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Abstract—A set of new measures for network structural
dependency analysis is introduced. These measures are based on
geodesic distance, which is the number of links in a shortest path.
They capture the structural dependency effect at the path level,
the node level and the overall network level, and hence can be
used to index such dependencies. Unlike the related literature
measures, a novel aspect of the proposed measures is that
the impact of network fragmentation caused by a node failure
is taken into explicit consideration in deciding the structural
dependency effect. As a result, when applied to critical node
identification in a network, the proposed measures give results
that are more in line with intuition.

I. INTRODUCTION

Networked systems such as communication networks have
become an indispensable part of our daily life. As a conse-
quence, failure of such a system even for short time, e.g. a few
minutes or hours, could already be unacceptable let alone for
longer time. However, network component failures (e.g. due to
hardware, software and communication failures) are often. For
a network, its inherent structural dependencies among nodes
imply that the impact of one node’s failure on the services
provided by the network may significantly differ from that
of another node’s failure. Here arises a fundamental question,
referred to as the structural dependency impact problem in
this work, which is, what measures may be used to assess the
network structural dependency-caused impact?

The purpose of this paper is to propose an answer to the
structural dependency impact problem, following the idea that
“the importance of a node is related to the ability of the
network to respond to the deactivation of the node from the
network” [1]. To this aim, a new set of geodesic distance based
information centrality measures will be introduced, termed as
dependency indexes. Specifically, these measures are the path
dependency index, the node dependency index and the network
dependency index. They respectively quantify the impact of a
node’s failure, at the path level on information communication
from one node to another node in the network, at the node
level on information communication from one node to other
nodes in the network, and at the network level on information
communication from any node in the network.

The dependency impact problem is related to the critical
node detection problem, which is the problem of finding the
most important nodes in a network and has applications in
various fields [2]. In communication networks, such applica-
tions include network vulnerability analysis [3], critical node
discovery [4] and robustness study [5]. In the literature, various
measures have been proposed for critical node detection under
the concept of centrality [6]. The classic centrality measures
include node degree, closeness, betweenness and information
[5] [7]. However, these measures are generally for the network

level, where the impact of structural changes after the node
failure at the path level and the node level is not focused.

The most related works are [1] and [8]. In [1], a new cate-
gory of centrality measures, called delta centrality, are intro-
duced. However, as implied by the definition, delta centrality
measures only address the dependency impact problem at the
network level. In [8], absolute drop in reciprocal geodesic
distance is used as the basis to quantify the dependency impact,
but only at the path level and the node level. In addition,
as to be exemplified and analyzed, the dependency measures
introduced in [1] and [8] have a strong limitation: While the
removal of a node from a network may result in network
fragmentation, this effect is not factored in these measures.
Addressing this limitation and systematically quantifying the
different level dependencies for the dependency impact prob-
lem constitute the novelty and contribution of this work.

The rest is organized as follows. First, the unification of
the dependency measures in [1] and [8] is proved in Sec. II,
where an example showing their limitation will also be given
and discussed. Then, the set of new measures are proposed in
Sec. III. In Sec. IV, results and the application of the proposed
measures for critical node identification are demonstrated,
compared and discussed. Finally, Sec. V gives the conclusion.

II. NETWORK MODEL AND EXISTING MEASURES

A. Network Model
We consider a network G(N ,L), where N is the set of the

N nodes and L is the set of the L links. We assume that nodes
communicate through their shortest path.

The information measure [7] is used as the basis to quantify
the influence of a node on a path, another node or the network,
or in other words, how a path, another node or the network
depends on the node. We use G−n to denote the network that
is the same as the original network G but with all links of
node n removed, and N−n to denote the remaining set of N
after excluding node n. By definition, N−n has N − 1 nodes.

The concept of information between pairs of nodes was
originally introduced in [7] as a centrality measure based on
the theory of statistical estimation. For shortest path based
communication, the information measure Iij between node i
and node j can be written as the reciprocal of the topological
distance dij between the two nodes, i.e.

Iij =
1

dij
, (1)

where dij represents the geodesic distance, i.e. the number of
links in a shortest path, between node i and node j. For a
node to itself, it is defined that dii = 0 or Iii = ∞; if there
is no path between nodes i and j, dij =∞ or Iij = 0.
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B. Existing Measures

In [1], to quantify the influence of a node n on the
network G, a delta centrality measure, denoted as ∆(G|n),
is introduced as a measure of the relative drop in the network
efficiency caused by the deactivation of node n:

∆(G|n) =
E(G)− E(G−n)

E(G)
, (2)

where E(G) denotes the efficiency of the network G which,
initially introduced in [9] based on the communication or
information efficiency measure, is defined as:

E(G) =
1

N(N − 1)

∑
∀i 6=j∈N

Iij .

Note that the delta centrality measure ∆(G|n) only provides
measure at the network level, i.e. how the failure of node n
may impact the network.

In [8], a measure of the impact of node n on the path from
node i to node j, denoted as D(i→ j|n), is defined as

D(i→ j|n) =
1

dij
− 1

d−nij

= Iij − I−nij , (3)

where d−nij denotes the geodesic distance between node i

and node j in the network G−n and I−nij = 1
d−n
ij

. By the

definitions, it is clear that d−nij ≥ dij . Also in [8], based on
the path level measure D(i → j|n), a node level measure,
denoted as D(i|n), is introduced which essentially measures
the average influence or impact of node n on all the paths
from node i to all other nodes, defined as:

D(i|n) =
1

N − 1

∑
j∈N−n

D(i→ j|n),

which, with (3) applied, can be further written as

D(i|n) =
1

N − 1

∑
j∈N−n

(Iij − I−nij ). (4)

C. Unification of the Existing Measures

At a first glance, the network level measure ∆(G|n) seems
to be irrelevant to the two dependency measures D(i→ j|n)
and D(i|n). In the following, we first extend the latter mea-
sures to a network level dependency measure, denoted as
D(G|n). Then, we prove the equivalency in ranking nodes
between ∆(G|n) and the new network level dependency
measure D(G|n). Through this, the three measures, ∆(G|n),
D(i→ j|n) and D(i|n) are unified.

As defined, D(i → j|n) is a measure of the influence or
impact of node n on the path from node i to node j, based
on which D(i|n) essentially measures the average influence of
node n on all the paths from node i to all other nodes. Since
in (4), i can be any node in N , then by taking average over
all N such choices, we can extend the node level measure to
a network level measure of the impact to all nodes as:

D(G|n) =
1

N

N∑
i=1

D(i|n). (5)

The following theorem summarizes the equivalency between
∆(G|n) and D(G|n).

Fig. 1. Tadpole network
TABLE I

PATH DEPENDENCY MEASURES: TADPOLE NETWORK IN FIG. 1

j 3 4 5 8-14 15 16 17 18 19
D(1 → j|2) 0.42 0.24 0.15 0 0.5 0.66 0.25 0.2 0.17
DI(1 → j|2) 0.42 0.24 0.15 0 1 1 1 1 1

Theorem 1. The ranking result of nodes based on ∆(G|n) is
the same as that based on D(G|n).

Proof. Note that in the definition of ∆(G|n), E(G) is the
same for all nodes. Hence, the ranking result of nodes based
on ∆(G|n) is the same as that based on E(G) − E(G−n),
which after applying the definition of efficiency becomes

E(G)− E(G−n) =
1

N(N − 1)

∑
∀i 6=j

(Iij − I−nij ). (6)

For D(G|n), by applying (4) and (3), it becomes:

D(G|n) =
1

N(N − 1)

N∑
i=1

N∑
j 6=i;j=1

(Iij − I−nij ). (7)

A closer check on the right hand side of (6) and that of
(7) reveals that they are indeed equal, because

∑
∀i 6=j(Iij −

I−nij ) =
∑N

i=1

∑N
j 6=i;j=1(Iij − I−nij ). Hence, we have

D(G|n) = E(G)− E(G−n), (8)

which concludes the proof.
D. The Limitation

As shown by their expressions, the three dependency impact
measures D(i → j|n), D(i|n) and ∆(G|n) (or equivalently
D(G|n) = E(G)−E(G−n) as discussed above) are all defined
on Iij − I−nij . However, Iij − I−nij inherently has a limitation,
due to overlooking the possible fragmentation effect on the
network after the deactivation of node n.

Specifically, if node j is unreachable to node i after failure
or deactivation of node n, then the value of Iij−I−nij or D(i→
j|n) becomes Iij , since in this case I−nij = 0 by definition. As
a result, for such cases, D(i→ j|n) = Iij−I−nij only depends
on how far node j is from node i in the presence of node n,
i.e., on the value of dij , and if dij is large, D(i→ j|n) will be
small, giving an impression that the impact of node n on the
path is small, contradicting to the fact that the path between
i and j is unexistent after deactivation of n.

To demonstrate this limitation, consider a tadpole network
shown in Fig. 1. In Table I, D(1 → j|2) for different j is
shown, which indicates how each path starting with node 1
is impacted by the deactivation of node 2. Though simple,
several surprising observations are revealed by the example.

First, as can be observed from the figure, the nodes 15 to
20 will all be unavailable to node 1 after the failure of node 2.
However, Table I shows that for paths of 1→ 15, . . . , 1→ 20,
their D(1→ j|2) values fall within the range (0, 1) and differ
from each other.

Second, D(1 → j|2) of the paths 1 → 3 and 1 → 4 are
higher than of the paths 1→ 18 and 1→ 19, even though for
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the latter two, no path exists any more while for the former
two, a path still exists after the deactivation of node 2.

Third, for 1 → 8 to 1 → 14, as easily verified from
the figure, they are independent of node 2. This is reflected
by their D(1 → j|2) being 0. In other words, the value
0 would naturally be considered as an indication of such
independency. However, as implied by Table I, by adding m
nodes sequentially to node 20, we would get for the new
end node, a D(1 → j|2) value equal to 1/(7 + m), which
approaches 0 when m becomes large. In other words, the
current way of calculating D(1 → j|2) gives an impression
that the farther a node were from node 2, the less the node
would be dependent on node 2, which is wrong.

The above observations assert that Iij− I−nij has an evident
limitation for being used as the basis in quantifying the
dependency impact. Since D(i → j|n), D(i|n), D(G|n)
and ∆(G|n) are all formulated based on Iij − I−nij , using
them to index the dependency impact is void. To address this
limitation, we propose a set of new measures for the purpose.

III. THE PROPOSED MEASURES: DEPENDENCY INDEXES

In order to take into account the fragmentation effect, the
proposed measures quantify the dependency level not only
based on the information measure but also on the availability
of nodes. For this, a binary indicator variable A−nij is used
to measure the availability of node i to node j after failure
of node n: A−nij = 1 if node j is reachable to node i, and
A−nij = 0 if node j is unreachable.

The path dependency index, denoted as DI(i→ j|n), which
measures the dependency of the path i → j on node n is
defined as:

DI(i→ j|n) ≡

{
Iij − I−nij if A−nij = 1

1 if A−nij = 0.
(9)

There are three possible cases. One is, node j is unreachable
to node i after failure of node n. In this case, the path (i →
j) is totally dependent on node n and will be assigned the
maximum dependency level of one. The second case is node
j is reachable and there is no change in the path length. This
implies that the path (i → j) is independent of node n, so
Iij = I−nij and DI(i→ j|n) = 0. The third case is that node
j is reachable but the length of the path has increased, then the
path dependency index will have a value in the range (0, 1).

The node dependency index, denoted as DI(i|n), measures
the average level of dependency that node i has on node n for
connecting to the other nodes, which is calculated from the
path dependency index as:

DI(i|n) =
1

N − 1

∑
j∈N−n/i6=j

DI(i→ j|n). (10)

There are also three possible cases. DI(i|n) = 1 means node i
is totally dependent on node n: It is not able to connect to any
other node in the network after failure of node n. DI(i|n) = 0
implies that node i is independent of node n, i.e. node i does
not observe any connectivity change, both in terms of path
length and availability. For 0 < DI(i|n) < 1, it implies that
the connectivity of node i to the rest of the nodes is affected
but it can still reach at least one other node in the network.

TABLE II
NODE DEPENDENCY INDEXES: TADPOLE NETWORK IN FIG. 1

n
i 1 2 6 9 15 17 19 20

2 0.38 X 0.34 0.33 0.72 0.72 0.72 0.72
9 0 0 0.02 X 0 0 0 0
15 0.27 0.27 0.27 0.27 X 0.78 0.78 0.78
19 0.05 0.05 0.05 0.05 0.05 0.05 X 1

The network dependency index, denoted as DI(G|n), mea-
sures the average level of dependency the network G has on
node n. That is DI(G|n) measures the average dependency of
the nodes in N−n on node n. The network dependency index
is hence calculated from the node dependency index as.

DI(G|n) =
1

N − 1

∑
j∈N−n

DI(i|n). (11)

Theorem 2. If the failure of node n fragments the network G
into M sub-networks where each sub-network Gm has αmN
number of nodes, 0 < αm < 1, then:

DI(G|n) ≥
∑

m∈{1..M}

αm(
∑

k∈{1..M}/k 6=m

αk). (12)

Proof. A node i in a sub-network Gm will not be able to
connect with the nodes in the other sub-networks after failure
of node n. Let set M = {1..M}. Thus,

DI(i|n) ≥ 1

N − 1

∑
k∈M\m

αkN, (13)

where only the effect of the αkN unavailable paths in each
Gk, (k 6= m), with A−nij = 0 and hence DI(i→ j|n) = 1 is
counted. Similarly, we have

DI(G|n) ≥ 1

N − 1

∑
m∈M

αmN(
1

N − 1

∑
k∈M\m

αkN), (14)

which, with N/(N − 1) ≥ 1, gives (12) and concludes.
If all the sub-networks have equal number of nodes, i.e.,

αm = α, or α is a lower bound on αm, ∀m, we get
DI(G|n) ≥M(M − 1)α2. (15)

As a special case with M = N , the lower bound becomes
(N − 1)/N ≈ 1 for large N . An example is a star network,
where the failure of the central node makes all other nodes
disconnected, so the network fully depends on the central
node, i.e. DI(G|n) = 1, and the lower bound is approached.

Remark: As implied by their formulations, the time com-
plexity for calculating the proposed dependency indexes is the
same as for calculating the corresponding measures (3), (4)
and (2) proposed in [1] and [8].

IV. RESULTS

This section presents results of the proposed dependency
indexes and an application to critical node identification.

A. Dependency Indexes

For the path dependency index, DI(1 → j|2) is shown
for the tadpole network also in Table I, in comparison with
D(1 → j|2). From DI(1 → j|2), we see for paths 1 → 15,
. . . , 1→ 20, its value is 1, implying dependency of these paths
on node 2 as verified from the topology, which, however, is
not reflected by D(1→ j|2) as discussed in Sec. II-D.
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TABLE III
NETWORK DEPENDENCY AND RANKING OF CRITICAL NODES IN THE TADPOLE NETWORK (FIG. 1)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
D(G|n) 0.022 0.081 0.022 0.018 0.014 0.012 0.011 0.010 0.010 0.010 0.011 0.012 0.014 0.018 0.059 0.05 0.039 0.028 0.015 0
Rank (6) (1) (6) (7) (9) (10) (11) (12) (12) (12) (11) (10) (9) (7) (2) (3) (4) (5) (8) (13)
DI(G|n) 0.023 0.467 0.023 0.019 0.015 0.013 0.012 0.011 0.011 0.011 0.012 0.013 0.015 0.019 0.41 0.35 0.28 0.19 0.1 0
Rank (7) (1) (7) (8) (9) (10) (11) (12) (12) (12) (11) (10) (9) (8) (2) (3) (4) (5) (6) (13)
Degree 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
Rank (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (3)

For the node dependency index, DI(i|n), it is exemplified in
Table II also using the tadpole network (Fig. 1). For example,
the entry on column two (i = 2) and row three (n = 15)
shows the value of the node dependency index DI(2|15), i.e.,
the dependency level that node 2 has on node 15. In addition,
the table shows DI(20|19) = 1, meaning node 20 is totally
dependent on node 19, as implied by the topology.

For the network dependency index, DI(G|n), it is shown
and compared with D(G|n) in Table III for the tadpole
network. While not surprisingly, the values of DI(G|n) and
D(G|n) are close for nodes 1, and 3 – 14, their difference is
high for the other nodes. This is essentially due to the value
differences in the underlying path level dependency indexes
DI(i|n) and D(i|n) discussed above.

As a highlight, the network dependency index of node 2 is
DI(G|2) = 0.467. Note that failure of node 2 fragments the
network into two sub-networks. According to Theorem 2, the
network dependency index of node two is lowered bounded
by 0.44, which is very close to the actual value 0.467.

B. Application to Critical Node Identification
For the tadpole network shown in Fig. 1, Table III also

compares the ranking results for critical node identification
using D(G|n), DI(G|n) and node degree. Specifically, all
these measures rank node 2 as the first, i.e. the most critical
node, and node 20 the least. For the other nodes, node degree is
unable to distinguish as it gives equal rank for them. D(G|n)
and DI(G|n) place nodes 15-18 in the same order in the
ranking, from 2nd to 5th. This ranking result is intuitive,
since from the figure, their failure results in unavailability of
some nodes, and the number of unavailable nodes becomes
smaller in the same order. However, from node 19, the ranking
becomes different. While DI(G|n) still follows the same
intuition and ranks node 19 at the 6th place since its failure
will make node 20 unavailable, D(G|n) puts node 19 in the
8th rank after several other nodes, which are nodes 1 and 3
(6th) and nodes 4 and 14 (7th) even though failure of any of
these four nodes does not cause unavailability of others.

To examine the ranking difference further, a larger network
as shown in Fig. 2 is considered. This network is a randomly
generated scale-free network, i.e. a network with power-law
degree distribution, with 500 nodes and 998 links using the
Barabasi-Albert model [10]. The five most critical nodes, iden-
tified by DI(G|n), are numbered from 1 to 5 corresponding
to their criticality level and marked in Fig. 2. For presentation
simplicity, these numbers are also used as their node numbers
in the following discussion. Visually, this ranking follows the
same intuition as discussed for the tadpole network, i.e. a node
whose failure causes the unavailability of more nodes should
be ranked higher. However, if D(G|n) were used, the ranking

Fig. 2. Scale-free network: 500 nodes, 998 links

order among the five nodes would become 1, 2, 5, 3 and 4,
even though the failure of node 5 clearly leads to unavailability
of fewer nodes compared to that of node 3 or 4.

V. CONCLUSION

In this paper, the limitation of the related existing depen-
dency measures is demonstrated and discussed. To address this
limitation, a set of new measures are proposed, which assess
structural dependencies at the path, node and network level.
In particular, they capture fragmentation effects and hence it
is possible to get, from their values, insights into the extent of
fragmentation that the failure of a node will cause. The results
also show that the proposed measures are better suitable for
critical node identification reflecting the fragmentation effect.
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