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Abstract—Packet loss rate (PLR) is a crucial and
popular link quality metric for wireless sensor networks
(WSNs). In this paper, we investigate how to estimate PLR
of an IEEE 802.15.4 link from the information that is easily
obtained from radio chip. Specifically, we aim to establish
a generalized model that connects PLR to link quality
indicator (LQI), a physical layer link quality measure, and
packet length under diverse environmental conditions. To
this aim, an extensive experimental study considering vari-
ous environmental factors and packet lengths is conducted,
from which rich observations are made on the spatio-
temporal characteristics of the dependency of PLR on LQI
and packet length. Based on the observations, we propose
a packet loss rate model as a function of LQI and packet
length, that is applicable in all experimented scenarios.
Besides, a comparison with a literature LQI-only based
PLR model shows that our proposed model has higher
accuracy for various packet lengths. Finally, we provide
the implications of the empirical study and the guidelines
for real-world WSN applications to construct and adapt
the proposed PLR model in different environments.

I. INTRODUCTION

Packet loss rate (PLR) of a link is a crucial parameter
for the design and adaptation of higher-layer protocols in
wireless sensor networks (WSNs). Though long term av-
erage PLR can be easily estimated by counting the num-
ber of packets transmitted and successfully received,
in many cases, e.g., for routing and link performance
maintenance, it is crucial to estimate the expected PLR
instantly or in short time. In such cases, the literature
has resorted to information that can be retrieved easily
and locally, which includes, e.g., link quality indicator
(LQI), received signal strength indicator (RSSI) and
signal to noise ratio (SNR).

In a recent experimental study [1], we reported our
findings about how environment impacts the dependency
of link PLR on SNR and packet length and proposed a
SNR-based PLR model. Among all the experimented
scenarios, we notice that in some scenarios such as
outdoor open spaces or indoor office environment during
non-working hours, a variation in the SNR as small as
2 dB can change a good link to a bad one, and vice
versa. This implies that in such scenarios, SNR may
not be the best indicator for PLR, especially when the
link is in the transitional region. On the other hand,
another physical layer link quality measure provided by

radio chips, LQI, has received significant attention in the
research community in recent years. A number of works
argued that LQI shows stronger correlation with PLR
than other hardware indicators such as RSSI and hence
LQI is a good indicator of PLR [2] [3]. Specifically,
Srinivasan et al. showed in [4] that average LQI over
a large packet window (e.g. 120 packets) can provide
accurate link quality estimation.

Some recent works try to model the correlation be-
tween link PLR and LQI. The authors of [5] build a
piecewise linear model of packet reception rate (PRR,
i.e. 1 − PLR) as a function of average LQI. Other
works [2] [6] suggest that PRR can be approximated by
hardware indicators with sigmoid curves. Liu et al. [7]
use logistic regression to fit the sigmoid curves to the
PRR-LQI data points collected from a testbed placed
along an office corridor. In [8], Bildea et al. model
the dependence between PRR and LQI for CC1101
radio links with a Fermi-Dirac function in an indoor
environment. Note that, these existing LQI-based PLR
models (e.g., [7] [8]) have been proposed based on
findings in highly controlled environments (e.g. indoor
environment with static surrounding objects).

Despite these efforts, the impact of typical environ-
mental factors on the mathematical mapping from LQI
to link PLR still remains unclear, such as the impact
of temperature [9], human presence [10], interference
[11], climate condition and terrains [12]. Without a com-
prehensive understanding of such environmental impact,
the acquired empirical PLR models are severely limited
to specific scenarios. In addition, the impact of packet
length on PLR revealed in previous studies [1] [13] are
not considered in most existing LQI-based PLR models.
Taking both factors, i.e. environment and packet length,
into account forms the foundation of the present paper.

The specific objective of this paper is to establish
a PLR model that quantifies the impact of both LQI
and packet length on the PLR of an 802.15.4 link under
diverse environmental conditions. To do so, an extensive
experimental study under diverse environmental condi-
tions and different packet lengths has been conducted. In
particular, we conducted indoor and outdoor experimen-
tal campaigns in four locations, considering a variety of



environmental factors, such as climate condition during
day and night, obstacles, human presence, interference,
etc. In addition, various packet lengths were experi-
mented to capture and model the impact of packet length
on the PLR-LQI relationship in different environments.

The most important experimental findings include: (1)
the PLR-LQI relationship can be significantly different
in different environments, and may differ from link
to link in the same environment, (2) the PLR-LQI
relationship is highly dependent on the packet length,
(3) the impact of LQI and packet length on PLR may
vary over time due to interference and shadowing effects
of humans or other objects. Based on these observations,
we propose a link PLR model as a function of LQI and
packet payload size. We further validate that the pro-
posed model is applicable in all experimented scenarios
and for any packet length, while only the values of model
parameters may vary over space and time. The proposed
model is compared with one literature LQI-only based
PLR model. The comparison shows that our proposed
model has higher accuracy for various packet lengths.
Finally, we provide the guidelines to construct and adapt
the proposed PLR model in different environments and
discuss briefly the comparison between LQI and SNR
for predicting the link PLR.

The rest is organized as follows. In Sec. II, we
introduce LQI briefly, describe the experimental study,
and present the spatial and temporal characteristics of
the dependency of link PLR on LQI and packet length
under diverse environmental conditions. In Sec. III, we
propose a PLR model, validate it, compare it with an
existing model, provide guidelines for its application in
different environments and discuss briefly about the use
of LQI and SNR to predict link PLR. Finally, in Sec. IV,
we conclude the paper.

II. AN EXPERIMENTAL STUDY

A. LQI, Packet Length and PLR

LQI is proposed in the IEEE 802.15 standard, but its
implementation is vendor-specific. For CC2420, which
is probably the most widely adopted radio chip in wire-
less sensor network research, LQI is measured based on
the first eight symbols of the received packet, using a
score ranging from 50 to 110. The score value is related
to the correlation between phase shifts of incoming
data and 802.15.4 symbols [14]. A higher value of LQI
indicates higher quality of the received symbols. The
corresponding symbol error rate directly affects BER
(bit error rate) and consequently PER (packet error
rate), which further subsequently affects PLR because
packets with errors will be discarded by the link-layer
mechanisms.

As its definition shows, LQI is determined by the
quality of the wireless link, which, like all wireless links,
is environment-dependent, or in other words, can be

highly affected by various environmental factors. The
dependence flow between PLR, PER, BER and symbol
error rate provides the underlying reason about why LQI
has been experimentally shown, e.g. in [2] [3] [4], to be
a good indicator for PLR.

It is also worth highlighting that, when relating BER
to PER, i.e. PER ≈ 1 − (1 − BER)l, the packet
length l is a non-dispensable factor. This implies that,
in modeling and estimating PLR, packet length must
also be taken into account, which affects PLR from an
orthogonal angle of the environment.

Based on the above analysis, an extensive experimen-
tal study has been conducted to investigate the impact
of LQI and packet length on link PLR under diverse
environmental conditions. The experiment setup and the
results are presented in the subsequent subsections.

B. Experiment Setup

To consider both indoor and outdoor scenarios and
cover diverse environmental factors, we have chosen
four experiment locations: (1) an Athletic Field, an
open field isolated from human activity and absent from
(severe) electromagnetic interference, (2) an university
Parking Lot, where shadowing effect of obstacles such
as cars is notable during the day, (3) an Office Building,
a university building with heavy human-related activities
during office hours, and (4) Home, an apartment where
cross technology interference is ubiquitous.

In the experiments, TelosB nodes are used, each of
which is equipped with the CC2420 radio chip compli-
ant with IEEE 802.15.4 and on-board omnidirectional
antenna. The radio chip operates in the ISM band of
2.4 GHz at the PHY layer and all experiments use the
standard TinyOS 2.1 CSMA MAC layer.

Other experiment details, such as a list of performed
experiments, deployment setup, and data collection pro-
cedure, can be found in our previous report [1]. We do
not repeat them here due to space constraints.

C. Results under Different Environments

In this subsection, we focus on investigating whether /
how the PLR-LQI relationship may vary under different
environments and/or with different packet lengths.

We first study the large-scale environmental impact,
i.e. the impact of different experiment locations. Fig. 1
plots the PLR-LQI curves with respect to packet payload
size L (in bytes) for a selected link in each of the four
experiment locations. Each graph in the figure is plotted
based on two consecutive experimental runs (i.e. 192
thousand packets transmitted in approximately one hour)
and PLR is computed over every 3000 packets and then
averaged for each value of LQI (at a step of 1). In this
analysis, all results are generated from experiments of
a short time span (e.g., over a one hour window) to
minimize temporal effects of the environments.



Fig. 1: The dependency of PLR on LQI and packet payload
size L (in bytes) in four different experiment locations.

Fig. 1 shows that PLR always decreases with LQI
while the steepness of the PLR-LQI slope clearly varies
with the experiment location. As a result, the width (in
terms of LQI) of the transitional region (PLR between
0.1 and 0.9) strongly depends on the location. For ex-
ample, for 80 bytes payload, the width is approximately
18 in the athletic field (Fig. 1(a)) but 36 in the office
building (Fig. 1(c)). We can further observe that the
LQI threshold of good links (PLR less than 0.1) varies
significantly with the environment. The maximum LQI
threshold of good links observed in all experiments is
108 for a link in the office building while the minimum
is 81 for a link in the athletic field. These indicate that
the PLR-LQI relationship can be significantly different
in different environments.

In addition, from Fig. 1, we can observe that PLR
always increases with larger payload size and there
is a clear separation between the PLR-LQI curves of
different payload sizes in the transitional region in all
experiment locations. The maximum PLR difference
between 20 bytes payload and 110 bytes payload is
found to be more than 0.4 in all the four graphs.
These indicate that the PLR-LQI relationship is highly
dependent on the packet length. We can also see from
the figure that such an impact of packet length varies
over the experiment location. For example, only in the
athletic field, the PLR-LQI curves of various packet
payload sizes almost overlap in the LQI range between
90 and 105.

We then investigate the small-scale environmental
impact, i.e., whether the PLR-LQI relationship differs
from link to link at the same experiment location. We
select 3 different links from each location and plot the
PLR-LQI curves in Fig. 2.

Interestingly, Fig. 2 shows that, even at the same ex-
periment location (e.g. athletic field), different links can
have their PLR-LQI curves significantly different from
each other due to small-scale environmental differences.

Fig. 2: The PLR-LQI relationship (for 110 bytes payload) of
three different links in each experiment location.

For the athletic field (Fig. 2(a)), a possible reason for
the PLR-LQI relation difference is that Link 1 maintains
line-of-sight (LOS) between the transmitter and receiver
while Link 2 and Link 3 have non-line-of-sight (NLOS)
radio communication. The three selected links in the
parking lot (Fig. 2(b)) are all NLOS links while the
PLR-LQI curves yet still look different from each other.
We believe that this difference is likely caused by the
different shadowing effects of objects (in this case, cars)
on each link. Similarly, the difference of PLR-LQI curve
between different links in the office scenario (Fig. 2(c))
and the home scenario (Fig. 2(d)) may largely be due
to the different shadowing effects of human, furniture,
etc. The observation from Fig. 2 essentially indicates
that the PLR-LQI relation is sensitive to not only the
large-scale environmental impact but also small-scale
environmental factors.

D. Results under Different Times

In this subsection, we investigate whether / how the
PLR-LQI relationship vary under different times when
there may be changes in environmental characteristics.
In this investigation, the impact of packet length is also
considered.

We first focus on outdoor environments. For the
athletic field, we consider the impact of time change
over day and night, when climate environmental factors
such as temperature and humidity may be different.
Fig. 3 provides an example showing the dependency
of PLR on LQI and packet payload size for a link
in the athletic field during both day and night. We
notice that when changing from day to night, the qual-
ity of the link improves, i.e. LQI increases and PLR
decreases under the same transmission power. However,
the dependency of PLR on LQI and packet payload
size remains surprisingly almost unchanged, showing no
clear temporal variation due to the transition between
day and night. This indicates that though the change in



Fig. 3: The climate change from day to night has almost no
impact.

Fig. 4: Temporal variation due to the shadowing effect of cars.

climate conditions (such as temperature and humidity)
may impact PLR or LQI individually, it has little impact
on the mapping between PLR and LQI.

For the parking lot scenario, we consider the impact
of the shadowing effect of objects, i.e. cars. Fig. 4 plots
the impact of packet length and LQI on the PLR of a link
during day time when the parking lot was full of cars,
and during night time when the parking lot was almost
empty. As the figure depicts, the width of transitional
region of the link during the day (Fig. 4(b)) is larger than
that during the night (Fig. 4(a)). As we have showed
above that the climate change from day to night induces
almost no variation on the relation between PLR and
LQI, the major variation here is very likely due to the
presence of cars. This suggests that the shadowing effect
of objects may strongly impact the dependency of link
PLR on LQI and packet length.

We next focus on indoor environments. Here we
consider two common human-related factors in such
environments: (1) human presence and movement, and
(2) WiFi interference. The former imposes shadowing
effects on the links; the latter is known to have a strong
impact on link quality [11].

We use the testbed in the office building to perform
a set of experiments in a weekend, to minimize the
interference from other possible sources. We first let a
person walk around the transmitter, and then, close to
a link, we place a laptop that first streams live videos
and then downloads a large file from an access point
(AP) using WiFi. During the experiment, we select
two different CC2420 channels: Channel 12, whose
frequency overlaps with the channel used by the AP, and
Channel 26, which is known to be outside the WLAN
radio frequency [15].

The impact of people walking on the dependency of
PLR on LQI and packet length for an exemplary link is

Fig. 5: Temporal variation due to people walking.

Fig. 6: Temporal variation due to WiFi interference.

plotted in Fig. 5. We can observe that human presence
and walking extend the width of the transitional region
of the link (Fig. 5(b)), compared to the baseline case
(Fig. 5(a)). We believe this impact is due to the shad-
owing effect of human, similar to the impact of cars on
the PLR-LQI relationship in the parking lot scenario.

Fig. 6 plots the impact of WiFi interference for the
link close to the laptop that communicates with the
AP. The figure shows that the interference from file
download (Fig. 6(c)) has a stronger impact than video
streaming (Fig. 6(b)) on the correlation of PLR with
LQI and packet length on Channel 12, while the impact
of WiFi interference is minimal on Channel 26, as the
PLR in Fig. 6(d) is much lower for the same LQI value
even during file download.

Bringing the above observations together, we summa-
rize the impact of environmental changes due to time
as follows. The PLR-LQI relationship may vary over
time due to environmental changes, such as interference
and shadowing effects of human, obstacles, etc. Inter-
estingly, the normal climate change in temperature and
humidity from day to night induces almost no variation
on the PLR-LQI relationship. Additionally, the impact
of packet length on the PLR-LQI relationship may also
change over time due to the environmental changes, as
the PLR difference between 20 bytes payload and 110
bytes payload of the same LQI value changes when,
e.g., cars are present in the parking lot scenario (Fig. 4)
or people walk around in the office scenario (Fig. 5).



Fig. 7: Modeling PLR of an exemplary link as a function of
LQI and payload size (α = 0.00048, β = 0.1461).

TABLE I: Model accuracy of Eq. (1) in different scenarios
Scenarios Param. α Param. β R2

Open field - LOS 0.0009 0.1618 0.924
Open field - NLOS 0.0008 0.1551 0.913
Parking lot - cars 0.0007 0.1533 0.901
Parking lot - no cars 0.0008 0.1547 0.918
Office - people walking 0.0005 0.1493 0.918
Office - interference 0.0002 0.1407 0.896
Office - weekend 0.0007 0.1521 0.933
Home 0.0005 0.1461 0.925

III. MODEL, VALIDATION AND IMPLICATIONS

In this section, we propose a link PLR model as a
function of both LQI and packet length based on the
spatio-temporal characteristics presented in the previous
section. Also, we validate it under various environmental
settings and packet lengths. Furthermore, we compare
its performance with a literature LQI-only based PLR
model. Finally, we provide the guidelines for applying
the proposed model to real-world sensor network ap-
plications in different environments, and discuss briefly
about predicting link PLR using LQI and SNR.

A. The Proposed Packet Loss Rate Model

To propose the link PLR model, we used Matlab to
find the best fit for all data sets and different theoretical
models were compared according to the chi-square test.

Eq. (1) is our proposed PLR model for 802.15.4 links,
which is a function of LQI and packet payload size.

PLR =
1

1 + (α/L) · exp(β · LQI)
(1)

where LQI denotes the value of LQI, L is the packet
payload size in bytes, and α and β are two model
parameters. The specific form as shown by Eq. (1) is
the result of model-fitting for the data sets from the
experiments described in the previous section. Fig. 7
shows an example of modeling PLR for a link in the
home scenario. The values of model parameters α and
β are found with 95% confidence level.

B. Model Validation

For all the data sets collected under diverse environ-
mental settings, the proposed model (Eq. (1)) always

Fig. 8: Weekly variation of model parameters α and β in the
office scenario.

Fig. 9: Daily variation of PLR models in the office scenario.

fits well. In other words, the mathematical function
expressing the dependency of PLR on LQI and payload
size remains in the same form (Eq. (1)) while the values
of the model parameters α and β may vary for different
(spatial and/or temporal) environmental settings. Due to
space limitation, only two sets of the validation results
are presented below.

1) Model validation in different environments: For
validation purposes, the collected data set is segmented
into model training and validation sets at 0.25-0.75 ratio.
Table I lists the typical values of the model parameters
of the proposed PLR model that are validated in all
experimented scenarios, together with model precision
in terms of a standard error measure for model fitting:
R2 (R-squared). R2 is a value between 0 and 1, with a
value closer to 1 indicating a greater fitting of the model
to the measurements.

2) Model validation for environmental changes: We
take the office environment as an example and apply the
model to the data set collected from a 7-day experiment
on the testbed in the offices. Fig. 8 plots the weekly
variation of the model parameters of a testbed link,
where α and β are updated approximately every four
hours. Fig. 9 provides the daily model variation (for 110
bytes payload) on Saturday and Monday, respectively.

Both figures show that the model parameters change
significantly in the morning when people walked in and
in the afternoon when people left the offices, while they
only change slightly in rest of the time. Over the whole
week, the R2 values of the proposed models always
remain above 0.87. These show that the proposed model
is still applicable despite the over-time environmental
changes in the offices.



C. Model Comparison

Now we compare our proposed PLR model (Eq. (1))
with a literature LQI-only based PLR model. In [7] [8],
LQI has similarly been considered as the only factor
that impacts the PRR and the PRR-LQI relationship is
approximated as a sigmoid curve, e.g., the Fermi-Dirac
function in [8]. Here we transform the PRR-LQI model
in [8] to obtain the corresponding PLR-LQI model that
has the following form:

PLR =
1

1 + exp((a− LQI)/b)
(2)

where a and b are two model parameters of this model.
Note that packet length is not involved in Eq. (2).

For the comparison, we use the measured PLR-LQI
data points under a certain packet payload size (i.e. 80
bytes) to determine, using curve fitting, the values of the
model parameters of each model (i.e. Eq. (1) and Eq.
(2)), respectively. Then we compute the R2 values of the
two models when the packet payload size changes from
80 to 20, 50, and 110 bytes. This process is performed
for the experimented environments and the results are
listed in Table II.

We observe from the table that the R2 values for 80
bytes payload are the highest in most cases for both
models. This is because the data set under 80 bytes
payload has been used to compute the model parameters
for both models. Only in this case, the literature model
achieves similar R2 values as our model. However, when
the packet length changes, our model is still able to give
good R2 values (ranging from 0.887 to 0.988) that are
much better than what are from the literature model.

This indicates that our proposed model can be well
applied for various packet lengths in all experimented
environments. It also implies that using our model, the
model parameters only need to be estimated one time
under a certain packet length for one environmental
condition, and after that, they can be directly re-used
for other packet lengths without the need of updating
the model parameters for this environmental condition.
This avoids possibly huge overhead if the LQI-only
based PLR model were to be applied where its model
parameters would need to be examined or updated for
every different packet length. This suggests that our
model is more preferred in practice, since the packet
length in real-world applications of WSNs may vary for
various purposes.

D. Discussion

Finally, we discuss the implications of the empirical
study and how to apply the proposed model in real-
world sensor network deployments, followed by a brief
discussion about which of LQI and SNR is a better
predictor of link PLR.

TABLE II: Model accuracy comparison between Eq. (1) and
Eq. (2) when packet payload size changes from
80 to 20, 50, 110 bytes

Environ. Models R2-20 R2-50 R2-80 R2-110
Athletic

field
prev. model 0.821 0.916 0.988 0.656
our model 0.908 0.945 0.988 0.918

Parking
lot

prev. model 0.781 0.816 0.940 0.809
our model 0.887 0.910 0.940 0.926

Office prev. model 0.872 0.955 0.973 0.811
our model 0.912 0.977 0.974 0.904

Home prev. model 0.863 0.923 0.964 0.867
our model 0.903 0.977 0.965 0.945

1) Application of the proposed PLR model: The
observed spatial characteristics of the dependency of
PLR on LQI and packet length suggests that every link
may need its own PLR model for the deployed envi-
ronment, which could be highly challenging in practice.
Fortunately, with our proposed PLR model, the same
function can be applied to all links across the network
under various environmental conditions spatially and/or
temporally, where only two model parameters need to
be determined for each link.

Thanks to this finding, the modeling complexity is
significantly reduced, enabling the possibility of sensor
nodes to construct their own link PLR models. We
adopted a similar approach from our previous work [1]
and developed an online LQI-based PLR modeling
scheme running on sensor nodes. The difference is that
for modeling PLR from LQI and packet length, we need
to first convert Eq. (1) to the following form:

(α/L) · exp(β · LQI) = 1

PLR
− 1 (3)

Then we can linearize the exponential function at the
left side of Eq. (3) by taking the logarithm of both sides
and use linear regression to determine the values of the
two model parameters. Details of this scheme are not
shown here for space limitations. We found that with
up to 5 minutes measurement of probing packets (at an
interval of 20 ms), we achieved good model accuracy
in all experimented environments.

The acquired empirical PLR models need to adapt
to environmental changes due to the observed temporal
characteristics. In indoor environments, the modeling
process can be triggered, e.g., when people enter the
offices and start working or when people leave the
offices. In outdoor environments, the models need to
updated, e.g., when detecting a drastic change in link
PLR for the same LQI value.

2) LQI vs. SNR: Despite the research efforts for more
than a decade, which of LQI and SNR is better for
predicting link PLR is still an unanswered question,
reflected by several contradicting statements and re-
sults [15]. Fig. 10 shows an example of estimating link
PLR using SNR and LQI, respectively. The two graphs



are plotted based on the same data set with the same
parameter settings for data processing (e.g., the size of
the packet window to average SNR or LQI is the same).

Fig. 10 clearly shows that when the link is in the tran-
sitional region, PLR changes with LQI much smoother
than it changes with SNR, possibly implying that LQI is
better than SNR to estimate link quality of intermediate
links. Take 50 bytes payload for example. The width
of the transition region (PLR between 0.1 and 0.9) in
terms of SNR is around 1 dB (compared to the measured
SNR range of 15 dB) while the width of the transitional
region in terms of LQI is around 18 (compared to the
measured LQI range of 45).

In addition, the figure shows that the PLR-SNR curves
of different packet payload sizes almost overlap with
each other in the transitional region while the PLR-LQI
curves are clearly separated, e.g., between the curves for
20 and 110 bytes payload. This implies that from a SNR-
based PLR model trained from, e.g., the data depicted in
the left graph in Fig. 10, we may not see the possibility
of decreasing packet length to reduce PLR, unlike what
we can see from the PLR-LQI curves in Fig. 10.

Nevertheless, we still need to answer several im-
portant questions before jumping into the conclusion
that LQI is a better predictor of link PLR than SNR.
For example, if we decrease the size of the packet
window to average SNR and LQI at the same time,
how would the model accuracy of both models change
in different environments? What many measurements
are needed under various environmental conditions to
generate accurate enough SNR-based and LQI-based
PLR models, respectively? Which of the model is more
resistant to what kinds of environmental changes? As
an ongoing work, we are using the experimental data
sets obtained in [1] and this work to investigate these
issues and to understand which of SNR and LQI may
be a better or complementary predictor for link PLR.

IV. CONCLUSION

This paper has presented the results of indoor and
outdoor experimental campaigns to understand how var-
ious spatial and temporal environmental factors impact
the dependency of link PLR on LQI and packet length.
Based on the observations from this extensive experi-
mental study, a PLR model for 802.15.4 links has been
proposed, and validated under diverse environmental
conditions and different packet lengths. The comparison
with the literature LQI-only based PLR model has
showed that, in all experimented environments, our pro-
posed PLR model achieves higher accuracy for various

Fig. 10: Estimating the link PLR using SNR and LQI, respec-
tively, for an exemplary link in the office scenario
during non-working hours.

packet lengths without the need of updating model
parameters. Implications of the experimental results and
the guidelines to construct and adapt the model in differ-
ent environments are provided, enabling the possibility
of applying the proposed LQI-based PLR model in real-
world sensor network applications.
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