and solve for

t � krQðuÞ þ
lna� ln "

u
; (26)

for u > 0 under the stability condition rQðuÞ < rAð�uÞ.
Eq. (26) shows a linear growth with k. The result compares
to the logarithmic growth established by (14) for the fork-
join system. If k is large, the sojourn time of a job at the load
balancing system is dominated by its service time, which
depends linearly on k. The fork-join system avoids this
effect, as the tasks of the jobs are served by k servers in
parallel.

Fig. 5b compares the performance of the load balancing
system with the fork-join system, as already evaluated in
Fig. 3a, for m ¼ 1, � 2 f0:5; 0:7; 0:8g, and " ¼ 10�6. Clearly,
the sojourn time bounds of the load balancing system with
deterministic thinning grow at most linearly with k, as
established by (26). For large k the sojourn time of a job is
dominated by its service time, so that the curves that are
depicted for different arrival rates � converge slowly. The
fork-join system mitigates the impact of large jobs by serv-
ing the tasks in parallel. It achieves a scaling in ln k, see (14),
that is due to the synchronization constraint of the join

operation. The fork-join system mostly outperforms the
load balancing system, except in the case of large � and
small k. The reason is that in a fork-join system the occur-
rence of a large task blocks all subsequent tasks of that
server so the respective jobs cannot complete the join opera-
tion. In contrast, in a load balancing system there is no syn-
chronization constraint, so subsequent jobs that are served
by other servers can finish service earlier.

4.3 Resequencing

Unlike fork-join systems, load balancing systems do not
guarantee that jobs depart in their order of arrival. An
optional resequencing step is depicted in Fig. 4. It applies
for example in case of a multi-path transmission of packet
data, e.g., using multi-path TCP. As the resequencing step
does not affect the waiting time of a job, we state the follow-
ing corollary only for the sojourn time.

Corollary 3 (Load balancing with resequencing). Con-
sider a multi-queue load balancing system of k parallel servers
as in Lemma 1 with resequencing. The thinned arrival processes
have parameter rAi

ð�uÞ as given in Corollary 2 and the jobs
have service parameters ðsLðuÞ; rLðuÞÞ as given in Definition 2.
For n � 1, the sojourn time satisfies

P½T ðnÞ > t� � kaeurLðuÞe�ut:

In the case of GI jG arrival and service processes, the free
parameter u > 0 has to satisfy rLðuÞ < rAi

ð�uÞ and

a ¼ eusLðuÞ

1� e�uðrAi
ð�uÞ�rLðuÞÞ :

In the case of GI jGI arrival and service processes, u > 0 has to
satisfy rLðuÞ � rAi

ð�uÞ and a ¼ 1.

Proof. Given the departure processes of each of the servers
DiðnÞ for i 2 ½1; k�, the combined in-sequence departure
process for n � 0 is

DðnÞ ¼ max
i2½1;k�

fDiðYiðnÞÞg; (27)

where Dið0Þ ¼ 0 by convention. Note that in evaluating
(27) one only has to verify the departure of job YiðnÞ from
each server i 2 ½1; k�, since the departure of job YiðnÞ
from server i implies the departure of all jobs
n 2 ½1; YiðnÞ� of the same server. I.e., DiðnÞ � DiðYiðnÞÞ for

Fig. 5. Comparison of different multi-queue load balancing configurations. Analytical bounds (thick lines) and simulation results (thin lines). (a) Deter-
ministic thinning outperforms random thinning. (b) Sojourn time bounds grow linearly with k in the case of load balancing systems with deterministic
thinning and with ln k for fork-join systems. (c) Resequencing the departures of the load balancing system adds another delay that grows with ln k.

FIDLER ETAL.: NON-ASYMPTOTIC DELAY BOUNDS FOR MULTI-SERVER SYSTEMSWITH SYNCHRONIZATION CONSTRAINTS 1553

n 2 ½1; YiðnÞ�, since each server implements first-in first-
out order.

Next, we use Lemma 1 for each server i 2 ½1; k� to obtain
DiðYiðnÞÞ ¼ maxm2½1;YiðnÞ�fAiðmÞ þ Siðm;YiðnÞÞg. By inser-
tion into (27) we have

DðnÞ ¼ max
i2½1;k�

sup
m2½1;YiðnÞ�

fAiðmÞ þ Siðm;YiðnÞÞg
()

; (28)

for n � 1, where supf;g ¼ 0. We estimate the sojourn
time T ðnÞ ¼ DðnÞ �AðnÞ � DðnÞ �AiðYiðnÞÞ for n � 1,
where we used that AðnÞ � AiðYiðnÞÞ for i 2 ½1; k�. By
insertion of (28), it follows for n � 1 that

T ðnÞ � max
i2½1;k�

sup
m2½1;YiðnÞ�

fSiðm;YiðnÞÞ �Aiðm;YiðnÞÞg
()

:

By the union bound P½T ðnÞ > t� � Pk
i¼1 P½TiðnÞ > t�,

where TiðnÞ � supm2½1;YiðnÞ�fSiðm;YiðnÞÞ �Aiðm;YiðnÞÞg.
Finally, we estimate P½TiðnÞ > t� using Theorem 1. tu
To evaluate the scaling with k, we consider the case

where the service time grows with k, expressed as
rLðuÞ ¼ krQðuÞ, as before. We investigate deterministic thin-
ning and equate the sojourn time bound from Corollary 3
with " to solve for

t � krQðuÞ þ
ln kþ lna� ln "

u
(29)

for u > 0 under the stability condition krQðuÞ < krAð�uÞ.
Eq. (29) shows two effects: a linear growth with k that is due
to the increase of the job service time, as also observed for
the load balancing system in (26), and a logarithmic term,
ln k, that is due to resequencing.

Scaling of Load Balancing with Resequencing. We show a
numerical comparison of multi-queue load balancing sys-
tems with deterministic thinning, and with and without
resequencing in Fig. 5c. We use the same parameters as
above. The results clearly show the additional logarithmic
delay due to resequencing. Compared to the fork-join sys-
tem, resequencing consumes the advantage that load bal-
ancing systems showed for large � in Fig. 5b.

5 SINGLE-QUEUE LOAD BALANCING SYSTEMS

A major drawback of both types of multi-queue systems is
that servers may idle while tasks or jobs are queued at other
servers. This is due to the early and static assignment of
tasks to servers at their time of arrival. Single-queue systems
assume we have additional feedback from the servers and

can perform a dynamic assignment of tasks or jobs to the
servers as they become available. This eliminates idling of
servers when there are unserviced jobs or tasks in the
system.

We assume that feedback and job/task assignment are
instantaneous. In a real single-queue system there would be
some overhead incurred from moving a task’s code and
data to its assigned server. One way to include this in our
model is to incorporate the overhead into the service time
distribution. Another complication of single-queue systems
is that jobs may depart out of order; i.e., DðnÞlDðn� 1Þ.
This implies also that the waiting time of job n cannot sim-
ply be determined fromDðn� 1Þ as in (4) and Theorem 1.

In this section we derive performance bounds for single-
queue load balancing systems without a resequencing con-
straint, i.e., G jM j k queues, as shown in Fig. 6. First, we
prove that the system satisfies the definition of max-plus
server.

Lemma 4 (Single-queue load balancing system). Con-
sider a single-queue load balancing system with k parallel serv-
ers as in Lemma 1. Let LðnÞ denote the service time of job n for
n � 1. Given job n starts service at V ðnÞ, define ZðnÞ to be the
time until the next server becomes idle. Trivially, ZðnÞ ¼ 0 if
there is an idle server at V ðnÞ. Define for n � m � 1

Sðm;nÞ ¼ LðnÞ þ
Xn�1

n¼m

ZðnÞ:

i) The system is an exact Sðm;nÞ server.
ii) Given that the jobs have iid exponential service times

with parameter m. The non-zero elements of ZðnÞ are
iid exponential random variables with parameter km.

iii) Replace the zero elements of ZðnÞ by iid exponential
random variables with parameter km and compute
Sðm;nÞ as above. The system is an Sðm;nÞ server.

Proof. Using the definition of ZðnÞ, it holds for n � 2 that

V ðnÞ ¼ maxfAðnÞ; V ðn� 1Þ þ Zðn� 1Þg: (30)

Further, V ð1Þ ¼ Að1Þ and since ZðnÞ ¼ 0 for n 2 ½1; k� 1�
we have V ðnÞ ¼ AðnÞ also for n 2 ½2; k�. By recursive
insertion of (30) we obtain for n � 1 that

V ðnÞ ¼ max
m2½1;n�

AðmÞ þ
Xn�1

n¼m

ZðnÞ
()

: (31)

Since DðnÞ ¼ V ðnÞ þ LðnÞ we have with (31) that
DðnÞ ¼ maxm2½1;n�fAðmÞ þ Sðm;nÞg, which proves the
first part.

Next, we consider iid exponential service times with
parameter m and investigate the distribution of ZðnÞ for
n � 1. Given all servers are busy after the start of service
of job n at V ðnÞ. This implies that there are another k� 1
jobs with indices smaller n that are already in service at
V ðnÞ. Due to the memorylessness of the exponential dis-
tribution, the residual service time of each of these jobs
as well as the service time of job n are iid exponential ran-
dom variables with parameter m. Since the minimum of k
iid exponential random variables with parameter m is an
exponential random variable with parameter km, it

Fig. 6. Single-queue load balancing system. The system is non-idling;
once a server finishes a job, the next job in the queue is assigned to that
server.

1554 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 7, JULY 2018

follows that the time until the next server becomes idle is
exponentially distributed with parameter km.

For the last part, we use that exponential random vari-
ables are non-negative. If we replace all ZðnÞ that are
zero by iid exponential random variables with parameter
km, (31) becomes V ðnÞ � maxm2½1;n�fAðmÞ þPn�1

n¼m ZðnÞg
for n � 1, and consequently DðnÞ � maxm2½1;n�fAðmÞ þ
Sðm;nÞg. tu
Considering iid exponential service times LðnÞ with

parameter m, we have rLðuÞ for u 2 ð0;mÞ as in (9). With
Lemma 4 (iii), ZðnÞ is composed of iid exponential random
variables with parameter km. Invoking (9) with parameter
km gives

rZðuÞ ¼
1

u
ln

km

km� u

� 	
; (32)

for u 2 ð0; kmÞ. With (9) and (32) the MGF of Sðm;nÞ in
Lemma 4 (iii) is E

�
euSðm;nÞ� ¼ euðrLðuÞþrZ ðuÞðn�mÞÞ for u 2 ð0;mÞ.

Hence, Sðm;nÞ satisfies Definition 2 with parameters
sSðuÞ ¼ rLðuÞ � rZðuÞ and rSðuÞ ¼ rZðuÞ.

Lemma 4 (iii) verifies that the single-queue load balanc-
ing system is an Sðm;nÞ server, where Sðm;nÞ is composed
of independent increments. Hence, a sojourn time bound
can be derived from Theorem 1 using the parameters
ðsSðuÞ; rSðuÞÞ defined above. However, the waiting time
bound of Theorem 1 uses a definition of waiting time
W ðnÞ ¼ ½Dðn� 1Þ �AðnÞ�þ that does not apply to the sin-
gle-queue load balancing system, where the departure of
job n� 1 does not generally mark the start of the service of
job n. The following theorem first formulates the waiting
time for single-queue load balancing systems and in a sec-
ond step derives a sojourn time bound from the waiting
time. The derivation avoids the technical limitation
u 2 ð0;mÞ that applies if (9) is inserted into Theorem 1 and
thus enables tighter bounds.

Theorem 3 (Single-queue load balancing system). Con-
sider a single-queue load balancing system as in Lemma 4, with
arrival parameters ðsAð�uÞ; rAð�uÞÞ as specified by Defini-
tion 2, iid exponential job service times with parameter m, and
parameter rZðuÞ given by (32). For n � 1, the sojourn time sat-
isfies

P½T ðnÞ > t� � a
m

m� u
e�ut � e�mt
� �þ e�mt;

and the waiting time

P½W ðnÞ > t� � ae�ut:

In the case of G jM arrival and service processes, the free
parameter u 2 ð0; kmÞ; u 6¼ m has to satisfy rZðuÞ < rAð�uÞ
and

a ¼ eusAð�uÞ

1� e�uðrAð�uÞ�rZðuÞÞ :

In the special case of GI jM arrival and service processes,
u 2 ð0; kmÞ; u 6¼ m has to satisfy rZðuÞ � rAð�uÞ and a ¼ 1.

Proof. With Lemma 4 (iii) and (31), the waiting time
W ðnÞ ¼ V ðnÞ �AðnÞ for n � 1 is estimated as

WðnÞ � max
m2½1;n�

Xn�1

n¼m

ZðnÞ �Aðm;nÞ
()

;

where ZðnÞ for n � 1 are iid exponential random varia-
bles with parameter km. Thereafter, the derivation of the
statistical waiting time bound closely follows the proof
of Theorem 1 and is omitted.

To derive a sojourn time bound we use that DðnÞ ¼
V ðnÞ þ LðnÞ so that T ðnÞ ¼ DðnÞ �AðnÞ can be
expressed as T ðnÞ ¼ W ðnÞ þ LðnÞ, where we substituted
W ðnÞ ¼ V ðnÞ �AðnÞ. We use the waiting time bound
from Theorem 3 to estimate the waiting time CDF2 as
FW ðtÞ ¼ P½W ðnÞ � t� � 1� ae�ut . By convolution with
the exponential job service time PDF fLðtÞ ¼ me�mt for
t � 0we obtain the CDF of the sojourn time as

FT ðtÞ ¼
Z t

0

FW ðt � xÞfLðxÞdx

that evaluates for u 6¼ m to

FT ðtÞ � 1� e�mt � a
m

m� u
ðe�ut � e�mtÞ;

which completes the proof. tu
Accuracy Compared with the M jM j k Queue. To obtain

exact reference results, we consider the special case of the
M jM j k queue. While the following conclusions can be
readily obtained from queueing theory, we note that Theo-
rem 3 is not limited to exponential arrivals. Fig. 7a compares
the waiting time and the sojourn time bounds with the exact
results for k ¼ 8, " ¼ 10�6, m ¼ 1 and different utilizations
defined as �=ðkmÞ. The exact waiting time distribution of
the M jM j k queue is P½WðnÞ > t� ¼ Pke

�ðkm��Þt where Pk

is the probability of waiting, i.e., the probability that k or
more jobs are in the system [42]. The bounds from Theo-
rem 3 are obtained by insertion of rAð�uÞ from (8). From the
stability condition rZðuÞ � rAð�uÞ we find u � km� �. By
the choice of maximal u, the waiting time bound
P½WðnÞ > t� � e�ðkm��Þt exhibits the same exponential
speed of decay and differs by the prefactor Pk that
approaches one for high utilization. Fig. 7a confirms the
good agreement of the bounds. Visible differences appear
only in the case of the waiting time and low utilization.

Service versus Waiting Time. Regarding the sojourn time
bound in Fig. 7a, two effects can be distinguished. These are
expressed by the two parts of the sojourn time bound in
Theorem 3 that decay as e�ut and e�mt, respectively. In the
case of high utilization, the sojourn time is dominated by
the waiting time that decays with e�ut where u ¼ km� �.
Otherwise, if the utilization satisfies �=ðkmÞ < 1� 1=k (that
is 0.875 for k ¼ 8 here), it follows that u > m so that the
waiting time decays quickly and the sojourn time is mostly
due to the service time of the job itself that decays slower
with e�mt . Fig. 7b details the effect, again for k ¼ 8. For uti-
lizations below 0.875, the waiting time decays faster than
the service time so that the sojourn time changes only

2. We note that for a > 1, a tighter bound can be derived, using that
FW ðtÞ ¼ 0 for t < � lnð1=aÞ=u. We omit the details for notational
brevity.

FIDLER ETAL.: NON-ASYMPTOTIC DELAY BOUNDS FOR MULTI-SERVER SYSTEMSWITH SYNCHRONIZATION CONSTRAINTS 1555

marginally if the utilization is increased from 0.5 to 0.8. In
contrast, once the utilization exceeds 0.875, the waiting time
dominates.

Comparison to Multi-Queue Load Balancing. Fig 7c evalu-
ates the sojourn time of the single-queue load balancing sys-
tem for k ¼ f1; 2; 4; 8; 16g with respect to the multi-queue
system. For comparability, we use the same technique to
derive the sojourn time from the waiting time as in Theo-
rem 3 for both systems. While for k ¼ 1 the systems are
identical, the single-queue load balancing system outper-
forms the multi-queue system for larger k. Given a target
sojourn time bound, the single-queue system sustains a sig-
nificantly higher utilization.

6 SINGLE-QUEUE FORK-JOIN SYSTEMS

In a single-queue fork-join system, jobs are composed of k
tasks that are stored in a single-queue. Once any of the k
parallel servers becomes idle, it fetches the next task from
the head of the queue. A diagram is shown in Fig. 8. Our
analysis of single-queue fork-join systems follows the same
essential steps as in the case of the single-queue load balanc-
ing systems with the additional synchronization constraint
of the join operation.

Lemma 5 (Single-queue fork-join system). Consider a sin-
gle-queue fork-join system with k parallel servers as in
Lemma 1. Let QiðnÞ denote the service time of task i of job n for
n � 1 and i 2 ½1; k�. Given task i of job n starts service at
ViðnÞ, define ZiðnÞ to be the time until the next server becomes
idle. Trivially ZiðnÞ ¼ 0 if there is an idle server at ViðnÞ.
Define for n � m � 1

Sðm;nÞ ¼ max
i2½1;k�

(
QiðnÞ þ

Xi�1

j¼1

ZjðnÞ þ
Xn�1

n¼m

Xk
j¼1

ZjðnÞ
)
:

i) The system is an exact Sðm;nÞ server.
ii) Given that the tasks have iid exponential service times

with parameter m. The non-zero elements of ZiðnÞ are
iid exponential random variables with parameter km.

iii) Replace the zero elements of ZiðnÞ by iid exponential
random variables with parameter km and compute
Sðm;nÞ as above. The system is an Sðm;nÞ server.

Proof. Using the definition of ZiðnÞ, it holds for n � 1 and
i 2 ½2; k� that

ViðnÞ ¼ maxfAðnÞ; Vi�1ðnÞ þ Zi�1ðnÞg; (33)

and for n � 2 and i ¼ 1

V1ðnÞ ¼ maxfAðnÞ; Vkðn� 1Þ þ Zkðn� 1Þg: (34)

Further, V1ð1Þ ¼ Að1Þ and since Zið1Þ ¼ 0 for i 2 ½1; k� 1�
we have Við1Þ ¼ Að1Þ also for i 2 ½2; k�. By recursive
insertion of (33) and (34) we obtain for n � 1 and i 2 ½1; k�
that

ViðnÞ ¼ max
m2½1;n�

(
AðmÞ þ

Xi�1

j¼1

ZjðnÞ þ
Xn�1

n¼m

Xk
j¼1

ZjðnÞ
)
: (35)

Above we used that ZiðnÞ is non-negative to reduce the
number of terms that are evaluated by the maximum
operator. Given ViðnÞ, task i of job n finishes service after
another QiðnÞ units of time at DiðnÞ ¼ ViðnÞ þQiðnÞ.
Finally, job n is completed once all of its tasks have fin-
ished service at DðnÞ ¼ maxi2½1;k�fViðnÞ þQiðnÞg. Insert-
ing (35) and reordering the maxima proves the first part.

The proof of the remaining parts is a notational exten-
sion of the proof of Lemma 4 that considers tasks instead
of jobs. tu
Considering exponential service times QiðnÞwith param-

eter m, we have rQðuÞ as in (9) for u 2 ð0;mÞ. With Lemma 5
(iii), ZiðnÞ is composed of iid exponential random variables
with parameter km that are characterized by rZðuÞ given by
(32) for u 2 ð0; kmÞ. The MGF of Sðm;nÞ in Lemma 5 (iii) is

E
h
euSðm;nÞ

i
�

Xk
i¼1

euðrQðuÞþrZ ðuÞððn�mÞkþi�1ÞÞ

¼ beuðrQðuÞþkrZ ðuÞðn�mÞÞ;

Fig. 7. Single-queue load balancing system. (a) The bounds agree closely with the exact result. (b) For high utilization the sojourn time is dominated
by the waiting time, otherwise by the service time. (c) Comparison of single-queue and multi-queue load balancing systems for k ¼ f1; 2; 4; 8; 16g.
The sojourn time decreases with k. The improvement is significantly larger in the case of the single-queue system that can sustain a utilization close
to one if k is large.

Fig. 8. Single-queue fork-join system. The system is non-idling; once a
server finishes a job, the next task in the queue is assigned to that server.
The join operation uses a random access buffer to complete jobs (possi-
bly out of sequence) once all tasks are finished.

1556 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 7, JULY 2018

for u 2 ð0;mÞwhere

b ¼ eukrZ ðuÞ � 1

eurZ ðuÞ � 1
: (36)

Hence, Sðm;nÞ satisfies Definition 2 with parameters
sSðuÞ ¼ rQðuÞ � krZðuÞ þ ln b=u and rSðuÞ ¼ krZðuÞ.
Theorem 4 (Single-queue fork-join system). Consider a

single-queue fork-join system as in Lemma 5, with arrival
parameters ðsAð�uÞ; rAð�uÞÞ as specified by Definition 2, iid
exponential task service times with parameter m, parameter
rZðuÞ as specified by (32), and b as given in (36). For n � 1,
the sojourn time satisfies

P½T ðnÞ > t� � ab
m

m� u
e�ut � e�mt
� �þ e�mt;

and the waiting time of task i

P½WiðnÞ > t� � aeuði�1ÞrZðuÞe�ut:

In the case of G jM arrival and service processes, the free
parameter 0 < u < km; u 6¼ m has to satisfy krZðuÞ <
rAð�uÞ and

a ¼ eusAð�uÞ

1� e�uðrAð�uÞ�krZ ðuÞÞ :

In the special case of GI jM arrival and service processes,
0 < u < km; u 6¼ m has to satisfy krZðuÞ � rAð�uÞ and
a ¼ 1.

We note that the waiting time of the task of job n that
starts service last is simply the waiting time of task k of job
n as all other tasks start service before, i.e., no maximum as
in the multi-queue fork-join system is needed.

Proof. Similar to the proof of Theorem 3, we start with the
waiting time that is expressed as WiðnÞ ¼ ViðnÞ �AðnÞ
for task i 2 ½1; k� of job n � 1. With Lemma 5 (iii) and (35)
we have for n � 1 that

WiðnÞ � max
m2½1;n�

(Xi�1

j¼1

ZjðnÞ þ
Xn�1

n¼m

Xk
j¼1

ZjðnÞ �Aðm;nÞ
)
;

where ZiðnÞ for n � 1 and i 2 ½1; k� are iid exponential
random variables with parameter km. The derivation of

the statistical waiting time bound closely follows the
proof of Theorem 1 and is therefore omitted.

A sojourn time bound for each task i 2 ½1; k� of job n
follows from its waiting time bound by convolution with
the exponential task service time PDF as in the proof of
Theorem 3. Finally, estimating the maximum sojourn
time of all tasks i 2 ½1; k� of job n by use of the union
bound leads to parameter b defined by (36). tu
Performance Gain of Single-Queue Fork-Join Systems. We

compare the single-queue fork-join system with the multi-
queue system from Section 3. Jobs have iid exponential inter-
arrival times and are composed of k tasks with iid exponen-
tial service times. The parameters rAð�uÞ and rQðuÞ are as
specified by (8) and (9), respectively, where we let m ¼ 1. For
comparability, we use the same technique to derive the
sojourn time from the waiting time as in Theorem 4 for both
systems. In Fig. 9a, we fix " ¼ 10�6 and show the impact of
the utilization �=m for different k 2 f1; 2; 4; 8; 16g. For k ¼ 1
the single-queue and the multi-queue system are identical
and the sojourn time bounds fromCorollary 1 and Theorem 4
agree. For increasing k, the sojourn time bound of the multi-
queue fork-join system shows logarithmic growth with k;
i.e., the lines are equally spaced. This effect is due to the syn-
chronization constraint of the join operation. In contrast, the
sojourn time bounds of the single-queue fork-join system
improve with k with decreasing gain. Here, two opposing
effects are superimposed: 1.) the fact that the single-queue
system is non-idling and assigns the task from the head of
the queue immediately to the next idle server achieves a gain
if k is increased, most visible for medium to high utilization;
2.) the synchronization constraint of the join operation, simi-
lar to the case of the multi-queue fork-join system. Fig. 9b
depicts the effects for fixed � ¼ 0:3 and � ¼ 0:7, respectively,
" ¼ 10�6, and varying k. For small � the gain of the single-
queue system is small. For intuition, if all servers of the two
systems are idle at the time of a job arrival, the single-queue
and the multi-queue system perform identically and the
sojourn time is determined by the task with the maximal ser-
vice time. For large � the advantage of being non-idling
becomes more significant as k is increased, but for large k the
synchronization constraint of the join operation eventually
consumes the gain.

Spark Experiments. The default scheduler of Apache Spark
is a prominent implementation of a single-queue system.

Fig. 9. (a) and (b) Comparison of single-queue and multi-queue fork-join systems. Analytical bounds (thick lines) and simulation results (thin lines).
While the sojourn time of the multi-queue system grows with ln k, the single-queue system achieves a significant improvement due to the fact that it
is non-idling if k is increased, particularly in the case of high utilization. The gain diminishes for large k and is eventually consumed by the synchroni-
zation constraint of the join operation (parameter b in Theorem 4). (c) Spark experiment. The bound predicts the trend of the sojourn time with k of
the Spark system.

FIDLER ETAL.: NON-ASYMPTOTIC DELAY BOUNDS FOR MULTI-SERVER SYSTEMSWITH SYNCHRONIZATION CONSTRAINTS 1557

Fig. 9c shows results for � ¼ 0:7, m ¼ 1, and " ¼ 10�3 from
experiments on a live Spark cluster [43]. The units are in sec-
onds. Our simulation results match the Spark measure-
ments almost perfectly. Similarly, the sojourn time bound
from Theorem 4 captures the trend that is observed for
Spark as k is increased. First the gain due to the non-idling
implementation dominates, and that is later consumed by
the synchronization constraint.

Spark experiments were carried out using our MRSperf
benchmarking software.3 We run a Spark master in stand-
alone mode, and k single-core executors in Docker contain-
ers. The program submits map-only jobs according to a
configurable random process. The jobs have k tasks whose
runtimes are also random from a configurable distribution.
Our simulator, forkulator, is event-driven and written in
Java.4 It supports numerous queue types and arrival and
service processes. A more detailed description of both can
be found in [41], [43].

7 CONCLUSIONS

We formulated a general model of parallel systems in max-
plus system theory which allows us to derive bounds on the
waiting and sojourn time distributions of a variety of sys-
tems. This included the full matrix of single- versus multi-
queue and fork-join versus load-balancing. In the multi-
queue fork-join case we extended known results to obtain a
bound that applies in the G jG case, and evaluated the bound
based on empirical cluster trace data that exhibited correla-
tions in the arrival process. We also obtained bounds for
multi-queue fork-join systems with h independent stages
that scale inOðh ln kÞ compared toOðh lnðhkÞÞwithout inde-
pendent stages. We found that the single-queue systems
achieve a fundamental performance gain over multi-queue
systems that is due to load balancing and possible overtaking
of jobs, and observed that the Spark task manager is more
accurately modeled as a single-queue system. We included
an experimental validation using simulation, as well asMap-
Reduce trace data and measurements obtained from Spark
experiments which show that the analytical bounds closely
predict the actual performance of systems.

ACKNOWLEDGMENTS

This manuscript is a revised and extended version of the
paper [1] that appeared in the IEEE Infocom 2016 proceed-
ings. This work was supported in part by the European
Research Council (ERC) under StG 306644.

REFERENCES

[1] M. Fidler and Y. Jiang, “Non-asymptotic delay bounds for (k,l)
fork-join systems and multi-stage fork-join networks,” in Proc.
IEEE INFOCOM, Apr. 2016, pp. 1–9.

[2] J. Dean and S. Ghemawat, “MapReduce: simplified data process-
ing on large clusters.” Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Spark: Cluster computing with working sets,” in Proc.
USENIX Conf. Hot Topics Cloud Comput., 2010, pp. 10–10.

[4] L. Flatto and S. Hahn, “Two parallel queues created by arrivals
with two demands,” SIAM J. Appl. Math., vol. 44, no. 5, pp. 1041–
1053, 1984.

[5] R. Nelson and A. N. Tantawi, “Approximate analysis of fork/join
synchronization in parallel queues,” IEEE Trans. Comput., vol. 37,
no. 6, pp. 739–743, Jun. 1988.

[6] A. S. Lebrecht and W. J. Knottenbelt, “Response time approxima-
tions in fork-join queues,” in Proc. 23rd Annu. UK Performance Eng.
Workshop, Jul. 2007, pp. 1–8.

[7] S.-S. Ko and R. F. Serfozo, “Sojourn times in G/M/1 fork-join
networks,” Naval Res. Logistics, vol. 55, no. 5, pp. 432–443, May
2008.

[8] X. Tan and C. Knessl, “A fork-join queueing model: Diffusion
approximation, integral representations and asymptotics,” Queue-
ing Syst., vol. 22, no. 3–5, pp. 287–322, Sep. 1996.

[9] S. Varma and A. M. Makowski, “Interpolation approximations for
symmetric fork-join queues,” Perform. Evaluation, vol. 20, no. 1–3,
pp. 245–265, May 1994.

[10] E. Varki, “Mean value technique for closed fork-join networks,”
ACMSigmetrics Perf. Eval. Rev., vol. 27, no. 1, pp. 103–112,May 1999.

[11] B. Kemper and M. Mandjes, “Mean sojourn times in two-queue
fork-join systems: bounds and approximations,” OR Spektrum,
vol. 34, no. 3, pp. 723–742, Jul. 2012.

[12] F. Alomari and D. A. Menasc�e, “Efficient response time approxi-
mations for multiclass fork and join queues in open and closed
queuing networks,” IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 6, pp. 1437–1446, Jun. 2014.

[13] F. Baccelli, A. M. Makowski, and A. Shwartz, “The fork-join queue
and related systems with synchronization constraints: Stochastic
ordering and computable bounds,” Adv. Appl. Probab., vol. 21,
no. 3, pp. 629–660, Sep. 1989.

[14] A. Rizk, F. Poloczek, and F. Ciucu, “Stochastic bounds in fork-join
queueing systems under full and partial mapping,” Queueing
Syst.: Theory Appl., vol. 83, no. 3, pp. 261–291, Aug. 2016.

[15] G. Kesidis, B. Urgaonkar, Y. Shan, S. Kamarava, and J. Liebeherr,
“Network calculus for parallel processing,” in Proc. MAMA Work-
shop ACM SIGMETRICS, Jun. 2015, pp. 48–50.

[16] R. Nelson, D. Towsley, and A. N. Tantawi, “Performance analysis
of parallel processing systems,” IEEE Trans. Softw. Eng., vol. 14,
no. 4, pp. 532–540, Apr. 1988.

[17] Q. Yin, Y. Jiang, S. Jiang, and P. Y. Kong, “Analysis of generalized
stochastically bounded bursty traffic for communication
networks,” in Proc. 27th Annu. IEEE Conf. Local Comput. Netw.,
Nov. 2002, pp. 141–149.

[18] C.-S. Chang, Performance Guarantees in Communication Networks.
Berlin, Germany: Springer-Verlag, 2000.

[19] J.-Y. Le Boudec and P. Thiran, Network Calculus A Theory of Deter-
ministic Queuing Systems for the Internet. Berlin, Germany:
Springer-Verlag, 2001.

[20] Y. Jiang and Y. Liu, Stochastic Network Calculus. Berlin, Germany:
Springer-Verlag, Sep. 2008.

[21] F. Poloczek and F. Ciucu, “Contrasting effects of replication in
parallel systems: From overload to underload and back,”
arXiv:1602.07978v1, Feb. 2016, https://dl.acm.org/citation.cfm?
id=2901499

[22] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchroniza-
tion and Linearity: An Algebra for Discrete Event Systems. Hoboken,
NJ, USA: Wiley, 1992.

[23] J. Xie and Y. Jiang, “Stochastic network calculus models under
max-plus algebra,” in Proc. IEEE Global Telecommun. Conf., 2009,
pp. 1–6.

[24] Y. Jiang, “Network calculus and queueing theory: Two sides of
one coin,” in Proc. 4th Int. ICST Conf. Performance Evaluation Meth-
odologies Tools, 2009, pp. 1–12.

[25] R. L€ubben, M. Fidler, and J. Liebeherr, “Stochastic bandwidth esti-
mation in networks with random service,” IEEE/ACM Trans.
Netw., vol. 22, no. 2, pp. 484–497, Apr. 2014.

[26] J. Liebeherr, Duality of the Max-Plus and Min-Plus Network Calculus.
Breda, the Netherlands: Now Publishers, 2017.

[27] R. L. Cruz, “A calculus for network delay, part I and II: Network
elements in isolation and network analysis,” IEEE Trans. Inf. The-
ory, vol. 37, no. 1, pp. 114–141, Jan. 1991.

[28] F. Ciucu, A. Burchard, and J. Liebeherr, “Scaling properties of sta-
tistical end-to-end bounds in the network calculus,” IEEE/ACM
Trans. Netw., vol. 14, no. 6, pp. 2300–2312, Jun. 2006.

[29] M. Fidler, “An end-to-end probabilistic network calculus with
moment generating functions,” in Proc. 14th IEEE Int. Workshop
Quality Service, Jun. 2006, pp. 261–270.

3. Software available at https://github.com/brentondwalker/
spark-arrivals

4. Software available at https://github.com/brentondwalker/
forkulator

1558 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 7, JULY 2018

https://dl.acm.org/citation.cfm?id=2901499
https://dl.acm.org/citation.cfm?id=2901499
https://github.com/brentondwalker/spark-arrivals
https://github.com/brentondwalker/spark-arrivals
https://github.com/brentondwalker/forkulator
https://github.com/brentondwalker/forkulator

[30] F. Ciucu and J. Schmitt, “Perspectives on network calculus - no
free lunch but still good value,” in Proc. ACM SIGCOMM, Aug.
2012, pp. 311–322.

[31] M. Fidler and A. Rizk, “A guide to the stochastic network
calculus,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 92–105,
Jan.-Mar. 2015.

[32] F. P. Kelly, “Notes on effective bandwidths,” in Stochastic Net-
works: Theory and Applications. Oxford, U.K.: Oxford Univ., 1996,
pp. 141–168.

[33] R. J. Gibbens, “Traffic characterisation and effective bandwidths
for broadband network traces,” in Stochastic Networks: Theory and
Applications. Oxford, U.K.: Oxford Univ. Press, 1996, no. 4,
pp. 169–179.

[34] J. F. C. Kingman, “A martingale inequality in the theory of
queues,” Math. Proc. Cambridge, vol. 60, no. 2, pp. 359–361,
Apr. 1964.

[35] F. Ciucu, “Network calculus delay bounds in queueing networks
with exact solutions,” in Proc. Managing Traffic Performance Con-
verged Netw., Jun. 2007, pp. 495–506.

[36] Y. Jiang, “A note on applying stochastic network calculus,”
Technical Report, Norwegian University of Science and Technology
(NTNU), 2010.

[37] J. L. Doob, Stochastic Processes. Hoboken, NJ, USA: Wiley, 1953.
[38] I. Adan and J. Resing, Queueing Systems. Eindhoven, the Nether-

lands: TU Eindhoven, 2015.
[39] S. Ross, A First Course in Probability, 7th ed. London, U.K.: Pearson,

2006.
[40] C. Reiss, A. Tumanov, G. R. Ganger, H. Katz, and M. A. Kozuch,

“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in Proc. ACM Symp. Cloud Comput., 2012, Art. no. 7.

[41] M. Fidler, B. Walker, and Y. Jiang, “Non-asymptotic delay bounds
for multi-server systems with synchronization constraints,” Tech.
Rep., arXiv:1610.06309v1, Oct. 2016, https://arxiv.org/abs/
1610.06309

[42] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Funda-
mentals of Queueing Theory, 4th ed. Hoboken, NJ, USA: Wiley, 2008.

[43] B. Walker, “Benchmarking and simulating the fundamental
scaling behaviors of a MapReduce engine,” Workshop Information-
Centric Fog Comput. IFIP Netw., pp. 1–6, Jun. 2017.

Markus Fidler (M’04–SM’08) received the doctoral
degree in computer engineering from RWTH
Aachen University, Germany, in 2004. He was a
post-doctoral fellow of NTNU Trondheim, Norway,
in 2005 and the University of Toronto, ON, Canada,
in 2006. During 2007 and 2008, he was an Emmy
Noether Research group leader with Technische
Universit€at Darmstadt, Germany. Since 2009, he
has been a professor of communications networks
with Leibniz Universit€at Hannover, Germany. He is
a senior member of the IEEE.

Brenton Walker received the bachelor of science
degree from the University of Wisconsin-Madison
and the PhD degree in mathematics from the
University of Maryland-College Park, in 2014. He is
a post-doctoral researcher with Leibniz Universit€at
Hannover, Germany. He was previously an ERCIM
fellow in SICS in StockholmSweden.

Yuming Jiang received the PhD degree from the
National University of Singapore, in 2001. He has
been a professor with NTNU Trondheim, Norway,
since 2005. From 1996 to 1997, he worked with
Motorola, Beijing, China, and from 2001 to 2003,
with the Institute for Infocomm Research (I2R),
Singapore. His research interests include the pro-
vision, analysis, and management of quality of
service guarantees in communication networks,
with a particular focus on stochastic network
calculus.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FIDLER ETAL.: NON-ASYMPTOTIC DELAY BOUNDS FOR MULTI-SERVER SYSTEMSWITH SYNCHRONIZATION CONSTRAINTS 1559

https://arxiv.org/abs/1610.06309
https://arxiv.org/abs/1610.06309

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

