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Abstract

We consider a monitored systemW (t) at time t which is modeled by a stochastic process.
Failure of the system is connected to the process overreaching a certain threshold. The
system is governed by an unobservable marker process in such a way that the state of the
marker process is connected to the technical condition of the system. The system exhibits
different traits for the different states of the marker process. The goal is to estimate
the first passage time of the critical threshold. The stochastic process under study is
the Wiener process, more precisely, a piecewise Wiener process with change points. The
change points signify the occurrence of an event which causes a change in parameters of
the Wiener process. The change points are governed by the marker process: the time
between change points is the time spent in each state for the marker process. This is an
unknown quantity, which is estimated by the observable Wiener process. The situation
with one change point and two change points and the Wiener process parameters known
and unknown are examined and numerical examples are provided for simulated data.
The formulas are extended to m change points. A Bayesian approach is used, and
Markov Chain Monte Carlo methods are employed to estimate the distribution of the
process parameters. In order to predict the hitting time, the hitting time cumulative
distribution functions are estimated through simulation of Wiener processes, straight-
forward calculations and a time transformation approach.
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Sammendrag

Vi betrakter et overvåket system W (t) ved tidspunkt t modellert ved en stokastisk
prosess. Systemfeil er knyttet til at prosessen krysser en gitt terskel. Prosessen styres
av en ikke-observerbar markørprosess, på en slik måte at markørprosessens tilstand er
knyttet til systemets tekniske tilstand. Prosessen har ulike egenskaper for de ulike stadi-
ene i markørprosessen. Målet er å estimere tidspunktet for første passasje over den
kritiske terskelen. Den stokastiske prosessen som studeres er Wienerprosessen, mer
presist, en stykkevis Wienerprosess med endringstidspunkter. Disse tidspunktene in-
ntreffer samtidig med en hendelse som forårsaker en endring i prosessens parametere.
Endringstidspunktene styres av markørprosessen: Tiden mellom tidspunktene er tiden
markørprosessen tilbringer i hver tilstand. Dette er en ukjent størrelse, som estimeres
via den observerbare Wienerprosessen. Situasjonen med ett og to endringstidspunkter
studeres grundig og numeriske eksempler er gitt for simulerte data. Bayesisk inferens og
Markov Chain Monte Carlo-metoder anvendes for å estimere sannsynlighetsfordelingen
til endringstidspunktene, og parameterene i Wienerprosessen. For å predikere tidspunk-
tet for første passasje av den kritiske terskelen, estimeres den kumulative fordelingen for
passasjetiden til den kritiske terskelen ved hjelp av simuleringer av Wienerprosesser og
beregninger med og uten transformasjon av tiden.
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Chapter 1

Introduction

This thesis will study deterioration processes modeled by an important stochastic pro-
cess, namely the Wiener process. The model and statistical inference are the main topics,
and the goal is to obtain estimates to predict the future behavior of the process, which
could be used in connection with condition-based maintenance.

Condition-based maintenance can be defined as (Rausand and Høyland, 2004, p. 363):
an approach to maintenance in which maintenance actions are decided based on mea-
surements of variables that are correlated with deterioration. Examples of such variables
are temperature, pressure, erosion, vibration and noise levels. The maintenance strat-
egy is sometimes called predictive maintenance. Condition-based maintenance requires
a monitoring system for measurements of the variables, as well as a mathematical model
that predicts the behavior of the deterioration process. When repair is difficult, involves
risk, is costly in itself or leads to costly downtime, condition monitoring may be im-
portant to ensure that no production is lost. Examples that could be thought of are
offshore structures, such as sub-sea structures or wind turbines. The latter will be the
motivating example when studying Wiener processes in this thesis.

Wiener processes have been used in a wide range of subjects, perhaps because of
their tractable mathematical properties. One such subject is finance, where the Wiener
process without drift and with standard variance is important. This special case of a
Wiener process is called standard Brownian motion. One important usage in finance is
the Black-Scholes equation, which models stock price under a risk-neutral probability
measure. The differential of the Brownian motion enters in the stochastic differential
equation in a term which aims to describe the uncertainty in the stock price. The solution
to the Black-Scholes equation is known, and the Brownian motion enters as part of the
solution.

In degradation modeling it is natural to consider the Wiener process with drift. For
the Wiener process with positive drift, the first passage time to a given threshold of
interest has inverse Gaussian distribution. In reliability engineering, it has been studied
by for example Whitmore: in Whitmore (1986), multiple modes of failure are introduced
to a multivariate Brownian motion. The situation with multiple failure modes is often
called competing risks. Length of stay in hospital has also been modeled by use of
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2 CHAPTER 1. INTRODUCTION

a Wiener process, in Horrocks and Thompson (2004), in a competing risk situation.
The Wiener process with drift represents a health level process and has the multiple
outcomes: death in hospital or healthy discharge. A time scale transformation is applied
in Whitmore and Schenkelberg (1997) to a Wiener process to predict life time. The time
transformation is actually inspired by the time transformation in Doksum and Høyland
(1992), which will be examined more thoroughly in section 4.3.2. In Whitmore et al.
(1998) a bivariate Wiener process is governed by an unobservable marker process. Many
different applications are suggested in a variety of fields, among them marriage failure,
where an appropriate marker process is a social estrangement index, AIDS death, where
CD4 cell count is an appropriate marker process and metal fatigue failure, with dominant
crack length as marker process. The setting with a marker process is the topic for this
thesis.

The change point problem for Wiener processes was studied by Shiryaev (1963). The
setting is an observed Wiener process with one unknown change point, after which the
drift of the process changes from 0 to r for some r. A Bayesian approach equivalent
to the approach in this report is used to detect the change point. The multiple change
point problem is studied in a frequentistic setting in Hawkins (2001), who provides an
exact algorithm for finding maximum likelihood estimates of the change points.

In this thesis, the mathematical model for the behavior of the system will be the
Wiener process, which, in our example, will model temperature. The case study from
Lindqvist and Slimacek (2013) will be analyzed more thoroughly. Whereas Lindqvist and
Slimacek (2013) developed estimates for change points in Wiener processes, this report
will examine the cumulative distribution functions of the hitting time of a specified
threshold. Wiener processes are used to model temperature in the bearing of a wind
turbine, which is governed by the failure development. The failure development itself is
modeled by a hidden Markov model. The case study developed by Valland et al. (2012)
is presented in section 2. General theory is developed in section 3. Section 4 shows
how the theory can be used to model the case study, and finally the theory is applied
to simulated data in section 5. Section 6 concludes on the theory developed and its
applicability, and suggests further work.



Chapter 2

Case study of wind turbine
bearing

In this section a motivating case study for failure prediction in a monitored system will
be presented. The setting is an offshore wind turbine, which is monitored in a number
of ways. By linking all the monitored variables to an index number, an overview of the
network of instruments or structures may easily be obtained. The technical condition
index (TCI) aims to do just this: to include all information about the condition of an
instrument or structure in one index number. In order to link the monitored variables
to a health indication index by a mathematical model, one must have knowledge of the
failure development process. The mathematical model will be studied in this thesis.

2.1 Failure development process

The stages of the failure development can be modeled as described in Valland et al.
(2012). It is suggested that failure in a wind turbine bearing can develop through the
following stages:

0. As good as new
1. Impurities in oil
2. Mechanical wear
3. Micropitting, Pitting
4. Chipping
5. Bearing breakdown
6. Turbine shut down

where the first stage, 0, which signifies normal conditions, has been added for conve-
nience. In Valland et al. (2012), the different health indicators of the failure development
were particles in oil, vibrations, abnormal noise, temperature variation and visible signs
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4 CHAPTER 2. CASE STUDY OF WIND TURBINE BEARING

of the failure development. Vibrations and temperature variations are observed by ma-
chine monitoring. The remaining indicators are observed by more demanding methods,
namely oil analysis, human senses and inspection. Impurities in oil is the stage 1 condi-
tion and is according to Valland et al. (2012) the only indication which is detectable at
stage 1. At stage 2, mechanical wear, it is also possible to detect the failure development
through temperature variations, vibrations and visible signs. At stage 4, chipping, the
failure development is detectable through all health indicators.

It is suggested in Valland et al. (2012) that the temperature is increasing throughout
the failure development as a result of increased bearing friction. This is reflected in
Lindqvist and Slimacek (2013) by the drift of the temperature process increasing through
the failure development states. This means that the temperature rises at faster rates
through failure development stages. Note that after breakdown, states 5 and 6, the
temperature is assumed to drop linearly. An example of the temperature process for a
process which is moving through the failure development is shown in figure 2.1, from
Valland et al. (2012).

Figure 2.1.1: Example of a typical temperature process through failure development
given in Valland et al. (2012). S1 denotes stage 1, S2 denotes state 2 and so on. Note
that state 0 which has been added in this thesis corresponds to OK.

As Valland et al. (2012) points out, one problem with the TCI framework is that
it only provides historical information, and no way to predict development in order to
plan maintenance. Such predictions is the aim for this report, and we will connect the
described failure development to a model which makes it possible to predict the future
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development.



Chapter 3

Probabilistic modeling in the
general setting

This section gives an introduction to the theory of Markov models and Wiener processes
that will later be applied to the model of the motivating case study. Bayesian inference
and Markov Chain Monte Carlo methods, which are used to making inference about the
case study are also covered.

3.1 Markov model

To model the underlying failure development, we will use a discrete time Markov chain,
a special stochastic process, which can be defined as in (Ross, 2007, p. 185): Denote the
stochastic process Zn, {Zn, n = 0, 1, 2, . . . }, which takes a finite or countable number of
values. From now on, we will assume that the number of values is finite. We introduce
the notation Zn = i, meaning that the process is in state i at time n. When the process
is in state i there is a probability Pij that it will next be in state j, that is

P{Zn+1 = j|Zn = i, Zn−1 = in−1, . . . , Z1 = i1, Z0 = i0} = Pij ,

for all i0, i1, . . . , in−1. Thus, the conditional distribution of the state Zn+1 given all the
past states Z0, Z1, . . . , Zn−1 and the present state Zn, depends only the present, and is
independent of the past, that is, the process is memoryless. The memoryless property
is referred to as the Markov property. Note that Pij ≥ 0,

∑∞
j=0 Pij = 1 for all i, j.

Let 0 = S0 < S1 < . . . be the times at which transitions occur. Define Ũi = Si+1−Si
as the ith interoccurrence time. Let Ui denote the time spent during a visit to state
i. It is known from for example (Rausand and Høyland, 2004, p. 305) that because
of the Markov property of the process, the random variable Ui is memoryless, and
thus exponentially distributed for a continuous time Markov chain and geometrically
distributed for a discrete time Markov chain.

The classification of states of a Markov chain is important when constructing Markov
chains for Markov Chain Monte Carlo methods, of which there is a short review in section

6



3.2. THE WIENER PROCESS AND THE INVERSE GAUSSIAN DISTRIBUTION 7

3.5. Two of the necessary classifications of states in Markov chains are irreducible states
and ergodic states. A Markov chain is said to be irreducible if all states are accessible
from any state. An ergodic state in a finite state space Markov chain is a state which is
recurrent and aperiodic. A state i is recurrent if, starting in state i, the probability of
ever returning to state i is 1. A state i is periodic with period k if return to state i must
occur in a multiple of k time steps. On the other hand, a state is aperiodic if k = 1.
If all states in a Markov chain are aperiodic, then the Markov chain itself is said to be
aperiodic. Correspondingly, a Markov chain is ergodic if all its states are ergodic.

3.1.1 Hidden Markov model

A hidden Markov chain can be described as in (Givens and Hoeting, 2013, p. 175).
Suppose there is a Markov chain of unobservable variables Z0, Z1, . . . indexed by time
n. The variables represent the state of a Markov process, thus the chain has the Markov
property. Although the states Zn are unobservable, there is an observable sequence of
random variables X0, X1, . . . , such that Xn is dependent on the process state at the
same time, Zn. This gives the model

Xn ∼ fx(xn|zn) Zn ∼ fz(zn|zn−1),

which is known as a hidden Markov model. The hidden Markov model can act as the
marker process as in Whitmore et al. (1998), of which several examples were provided
in chapter 1. Note that the marker process examples were not necessarily unobservable
processes.

Thus, given the state of the hidden Markov chain, we have full knowledge about
the distribution of the observable process, Xn. To make inference about Xn, we must
thus make inference about Zn. This will be done by Bayesian inference, which is briefly
reviewed in section 3.3.

3.2 The Wiener process and the Inverse Gaussian
distribution

A stochastic process W (t) is a Wiener process with drift parameter ν and variance
parameter σ2 if

1. W (0) = 0 with probability one,

2. For every t > 0, W (t) is normally distributed with mean νt and variance σ2t,

3. W (t) has stationary and independent increments.

If ν 6= 0, we say that the process is a Wiener process with drift. When ν = 0, the
expected value of the process W (t) at time t is zero at every time. In fact, when ν = 0,
W (t) = σB(t), for a standard Brownian motion process B(t). The standard Brownian
motion as a stochastic process is defined as the Wiener process, except that for every
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t > 0, B(t) is normally distributed with mean 0 and variance t. When the Wiener
process W (t) has a non-zero drift ν, the expected value of the process W (t) is increasing
with time if ν > 0 and decreasing when ν < 0, which explains the name of ν, the drift
coefficient. In fact, given ν > 0, and the times r and s such that r > s,W (r) is first-order
stochastically dominant over W (s), that is, for all x, P (W (r) ≥ x) ≥ P (W (s) ≥ x).

Define the first passage time T of a threshold value a as the first time the process
crosses the threshold value:

T = min
t>0

(W (t) ≥ a).

An important and mathematically tractable attribute of the Wiener process, given in
for example Aalen and Gjessing (2001), is that if ν > 0, the first passage time to a level
W (t) ≥ a > 0 is inverse Gaussian distributed, with density

f(t; ν, σ, a) = a√
2πσ

t−
3
2 exp

(
−(a− νt)2

2tσ2

)
, t > 0. (3.2.1)

The first passage time is sometimes referred to as the hitting time of the threshold
a. The mean and variance of the hitting time T are given by

E[T ] = a

ν
, V ar[T ] = a σ2

ν3 . (3.2.2)

The inverse Gaussian distribution can also be expressed by the two parameters µ =
a/ν and λ = a2/σ2.

fT (t;µ, λ) =

√
λ

2πt3 exp
(
− λ

2µ2
(t− µ)2

t

)
, t > 0.

We shall however find it convenient to consider the distribution with three parame-
ters. The survival function, S(t; ν, σ, a) = P (T > t), is displayed in for example Lindqvist
and Slimacek (2013):

S(t; ν, σ, a) = Φ
(
a− νt
σ
√
t

)
− exp

(2aν
σ2

)
Φ
(−a− νt

σ
√
t

)
.

Thereby, the cumulative distribution F (t; ν, σ, a) = 1 − S(t; ν, σ, a) = P (T ≤ t) is also
known:

F (t; ν, σ, a) = Φ
(
νt− a
σ
√
t

)
+ exp

(2aν
σ2

)
Φ
(−a− νt

σ
√
t

)
. (3.2.3)

3.3 Bayesian inference
Contrary to the traditional, frequentist approach, where the parameters are regarded as
constants, the Bayesian approach regards the parameters as stochastic variables, with
a probability density. This probability density function is called a prior, and holds our
believes of how the parameter is distributed in the parameter space, prior to collecting
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data. Thus, Bayesian inference aims to include our knowledge of the quantities we want
to estimate. The knowledge can stem from own experience or previous experiments, and
is subjective. Data is then collected, and the prior is updated with the information from
the sample. The updated distribution is called the posterior distribution. The update is
done by Bayes rule:

Theorem 1. (Bayes’ Rule) Let A1, A2, . . . be a partition of the sample space, and let
B be any set. Then for each i = 1, 2, . . . ,

P (Ai|B) = P (B|Ai)P (Ai)∑∞
j=1 P (B|Aj)P (Aj)

.

Following this, suppose that θ is the parameter we want to make inference about,
given the observations x, whose sampling distribution we denote by f(x|θ) . Let π(θ) be
the prior distribution of the parameters, and π(θ|x) be the posterior distribution of the
parameters given the observations. Then the posterior distribution of the parameter, θ,
given the sample, x, is

π(θ|x) = f(x|θ)π(θ)∫
f(x|θ′)π(θ′)dθ′ .

Note that the denominator,
∫
f(x|θ′)π(θ′)dθ′ is the marginal distribution of x. Since

x is observed, the marginal distribution is a constant, thus the posterior distribution is
proportional to f(x|θ)π(θ), that is

π(θ|x) ∝ f(x|θ)π(θ).

This implies that
π(θ|x) ∝ L(θ|x)π(θ)

where L(θ|x) is the likelihood of θ given the observation x.
The choice of priors is crucial. It is important that the priors tail behavior is similar

to the posterior tail behavior, and specifically that the support of the prior covers the
support of the posterior. One should make sure that the prior does not influence the
posterior too much, unless the prior information is certain in some way.

3.4 Monte Carlo integration
Monte Carlo integration is the statistical evaluation of an integral using the evaluations
of the integrand at a set of points drawn randomly from a distribution which has support
over the entire range of integration. One of the important applications is evaluating and
expectation E[t(x)], shown in (Givens and Hoeting, 2013, p. 151). Let f(x) be the
density of the random variable X, and let µ denote the expectation of t(x) with respect
to f . Given an i.i.d. sample, that is, a sample of independent, identically distributed
X1, . . . , Xn from f , µ can be approximated by the Monte Carlo (MC) estimator ûMC

µ̂MC = 1
n

n∑
i=1

t(Xi)→
∫
t(x)f(x)dx = µ.
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MC integration has slow convergence, but its strengths are considerable. The tech-
nique is very simple. Furthermore, other integration techniques are severely punished by
increasing dimensions, but this effect is not as severe for MC integration, and the sim-
plicity of implementation is preserved. Note that if we only wish to evaluate the integral
over some region Ω which has probability mass

∫
Ω f(x)dx = V , the estimate, µ̂MC, must

be scaled with V . The technique for a discrete random variable is equivalent. Let this
be termed MC summation. The MC estimator µ̂MC, for a discrete random variable X is

µ̂MC = 1
n

n∑
i=1

t(Xi)→
∑
xi∈Ω

t(xi)p(xi) = µ,

where Ω denotes the sample space of X and p(xi) = P (X = xi).

3.5 Markov Chain Monte Carlo methods
Markov Chain Monte Carlo (MCMC) methods aim at generating a sample from a target
distribution which can be evaluated easily, but from which it is difficult to sample. It
can be employed as a specific strategy for MC integration. An introduction is given in
(Givens and Hoeting, 2013, chapter 7). An example can be the posterior distribution of
a random variable, which may not be in a known class of distributions. The sampling
strategy in MCMC methods is to create an irreducible, aperiodic Markov chain for which
the stationary distribution equals the target distribution. The distribution of the Markov
chain X(t) converges to the limiting stationary distribution when the chain is irreducible
and aperiodic. Thus, after some time, the Markov chain X(t) converges to the target
distribution f . The construction of the Markov chain is crucial, as well as diagnosing
whether the chain has converged.

3.5.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a general method for constructing a Markov chain,
given in for example (Givens and Hoeting, 2013, chapter 7.1). The algorithm samples
from a proposal distribution g(x|x(t)).

There are different classes of proposals to chose from, one is the independence chains,
where the proposal distribution g is such that g(x∗|x(t)) = g(x∗). The ratio becomes

R(x(t), X∗) = f(X∗)g(x(t))
f(x(t))g(X∗)

.

A Markov chain with such a proposal is irreducible and aperiodic, thus converges to the
limiting stationary distribution, if g(x) > 0 whenever f(x) > 0. One simple choice in
Bayesian inference is to use the prior as proposal, g(x) = π(θ) in an independence chain.
The posterior distribution π(θ|y) = p(θ)L(θ|y) is the target distribution. Thus,

R(θ(t), θ∗) = p(θ∗)L(θ∗|y)p(θ(t))
p(θ(t))L(θ(t)|y)p(θ∗)

= L(θ∗|y)
L(θ(t)|y)

that is, Metropolis-Hastings ratio simplifies to the likelihood ratio.
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3.5.2 Diagnostics of output

Although the Markov chain generated by the described approach has the target dis-
tribution as limiting distribution, it is necessary to investigate whether the chain has
run sufficiently long, such that the output represents the target distribution. Thus, a
number of tests are suggested in the literature to check for convergence of the chain, as
well as the mixing of the chain, that is, how far apart in a sequence the samples must
be to be considered approximately independent. In the following, a small collection of
popular diagnostics will be shortly reviewed. It is important to remember that no test
is completely reliable.

To investigate the mixing properties of a chain, one can inspect the sample path,
often called the trace plot. The sample path is a plot of the realizations of X(t) versus
the iteration number t. Poor mixing manifests as the chain staying at or near the same
value for a long time, where as good mixing results in the chain moving quickly around
in the entire support region of the target distribution f .

A plot of the autocorrelation of the chain can also provide indications of the mixing
properties of the chain. The autocorrelation at lag i is the correlation between iter-
ates that are i iterations apart. If the chain is mixing poorly, the autocorrelation will be
decaying slowly as a function of i. On the other hand, if the chain is mixing well, the auto-
correlation will decay relatively fast. In higher dimensional problems, cross-correlations
between parameters may also be worth investigating, as high cross-correlations could be
a symptom of poor mixing. It seems thinning of the output to reduce autocorrelation is
often practiced, as found by Link and Eaton (2012). If we want to thin by k, we only
use every kth iteration of the output. However, Link and Eaton (2012) advise using
thinning only to reduce the size of a data set to facilitate computations. Rather than
thinning by k to lessen autocorrelation, one should rather sample for k times longer. As
an effect, the autocorrelation effects should wash out in the large sample size.

For an independence sampler, the acceptance rate, that is, the relative number of
times when the proposal is accepted as the new iteration, should be high. A high
acceptance rate is crucial for fast convergence of the chain. However, in a target density
which is not unimodal, the chain can get stuck in areas of high posterior density. This
could give a very large acceptance rate, and result in poor mixing.

An important point of the diagnostic of a Markov chain is to assess the burn-in.
It is only the limiting distribution of the chain for which X(t) ∼ f , and the starting
point will affect the first iterates. The dependence on the starting point may be strong,
and to lessen this effect, the first D iterates, the burn-in period, are usually discarded.
Whether burn-in period and run length are reasonable can be found by comparison of
within-chain and between-chain variance. The run length should be increased if the
within-chain variance is considerably smaller than the between-chain variance. This is
estimated fromM runs of the MCMC algorithm to create separate chains of equal length.
The starting values of the M chains should be spread over the support of f . In fact,
Brooks and Gelman (1998) advises that the starting points should be over-dispersed with
respect to the target distribution, to ensure absence of falsely diagnosed convergence. A
formula for calculating the distance between the within-chain and between-chain variance
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in multidimensional chains is given by Brooks and Gelman (1998). LetW be the within-
chain variance and B/n be the between-chain variance, where n is the number of runs
in the chain. Let x(i)

jt denote the ith element of the p-dimensional parameter vector in
chain j at time t. Let xj· denote the mean over time, 1

n

∑n
t=1 xjt, and x·· denote the

mean over time and over all chains, 1
m

∑m
j=1 xj·. The between-chain variance B/n can

be found by

B/n = 1
m− 1

m∑
j=1

(xj· − x··)(xj· − x··)′,

and the within-chain variance W can be found by

W = 1
m(n− 1)

m∑
j=1

n∑
t=1

(xjt − xj·)((xjt − xj·)′).

Finally, a scalar measure of the distance between the two variances is

R̂p = n− 1
n

+ m+ 1
m

λ1,

where λ1 is the largest eigenvalue of the symmetric positive definite matrix W−1B/n.
The distance measure R̂p converges to 1 as n→∞.

The measure is in fact an estimator of the squared scale reduction factor, which is
a ratio of the pooled posterior variance and the within-chain variance. If it is large, it
suggests that the variance in the parameters can be decreased by increasing the number of
simulations, or that the simulated sequences have not fully toured the target distribution,
such that W will increase by further simulations. If the ratio is close to 1, each of the
m sets of n simulated observations is close to the target distribution.
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Algorithm 1 The Metropolis-Hastings algorithm
Require: x(0) such that f

(
x(0)

)
> 0

for t = 0 to m do
Sample X∗ from the proposal distribution g

(
·|x(t)

)
Compute the Metropolis-Hastings ratio R

(
x(t), X∗

)
where

R(u, v) = f(v)g(u|v)
f(u)g(v|u)

Sample a value for X(t+1) according to the following rule

X(t+1) =

X∗, with probability min
{
R
(
x(t), X∗

)
, 1
}

x(t), otherwise

end for



Chapter 4

Modeling the case study

In this section, the set of equations and approximations necessary for calculating the
cumulative distribution function (CDF) of the hitting time T of a critical threshold a
will be presented. Different approaches will be used, and the setting with one and two
change points will be studied in detail. Generalizations for d > 2 change points are
given.

4.1 Modeling the case study

We proceed by following the approach of Lindqvist and Slimacek (2013), by modeling the
failure development stage of the system, which was described in section 2, as a hidden
Markov model. Note that we now assume that the initial state in failure development,
state 1, is detectable through temperature variations when the methods which will be
presented are applied, as opposed to the situation in section Valland et al. (2012) where
temperature variations were detectable from stage 2 and onward.

We will model the failure in the wind turbine by a hidden Markov model: the state
in the failure development is the hidden Markov process, and the observable random
variable is the temperature. Note that we assume discrete observations of W (t), such
that the process W (t) is recorded at some t1, t2, . . . , tn. We assume that, for each state
j = 0, . . . , 6 in the failure development, there is a probability qi to stay in the state and a
probability 1−qj to leave the state and jump to state j+1. Thus pjj = 1−qj , pj,j+1 = qj
and pj,i = 0 for (j, i) 6= (j, j) or (j, j + 1). This models that the failure development
cannot repair itself, and that it does not skip a stage, so to speak. The initial state, state
0, models some kind of stationarity in the temperature. The hidden Markov process is
sketched in figure 4.1.1.

As for the temperature, W (t), we assume a piecewise Wiener process. The pro-
cess has change points τj such that the temperature is a Wiener process in each time
interval [τj , τj+1) , with parameters νj and σ2

j . We may have σ2
j = σ2 such that the vari-

ance parameter is the same throughout the failure development. The drift parameter
is assumed to start at zero and increase throughout the states until breakdown, that is
0 = ν0 < ν1 ≤ · · · ≤ ν4. In this report, we will only model the temperature until state

14



4.1. MODELING THE CASE STUDY 15

Figure 4.1.1: A schematic sketch of the discrete time Markov model for the state of the
failure development. In each state j , qj is the probability of jumping to state j+ 1, and
pj = 1 − qj is the probability of staying in state j, shown with arrows. As stated, it is
only possible to go from state j to j + 1 for j = 1, . . . , 6.

4, after which it is assumed by Valland et al. (2012) that the temperature is linearly
decreasing.

A realization of a piecewise Wiener process with increasing drift parameter is shown
in figure 4.1.2. The process has been simulated in the time interval [0, tn] = [0, 1000].
The process has two change points, τ1 = 500 and τ2 = 750, and was simulated with the
following parameters: ν0 = 0, ν1 = 0.0015, ν2 = 0.0035, σ0 = σ1 = σ2 = 0.05. In a failure
development setting, the plot can be interpreted as the process being in the normal state
for t ∈ [0, τ1), in an initial state of failure development for t ∈ [τ1, τ2), and in a more
severe state of failure development for t ∈ [τ2, tn).

Let Xi denote the temperature increment at time step i in a state, that is Xi =
W (ti) −W (ti−1). Then the increments in each state, conditioned on the state Zi, are
normally distributed with the state parameters

Xi|Zi = j ∼ N
(
(ti − ti−1)νj , (ti − ti−1)σ2

j

)
,

that is,

f(xi|zi = j) = 1√
2π(ti − ti−1)σj

exp
{
−(xi − (ti − ti−1)νj)2

2(ti − ti−1)σ2
j

}
.

Note that this is only valid if the latent Markov process is in state j both in time ti and
ti−1.

Furthermore, consider the situation of having observed a Wiener process from time
0 to some time tn, such that W (0) = 0 and W (tn) = wn, and having set a critical
threshold, a. In order to find the distribution of the hitting time T from the "now"
point in time tn and the "now" temperature wn, we regard the process such that the
last observation point, (tn, wn) is the origin. Denote the new process, which starts at
(tn, wn), W2. Let s be the new time, s = t − tn and W2(s) = W (t) − wn. Given
that the process has not already crossed the threshold, it is known that T > tn. The
hitting time and the threshold a can be transformed according to the information we
hold from having observed the process. Note that the process starting in the new origin
is a Wiener process, such that the hitting time is inverse Gaussian. Let S = T−tn be the
transformed hitting time and note that S ∼ IG (ν, σ, a− wn). In the situation of having
observed the Wiener process until time t = tn, it is natural to view the transformed
hitting time as the remaining time until first passage of the threshold a.
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Figure 4.1.2: A realization of a Wiener process in the time interval [0, 1000] with two
change points: τ1 = 500, τ2 = 750, marked with vertical lines. The process was simulated
with the following parameters: ν0 = 0, ν1 = 0.015, ν2 = 0.035 and σi = σ = 0.05, i =
0, 1, 2.

The probability model of the marker process, Zi, follows from its Markov model char-
acteristics, the memorylessness. This implies an exponential probability distribution for
the time spent in each state in continuous time and a geometric probability distribution
for the time spent in each state in discrete time. Thus, the time spent in state Zi, Ui, is
geometrically distributed

Ui ∼ Geom (qi) ,

that is,
f(ui) = qi(1− qi)ui−1, ui = 1, 2, . . .

The physical interpretation is that each time unit, for example each day, it is equally
likely that the chain moves from state i to state i + 1, and there is independence from
day to day. In fact, the probability of the chain moving from state i to state i+ 1 is qi.
Note that in stage 0, this means that there is an equal probability of particles entering
the oil each time unit, for example, each day.

Figure 4.1.3 shows the connection between the development through stages Si and
the temperature process.

Throughout the discussion, we will continue the assumption of Lindqvist and Sli-
macek (2013), that T > τ1, that is, that the threshold cannot be crossed before the
first change point has occurred. This is because the threshold temperature is so much
larger than the temperature in the normal condition that it will not be crossed by the
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Figure 4.1.3: The simulated piecewise Wiener process which was shown in figure 4.1.2
where the marker process is the latent Markov model, which was sketched in figure 4.1.1.

natural fluctuations of temperature. We also assume that T > tn, since if W (ti) ≥ a,
for any i = 1, . . . , n, P (T ≤ tn) = 1 and the hitting time T = ti can be found from
the observations. For the remainder of the report, we will assume equidistant measure-
ments, such that, ti = i∆ for i = 1, . . . , n. Then the temperature increment at time ti,
Xi, given the state Zi = j is normally distributed with mean ∆νj and variance ∆σ2

j :
Xi|Zi = j ∼ N

(
∆νj ,∆σ2

j

)
. We will also assume that the system is in the normal

condition in the starting point of observations, that is, Z0 = 0.
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4.2 One unknown change point, τ

We now assume that the process has one change point, τ1, as was the situation in
Lindqvist and Slimacek (2013). Remember that the parameters of the piecewise Wiener
process in the time interval [0, τ1) are 0 = ν0 and σ0, and in the time interval [τ1,∞)
the parameters are ν1 > ν0 and σ1. We will assume that σ0 = σ1 = σ and denote ν = ν1
and τ = τ1.

Firstly, we shall consider ν and σ known. As Lindqvist and Slimacek (2013) state, it
may be reasonable to assume that ν and σ are known from expert judgment or statistical
analysis of past data. Two different strategies will be used to find the cumulative distribu-
tion function (CDF) of the hitting time T . Both strategies employ the Bayesian posterior
distribution of the change point given the temperature increments, π(τ |x1, . . . , xn; ν, σ).
The two strategies differ in how the conditional distribution of T given τ and the temper-
ature increments x1, . . . , xn, P (T ≤ t|τ, x1, . . . , xn; ν, σ, a) is found: the first, presented
in section 4.2.1 will employ the inverse Gaussian distribution formulae, while the second,
presented in section 4.2.2 rely on simulation of Wiener processes to find the cumulative
hitting time distribution. Having found the conditional distribution, the marginal dis-
tribution of T given the temperature increments x1, . . . , xn is found by summation over
the posterior distribution:

P (T ≤ t|x1, . . . , xn; ν, σ, a) =
∑
τ∈Ω

P (T ≤ t|τ, x1, . . . , xn; ν, σ, a)π(τ |x1, . . . , xn; ν, σ)

(4.2.1)
where Ω is the range of τ . In practice, the summation will be done by drawing random
values from the posterior distribution, as in MC summation, in both strategies.

Given P (T ≤ t|x1, . . . , xn; ν, σ, a) one can predict the future behavior of the process
by considering P (T ≤ t|x1, . . . , xn; ν, σ, a) for many values t. Then, one can decide on
the risk level one is willing to take regarding the probability that the hitting time has
already been reached. That, is, choose the estimator T̂α as the t for which P (T ≤
t|x1, . . . , xn; ν, σ, a) = α. For a low risk, one should schedule maintenance for a low α,
such as P (T ≤ t|x1, . . . , xn; ν, σ, a) = 0.01. One could also look at the median, the t
for which P (T ≤ t|x1, . . . , xn; ν, σ, a) = 0.5 for multiple systems, which will result in a
higher risk.

Note that the hitting time T and the change point τ is restricted to the same time
grid as the measurements.

The posterior distribution of τ, π(τ |x1, . . . , xn; ν, σ), was found by Lindqvist and Sli-
macek (2013), and will be shown for completeness. The likelihood of the change point,
L(τ |x1, . . . , x2; ν, σ), is
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L(τ |x1, . . . , x2; ν, σ) =
n∏
i=1

f(xi|τ)

=
τ/∆−1∏
i=∆

1√
2π∆σ

exp
(
− x2

i

2∆σ2

) tn/∆∏
i=τ/∆

1√
2π∆σ

exp
(
−(xi −∆ν)2

2∆σ2

)

∝ exp

− 1
2∆σ2

(τ−1)/∆∑
i=∆

x2
i +

tn/∆∑
i=τ/∆

(xi −∆ν)2


∝ exp

− 1
2∆σ2

2∆ν
tn/∆∑
i=τ/∆

(xi) + (n− τ + 1) ∆2ν2


if τ ≤ tn and L(τ |x1, . . . , x2; ν, σ) ∝ 1 if τ > tn, that is

L(τ |x1, . . . , xn; ν, σ) ∝exp
(
− 1

2∆σ2

[
2∆ν

∑tn/∆
i=τ/∆(xi) + (n− τ + 1) ∆2ν2

])
if τ ≤ tn

1 if τ > tn.
(4.2.2)

As the time spent in each state is modeled by a hidden Markov process, it is natural
to assume a geometric prior for the change points:

π(τ) = λ(1− λ)τ−1, τ = 1, 2, . . .

as noted in section 4.1. Thus the posterior distribution of τ is

π(τ |x1, . . . , xn; ν, σ) ∝ L(τ |x1, . . . , x2; ν, σ)π(τ) ∝λ(1− λ)τ−1 exp
(
− 1

2∆σ2

[
2∆ν

∑tn/∆
i=τ/∆(xi) + (n− τ + 1) ∆2ν2

])
if τ ≤ tn

λ(1− λ)τ−1 if τ > tn.

(4.2.3)

4.2.1 Formulaic approach

The formulaic approach will use that, conditioned on τ and given that τ is passed, the
distribution of T is known. The estimator will be denoted P̂f (T ≤ t|x1, . . . , xn; ν, σ, a).
We continue the assumption that the threshold temperature a will not we crossed before
the change point has occurred, T > τ. This implies P (T ≤ τ) = 0. Furthermore, we
have assumed that the process starts in the normal condition. Thus P (T ≤ 0) = 0.

Consider first the situation where τ < tn. In this, case, we will use that the shifted
hitting time, S = T − tn is shifted as described in section 4.1, such that S ∼ IG(ν, σ, a−
W (tn). Thus,

P (T ≤ t|τ, x1, . . . , xn; ν, σ, a) = P (T − tn ≤ t− tn|τ, x1, . . . , xn; ν, σ, a))
= P (S ≤ t− tn|τ, x1, . . . , xn; ν, σ, a−W (tn)))
= F (t− tn; ν, σ, a−W (tn))
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if τ < tn, where F (·;β, γ, δ) is the inverse Gaussian cumulative distribution function
given in equation (3.2.1) with drift parameter β, variance parameter γ and threshold
parameter δ.

In the situation where τ > tn, because of the assumption that the threshold is not
crossed before τ , P (T < τ) = 0, the process should be shifted to the new point (τ,W (τ)),
from which the shifted threshold time is inverse Gaussian, S = T−τ ∼ IG(ν, σ, a−W (τ)).
However, W (τ) is in the future, thus unknown. Conditioned on W (τ), the distribution
is known:

P (T ≤ t|τ,W (τ), x1, . . . , xn; ν, σ, a) = P (T − tn ≤ t− tn|τ,W (τ), x1, . . . , xn; ν, σ, a))
= P (S ≤ t− tn|τ,W (τ), x1, . . . , xn; ν, σ, a−W (τ))
= F (t− tn; ν, σ, a−W (τ)).

We can marginalize over W (τ). Let Xτ−tn denote the temperature increment from tn to
τ . Remember that Xτ−tn is normally distributed with mean 0 and variance (τ − tn)σ2,
that is

Xτ−tn ∼ N (0, (τ − tn)σ2).
Thus,

P (T ≤ t|τ, x1, . . . , xn; ν, σ, a) =
∫ a

−∞
F (t− tn; ν, σ, a− (W (tn) + x))fXτ−tn (x)dx

where fXτ−tn (x) is the normal pdf with mean 0 and variance (τ − tn)σ2.
In practice, the integration may be tedious. Two solutions will be suggested in the

following. The first is to employ MC summation by drawing random increments from
N (0, (τ − tn)σ2).

The second solution is a simplification, approximating W (τ) ≈ W (tn). Note that
given W (tn), the expected value of W (τ) is E[W (τ)|W (tn)] = W (tn).

Thus, using MC summation to draw M values of W (τ) for each τ, w1, . . . , wM from
the given normal distribution and N values of τ, τ1, . . . , τN , from the posterior distri-
bution the marginal distribution of T given the measurements x1, . . . , xn can be found
as

P (T ≤t|x1, . . . , xn; ν, σ, a) =

1
N

N∑
i=1

P (T |τi, x1, . . . , xn; ν, σ, a−W (tn))Iτi≤tn+

1
N

1
M

N∑
i=1

M∑
m=1

P (T |τi, x1, . . . , xn; ν, σ, a− wm)Iτi>tn . (4.2.4)

where Ia is the indicator function, which is one of a is true, and 0 if a is false. Using the
simplifying approximation W (τ) ≈W (tn), we find the marginal distribution of T given
the measurements x1, . . . , xn as

P (T ≤t|x1, . . . , xn; ν, σ, a) = 1
N

N∑
i=1

P (T |τi, x1, . . . , xn; ν, σ, a−W (tn)). (4.2.5)
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Note that this approximation will cause less variation in the results than using the MC
summation in equation (4.2.4) above.

Thus, finally, we find formulaic estimate of the marginal distribution of T given the
temperature measurements by summing over τ using an MC summation: sampling over
the posterior distribution of τ :

P̂f (T ≤ t|x1, . . . , xn; ν, σ, a) = 1
N

N∑
i=1

P (T |τ∗i , x1, . . . , xn; ν, σ, a),

where the τ∗i are a sample from the posterior distribution of τ , π(τ |x1, . . . , xn; ν, σ). The
pseudo-algorithm for the formulaic approach is given in algorithm 2.

Algorithm 2 Formulaic approach for estimating the hitting time CDF of t = t′ for
piecewise Wiener process with one unknown change point τ .
Require: m, {W (ti), i = 1, . . . , n}, ν, σ, a > W (tn), t′

∆ = tn/n
xi = W ((i+ 1) ·∆)−W (i ·∆)
Find posterior distribution of τ : π(τ |x1, . . . , xn)
for k = 1 to m do
Sample τ∗k from π(τ |x1, . . . , xn; ν, σ)
Calculate P (T ≤ t′|τ∗k , x1, . . . , xn; ν, σ, a) from equation (4.2.4) or (4.2.5).

end for
return P̂f (T ≤ t′|x1, . . . , xn; ν, σ, a) = 1

m

∑m
k=1 P (T ≤ t′|τ∗k , x1, . . . , xn; ν, σ, a)

4.2.2 Simulation approach

The simulation estimator of P (T ≤ t|x1, . . . , xn; ν, σ, a) will be denoted
P̂S(T ≤ t|x1, . . . , xn; ν, σ, a). The simulation approach estimates P (T ≤ t|τ, x1, . . . , xn; ν, σ, a)
by simulating a number, say K, of Wiener processes from the last observation, at time
tn and temperature W (tn), until the processes cross the threshold temperature a, that
is, until time Ti and temperature a. This is done by drawing temperature increments
Xj for each time point, t = j∆, j = n + 1, n + 2, . . . until the process reaches temper-
ature a, such that the time, say l∆ is the hitting time Ti. As long as τ < ∞, T has
a proper distribution, and the hitting time will occur with probability 1, hence, each
simulation of a Wiener process will result in a hitting time. Note that conditioned on τ ,
the distribution of Xj is known:

Xj |τ ∼
{
N (0,∆σ2) if τ > j∆.
N (∆ν,∆σ2) if τ ≤ j∆,

thus, the above gives the rule for how the temperature increments are sampled.
The respective hitting times T1, . . . , Tk are stored. The hitting times Tk are i.i.d.

from the hitting time distribution. Thus P (T ≤ t|τ, x1, . . . , xn; ν, σ, a) can be estimated
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as the empirical CDF, F̂K,τ∗
j
(t),

F̂K,τ∗
j
(t) = 1

K

K∑
i=1

ITi≤t. (4.2.6)

The simulated solution does not require the assumption that T > τ . Thereby, the
approach simultaneously provides a simple way to check the assumption, as we can
estimate P (T ≤ τ |τ, x1, . . . , xn; ν, σ, a) by F̂K,τ∗

j
(τ∗j ).

Note that in the formulaic approach, we must calculate P (T ≤ t|τ, x1, . . . , xn; ν, σ, a)
for each t, but in the simulation approach, can obtain the estimates for all t from the
same data set. Also note that in the formulaic approach, P (T ≤ t|τ, x1, . . . , xn; ν, σ, a)
is readily available, but in the simulation approach, the simulations give a sample from
the population of P (T ≤ t|τ, x1, . . . , xn; ν, σ, a).

Finally, the marginalized distribution of T given x1, . . . , xn, P (T ≤ t|x1, . . . , xn; ν, σ, a)
is found as for the formulaic approach, by drawing a large number N of change point
realizations τ∗i from the posterior distribution, and let the mean denote the simulation
estimator P̂S(T ≤ t|x1, . . . , xn; ν, σ, a) for the probability P (T ≤ t|x1, . . . , xn; ν, σ, a):

P̂S(T ≤t|x1, . . . , xn; ν, σ, a) = 1
N

N∑
i=1

F̂K,τ∗
i
(t). (4.2.7)

The simulation is described in algorithm 3. The description is schematic, and imple-
mentation can of course be done much more efficient.

4.2.3 Evaluating estimates

In both approaches, for each t, the estimate of P (T ≤ t|x1, . . . , xn; ν, σ, a) is found by
calculating the mean of M values P (T ≤ t|τ∗i , x1, . . . , xn, ν, σ, a) for a M values of τ∗i .
Thus, a 1− α credible interval is given by the 1− α and α percentiles of the M values
P (T ≤ t|τ∗i , x1, . . . , xn, ν, σ, a).

4.2.4 τ and ν unknown, σ known

If ν is an unknown parameter, we introduce a prior for ν in order to obtain the joint
posterior distribution π(τ, ν, |x1, . . . , xn;σ). We assume that ν is independent of the
change point τ , such that the joint prior of the two parameters π(τ, ν) is the product of
their marginal priors:

π(τ, ν) = π(ν)π(τ).

Since we require ν > 0, a natural prior distribution is the gamma distribution, which
has support on the interval (0,∞), such that

ν ∼ Gam(α, β).
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Algorithm 3 Simulation to find hitting time CDF for piecewise Wiener process with
one unknown change point τ , ν and σ known.
Require: J, {W (ti), i = 1, . . . , n}, ν, σ, a > W (tn),K

∆ = tn/n
xi = W (i ·∆)−W ((i− 1) ·∆)
Find posterior distribution of τ : π(τ |x1, . . . , xn; ν, σ)
t = tn
for j = 1 to J do
Sample τ∗j from π(τ |x1, . . . , xn; ν, σ)
for k = 1 to K do
t = t+ ∆
while W (t−∆) ≤ a do

if τ∗j ≤ tn then
Draw increment
X(t) ∼ N

(
ν ·∆, σ2 ·∆

)
else
Draw increment
X(t) ∼ N

(
0, σ2 ·∆

)
end if
W (t) = W (t−∆) +X(t)
t = t+ ∆

end while
Tk = t is the k-th hitting time given τ∗j

end for
F̂K,τ∗

j
(t) = 1

K

∑K
k=1 ITk ≤ t is the estimate of P (T ≤ t|τ∗j , x1, . . . , xn; ν, σ, a).

end for
Estimate P (T ≤ t|x1, . . . , xn; ν, σ, a) by

P̂S(T ≤ t|x1, . . . , xn; ν, σ, a) = 1
J

J∑
j=1

F̂K,τ∗
j
(t).

return P̂S(T ≤ t|x1, . . . , xn; ν, σ, a).
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That is, the probability density function, pdf, of ν, f(ν) is given by

f(ν) = 1
βαΓ(α)ν

α−1 exp
(
−ν
β

)
.

where α and β are prior parameters which must be tuned such that the chain can
move quickly across the entire domain. Note that the gamma distribution is sometimes
represented by the rate parameter 1/β.

It is often recommended to have an uninformative prior for parameters θ, such as
the uniform distribution, which has density

fθ(θ) = 1
b− a

if θ ∈ [a, b]

and 0 otherwise, or Jeffreys prior, which has density

fθ(θ) ∝
√

det(I)

where I is the Fisher information,

I(θ) = Eθ

[(
∂

∂θ
log f(X; θ)

)2]

where Eθ[·] signifies the expectation with respect to the parameter θ, and f(X; θ) is the
density of the data X given the parameter θ. However, in multidimensional cases it can
be hard to keep track of the implications of the marginal uninformative prior on the
joint prior distribution, which may be the case if we choose to continue the geometric
prior on τ , as is implied by the Markov model. Note also that in the formulaic approach,
we use the inverse Gaussian CDF,

F (t; ν, σ, a) = Φ
(
νt− a
σ
√
t

)
+ exp

(2aν
σ2

)
Φ
(−a− νt

σ
√
t

)
from equation (3.2.1). Note that in the MCMC procedure, if a large value of ν(t) is
drawn and accepted, the exponential term blows up and cause numerical problems in
the calculations. Thus, it may be necessary to choose priors that limit the occurrences
of such events.

The likelihood from equation (4.2.2) remains the same, except it is now a function
of both τ and ν :

L(τ, ν|x1, . . . , xn;σ) ∝exp
(
− 1

2∆σ2

[
2∆ν

∑tn/∆
i=τ/∆(xi) + (n− τ + 1) ∆2ν2

])
if τ ≤ tn

1 if τ > tn.
(4.2.8)

Thus the posterior is simply the posterior in equation (4.2.3) multiplied by the prior
distribution for ν, π(ν), π(τ, ν|x1, . . . , xn;σ) ∝ L(τ, ν|x1, . . . , xn;σ)π(τ)π(ν).
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With ν unknown, the posterior distribution, as the likelihood, becomes two-dimensional,
π(τ, ν|x1, . . . , xn;σ). However, with the prior π(τ, ν) = π(τ)π(ν) as the proposal, the
Metropolis-Hastings ratio R([τ, ν](t), [τ, ν]∗) remains the likelihood ratio, now with both
ν and τ as variables.

Note that both the simulation and formulaic approach will be conceptually the same
with the new unknown parameter. Both will now sample pairs of (τ∗i , ν∗i ) realizations
from the posterior distribution. The simulation approach now relies on drawing pairs of
(τ∗i , ν∗i ) realizations from the posterior distribution, and thereafter simulating tempera-
ture increments according to the rule

Xj |τ, ν ∼
{
N (0,∆σ2) if τ∗i > j∆
N (∆ν∗i ,∆σ2) if τ∗i ≤ j∆

The simulation for each parameter pair (τ∗i , ν∗i ) is stopped when the threshold temper-
ature a is reached at the hitting time Ti. Thus, the simulation approach becomes:

P̂S(T ≤t|x1, . . . , xn; a, ν, σ) = 1
N

N∑
i=1

F̂K,τ∗
i ,ν

∗
i
(t), (4.2.9)

where F̂K,τ∗
i ,ν

∗
i
(t) is the empirical CDF given by

F̂K,τ∗
i ,ν

∗
i
(t) = 1

K

K∑
i=1

ITi≤t (4.2.10)

where the K pairs of values (τ∗i , ν∗i ) have been sampled from the posterior distribution
π(τ, ν|x1, . . . , xn;σ).

The difference in the formulaic approach, apart from drawing parameter pairs (τ∗i , ν∗i )
from the two-dimensional posterior distribution π(τ, ν|x1, . . . , xn;σ), is merely that ν∗i
is the drift parameter in the expression for the inverse Gaussian CDF,

P (T ≤ t|τ∗i , ν∗i , x1, . . . , xn;σ, a) = F (T −max(τ∗i , tn); ν∗i , σ, a−W (max{τ∗i , tn})),

where, if τ∗i > tn,W (τ∗i ) is resolved by MC integration or simplified by W (τ∗i ) ≈W (tn)
as discussed. which is then used in to calculate the estimator,

P̂f (T ≤ t|x1, . . . , xn;σ, a) = 1
m

m∑
k=1

P (T ≤ t|τ∗k , x1, . . . , xn; ν∗k , σ, a). (4.2.11)

Evaluating estimators

Note that as with only one unknown parameter, both the simulation approach estimate,
PS(T ≤ t|x1, . . . , xn;σ, a), and the formulaic approach estimate, Pf (T ≤ t|x1, . . . , xn;σ, a),
are given as means of vectors. Thus, the same method of finding a credible interval is
used: a 1 − α credible interval is given by the 1 − α and α percentiles of the M values
P (T ≤ t|τ∗i , x1, . . . , xn; ν∗i , σ, a) in the summation for both methods.
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4.2.5 τ , ν and σ unknown

Consider now the case where the change point τ , the drift parameter ν and the variance
parameter σ is unknown. In this case the likelihood is changed:

L(τ, ν, σ|x1, . . . , xn) =
n∏
i=1

f(xi|τ, ν, σ)

=
τ−1∏
i=1

1√
2π∆σ

exp
(
− x2

i

2∆σ2

)
n∏
i=τ

1√
2π∆σ

exp
(
−(xi −∆ν)2

2∆σ2

)

∝ 1
σn

exp
(
− 1

2∆σ2

[
τ−1∑
i=1

x2
i +

n∑
i=τ

(xi −∆ν)2
])

∝ 1
σn

exp
(
− 1

2∆σ2

[(
n∑
i=1

x2
i

)
+ 2∆ν

(
n∑
i=τ

xi

)
+ (n− τ + 1) ∆2ν2

])
.

if τ ≤ tn and

L(τ, ν, σ|x1, . . . , xn) =
n∏
i=1

f(xi|τ, ν, σ)

=
n∏
i=1

1√
2π∆σ

exp
(
− x2

i

2∆σ2

)

∝ 1
σn

exp
(
− 1

2∆σ2

[
n∑
i=1

x2
i

])
.

if τ > tn. Putting it together, we obtain

L(τ, ν, σ|x1, . . . , xn) ∝
1
σn exp

(
− 1

2∆σ2
[(∑n

i=1 x
2
i

)
+ 2∆ν (

∑n
i=τ xi) + (n− τ + 1) ∆2ν2]) if τ ≤ tn

1
σn exp

(
− 1

2∆σ2
[∑n

i=1 x
2
i

])
if τ > tn.

(4.2.12)

We propose to continue the gamma prior on ν, and add a gamma prior on σ, assuming
independence of all the three parameters,

π(τ, ν, σ) = π(τ)π(ν)π(σ).

where τ ∼ Geom(λ) as before, ν ∼ Gam(να, νβ) as before and σ ∼ Gam(σα, σβ). We
make that note that the numerical problems with the exponential term in the inverse
Gaussian CDF, see equation (3.2.3), may worsen now that σ(t) may be a small value in
addition to ν(t) being large.

The parameters σα and σβ should be tuned such that they do not influence the prior
too much, unless the information available is very strong, and such that the Markov
chain is allowed to move across the entire domain quickly.
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Note that both the simulation and formulaic approach will be conceptually the same
with the third unknown parameter. Both will now sample triplets of (τ∗i , ν∗i , σ∗i ) realiza-
tions from the posterior distribution. The simulation approach now relies on drawing
triplets of (τ∗i , ν∗i , σ∗i ) realizations from the posterior distribution, and thereafter simu-
lating temperature increments according to the rule

Xj ∼
{
N (0,∆(σ∗i )2) if τ∗i > j∆
N (∆ν∗i ,∆(σ∗i )2) if τ∗i ≤ j∆

The simulation for each parameter triplet realization (τ∗i , ν∗i , σ∗i ) is stopped when the
threshold temperature a is reached at the hitting time Ti. Thus, the simulation approach
becomes:

P̂S(T ≤t|x1, . . . , xn; a) = 1
N

N∑
i=1

F̂K,τ∗
i ,ν

∗
i ,σ

∗
i
(t), (4.2.13)

where F̂K,τ∗
i ,ν

∗
i ,σ

∗
i
(t) is the empirical CDF given by

F̂K,τ∗
i ,ν

∗
i ,σ

∗
i
(t) = 1

K

K∑
i=1

ITi≤t (4.2.14)

where the K triplets of realizations (τ∗i , ν∗i , σ∗i ) have been sampled from the posterior
distribution π(τ, ν, σ|x1, . . . , xn).

The difference in the formulaic approach, apart from drawing parameter triplet real-
izations (τ∗i , ν∗i , σ∗i ) from the three-dimensional posterior distribution π(τ, ν, σ|x1, . . . , xn),
is that ν∗i is the drift parameter and σ∗i is the variance parameter in the expression for
the inverse Gaussian CDF,

P (T ≤ t|τ∗i , ν∗i , σ∗i , x1, . . . , xn) = F (T −max(τ∗i , tn); ν∗i , σ∗i , a).

which is then used in to calculate the estimator,

P̂f (T ≤ t|x1, . . . , xn; a) = 1
m

m∑
k=1

P (T ≤ t|τ∗k , x1, . . . , xn; ν∗k , σ∗k, a). (4.2.15)

Evaluating estimators

Again, as with one and two unknown parameters, both the simulation approach estimate,
PS(T ≤ t|x1, . . . , xn; a), and the formulaic approach estimate, Pf (T ≤ t|x1, . . . , xn, a),
are given as means of vectors. Thus, the same method of finding a credible interval is
used: a 1 − α credible interval is given by the 1 − α and α percentiles of the M values
P (T ≤ t|τ∗i , x1, . . . , xn; ν∗i , σ∗i , a) for both methods.
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4.3 Two unknown change points, τ1 and τ2

We now assume that there are two change points, τ1 and τ2 with corresponding pa-
rameters ν1 and σ1, ν2 and σ2. As before, 0 = ν0 and σ0 are the parameters of the
initial process. Three different strategies will be outlined to find the hitting time CDF.
The first, in section 4.3.1, is equivalent to the formulaic approach in the process with
one change point, described in section 4.2.1. The third approach, in section 4.3.3, is
equivalent to the simulation approach in the process with one change point, described in
section 4.2.2. The approach presented in section 4.3.2 elegantly simplifies the formulaic
approach by a time transformation and is applicable to the process with two or more
change points. In the formulaic approaches, with and without the time transformation,
the hitting time CDF will be found by conditioning on the two change points τ1 and
τ2, and then the conditioned variables will be marginalized out by MC summation. In
the simulation approach, the method will be similar: the simulations are done condi-
tioned on the change points, which are marginalized out by MC summation. Again,
having found the hitting time CDF, one can choose the estimator T̂α as the t for which
P (T ≤ t|x1, . . . , xn; ν, σ, a) = α, where α varies with the level of risk one is willing to
take that the threshold has already been crossed.

Thus, we need the distribution of the change points. As in section 4.2 we will use
the Bayesian posterior distribution.

The likelihood of the data is, for τ1 < τ2 ≤ n:

L(τ1, τ2|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2) =
n∏
i=1

f(xi|τ1, τ2; ν1, ν2, σ0, σ1, σ2)

=
τ1/∆−1∏
i=1

1√
2π∆σ0

exp
(
− x2

i

2∆σ2
0

)
×
τ2/∆−1∏
i=τ1/∆

1√
2π∆σ1

exp
(
−(xi −∆ν1)2

2∆σ2
1

)
×

tn/∆∏
i=τ2/∆

1√
2π∆σ2

exp
(
−(xi −∆ν2)2

2∆σ2
2

)

∝ 1
στ1−1

0

1
στ2−τ1

1

1
σn−τ2+1

2
×

exp

− 1
2∆σ2

0

τ1/∆−1∑
i=1

x2
i −

1
2∆σ2

1

τ2/∆−1∑
i=τ1/∆

(xi −∆ν1)2 − 1
2∆σ2

2

tn/∆∑
i=τ2/∆

(xi −∆ν2)2

 .
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For τ1 ≤ n < τ2 the likelihood is:

L(τ1, τ2|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2) =
n∏
i=1

f(xi|τ1, τ2; ν1, ν2, σ0, σ1, σ2)

=
τ1/∆−1∏
i=1

1√
2π∆σ0

exp
(
− x2

i

2∆σ2
0

)
×

tn/∆∏
i=τ1/∆

1√
2π∆σ1

exp
(
−(xi −∆ν1)2

2∆σ2
1

)

∝ 1
στ1−1

0

1
σn−τ1+1

1
× exp

− 1
2∆σ2

0

τ1/∆−1∑
i=1

x2
i −

1
2∆σ2

1

tn/∆∑
i=τ1/∆

(xi −∆ν1)2

 .
For n < τ1 < τ2, we have as for one change point

L(τ1, τ2|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2) =
n∏
i=1

f(xi|τ1, τ2; ν1, ν2, σ0, σ1, σ2)

=
n∏
i=1

1√
2π∆σ0

exp
(
− x2

i

2∆σ2
0

)

= 1
σn0

exp
(
− 1

2∆σ2
0

n∑
i=1

x2
i

)
The marginal prior distribution of τ1 is geometric as before:

π(τ1) = λ1(1− λ1)τ1−1, τ1 = 1, 2, . . .
and 0 otherwise. The time spent in each state is independent, so the prior for τ2 condi-
tioned on τ1 is also geometric:

π(τ2|τ1) = λ2(1− λ2)τ2−τ1−1, τ1 = 1, 2, . . . ; τ2 = τ1 + 1, τ1 + 2, . . .
and 0 otherwise. Thus the joint prior of τ1, τ2 is
π(τ1, τ2) = π(τ2|τ1)π(τ1)

= λ1(1− λ1)τ1−1λ2(1− λ2)τ2−τ1−1, τ1 = 1, 2, . . . ; τ2 = τ1 + 1, τ2 + 2, . . . ,
(4.3.1)

and 0 otherwise.
Thus the posterior distribution of τ1, τ2 given the temperature increment measure-

ments x1, . . . , xn is
π(τ1, τ2|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2) ∝ L(τ1, τ2|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2)π(τ1, τ2) ∝

λ1(1−λ1)τ1−1λ2(1−λ2)τ2−τ1−1

σ
τ1−1
0 σ

τ2−τ1
1 σ

n−τ2+1
2

×

exp
(
−
∑τ1/∆−1
i=1

x2
i

2∆σ2
0
−
∑τ2/∆−1
i=τ1/∆

(xi−∆ν1)2

2∆σ2
1
−
∑n
i=τ2/∆

(xi−∆ν2)2

2∆σ2
2

)
, τ1 < τ2 ≤ tn

λ1(1−λ1)τ1−1λ2(1−λ2)τ2−τ1−1

σ
τ1−1
0 σ

n−τ1+1
1

×

exp
(
−
∑τ1/∆−1
i=1

x2
i

2∆σ2
0
−
∑n
i=τ1/∆

(xi−∆ν1)2

2∆σ2
1

)
, τ1 ≤ tn < τ2.

λ1(1−λ1)τ1−1λ2(1−λ2)τ2−τ1−1

σn0
exp

(
− 1

2∆σ2
0

∑n
i=1 x

2
i

)
, tn < τ1 < τ2.
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4.3.1 Formulaic approach

The (τ1, τ2) plane is sectioned into five regions, for which we will develop different ex-
pressions for the hitting time distribution conditioned on the change points. The five
cases are illustrated in figure 4.3.1, and each region is bounded by the black lines. We
continue the assumption from Lindqvist and Slimacek (2013) that the threshold tem-
perature a will not be crossed before the first change point τ1 has occurred, that is
P (T ≤ τ1) = 0. Following the assumption, in each case, we consider the distribution of
the shifted hitting time: S = T − max{tn, τ1}. Note also that P (T ≤ t|τ1 ≥ τ2) = 0,
since we have assumed τ1 < τ2. Now, we can go on to establish the expressions for the

Figure 4.3.1: Illustration of the different regions in the (τ1, τ2) area. The light blue
region has probability zero since τ1 > τ2, which by assumption cannot happen. The
light red region has probability zero because of the assumption that the threshold will
not be crossed unless the first change point is crossed, P (T ≤ τ1) = 0.

conditional CDF in each of the five cases. In the following, we will simplify notation of
P (T ≤ t|τ1, τ2, x1, . . . , xn; ν1, ν2, σ0, σ1, σ2) to P (T ≤ t), that is, it is implicitly under-
stood that we are conditioning on τ1, τ2 in the current region.

Case 1: τ1 < τ2 ≤ tn < t′

In this case, the shifted hitting time, S = T − tn, is simply inverse Gaussian dis-
tributed, S ∼ IG(ν2, σ2, a−W (tn)). Thus,

P (T ≤ t′) = P (T − tn ≤ t′− tn) = P (S ≤ t′− tn) = F (t′− tn; ν2, σ2, a−W (tn)) (4.3.2)
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is straightforwardly found by the inverse Gaussian CDF. As before, F (·; ν, σ, a) denotes
the inverse Gaussian CDF with drift parameter ν variance parameter σ and threshold
parameter a as given in equation (3.2.3).

Case 2: τ1 ≤ tn < τ2 ≤ t′
In this case, only the first change point has occurred. However, τ2 is in the future,

and thusW (τ2) is unknown. This is analogous to τ in the future in the one change point
setting. Hence, we condition on the unknown W (τ2):

P (T ≤ t′) =
∫ ∞
−∞

P (T ≤ t′|W (τ2) = r)fW (τ2)(r)dr

where fW (τ2)(r) is the normal pdf, W (τ2) ∼ N (W (tn) + (τ2 − tn)ν1, (τ2 − tn)σ2
1).

We can split the conditional probability in two:

P (T ≤ t′|W (τ2) = r) = P (T ≤ τ2|W (τ2) = r) + P (τ2 < T ≤ t′|W (τ2) = r).

Consider the term P (T ≤ τ2|W (τ2) = r), when T ≤ τ2, then T = s for some s ≤ τ2, and
W (τ2) ≥ a. Hence, W (τ2)−W (s) = r − a. Thus

P (T ≤ τ2|W (τ2) = r) = P (T ≤ τ2,W (τ2) = r)
P (W (τ2) = r)

=
∫ τ2−tn

0 P (T ≤ τ2,W (τ2) = r|T = s)fT (s)ds
fW (τ2)(r)

=
∫ τ2−tn

0 fW (τ2)−W (s)(r − a)fT (s)ds
fW (τ2)(r)

,

where fW (τ2)(r) is the normal pdf as before, fW (τ2)−W (s)(r−a) is the pdf of the increment
W (τ2)−W (s), which is normally distributed: W (τ2)−W (s) ∼ N ((τ2−s)ν1, (τ2−s)σ2

1),
and fT (s) is the shifted inverse Gaussian density T − tn ∼ IG(ν1, σ1, a −W (tn)). The
shift explains the why integration limits are 0 and τ2 − tn instead of tn and τ2.

Consider now the latter term, P (τ2 < T ≤ t′|W (τ2) = r). Note that here we only
need consider W (τ2) = r < a, since if r ≥ a, P (τ2 < T ) = 0. We can write

P (τ2 < T ≤ t′|W (τ2 = r)) = P (τ2 < T, T ≤ t′|W (τ2) = r)
= P (T ≤ t′|τ2 < T,W (τ2) = r)P (τ2 < T |W (τ2) = r)

Note that given τ2 < T and W (τ2) = r, the shifted S = T − tn is inverse Gaussian CDF,
S ∼ IG(ν2, σ2, a− r). Hence,

P (τ2 < T ≤ t′|W (τ2 = r)) = F (t′ − tn; ν2, σ2, a− r)P (τ2 < T |W (τ2) = r)
= F (t′ − tn; ν2, σ2, a− r) (1− P (T ≤ τ2|W (τ2) = r))

where P (T ≤ τ2|W (τ2) = r) was found above.
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Finally, we can put everything together:

P (T ≤ t′) =
∫ ∞
−∞

P (T ≤ t′|W (τ2) = r)fW (τ2)(r)dr

=
∫ ∞
−∞

(
P (T ≤ τ2|W (τ2) = r) + P (τ2 < T ≤ t′|W (τ2) = r)

)
fW (τ2)(r)dr

=
∫ ∞
−∞

∫ τ2−tn

0
fW (τ2)−W (s)(r − a)fT (s)dsdr+∫ a

−∞
F (t− τ2; ν2, σ2, a− r)

(
1−

∫ τ2−tn
0 fW (τ2)−W (s)(r − a)fT (s)ds

fW (τ2)(r)

)
fW (τ2)(r)dr,

(4.3.3)

where fW (τ2)(r) is the normal pdf as before, fW (τ2)−W (s)(r − a) is the normal pdf,
W (τ2) −W (s) ∼ N ((τ2 − s)ν1, (τ2 − s)σ2

1), and fT (s) is the shifted inverse Gaussian
density T − tn ∼ IG(ν1, σ1, a−W (tn)), and F (·) is the inverse Gaussian CDF. Note that
in the second term, where r < a, P (T ≤ t|W (τ2) = r) is probably small since the process
has a positive drift, and the expression can be simplified to neglect P (T ≤ t|W (τ2) = r).

Case 3: τ1 ≤ tn < t′ < τ2

In this case, only the first change point has occurred, and since the second change
point does not occur prior to the time in question, t′, the hitting time distribution of
S = T − tn is given as S ∼ IG (ν1, σ1, a−W (tn)), thus we have

P (T ≤ t′) = P (S ≤ t′ − tn) = F (t′ − tn; ν1, σ1, a−W (tn)). (4.3.4)

Case 4 : tn < τ1 < τ2 ≤ t′

This case is similar to case 2, except here we need to take into account that also τ1
is in the future. Thus W (τ1) is unknown, and the shifted hitting time is S = T − τ1.
Note that

W (τ1)−W (tn) ∼ N
(
0, (τ1 − tn)σ2

0

)
, W (τ2)−W (τ1) ∼ N

(
(τ2 − τ1)ν1, (τ2 − τ1)σ2

1

)
.

Compared to equation (4.3.3), we need to alter the expression for P (T ≤ τ2|W (τ2) = r),
which enters in both terms of the equation. Now we must integrate the shifted hitting
time s over 0 to τ2− τ1, and fT (s) is inverse Gaussian distribution with drift parameter
ν1 and variance parameter σ1 as before, but the threshold parameter is a−W (τ1). Thus
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we integrate over fW (τ1):

P (T ≤ t′) =
∫ ∞
−∞

P (T ≤ t′|W (τ2) = r)fW (τ2)(r)dr

=
∫ ∞
−∞

(
P (T ≤ τ2|W (τ2) = r) + P (τ2 < T ≤ t′|W (τ2) = r)

)
fW (τ2)(r)dr

=
∫ ∞
−∞

∫ ∞
−∞

∫ τ2−τ1

0
fW (τ2)−W (s)(r − a)fT (s)fW (τ1)(q)dqdsdr+

∫ a

−∞

∫ ∞
−∞

F (t− τ2; ν2, σ2, a− r)
(

1−

∫∞
−∞

∫ τ2−τ1
0 fW (τ2)−W (s)(r − a)fT (s)fW (τ1)(q)dqds

fW (τ2)(r)

)
fW (τ2)(r)fW (τ1)(q)dqdr, (4.3.5)

where fW (τ2)(r) is the normal pdf, W (τ2) ∼ N
(
W (τ1) + (τ2 − τ1)ν1, (τ2 − τ1)σ2

1
)
,

fW (τ2)−W (s)(r − a) is the normal pdf, W (τ2) −W (s) ∼ N ((τ2 − s)ν1, (τ2 − s)σ2
1), and

fT (s) is the shifted inverse Gaussian density T − τ1 ∼ IG(ν1, σ1, a − W (τ1)). Again,
in the second term, since r < a, P (τ2 ≤ T |W (τ2) = r) is probably small and can be
neglected. As before, a simplification of the integration over W (τ1) is to set W (τ1) =
E[W (τ1)|W (tn)] = W (tn) instead of integrating over possible values of W (τ1).

Case 5: tn < τ1 ≤ t′ < τ2
In this case we need only consider the processW1(t), which has parameters ν1 and σ1,

but the time interval of interest is (τ1, t
′]. The corresponding hitting time, S1 = T −τ1, is

inverse Gaussian distributed S1 ∼ IG(ν1, σ1, a−W (τ1)). The increment W (τ1)−W (tn)
is normally distributed,

W (τ1)−W (tn) ∼ N
(
0, (τ1 − tn)σ2

0

)
Given this increment, the distribution of the hitting time is given as

P (T ≤ t′|W (τ1)) = P (S1 ≤ t′ − τ1) = F (t′ − τ1; ν1, σ1, a−W (τ1)).

Thus, we can condition on the increment and integrate out :

P (T ≤ t′) =
∫ ∞
−∞

F (t′ − τ1; ν1, σ1, a−W (τ1))fW (τ1)−W (tn)(r)dr. (4.3.6)

As before, a simplification of this is to set W (τ1) = E[W (τ1)|W (tn)] = W (tn) instead of
integrating over possible values of W (τ1).

This concludes all the five cases in figure 4.3.1, thus, to find the hitting time CDF,
P (T ≤ t) when the change points τ1 and τ2 are unknown, we can apply MC summation to
drawm pairs of realizations of τ1, τ∗1,k, and τ2, τ∗2,k from π(τ1, τ2|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2),
to find the approximation P̂n(T ≤ t) to P (T ≤ t) :
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P̂n(T ≤ t′|x1, . . . , xn; ; ν1, ν2, σ0, σ1, σ2, a) =
1
m

m∑
k=1

P (T ≤ t′|τ∗1,k, τ∗2,k, x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a)

where P (T ≤ t′|τ∗1,k, τ∗2,k, x1, . . . , xn; a, ν1, ν2, σ0, σ1, σ2) is found by consulting the ex-
pression for the case which τ1, τ2 belong to. The approach is summarized in algorithm
4.

Algorithm 4 Formulaic approach for estimating the hitting time CDF of t = t′ for
piecewise Wiener process with two unknown change points τ1 and τ2.
Require: m, {W (t), 0 ≤ t ≤ tn}, ν1, ν2, σ0, σ1, σ2, a > W (tn), t′

∆ = tn/n
xi = W ((i+ 1) ·∆)−W (i ·∆)
Find posterior distribution of τ : π(τ1, τ2|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a)
for k = 1 to m do
Sample τ∗1,k, τ∗2,k from π(τ1, τ2|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a)
if τ1, τ2 ∈ case 1 then
Calculate P (T ≤ t′|τ∗1,k, τ∗2,k, x1, . . . , xn; a, ν1, ν2, σ0, σ1, σ2) from equation (4.3.2)

else if τ1, τ2 ∈ case 2 then
Calculate P (T ≤ t′|τ∗1,k, τ∗2,k, x1, . . . , xn; a, ν1, ν2, σ0, σ1, σ2) from equation (4.3.3)

else if τ1, τ2 ∈ case 3 then
Calculate P (T ≤ t′|τ∗1,k, τ∗2,k, x1, . . . , xn; a, ν1, ν2, σ0, σ1, σ2) from equation (4.3.4)

else if τ1, τ2 ∈ case 4 then
Calculate P (T ≤ t′|τ∗1,k, τ∗2,k, x1, . . . , xn; a, ν1, ν2, σ0, σ1, σ2) from equation (4.3.5)

else if τ1, τ2 ∈ case 5 then
Calculate P (T ≤ t′|τ∗1,k, τ∗2,k, x1, . . . , xn; a, ν1, ν2, σ0, σ1, σ2) from equation (4.3.6)

end if
end for
return

P̂n(T ≤ t′|x1, . . . , xn; ; ν1, ν2, σ0, σ1, σ2, a) =
1
m

m∑
k=1

P (T ≤ t′|τ∗1,k, τ∗2,k, x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a)
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4.3.2 Formulaic approach with time transformation

The time transformation approach was studied by Doksum and Høyland (1992) in re-
lation to accelerated life testing. In their setting, the process started with a non-zero
drift, hence, the starting point corresponds to our τ1. At a known time τ2 the drift was
intensified. Thus, their setting is a bit different. As the change points are not known
to us, we condition on the change points to find the hitting time CDF given the change
points, and marginalize to find the hitting time CDF, just as before.

In accordance with Doksum and Høyland (1992), consider the process as follows: The
initial process, W0(t) starting at t = 0 has mean ν = 0 and variance parameter σ2

0. At
the first change point t = τ1 the processW1(t) begins, with starting temperatureW0(τ1),
drift parameter ν1 and variance parameter σ2

1. At the second change point t = τ2 the
process W2(t) begins with starting temperature W1(τ2), drift parameter ν2 and variance
parameter σ2

2. Furthermore, assume that W2(t) = W1(τ2 + α(t − τ2)). This puts the
following constraints on ν2 and σ2

2:

ν2 = αν1, σ2
2 = α2σ2

1. (4.3.7)

Thus, we employ the simplifying notation ν = ν1, σ = σ1 and will write αν for ν2 and
ασ for σ2. The following time transformation ξ(t) is proposed by Doksum and Høyland
(1992):

ξ(t) =
{
t, if τ1 < t ≤ τ2

τ2 + α(t− τ2), if t > τ2.
(4.3.8)

It allows us to express the piecewise Wiener process as W (ξ(t)) for t > τ1, and, more
conveniently, the CDF of the hitting time is inverse Gaussian of the time transformation:

P (T ≤ t|τ1, τ2;α, ν, σ, a) = F (ξ(t)|τ1, τ2;α, ν, σ, a), (4.3.9)

for τ1 < t, where F (·) denotes the inverse Gaussian CDF as before, with drift parameter
ν, variance parameter σ and threshold parameter a. The parameter α applies only to
the transformation ξ(t).

As noted in section 4.3 the posterior distribution of τ1, τ2 given the temperature
increment measurements x1, . . . , xn is

π(τ1, τ2|x1, . . . , xn) ∝ L(τ1, τ2|x1, . . . , xn)π(τ1, τ2) ∝

λ1(1−λ1)τ1−1λ2(1−λ2)τ2−τ1−1

σ
τ1−1
0 σ

τ2−τ1
1 σ

n−τ2+1
2

×

exp
(
−
∑τ1/∆−1
i=1

x2
i

2∆σ2
0
−
∑τ2/∆−1
i=τ1/∆

(xi−∆ν1)2

2∆σ2
1
−
∑n
i=τ2/∆

(xi−∆ν2)2

2∆σ2
2

)
, τ1 < τ2 ≤ tn

λ1(1−λ1)τ1−1λ2(1−λ2)τ2−τ1−1

σ
τ1−1
0 σ

n−τ1+1
1

×

exp
(
−
∑τ1/∆−1
i=1

x2
i

2∆σ2
0
−
∑n
i=τ1/∆

(xi−∆ν1)2

2∆σ2
1

)
, τ1 ≤ tn < τ2.

λ1(1−λ1)τ1−1λ2(1−λ2)τ2−τ1−1

σn0
exp

(
− 1

2∆σ2
0

∑n
i=1 x

2
i

)
, tn < τ1 < τ2.
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In this setting, with the restrictions given in (4.3.7), we obtain

π(τ1, τ2|x1, . . . , xn) ∝ L(x1, . . . , xn|τ1, τ2)π(τ1, τ2) ∝

λ1(1−λ1)τ1−1λ2(1−λ2)τ2−τ1−1

σ
τ1−1
0 σ

n−τ1−1
1 αn−τ2

×

exp
(
−
∑τ1/∆−1
i=1

x2
i

2∆σ2
0
−
∑τ2/∆−1
i=τ1/∆

(xi−∆ν)2

2∆σ2
1
−
∑n
i=τ2/∆

(xi−α∆ν)2

2α2∆σ2
1

)
, τ1 < τ2 ≤ tn

λ1(1−λ1)τ1−1λ2(1−λ2)τ2−τ1−1

σ
τ1−1
0 σ

n−τ1−1
1

×

exp
(
−
∑τ1−1
i=1

x2
i

2∆σ2
0
−
∑n
i=τ1

(xi−∆ν)2

2∆σ2
1

)
, τ1 ≤ tn < τ2.

λ1(1−λ1)τ1−1λ2(1−λ2)τ2−τ1−1

σn0
exp

(
− 1

2∆σ2
0

∑n
i=1 x

2
i

)
, tn < τ1 < τ2.

If σ0 = σ1 = σ, the posterior simplifies to

π(τ1, τ2|x1, . . . , xn) ∝ L(x1, . . . , xn|τ1, τ2)π(τ1, τ2) ∝

λ1(1−λ1)τ1−1λ2(1−λ2)τ2−τ1−1

αn−τ2 ×
exp

(
− 1

2∆σ2

[∑τ1/∆−1
i=1 x2

i +
∑τ2/∆−1
i=τ1/∆ (xi −∆ν)2 +

∑n
i=τ2/∆

(xi−α∆ν)2

α2

])
, τ1 < τ2 ≤ tn

λ1(1− λ1)τ1−1λ2(1− λ2)τ2−τ1−1×
exp

(
− 1

2∆σ2

[∑τ1/∆−1
i=1 x2

i +
∑n
i=τ1/∆(xi −∆ν)2

])
, τ1 ≤ tn < τ2.

λ1(1− λ1)τ1−1λ2(1− λ2)τ2−τ1−1 × exp
(
− 1

2∆σ2
∑n
i=1 x

2
i

)
, tn < τ1 < τ2.

As for one change point, the hitting time CDF is found by MC summation over the
posterior distribution of τ1 and τ2, π(τ1, τ2|x1, . . . , xn;α, ν, σ), by drawing m pairs of
realizations of τ1, τ∗1,k, and τ2, τ∗2,k from π(τ1, τ2|x1, . . . , xn;α, ν, σ). Denote the formulaic
time transformed estimate of the hitting time CDF P̂f (T ≤ t|x1, . . . , xn;α, ν, σ, a), and
note that as in section 4.3.1, the five different regions in figure 4.3.1 lead to different
expressions for ξ(t) in equation (4.3.8) for the shifted hitting time:

ξ(t) =



α(t− tn), if τ1 < τ2 ≤ tn, Case 1
τ2 − tn + α(t− τ2), if τ1 < tn < τ2 ≤ t, Case 2
t− tn, if τ1 ≤ tn < t < τ2, Case 3
τ2 − τ1 + α(t− τ2) if tn < τ1 < τ2 ≤ t, Case 4
t− τ1 if tn < τ1 ≤ t < τ2, Case 5.

(4.3.10)

Thus formulaic time transformed estimate of the hitting time CDF is given as

P̂f (T ≤ t|x1, . . . , xn;α, ν, σ, a) = 1
m

m∑
k=1

P (T ≤ t|τ∗1,k, τ∗2,k;α, a, ν, σ)

= 1
m

m∑
k=1

F (ξ(t)|τ∗1,k, τ∗2,k;α, ν, σ, a), (4.3.11)

where ξ(t) is given in equation (4.3.10). Note that in case 1 and case 3, ξ(t) is independent
of τ1 and τ2, such that F (ξ(t)|τ1, τ2; a, ν, σ) can be taken out of the summation for
computational savings. Algorithm 5 summarizes the approach.
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Algorithm 5 Formulaic time transformation approach for estimating the hitting time
CDF of t = t′ for piecewise Wiener process with two unknown change points τ1 and τ2.
Require: m, {W (ti), i = 1, . . . , n}, ν1, ν2, σ0, σ1, σ2, a > W (tn), t′

∆ = tn/n
xi = W ((i+ 1) ·∆)−W (i ·∆)
Find posterior distribution of τ : π(τ1, τ2|x1, . . . , xn;α, ν, σ)
for k = 1 to m do
Sample τ∗1,k, τ∗2,k from π(τ1, τ2|x1, . . . , xn;α, ν, σ)
Calculate ξk(t′) according to equation (4.3.10)

P (T ≤ t′|τ∗1,k, τ∗2,k, x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a) = F (ξk(t′); ν1, σ1, a),

where F (· ; ν1, σ1, a) denotes the inverse Gaussian CDF with drift parameter ν1 ,
variance parameter σ1 and threshold parameter a.

end for
return

P̂f (T ≤ t′|x1, . . . , xn; ν, σ, a) = 1
m

m∑
k=1

F (ξk(t′); ν1, σ1, a)

4.3.3 Simulation approach

The simulation approach is conceptually the same for two change points as it was for
one. As for one change point, the simulation approach finds the hitting time CDF condi-
tioned on the change points, P (T ≤ t|τ1, τ2, x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a), by simulating
a number, say K, of Wiener processes from the last observation, at time tn and temper-
ature W (tn), until the processes cross the threshold temperature a, that is, until time Ti
and temperature a. Note that conditioned on τ1 and τ2, the distribution of Xi is now:

Xj |τ1, τ2 ∼


N (0,∆σ2

0) if j∆ < τ1

N (∆ν1,∆σ2
1) if τ1 ≤ j∆ < τ2

N (∆ν2,∆σ2
2) if τ2 ≤ j∆

Thus, the above gives the rule for how the temperature increments are sampled.
As for one change point, P (T ≤ t|τ, x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a) can be estimated

as the empirical CDF, F̂K,τ∗
1,j ,τ

∗
2,j

(t),

F̂K,τ∗
1,j ,τ

∗
2,j

(t) = 1
K

K∑
i=1

ITi≤t.

The simulation approach does not require the assumption that T > τ , neither the
assumption of Doksum and Høyland (1992) that W2(t) = W1(τ2 + α(t − τ2)) nor the
constraints on ν2 and σ2 that followed.
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Finally, the marginalized distribution of the hitting time T given the temperature
increments x1, . . . , xn, P (T ≤ t|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a) is found as for the formu-
laic approach, by drawing a large number N of change point realizations τ∗1,i, τ∗2,i from
the posterior distribution, and let the mean denote the simulation estimator P̂S(T ≤
t|x1, . . . , xn; ; ν1, ν2, σ0, σ1, σ2, a) for the probability P (T ≤ t|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a):

P̂S(T ≤t|x1, . . . , xn; ; ν1, ν2, σ0, σ1, σ2, a) = 1
N

N∑
j=1

F̂K,τ∗
1,j ,τ

∗
2,j

(t). (4.3.12)

The simulation is described in algorithm 6. The description is schematic, and imple-
mentation can be done much more efficient.

4.3.4 τ1, τ2 and ν1 unknown

Consider now the situation of Doksum and Høyland (1992) where the parameters can
be described as in 4.3.7, and further consider the case where ν1 is unknown, but α and
σ1 is known. Note that this implies that ν2 is unknown, since ν2 = αν1. However, σ2 is
known since σ2 = ασ1. Thus, we will estimate only ν1, but our estimates will take into
account both ν1 and ν2 = αν1.

We consider ν1 > 0 in the failure development setting, and thus a gamma prior on ν1
as in section 4.2 is intuitive. We assume that ν1 is independent of τ1 and τ2, and hence
let the joint prior be

π(τ1, τ2, ν1) = π(τ1, τ2)π(ν1)

where π(τ1, τ2) is the joint prior of τ1 and τ2, given in equation (4.3.1). Thus, when
using the Metropolis-Hastings algorithm with the prior distribution as the proposal, the
Metropolis-Hastings ratio stays the likelihood ratio, but now a function of τ1, τ2 and ν1.
The extension to ν1 unknown in the formulaic and simulation approach is analogous to
the extension to ν unknown for the process with one change point.
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Algorithm 6 Simulation to find hitting time distribution for piecewise Wiener process
with one unknown change point τ .
Require: m, {W (ti), i = 1, . . . , n}, ν1, ν2, σ0, σ1, σ2, a > W (tn),K, t

∆ = tn/n
xi = W (i ·∆)−W ((i− 1) ·∆)
Find posterior distribution of τ : π(τ |x1, . . . , xn; ν1, ν2, σ0, σ1, σ2)
t = tn
for j = 1 to J do
Sample τ∗1,j , τ∗2,j from π(τ1, τ2|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2)
for k = 1 to K do
t = t+ ∆
while W (t−∆) ≤ a do

if τ∗2,j ≤ t then
Draw increment
X(t) ∼ N

(
ν2 ·∆, σ2

2 ·∆
)

else if τ∗1,j ≤ t then
Draw increment
X(t) ∼ N

(
ν1 ·∆, σ2

1 ·∆
)

else
Draw increment
X(t) ∼ N

(
0, σ2

0 ·∆
)

end if
W (t) = W (t−∆) +X(t)
t = t+ ∆

end while
Tk = t is the k-th hitting time given τ∗1,j , τ∗2,j

end for
F̂K,τ∗

1,j ,τ
∗
2,j

(t) = 1
K

∑K
k=1 ITk ≤ t is the estimate of

P (T ≤ t|τ∗1,j , τ∗2,j , x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a).
end for
Estimate P (T ≤ t|τ∗1,j , τ∗2,j , x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a) by

P̂S(T ≤ t|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a) = 1
J

J∑
i=1

F̂K,τ∗
1,j ,τ

∗
2,j

(t).

return P̂S(T ≤ t|x1, . . . , xn; ν1, ν2, σ0, σ1, σ2, a).
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4.4 m change points

Consider now the setting with m change points and corresponding parameters 0 =
ν0 and σ0, for the initial process, as before, and ν1, . . . , νm and σ1, . . . , σm. Let ~ν =
[ν0, ν1, . . . , νm] and ~σ = [σ0, σ1, . . . , σm]. Let ~ν, ~σ be known. We make the remark that,
as before, τ1 < τ2 < · · · < τm. The likelihood becomes

L(τ1, . . . , τm|x1, . . . , xn;~ν, ~σ) =



Lm(τ1, . . . , τm|x1, . . . , xn;~ν, ~σ) if τm ≤ tn,
Lm−1(τ1, . . . , τm|x1, . . . , xn;~ν, ~σ) if τm−1 ≤ tn < τm,
...

L1(τ1, . . . , τm|x1, . . . , xn;~ν, ~σ) if τ1 ≤ tn < τ2,

L0(τ1, . . . , τm|x1, . . . , xn;~ν, ~σ) if tn < τ1.

(4.4.1)
where Lm(τ1, . . . , τm|x1, . . . , xn;~ν, ~σ) for m = 1, 2, . . . , is the likelihood if τm ≤ n:

Lm(τ1, . . . , τm|x1, . . . , xn;~ν, ~σ) =
n∏
i=1

f(xi|τ1, . . . , τn;~ν, ~σ)

=
τ1/∆−1∏
i=1

1√
2π∆σ0

exp
{
− x2

i

2∆σ2
0

}
×
τ2/∆−1∏
i=τ1/∆

1√
2π∆σ1

exp
{
−(xi −∆ν1)2

2∆σ2
1

}
× . . .

×
n∏

i=τm/∆

1√
2π∆σm

exp
{
−(xi −∆νm)2

2∆σ2
m

}

∝ 1
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× · · · × 1
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×

exp
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+
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+ · · ·+
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i=τm/∆

(xi −∆νm)2
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and L0(τ1, . . . , τm|x1, . . . , xn;~ν, ~σ) ∝ 1

σn0
exp

{
− 1

2∆

[∑n
i=1

x2
i

σ2
0

]}
. When ~σ is known, the

products of fractions is obsolete and need not be included in the likelihood.
The joint prior distribution of the change points τ1, . . . , τm can be found as before by

realizing that the time spent in each state is independent and geometrically distributed,
as noted in section 4.3. By defining τ0 = 0, we can express the joint prior probability as

π(τ1, . . . , τm) =
m∏
i=1

λi(1− λi)τi−τi−1−1

for 0 < τ1 < τ2 < · · · < τm with all τi integer valued, and 0 otherwise.
The posterior is as before

π(τ1, . . . , τm|x1, . . . , xn;~ν, ~σ) ∝ π(τ1, . . . , τm)× L(τ1, . . . , τm|x1, . . . , xn;~ν, ~σ).
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To find the hitting time CDF, we suggest using either the simulation approach or
the formulaic time transformed approach, which are both easily generalized to m change
points, as the formulae for the original time scaled problems become tedious to work
out.

The simulation approach is naturally extended. A set of τ1, . . . , τm realizations are
drawn from the posterior distribution, and the processes are simulated accordingly. The
difference from 6 is that more cases on the size of τi must be checked in order to draw
increments from the correct distribution. The CDF is found by the empirical estimate
F̂l(t) as before, where l denotes the number of simulated Wiener processes.

The transformed time approach is outlined in Doksum and Høyland (1992). The
restrictions on νi and σi are extended:

νi = ανi−1 σ2
i = α2σ2

i−1

for i = 2, 3, . . . ,m.
Define the model as for two change points, with the Wiener process W0(t), t ∈ [0, τ1)

with drift parameter ν0 = 0 and variance parameter σ0. At τ1, the process changes to
the Wiener process W1(t), t ∈ [τ1, τ2), with parameters ν1, σ1. In this case, the process
changes again at the m change points until Wm(t), t ∈ [τm,∞). Thus, for t > τ1, we can
define the process

Wi(t) = Wi−1(τi + αi[t− τi]), t ∈ [τi, τi+1),

where τk+1 =∞. Thus, the drift is multiplied with the factor αi each time t crosses the
change point τi. Again, the process can be re-expressed in terms of the process W1(t)
by introducing βi:

βi =
i∏

r=0
αi,

by defining α0 = 1. Furthermore, define the multiplicative factor β(t):

β(t) = βi, t ∈ [τi, τi+1), i = 1, . . . , k.

The transformation can be defined as

ξ(t) =
{
t, if τ1 < t ≤ τ2∑i−1
r=0 βr(τr+1 − τr) + βi(t− τi) if t ∈ [τi, τi+1), i = 1, . . . , k.

(4.4.2)

Thus, we can write W (t) = W1(ξ(t)), t > τ1. According to Doksum and Høyland (1992),
the CDF is

P (T ≤ t) = F (ξ(t)), t > τ1

and 0 otherwise, where F (·) denotes the inverse Gaussian CDF.



Chapter 5

Application to the motivating
case study

5.1 One change point

In this section, we will have one particular temperature Wiener process as our starting
point. The temperature processW (t) is shown in figure 5.1.1. The process was simulated
with the following parameters:

ν = 0.003 σ = 0.02 τ = 1500

in the time interval [0, tn] = [0, 3000]. The resolution was tn/n = ∆ = 1. For this process
we will consider the hitting time of the threshold temperature value a = [W (t)]+10 = 14,
where [·] denotes rounding to the nearest integer.

Figure 5.1.1: Piecewise Wiener process simulated in the time interval [0, tn] = [0, 3000].
with one change point τ = 1500. The drift parameter before the change point is ν0 = 0
and after the change point ν = 0.003. The variance parameter is the same for both
pieces, σ = 0.02. For this process, we will consider the threshold a = 14.

42
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In this section, numerical examples will be given for three different cases, first τ
unknown and ν and σ known, secondly both τ and ν unknown and σ known, and
finally all three parameters τ , ν and σ unknown. In each case, we will also consider
different observation lengths tn of the temperature process, that is, we will consider the
observations {W (ti), i = 1, . . . , n} for different n. Note that the corresponding tn is the
endpoint in time of observation. This is to mimic the situation of online monitoring.

For each of the three cases, the different observations length are tn = 1 400,
tn = 1 700 and tn = 3 000. Note that in with the first observation length tn = 1 400, the
change point has not occurred. The second observation length, tn = 1 700, is shortly
after the change point. The third change point, tn = 3 000 is long after the change point,
and should give good information.

In the entire chapter, the approach used to deal with W (τ) for τ > tn was to set
W (τ) = W (tn). This was done after some comparison of calculations with the MC
summation solution, and the approaches were found to give comparable results.

5.1.1 τ unknown, ν and σ known

Firstly in this section, we will consider the MCMC diagnostics of the samples from the
posterior distribution π(τ |x1, . . . , xn) for the different tn. Finally, we will examine the
hitting time distributions which we obtain for the different posterior distribution by the
formulaic approach, P̂f (T ≤ t) and the simulation approach, PS(T ≤ t).

In all cases, a geometric prior was put on τ with parameter λ = 1/3000.

Observation until tn = 1 400

Figure 5.1.2 shows the prior distribution of τ together with the posterior distribution,
estimated by kernel smoothing density methods, as estimated by available software,
based on the sample of τ by MCMC methods. Further diagnostic figures are shown in
appendix A.1.1: A trace plot is given in figure A.1.1, a histogram of all values after
burn-in is shown in figure A.1.2 and finally, the autocorrelation function, ACF, of the τ
iterates is shown in figure A.1.3. The trace plot seems to show that the Markov chain
is covering the entire domain of the posterior distribution π(τ |x1, . . . , xn; ν, σ), and the
chain is moving fast. The autocorrelation is rapidly decreasing. The acceptance rate
was 0.632. Together with the trace plot and the ACF, this points to good mixing. The
Rubin-Gelman statistic was calculated with five chains of length 2 · 106 and a burn-in
of 104 to R̂1 = 1. Thus, it is assumed that the chain has converged to the posterior
distribution.

However, looking at figure 5.1.2, it seems like the prior distribution is still influen-
tial. This is natural when we know that the change point has not happened yet. In
fact, looking at the posterior distribution, we see that it is very flat until tn, unlike the
prior distribution, π(τ). After the last observation point, we can only rely on the prior
distribution for information about τ. This gives rise to the long 95 % credible interval
estimates, shown in table 5.1 along with point estimates of the MCMC sampled popula-
tion of τ from the posterior distribution. The interval estimates are the 2.5 % and 97.5
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% percentiles of the posterior distribution along with the 95 % highest posterior density
region, HPD region, as estimated by available software.

Observation until tn = 1 700

In this case, the change point has occurred, and we have collected some data following
the parameters ν and σ. Figure 5.1.3 shows the prior distribution of τ along with
the posterior distribution estimated by kernel smoothing density methods based on the
sample of τ obtained by MCMC methods. The trace plot is shown in figure A.1.4, the
ACF is shown in figure A.1.6 and the histogram is shown in figure A.1.5, all in appendix
A.1.1. The acceptance rate was 0.428. The lower acceptance rate than at tn = 1 400
manifests in all three plots, by the sharper histogram, the less vigorously moving trace
plot and the slower decline in the ACF as function of the lag. However, the chain is still
moving freely and fast around the range of the posterior distribution, and does not show
signs of getting stuck or moving in a specific pattern. The Rubin-Gelman statistic was
calculated with five chains of length 2 · 106 and a burn-in of 104 to R̂1 = 1. Thus, it is
assumed that the chain has converged to the posterior distribution.

Figure 5.1.3 shows that there is a steep peak in the posterior distribution of τ ,
π(τ |x1, . . . , xn; ν, σ), around τ = 1500. Table 5.2 shows the statistics of the sample.
Even though the mean of τ has decreased significantly compared to tn = 1 400, the
difference between the mean and the median is large. This reflects the heavy tail of
π(τ |x1, . . . , xn; ν, σ), which can be seen in figure 5.1.3. One can note that the interval
estimates have narrowed compared to tn = 1 400, but are still wide.

Observation until tn = 3 000

In this case, we have an abundance of measurements after the change point, which allows
us to estimate the change point very well. Figure 5.1.4 shows the prior and posterior
distributions of τ, given the observations up until tn = 3 000. Notice that π(τ |x1, . . . , xn)
is so steep that π(τ) is barely visible. The peakedness of the posterior distribution is
reflected in the diagnostics plots in appendix A.1.1 as well, the trace plot in figure A.1.7
shows that fewer proposals are accepted, in fact the acceptance rate is 0.038. The ACF
in figure A.1.9 is decaying at an even slower rate than at tn = 1 700, which is a result
of the low acceptance rate. However, looking at longer stretches of samples, the chain
is not moving sequentially or otherwise displaying unstationary behavior. The Rubin-
Gelman statistic was calculated with five chains of length 2 · 106 and a burn-in of 104 to
R̂1 = 1. Thus, it is assumed that the chain has converged to the posterior distribution.
It is also assumed that with the large MCMC sample from the posterior distribution,
the autocorrelation effects wash out.

Table 5.3 show the statistics of the MCMC sample of τ . Now, the mean and median
are close to each other and close to the true τ = 1 500. The 2.5th and 97.5th percentiles
and the 95% HPD are much narrower than at the earlier tn, as is natural.
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Figure 5.1.2: Prior distribution of τ , π(τ) and posterior distribution of τ ,
π(τ |x1, . . . , xn; ν, σ), given the observed temperature W (t) up until tn = 1 400. Here, ν
and σ were considered known.

Table 5.1: Statistics of the posterior distribution of τ , π(τ |x1, . . . , xn; ν, σ), as estimated
by MCMC methods. Here, ν and σ were considered known, and the endpoint of obser-
vation was tn = 1 400.

Point estimates Mean 4 378
Median 3 459

Interval estimates 2.5 and 97.5 percentile [1 454, 12 448]
95 % HPD [1 292, 10 389]

Table 5.2: Statistics of the posterior distribution of τ , π(τ |x1, . . . , xn; ν, σ), as estimated
by MCMC methods. Here, ν and σ were considered known, and the endpoint of obser-
vation was tn =1 700.

Point estimates Mean 3 352
Median 2 149

Interval estimates 2.5 and 97.5 percentile [1 398, 11 125]
95 % HPD [1 254, 9 138]

Table 5.3: Statistics of the posterior distribution of τ , π(τ |x1, . . . , xn; ν, σ), as estimated
by MCMC methods. Here, ν and σ were considered known, and the endpoint of obser-
vation was tn = 3 000.

Point estimates Mean 1 507
Median 1 497

Interval estimates 2.5 and 97.5 percentile [1 357, 1 857]
95 % HPD [1 292, 1 682]
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Figure 5.1.3: Prior distribution of τ , π(τ) and posterior distribution of τ ,
π(τ |x1, . . . , xn; ν, σ), given the observed temperature W (t) up until tn = 1 700. Here, ν
and σ were considered known.

Figure 5.1.4: Prior distribution of τ , π(τ) and posterior distribution of τ ,
π(τ |x1, . . . , xn; ν, σ), given the observed temperature W (t) up until tn = 3 000. Here, ν
and σ were considered known.
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Hitting time CDF estimates

The hitting time CDF estimates of the temperature threshold a = 14 will now be
presented. Let it be implicitly understood that the hitting time CDF estimates are
given the data and the known parameters. That is, we write P̂f (T ≤ t) for Pf (T ≤
t;x1, . . . , xn; ν, σ). The estimates for all three values of tn by the formulaic approach
Pf (T ≤ t), are shown in figure 5.1.5. The estimate P̂f (T ≤ t) was calculated with
m = 5 · 105 draws from the posterior distribution of τ for each value of t. Figure 5.1.6
shows the hitting time CDF estimate by the simulation solution, PS(T ≤ t), with the
credible intervals and true distribution. In the simulation approach, for each realization
of τ∗ from the posterior distribution, 100 simulations of Wiener processes were run
to estimate P (T ≤ t|τ∗). In total, there were m = 104 realizations τ∗ drawn from
π(τ |x1, . . . , xn; ν, σ). Figure 5.1.7 compares the two approaches, Pf (T ≤ t), and PS(T ≤
t), and their respective credible intervals. Finally, some selected percentiles of P̂f (T ≤ t)
and PS(T ≤ t) as well as their respective credible intervals are given in table 5.4. The
percentiles of the true distribution is shown for comparison.

The estimates are plotted with the so-called true distribution, which is what we term
the distribution given the true value of τ and the temperature measurements up to tn =
3 000. That is, the true distribution is the inverse Gaussian CDF with the true drift
parameter ν, true variance parameter σ and threshold parameter a−W (3000), in other
words, the distribution given the maximum amount of data in our case. However, the
process’ path from tn = 1 400 to tn = 3 000 is just one possible realization, thus the
true distribution shows the deviance only for this case.

Note that the shape of the curve P (T ≤ t) is determined by ν, σ and a−W (max{tn, τ}).
Thus, in every case where τ ≤ tn, the estimated CDF of T is the same. Thus, when
nearly all realizations of τ∗ in the MC summation of the formulaic solution Pf (T ≤ t),
are such that τ∗ < tn, the 95 % credible interval is exactly the same as the estimate itself.
This happens for tn = 3 000, where the curves of the estimate, the credible interval and
the true distribution completely overlap in the figure. Table 5.4 show that the values
are in fact exactly the same, as should be expected, since all values of τ∗ in MCMC
sampling are below tn = 3 000, thus giving identical, and correct, estimates.

The spread of the estimates for tn = 1 400 and tn = 1 700 are of course larger, with
the spread of tn = 1 400 being the largest, as is natural. Note that the upper limit of
the credible interval is much closer to the true distribution than the lower limit of the
credible interval. For tn = 1 700, the true change point τ = 1 500 is passed, so the
process has a drift. Thus, as long as τ∗ ≤ tn, all estimates of the hitting time CDF will
be the same, unless the temperature W (tn) gives rise to a higher expected temperature
at t = 3 000. From the plot of the temperature process, seen in figure 5.1.1, it is clear
that this may be the case, since the process is flattening out at the very end of the time
interval, say the time interval [2 500, 3000]. At tn = 1 400, there is another possible way
for the hitting time CDF estimate to elevate above the true distribution, namely that
τ∗ < 1 500, the true value of τ can be drawn, and when drawn will affect the threshold
parameter a −W (max{tn, τ}). However, every value of τ∗ > tn will result in a lower
hitting time CDF estimate, and remembering figures 5.1.2 and 5.1.3 we know that there
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are many such τ∗ which can be drawn from π(τ |x1, . . . , xn).
Note also that for both tn = 1 700 and tn = 1 400, the lower credible interval exceeds

the hitting time CDF estimate itself. This is because the number of τ∗ values that are
lower than the estimate itself are very few, but in the mean, which is the hitting time
CDF estimate they contribute with a value at or near zero, and thus influence the mean
to a great extent.

It can also be noted that the lower percentiles of the hitting time CDF estimate at
tn = 1 700 is closer to the true distribution, but for the higher percentiles, the behavior
is more similar to that of the hitting time estimate at tn = 1 400. This is because of
the sharp peak in the posterior distribution of τ and the following heavy tail. This
also causes the jaggedness of the lower credible interval. As it is selected as the 2.5th
percentile, it is not strictly increasing when different τ∗ are drawn for each t.

Note that the smaller number of realizations from the posterior distribution gives
broader credible intervals than P̂f (T ≤ t), but the estimates themselves are very close,
see figure 5.1.7. However, in these examples, the number of simulated processes and
draws from π(τ |x1, . . . , xn; ν, σ) were restricted because of computational limitations.

Regardless of the poorer accuracy of the simulation solution in this example, the
behavior is the same. The upper credible interval is closer to the true distribution,
the credible intervals narrow as tn grows and at tn = 3 000, there is overlap of the
true distribution and the simulation estimate PS(T ≤ t). Also, the lower percentiles of
PS(T ≤ t) at tn = 1 700 are notably steeper than the higher percentiles, reflecting the
peak and tail of the posterior distribution. The upper and lower credible interval also
reflect the typical staircase-shape of the empirical CDF. This is smoothed out in the
mean, PS(T ≤ t), and it is believed that a higher number of simulations and draws from
the posterior distribution will smooth out the credible intervals as well.
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Figure 5.1.5: Formulaic approach to estimating CDF, P̂f (T ≤ t) for different observation
lengths, tn, shown with 95 % credible intervals and the true distribution. The x-axis is
time t while the y-axis is the probability. Top panel: tn = 1 400. Middle panel: tn = 1
700. Bottom panel: tn = 3 000. Here, ν and σ are considered known parameters, while
τ is unknown.
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Figure 5.1.6: Simulation approach to estimating CDF, P̂S(T ≤ t) for different obser-
vation lengths, tn, shown with 95 % credible intervals and the true distribution. The
x-axis is time t while the y-axis is the probability. Top panel: tn = 1 400. Middle panel:
tn = 1 700. Bottom panel: tn = 3 000.Here, ν and σ are considered known parameters,
while τ is unknown.
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Figure 5.1.7: Comparison of simulation approach to estimating the hitting time CDF,
P̂S(T ≤ t) and formulaic approach to estimated the hitting time CDF, P̂f (T ≤ t), with
their respective 95 % credible intervals for different observation lengths, tn. The x-axis
is time t while the y-axis is the probability. Top panel: tn = 1 400. Middle panel: tn = 1
700. Bottom panel: tn = 3 000. Here, ν and σ are considered known parameters, while
τ is unknown.
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5.1.2 τ and ν unknown, σ known

In this section, we will examine the situation where both the drift parameter ν and the
change point τ are unknown parameters. The variance parameter σ will be considered
known. As above, we will examine the MCMC diagnostics of the three cases tn = 1 400,
tn = 1 700 and tn = 3 000, before looking at the hitting time CDF estimates by the
formulaic and simulation approach. Note that the estimates has been obtained by the
same temperature process as before, shown in figure 5.1.1.

The geometric prior on τ was continued such that τ ∼ Geom(1/3000) and the prior
on ν was chosen ν ∼ Gam(4, 0.0006), which was thought to sample from a reasonable
range for ν, while avoiding the numerical difficulties discussed in section 4.2.4.

Observation until tn = 1 400

Figure 5.1.8 shows the marginal prior distributions for τ and ν as well as the marginal
posterior distributions of τ and ν, π(τ |x1, . . . , xn) and π(ν|x1, . . . , xn) respectively, as
obtained by kernel smoothing density estimates. Note how π(ν|x1, . . . , xn) is very close
to π(ν). Remember that the true change point has not yet occurred, thus in reality we
have no temperature increments xi drawn with expectation ν. As before, the posterior
distribution of τ , π(τ |x1, . . . , xn) is quite flat until τ = 1 400, and thereafter, it rises
sharply, due to the prior distribution π(τ). Note however that compared to figure 5.1.2,
there is more density before τ = 1 400. This can be explained by the variability of ν.
If we consult the contour plot of the joint posterior density, π(τ, ν|x1, . . . , xn), shown
in figure A.1.12 in appendix A.1.2, we see that these smaller values of τ correspond
to near-zero drift, which the increments until tn are likely to have since E[xi] = 0.
That is, the situation that the change point has occurred, but the drift is very small.
Thus, it is to be expected that π(ν) is very influential of π(τ |x1, . . . , xn), in the situation
where π(τ |x1, . . . , xn; ν) is near zero for τ < tn. Further diagnostics plots are shown
in appendix A.1.2: the marginal trace plots of τ and ν are shown in figure A.1.10, the
ACF of the MCMC iterations of τ and ν as function of lag are shown in figure A.1.13
and the histogram of the samples of τ and ν are shown in A.1.11. There were some
small cross-correlations between τ and ν, which are not shown. These were assumed to
stem from the natural dependency when estimating the two variables which were seen
in the contour plot - that if ν is very small, τ can be very small, and if τ is large, ν
can be anything. The trace plots and the ACF suggest that the chain is moving rapidly
and freely and not getting stuck. This, combined with the calculated Rubin-Gelman
statistic R̂2 = 1, obtained with five chains of run length 2 ·106 and burn-in of 104, points
to convergence of the chain.

Some sample statistics of τ and ν are given in table 5.5, showing the mean and median
as well as the 2.5th and 97.5th percentile and the 95 % HPD. The interval estimates are
quite large for the two random variables. The most notable is the difference between
the median and mean of τ , as before, caused by the heavy tail. The mean has been
increased compared to the prior distribution, as in the situation with one change point
and ν known, because the posterior is near zero for τ < tn.
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Figure 5.1.8: Prior distribution of τ , π(τ) and ν, π(ν) and marginal posterior distribu-
tions of τ and ν, π(τ, |x1, . . . , xn;σ) and π(ν, |x1, . . . , xn;σ) given the observed temper-
ature W (t) up until tn = 1 400. Here, σ is considered known.

Table 5.5: Statistics of the joint posterior distribution of τ and ν, π(τ, ν|x1, . . . , xn;σ),
as estimated by MCMC methods. Here, σ was considered known, and the endpoint of
observation was tn =1 400.

τ

Point estimates Mean 4 304
Median 3 399

Interval estimates 2.5 and 97.5 percentile [1 397, 12 380]
95 % HPD [1 140, 11 309]

ν

Point estimates Mean 0.0024
Median 0.0022

Interval estimates 2.5 and 97.5 percentile [0.0006, 0.0052]
95 % HPD [0.0004, 0.0047]
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Observation until tn = 1 700

Figure 5.1.9 shows the marginal prior distributions for τ and ν as well as the marginal
posterior distributions of τ and ν, π(τ |x1, . . . , xn) and π(ν|x1, . . . , xn) respectively, as
obtained by kernel smoothing density estimates. Compared to figure 5.1.8, the change is
striking in π(τ |x1, . . . , xn), as was the case when ν was known. However, the change in
π(ν|x1, . . . , xn) is not as remarkable, although the distribution is shifted towards larger
values of ν. This may stem from the heavy tail of π(τ |x1, . . . , xn), because if τ∗ > tn,
there are no temperature increments with drift ν, thus the only information about the
drift is the prior distribution.

Further diagnostics plots are shown in appendix A.1.2, the trace plot of the marginal
posterior distribution π(τ |x1, . . . , xn) and π(ν|x1, . . . , xn) in figure A.1.14, the histogram
in figure A.1.15, ACF for the MCMC iterations from π(τ |x1, . . . , xn) and π(ν|x1, . . . , xn)
as function of the lag in figure A.1.17 and finally a contour plot of the joint posterior
density π(τ, ν|x1, . . . , xn) is shown in figure A.1.16. The trace plots show that the ac-
ceptance rate has gone down as the posterior density has become more peaked. This
also results in the ACF decreasing at a slower rate. Also here, there were some small
cross-correlations between τ and ν, which are not shown. However, the chain is moving
fast and freely, and even though it gets stuck for smaller amounts of time, it is seems to
have good mixing overall. In this case as well, the Rubin-Gelman statistic was calculated
R̂2 = 1, obtained with five chains of run length 2 · 106 and burn-in of 104, pointing to
convergence of the chain.

Some sample statistics of the Markov chain is show in table 5.6. Note that the mean
an median of ν has both risen, as is natural since the change point is now passed, and
the cases with small change points τ and near-zero drift ν should be less probable. The
mean and median of τ is now decreased, as was the case with ν known. The intervals for
τ are decreased as is natural when there is more information. Notice that the intervals
for ν does not decrease as much, which can be traced to the heavy tail π(τ |x1, . . . , xn).

Observation until tn = 3 000

Finally, we consider the situation with observations up until tn = 3 000, which provides
an abundance of measurements of temperature increments Xi after the true change
point τ = 1 500. Figure 5.1.10 shows the marginal prior distributions for τ and ν as well
as the marginal posterior distributions of τ and ν, π(τ |x1, . . . , xn) and π(ν|x1, . . . , xn)
respectively, as obtained by kernel smoothing density estimates. The peakedness of
π(τ |x1, . . . , xn) is almost as sharp as it was with ν known. It is also clear that π(ν|x1, . . . , xn)
is more peaked and less influenced by the prior distribution. However, it is centered to
the left of the true value of ν, 0.003, which is clear from the statistics shown in table 5.7.
It can be noted that when considering the measurements from the true τ = 1 500 to tn
= 3 000, the mean of the temperature increments, X̄i = 0.027, which is smaller than the
true value. Thus it is natural that π(ν|x1, . . . , xn) is shifted towards smaller values of ν.

Further diagnostics plots are shown in appendix A.1.2: figure A.1.18 shows the
marginal trace plots of τ and ν, figure A.1.19 shows a histogram of the sample val-
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Figure 5.1.9: Prior distribution of τ , π(τ) and ν, π(ν) and marginal posterior distribu-
tions of τ and ν, π(τ, |x1, . . . , xn;σ) and π(ν, |x1, . . . , xn;σ) given the observed temper-
ature W (t) up until tn = 1 700. Here, σ is considered known.

Table 5.6: Statistics of the joint posterior distribution of τ and ν, π(τ, ν|x1, . . . , xn;σ),
as estimated by MCMC methods. Here, σ was considered known, and the endpoint of
observation was tn =1 700.

τ

Point estimates Mean 3 501
Median 2 440

Interval estimates 2.5 and 97.5 percentile [694, 11 400]
95 % HPD [1, 9 326]

ν

Point estimates Mean 0.0025
Median 0.0023

Interval estimates 2.5 and 97.5 percentile [0.0007, 0.0052]
95 % HPD [0.0005, 0.0048]
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ues of π(τ |x1, . . . , xn) and π(ν|x1, . . . , xn), figure A.1.20 shows the contour plot of the
joint posterior distribution π(τ, ν|x1, . . . , xn), and finally, the ACF of MCMC iterations
of τ and ν as function of the lag are shown in figure A.1.21. It is now clear that the
acceptance rate has dropped significantly, which manifests in the trace plots as well as
the ACF plots, which are decreasing at a slower rate. However, the decrease is evident,
and looking at trace plots of longer stretches, there behavior is not sequential. Noting
that the number of measurements is large, it is natural to assume that the likelihood is
considerably more peaked than for tn = 1 700, for example. The Rubin-Gelman statistic
was calculated R̂2 = 1, obtained with five chains of run length 2 ·106 and burn-in of 104,
where special care was taken to over-disperse the starting points of the chain. Thus, it
is assumed that the Markov chain has converged to the posterior distribution.

Table 5.7 also shows that the interval estimates of τ are now significantly decreased
and that the median and mean of τ are close to each other and to the true value of τ .
The mean and median of ν is not as close to the true value, and the interval estimates
center at the mean (and median). Although the true value of ν is inside both intervals,
the intervals are shifted towards smaller values of ν. This is assumed to stem from
smaller realized means of the temperature increments as remarked above, and the fact
that with τ∗ < tn, a smaller value of ν∗ is to be expected.

Hitting time CDF estimates

Finally, the resulting hitting time CDF estimates of the temperature level a = 14 for
each of the three tn are shown. The formulaic approach estimates, P̂f (T ≤ t), is shown
in figure 5.1.11, and the simulation approach estimates PS(T ≤ t) is shown in figure
5.1.12, with their respective 95 % credible intervals and the true distribution. Note
the different end values of the time axis in the two figures. The comparison of the two
approaches in shown in figure 5.1.13. Some percentiles of the hitting time CDF estimates
and the credible intervals are shown in table 5.8, with the true distribution. The estimate
P̂f (T ≤ t) was calculated with m = 5 · 105 draws from the joint posterior distribution of
τ and ν, π(τ, ν|x1, . . . , xn;σ), for each value of t. In the simulation approach, for each
realization of τ∗ and ν∗ from the joint posterior distribution, 100 simulations of Wiener
processes were run to estimate P (T ≤ t|τ∗). In total, there were m = 104 realizations τ∗
drawn from π(τ, ν|x1, . . . , xn;σ).

The true distribution shown for comparison in figures 5.1.11 and 5.1.12 is the same
as with ν known, the inverse Gaussian distribution with the true drift parameter ν,
true variance parameter σ and threshold parameter a −W (3000), in other words, the
distribution given the maximum amount of data in our case.

Note now that in both approaches, the upper credible interval limit is higher for all
observations lengths tn compared to the situation where ν was known. This is partly
because of the increased variation that naturally follows when an unknown parameter is
added, and partly because there are now more ways that the hitting time T can become
higher: as before, we can obtain τ∗ < 1 500, which influences only the case tn = 1 400,
and with ν unknown, we have seen from the plot of π(τ |x1, . . . , xn) that this is more
likely. We can also obtain W (τ∗) > W (tn), which gives higher values of P (T ≤ t|τ∗, ν∗)
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Figure 5.1.10: Prior distribution of τ , π(τ) and ν, π(ν) and marginal posterior distribu-
tions of τ and ν, π(τ, |x1, . . . , xn;σ) and π(ν, |x1, . . . , xn;σ) given the observed temper-
ature W (t) up until tn = 3 000. Here, σ is considered known.

Table 5.7: Statistics of the joint posterior distribution of τ and ν, π(τ, ν|x1, . . . , xn;σ),
as estimated by MCMC methods. Here, σ was considered known, and the endpoint of
observation was tn =3 000.

τ

Point estimates Mean 1 467
Median 1 489

Interval estimates 2.5 and 97.5 percentile [981, 1 861]
95 % HPD [1 238, 1 952]

ν

Point estimates Mean 0.0024
Median 0.0024

Interval estimates 2.5 and 97.5 percentile [0.0014, 0.0034]
95 % HPD [0.0014, 0.0034]
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for all t. Furthermore, which is new for the situation with ν unknown, we can obtain
ν∗ > ν, which gives higher values of P (T ≤ t|τ∗, ν∗) for all t. The lower credible interval
is also lower, which stems from the fact that when ν∗ < ν, P (T ≤ t|τ∗, ν∗) decreases
compared to the true distribution.

The steepening of the lower percentiles of the hitting time CDF estimates, which was
accredited to the peak in the posterior distribution, at tn = 1 700 is evident also now,
but less so than when ν was known.

Also note that tn = 3 000 does not give as narrow credible intervals as before. This
shows the greater effect the variability in the parameter ν has on the inverse Gaussian
CDF. Neither is the estimate as close to the true distribution as when ν is known, which
is natural. It is thought that if the estimate of ν were higher, it would be possible that
the hitting time CDF estimate lay between the upper credible interval and the true
distribution.

When comparing the two approaches, we see now that the credible intervals of the
simulation approach PS(T ≤ t) are narrower than those of the formulaic approach,
Pf (T ≤ t). It can be confirmed in table 5.8. This is assumed to stem from the fact that
fewer values from the posterior distribution was drawn to calculate PS(T ≤ t), thus the
entire variability of the distribution may not have been captured. It is assumed that
if a larger sample from the posterior distribution was drawn, the two credible intervals
would be nearly equal. The fact that the intervals approach each other for increasing tn
strengthens this belief, as the posterior distributions narrows when tn grows, such that
fewer draws are needed to capture the variance.
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Figure 5.1.11: Formulaic approach to estimating CDF, P̂f (T ≤ t) for different obser-
vation lengths, tn, shown with 95 % credible intervals and the true distribution. The
x-axis is time t while the y-axis is the probability. Top panel: tn = 1 400. Middle panel:
tn = 1 700. Bottom panel: tn = 3 000. Here, σ is considered known.
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Figure 5.1.12: Simulation approach to estimating CDF, P̂S(T ≤ t) for different obser-
vation lengths, tn, shown with 95 % credible intervals and the true distribution. The
x-axis is time t while the y-axis is the probability. Top panel: tn = 1 400. Middle panel:
tn = 1 700. Bottom panel: tn = 3 000. Here, σ is considered known.
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Figure 5.1.13: Comparison of the simulation and formulaic approaches, PS(T ≤ t) and
P̂f (T ≤ t) and their respective 95 % credible intervals with τ and ν as unknown param-
eters, and σ considered known, for three different observation lengths tn. The x-axis is
time t while the y-axis is the probability. Top panel: tn = 1 400. Middle panel: tn = 1
700.
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5.1.3 τ , ν and σ unknown

Finally, we let σ as well be an unknown parameter. Again, we will examine the MCMC
diagnostics of the three cases tn = 1 400, tn = 1 700 and tn = 3 000, before looking at
the hitting time CDF estimates by the formulaic and simulation approach, P̂f (T ≤ t)
and P̂S(T ≤ t) respectively. Note that the estimates has been obtained by the same
temperature process as before, shown in figure 5.1.1.

The geometric prior on τ was continued and the gamma prior on ν were continued
such that τ ∼ Geom(1/3000) and ν ∼ Gam(4, 0.0006).The parameter is given a gamma
prior, such that σ ∼ Gam(4, 0.01) which is thought to be a suitable range for the variance
parameter.

Observation until tn = 1 400

For the situation where the change point has not yet occurred, tn = 1 400, the marginal
priors of τ , ν and σ are shown in 5.1.14 along with the marginal posterior distributions
π(τ |x1, . . . , xn), π(ν|x1, . . . , xn) and π(σ|x1, . . . , xn).

Further diagnostics plots are given appendix A.1.3: the marginal trace plots of τ , ν
and σ are shown in figure A.1.22, the histogram of the sample values of each parameter is
shown in figure A.1.23, the ACF as function of the lag for each of the three parameter it-
erations is shown in figure A.1.25, and finally, three pairwise contour plots of the pairwise
joint posterior distributions, π(τ, ν|x1, . . . , xn), π(ν, σ|x1, . . . , xn) and π(τ, σ|x1, . . . , xn)
are shown in figure A.1.24. The sample statistics are summarized in table 5.9.

With the third unknown parameter, it is evident that the acceptance rate has de-
creased greatly, compared to tn = 1 400 and σ known. This manifests in the trace plot
and in the plot of the ACF. Compared to when σ was known, we double the run length
to 4 · 106. This is done to wash out the autocorrelation effects and ensure that the chain
is moving across the entire domain. With five chains with over-dispersed starting points,
the Rubin-Gelman statistic was calculated, R̂3 = 1. Thus, with the long run length, it
was thought that the Markov chain had converged to the posterior distribution, and was
able to traverse the entire range of the parameters.

Note in figure 5.1.14, the posterior distribution π(σ|x1, . . . , xn) of σ is more unaffected
of its prior compared to the two others. This is because all temperature increments xi
are sampled with the same variance parameter σ, thus at tn = 1 400, which allows the
posterior distribution π(σ|x1, . . . , xn) to become very narrow and wash out the effect
of the prior distribution π(σ). This is also evident in table 5.9. The interval estimates
of τ now show a larger portion of τ∗ < tn, compared to σ known, and hence, and
the mean and median of ν has decreased, compared to the situation with σ known.
Note that for {W (ti), i = 1, . . . , n}, the empirical standard deviation of the temperature
increments xi, is 0.0203, which is thought to explain why the main portion of the mass
of π(σ|x1, . . . , xn) lies above the true value 0.02. In addition, it is believed that the
iterations for which τ∗ < tn and ν∗ is near zero give require larger σ∗ to be accepted in
the MCMC procedure.
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Figure 5.1.14: Prior distributions of τ , π(τ), ν, π(ν) and σ, π(σ) and posterior distribu-
tion of τ , π(τ |x1, . . . , xn; ν, σ), ν, π(ν|x1, . . . , xn; ν, σ) and σ, π(σ|x1, . . . , xn; ν, σ) given
the observed temperature W (t) up until tn = 1 400. Here, τ , ν and σ were considered
unknown.

Table 5.9: Statistics of the posterior distribution of τ , ν and σ, π(τ, ν, σ|x1, . . . , xn), as
estimated by MCMC methods. Here, τ , ν and σ were considered unknown, and the
endpoint of observation was tn =1 400.

τ

Point estimates Mean 4 149
Median 3 260

Interval estimates 2.5 and 97.5 percentile [614, 12 130]
95 % HPD [7, 10 094]

ν

Point estimates Mean 0.0023
Median 0.0021

Interval estimates 2.5 and 97.5 percentile [0.0006, 0.0051]
95 % HPD [0.0004, 0.0047]

σ

Point estimates Mean 0.020
Median 0.020

Interval estimates 2.5 and 97.5 percentile [0.0196, 0.0211]
95 % HPD [0.0195, 0.0210]
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Observation until tn = 1 700

In this situation the "now" point in time, tn is close after the change point. The marginal
priors of τ , ν and σ, π(τ), π(ν) and π(σ), are shown in 5.1.15 along with the marginal
posterior distributions π(τ |x1, . . . , xn), π(ν|x1, . . . , xn) and π(σ|x1, . . . , xn).

Further diagnostics plots are given appendix A.1.3: the marginal trace plots of τ , ν
and σ are shown in figure A.1.26, the histogram of the sample values of each parameter
is shown in figure A.1.27, the ACF as function of the lag for each of the three param-
eters is shown in figure A.1.29, and finally, three pairwise contour plots of the pairwise
joint posterior distributions, π(τ, ν|x1, . . . , xn), π(ν, σ|x1, . . . , xn) and π(τ, σ|x1, . . . , xn)
are shown in figure A.1.28. The sample statistics are summarized in table 5.10.

The acceptance rate decreases further from tn = 1 400, and we see that the π(ν|x1, . . . , xn)
and π(σ|x1, . . . , xn) in figure 5.1.15 become more jagged. The peak in π(τ |x1, . . . , xn)
which arose at tn = 1 700 in both cases where σ was known is evident again. The run
length was set to 4 · 106 in the case where tn = 1 700 as well. This is done to wash
out the autocorrelation effects and ensure that the chain is moving across the entire do-
main. With five chains with over-dispersed starting points, the Rubin-Gelman statistic
was calculated, again R̂3 = 1. Thus, with the long run length, it was believed that the
Markov chain had converged to the posterior distribution, and was able to traverse the
entire range of the parameters.

As before, the 2.5th percentile and the 97.5th percentile, as well as the 95 % HPD
region narrow compared to tn = 1 400, as is natural when we obtain more data. Note
that also the interval estimates for σ narrow. The estimates for τ are especially notable.
Note that both the median and mean are closer to the true value than the estimates
for τ when σ was known, see tables 5.6 and 5.2. It is also seen as the peak in figure
5.1.15 being higher than the peak of 5.1.9 and 5.1.3. It may be that when τ, ν and
σ are all unknown, there are a larger number of proposals which will lead to a small
Metropolis-Hastings ratio, thus a smaller probability of acceptance.

Observation until tn = 3 000

Finally, we consider the case when we have an abundance of measurements after the
change point, tn = 3 000. The marginal priors of τ , ν and σ are shown in 5.1.16 along with
the marginal posterior distributions π(τ |x1, . . . , xn), π(ν|x1, . . . , xn) and π(σ|x1, . . . , xn).

Further diagnostics plots are given appendix A.1.3: the marginal trace plots of τ , ν
and σ, π(τ), π(ν) and π(σ), are shown in figure A.1.30, the histogram of the sample values
of each parameter is shown in figure A.1.31, the ACF as function of the lag for each of the
three parameter iterations is shown in figure A.1.33, and finally, three pairwise contour
plots of the pairwise joint posterior distributions, π(τ, ν|x1, . . . , xn), π(ν, σ|x1, . . . , xn)
and π(τ, σ|x1, . . . , xn) are shown in figure A.1.32. The sample statistics are summarized
in table 5.11. The severity of the low acceptance rate which manifests in the trace plot
is now especially evident in the plot of the ACF. However, the Rubin-Gelman statistic
with over-dispersed starting points for 5 chains of run length 4 · 106 and burn-in of 104

gives R̂3 = 1. Considering trace plots for longer runs of time does not show sequential
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Figure 5.1.15: Prior distributions of τ , π(τ), ν, π(ν) and σ, π(σ) and posterior distribu-
tion of τ , π(τ |x1, . . . , xn; ν, σ), ν, π(ν|x1, . . . , xn; ν, σ) and σ, π(σ|x1, . . . , xn; ν, σ) given
the observed temperature W (t) up until tn = 1 700. Here, τ , ν and σ were considered
unknown.

Table 5.10: Statistics of the posterior distribution of τ , ν and σ, π(τ, ν, σ|x1, . . . , xn),
as estimated by MCMC methods. Here, τ , ν and σ were considered unknown, and the
endpoint of observation was tn =1 700.

τ

Point estimates Mean 2 729
Median 1 531

Interval estimates 2.5 and 97.5 percentile [344, 10 002]
95 % HPD [1, 7 929]

ν

Point estimates Mean 0.0025
Median 0.0024

Interval estimates 2.5 and 97.5 percentile [0.0007, 0.0050]
95 % HPD [0.0005, 0.0046]

σ

Point estimates Mean 0.0020
Median 0.0020

Interval estimates 2.5 and 97.5 percentile [0.0197, 0.00210]
95 % HPD [0.0196, 0.0210]
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or unstationary behavior. Thus it is believed that the run length is sufficient for the
Markov chain to traverse the range of the three parameters τ, ν and σ, as well as to wash
out the autocorrelation effects.

The sample statistics shown in table 5.11 are similar to the comparable statistics in
table 5.7, except the interval estimates for τ are wider, as one expects when another
unknown parameter is introduced in the model. The statistics for ν are equal to the
shown decimals. It can be noted that the sample standard deviation of the temperature
increments Xi from time τ = 1 500 to tn = 3 000 is 0.0209, even higher than that for the
temperature increments Xi from time 0 to τ = 1 500. This, as well as the uncertainty
in ν, mainly, but also in τ , is thought to be the cause of π(σ|x1, . . . , xn) having the
majority of mass located at σ > 0.02, the true value.

It may be that the prior for σ, which was chosen to be wide and more objective,
resulted in a lower acceptance rate than desirable, and that a more subjective prior for
σ would have been more appropriate.
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Figure 5.1.16: Prior distributions of τ , π(τ), ν, π(ν) and σ, π(σ) and posterior distribu-
tion of τ , π(τ |x1, . . . , xn; ν, σ), ν, π(ν|x1, . . . , xn; ν, σ) and σ, π(σ|x1, . . . , xn; ν, σ) given
the observed temperature W (t) up until tn = 3 000. Here, τ , ν and σ were considered
unknown.

Table 5.11: Statistics of the posterior distribution of τ , ν and σ, π(τ, ν, σ|x1, . . . , xn),
as estimated by MCMC methods. Here, τ , ν and σ were considered unknown, and the
endpoint of observation was tn = 3 000.

τ

Point estimates Mean 1 463
Median 1 487

Interval estimates 2.5 and 97.5 percentile [844, 1 885]
95 % HPD [1 206, 1 957]

ν

Point estimates Mean 0.0024
Median 0.0024

Interval estimates 2.5 and 97.5 percentile [0.0014, 0.0034]
95 % HPD [0.0014, 0.0034]

σ

Point estimates Mean 0.0021
Median 0.0021

Interval estimates 2.5 and 97.5 percentile [0.020, 0.00211]
95 % HPD [0.020, 0.0211]
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Hitting time CDF estimates

Finally, the resulting hitting time CDF estimates of the temperature level a = 14 for
each of the three tn are shown. The formulaic approach estimates, P̂f (T ≤ t), is shown
in figure 5.1.17 with the 95 % credible interval, and the simulation approach estimates
P̂S(T ≤ t) with the 95 % credible interval is shown in figure 5.1.18. Note that the
end point value of the time axis is different in the two figures. The comparison of
the two approaches and the 95 % credible interval in shown in figure 5.1.19. Some
percentiles of the hitting time CDF estimates and the credible intervals are shown in
table 5.12, with the true distribution. The estimate P̂f (T ≤ t) was calculated with
m = 5 · 105 draws from the posterior distribution of τ for each value of t. In the
simulation approach, for each realization of τ∗, ν∗, σ∗ from the posterior distribution,
100 simulations of Wiener processes were run to estimate P (T ≤ t|τ∗, ν∗, σ∗). In total,
there were m = 104 realizations τ∗, ν∗, σ∗ drawn from π(τ, ν, σ|x1, . . . , xn). The true
distribution is the same as with ν and σ known, the inverse Gaussian distribution with
true drift parameter ν, true variance parameter σ and threshold parameter a−W (3000),
in other words, the distribution given the maximum amount of data in our case.

For the formulaic solution, P̂f (T ≤ t), the upper limit is so to speak unchanged from
the situation with σ known, and τ and ν unknown, see table 5.8. The estimate itself is
slightly lower, but the lower credible interval at tn = 1 700 is slightly higher. This is
thought to originate from π(σ|x1, . . . , xn) which is centered at a higher value than the
true parameter 0.02, as well as the fact that the sample of τ was narrower when σ was
unknown. The higher values of σ will lead to a less steep hitting time CDF estimate,
and the narrow distribution of τ may lead to less extreme tail behavior, thus increasing
the lower credible interval at tn = 1 700. At tn = 3 000, the estimates are very similar
to those in table 5.8, where τ and ν was unknown, but σ was known. The somewhat
reduced steepness of P (T ≤ t) is attributed to the larger values of σ than for tn = 1 700.

For the simulation solution as well, P̂S(T ≤ t), the upper credible limits are so to
say unchanged, the estimate itself P̂S(T ≤ t), is a little less steep, and the lower credible
interval at tn = 1 700 is also higher than compared to those in table 5.8, where τ and ν
was unknown, but σ was known. It is believed to be caused by the narrower posterior
distribution of τ and the posterior distribution of σ being shifted to the right of the true
value, as for the formulaic approach.

The comparison in figure 5.1.19 shows, as for the situation where τ and ν was un-
known, but σ was known, that the simulation approach credible intervals are narrower
than the formulaic approach. This is again thought to stem from the computational
limitations by drawing fewer values of (τ, ν, σ), and it is again assumed that if a larger
number of values were drawn, the intervals of the formulaic and simulation approach
would be closer.
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Figure 5.1.17: Formulaic approach to estimating CDF, P̂f (T ≤ t) for different obser-
vation lengths, tn, shown with 95 % credible intervals and the true distribution. The
x-axis is time t while the y-axis is the probability. Top panel: tn = 1 400. Middle panel:
tn = 1 700. Bottom panel: tn = 3 000. Here, τ , ν and σ are unknown parameters.
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Figure 5.1.18: Simulation approach to estimating CDF, P̂S(T ≤ t) for different obser-
vation lengths, tn, shown with 95 % credible intervals and the true distribution. The
x-axis is time t while the y-axis is the probability. Top panel: tn = 1 400. Middle panel:
tn = 1 700. Bottom panel: tn = 3 000.Here, τ , ν and σ are unknown parameters.
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Figure 5.1.19: Comparison of the simulation and formulaic approaches, P̂S(T ≤ t) and
P̂f (T ≤ t) with τ , ν and σ as unknown parameters, for three different observation lengths
tn. Top panel: tn = 1 400. Middle panel: tn = 1 700. Bottom panel: tn = 3 000. The
x-axis is time t while the y-axis is the probability.
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5.2 Two change points
In this section, we will consider one particular temperature process, which is a piecewise
Wiener process, with two change points, τ1 and τ2 simulated in the interval [0, tn] =
[0, 2000]. The process is shown in figure 5.2.1. The process was simulated with the
following parameters:

ν1 = 0.003 ν2 = 0.0039
σ0 = σ1 = 0.05 σ2 = 0.065

τ1 = 800 τ2 = 1400

The resolution in the simulation was tn/n = ∆ = 1. For this process, we will consider the
threshold temperature a = [W (tn)] + 10 = 13. Thus, the formulaic approach described
in section 4.3.2 is applicable with α = 1.3. Therefore, we denote ν1 by ν and ν2 by αν.

Figure 5.2.1: Piecewise Wiener process with two change points τ1 = 800 and τ2 = 1400
simulated in the time interval [0, tn] = [0, 2000]. The initial parameters, in the time
interval [0, τ1), of the process were ν0 = 0 and σ0 = 0.05. In the time interval [τ1, τ2),
the parameters were ν1 = 0.03 and σ1 = 0.05. The parameters of the last piecewise
process, in the time interval [τ2, tn), were ν2 = 0.0039 and σ2 = 0.065. For this process,
we will consider the hitting time of the threshold temperature a = 13.

Likewise, we write σ = σ1 = σ0 and ασ = σ2.
We will estimate the hitting time CDF by the formulaic and simulation approach

both in the case where ν, σ and α is known, and in the case there ν is unknown in
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addition to the change points. For each case, four observations intervals of different
lengths, that is {W (ti), i = 1, . . . , n}, for four different tn. The different values are tn =
700, tn = 1 100, tn = 1 450, tn = 2 000. For tn = 700, none of the change points have
occurred. For tn = 1 100, the first change point has occurred, but not the second change
point. For the third tn = 1 450, the second change point has just occurred, and the last
tn = 2 000, we have an abundance of measurements after the second change point.

5.2.1 τ1, τ2 unknown, ν, σ, α known

In this section, we will first consider the MCMC diagnostics and the posterior distribu-
tions of the parameters will be discussed for all tn, before the hitting time CDF estimates
are shown and discussed.

The prior put on τ1 was geometric, τ1 ∼ Geom(1/2000). The prior put on the time
spent in the second state, ρ2 = τ2 − τ1 was also geometric, ρ2 ∼ Geom(1/1000). Note
that this is because we expect the failure development process to spend more time in
state 1 than state 2.

Observation until tn = 700

The prior distributions of τ1 and ρ2 = τ2 − τ1 , π(τ1) and π(τ2 − τ1) are shown with
the respective posterior distributions π(τ1|x1, . . . , xn) and π(τ2− τ1|x1, . . . , xn) in figure
5.2.2. The figure also shows the posterior distribution of τ2, π(τ2|x1, . . . , xn). The mean,
median, 2.5th and 97.5th percentiles as well as the HPD region are given in table 5.13.

Further diagnostics plots are shown in appendix A.2.1: the marginal trace plots of
τ1 and τ2 is given in figure A.2.1, the histograms of τ1, τ2 − τ1 and τ2 are given in figure
A.2.2, the contour plot of the joint posterior density π(τ1, τ2|x1, . . . , xn) is given in figure
A.2.3 and finally, the ACF of the Markov chain iterates are shown in the figure A.2.4.
The plots all point to good mixing and fast exploration of the range of τ1 and τ2, with
the trace plot moving vigorously, the ACF decaying rapidly and smooth histograms and
posterior distributions. The acceptance rate was 0.77. The Rubin-Gelman statistic was
calculated for five chains with run length 2 · 106 and burn-in 104 to R̂2 = 1. Thus,
all signs point to the Markov chain has converged to the posterior distribution, and is
sampling from the entire distribution.

Note that the interval estimates in table 5.13 are very wide. The posterior distri-
bution of τ1, π(τ1|x1, . . . , xn) shows that there is little belief that τ1 has already oc-
curred, as the distribution is peaking after tn = 700. The posterior distribution of
τ2, π(τ2|x1, . . . , xn), shows that it is not expected that τ2 has occurred yet at time tn =
700.

Observation until tn = 1 100

The prior distributions of τ1 and ρ2 = τ2 − τ1 , π(τ1) and π(τ2 − τ1) are shown with
the respective posterior distributions π(τ1|x1, . . . , xn) and π(τ2− τ1|x1, . . . , xn) in figure
5.2.3 together with the posterior distribution of τ2, π(τ2|x1, . . . , xn). The mean, median,
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Figure 5.2.2: Prior distribution of τ1, π(τ1) and τ2 − τ1, π(τ2 − τ1), and posterior
distributions of τ1,π(τ1|x1, . . . , xn;α, ν, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, ν, σ) and τ2,
π(τ2|x1, . . . , xn;α, ν, σ) given the observed temperature W (t) up until tn = 700.

Table 5.13: Statistics of the posterior distribution of τ1, and τ2
π(τ1, τ2|x1, . . . , xn;α, ν, σ), as estimated by MCMC methods. Here, α, ν and σ
were considered known, and the endpoint of observation was tn = 700.

τ1

Point estimates Mean 2 520
Median 1 910

Interval estimates 2.5 and 97.5 percentile [512, 7 912]
95 % HPD [223, 6 604]
τ2

Point estimates Mean 3 532
Median 2 983

Interval estimates 2.5 and 97.5 percentile [908, 9 280]
95 % HPD [689, 7 893]
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2.5th and 97.5th percentiles as well as the highest posterior density region are given in
table 5.14.

Further diagnostics plots are shown in appendix A.2.1: the marginal trace plots of τ1
and τ2 is given in figure A.2.5, the histograms of τ1, τ2−τ1 and τ2 are given in figure A.2.6,
the contour plot of the joint posterior density π(τ1, τ2|x1, . . . , xn) is given in figure A.2.7
and finally, the ACF of the Markov chain iterations as function of the lag are shown in
the figure A.2.8. The trace plots are still showing rigorous exploration of the range of the
posterior distribution π(τ1|x1, . . . , xn), π(τ2|x1, . . . , xn). The ACF is decaying at a slower
rate, but still with reasonable speed. The histograms are all smooth. The acceptance
rate was 0.463. The Rubin-Gelman statistic was calculated for five chains with run
length 2 · 106 and burn-in 104 to R̂2 = 1. It is again assumed that the Markov chain
has converged to the posterior distribution, and thus that the sample is representative
of the posterior distribution.

The posterior distribution of τ1, π(τ1|x1, . . . , xn) now has a marked peak around
τ1 = 800, pushing the posterior distribution of τ2, π(τ2|x1, . . . , xn) further to the right,
as it is seen in all statistics for τ2 shown in table 5.14. There is a drop in the mean and
median estimates of τ1, and the interval estimates narrow compared to table 5.13.

Observation until tn = 1 450

The prior distributions of τ1 and ρ2 = τ2 − τ1, π(τ1) and π(τ2 − τ1) are shown with
the respective posterior distributions π(τ1|x1, . . . , xn) and π(τ2− τ1|x1, . . . , xn) in figure
5.2.4 together with the posterior distribution of τ2, π(τ2|x1, . . . , xn). The mean, median,
2.5th and 97.5th percentiles as well as the highest posterior density region are given in
table 5.15.

Further diagnostics plots are shown in appendix A.2.1: the marginal trace plots of
τ1 and τ2 is given in figure A.2.9, the histograms of τ1, τ2 − τ1 and τ2 are given in figure
A.2.10, the contour plot of the joint posterior density π(τ1, τ2|x1, . . . , xn) is shown in
figure A.2.11 and finally, the ACF of the Markov chain iterations are shown in the figure
A.2.12. It is evident that the acceptance rate has decreased from the trace plot, where
there are longer stretches where the Markov chain is stuck at one value. The acceptance
rate was 0.127. However, it is evident that these values are from the region of higher
posterior density, and the chain is still moving rigorously between stretches of standing
still. This causes the ACF to decay at a slower rate. It is especially the ACF for τ2
which is decaying slowly. The Rubin-Gelman statistic was calculated for five chains with
run length 2 · 106 and burn-in 104 to R̂2 = 1.

Looking at figure 5.2.4, it is evident that π(τ2|x1, . . . , xn) has a narrow peak near
the true τ2, even though tn is very close to the true value of τ2 = 1 400. However,
π(τ2|x1, . . . , xn) still has some density mass for higher values of τ2, which is evident
also in the difference between the mean and median of τ2, shown in table 5.15, and the
interval estimates. It may seem like the chain gets stuck around τ2 = 1450. Remember
that the our prior information was about ρ2, the time spent in state 2, ρ2 = τ2 − τ1,
and note that we are sampling independently from the distributions of τ1 and ρ2. From
figure 5.2.4, we can see that the spread of ρ2 is as wide or even wider than the spread
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Figure 5.2.3: Prior distribution of τ1, π(τ1) and τ2 − τ1, π(τ2 − τ1), and posterior
distributions of τ1,π(τ1|x1, . . . , xn;α, ν, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, ν, σ) and τ2,
π(τ2|x1, . . . , xn;α, ν, σ) given the observed temperature W (t) up until tn = 1 100.

Table 5.14: Statistics of the posterior distribution of τ1, and τ2
π(τ1, τ2|x1, . . . , xn;α, ν, σ), as estimated by MCMC methods. Here, α, ν and σ
were considered known, and the endpoint of observation was tn = 1 100.

τ1

Point estimates Mean 1 609
Median 834

Interval estimates 2.5 and 97.5 percentile [339, 6 556]
95 % HPD [1, 5 159]
τ2

Point estimates Mean 2 853
Median 2 252

Interval estimates 2.5 and 97.5 percentile [1 133, 7 963]
95 % HPD [1 069, 6 601]
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in τ1. Thus, it seems that the Markov chain is only accepting τ∗2 proposals close to the
true change point because the likelihood is much larger. This may stem from the fact
that the variance parameter changes, which is does not for τ1 and did not in the setting
with only one change point, τ . It is found that in situations with α = 2, for example,
the acceptance rate decreases strikingly, and in situations where α = 1, the acceptance
rate increases equally strikingly, resulting in a posterior density of τ2, π(τ2|x1, . . . , xn)
which is as wide as the posterior density of τ1, π(τ1|x1, . . . , xn). Thus, it is assumed
that the increasing ACF and decreasing acceptance rate is due to the parameters of the
problem, and not to a fault in the implementation or weakness in the algorithm of the
MCMC methods. Hence, it is assumed that the Markov chain has converged to the joint
posterior distribution π(τ1, τ2|x1, . . . , xn).

Note also that the peak in π(τ1|x1, . . . , xn) is covering a larger range of τ1 values,
and that the interval estimates are significantly reduced. Note that τ1 < τ2, such that a
sharp definition of τ2 gives an upper limit of τ1.

Observation until tn = 2 000

The prior distributions of τ1 and ρ2 = τ2 − τ1, π(τ1) and π(τ2 − τ1) are shown with
the respective posterior distributions π(τ1|x1, . . . , xn) and π(τ2− τ1|x1, . . . , xn) in figure
5.2.5 together with the posterior distribution of τ2, π(τ2|x1, . . . , xn). The mean, median,
2.5th and 97.5th percentiles as well as the highest posterior density region are given in
table 5.16.

Further diagnostics plots are shown in appendix A.2.1: the marginal trace plots of
τ1 and τ2 is given in figure A.2.13, the histograms of τ1, τ2− τ1 and τ2 are given in figure
A.2.14, the contour plot of the joint posterior density π(τ1, τ2|x1, . . . , xn) is shown in
figure A.2.15 and finally, the ACF of the Markov chain iterates are shown in the figure
A.2.16. It is clear that the bad signs at tn = 1 450 have gotten worse. The trace plot
shows that the acceptance rate has decreased further, which causes the ACF to decay
even slower than at tn = 1 450. The acceptance rate was 0.005. The histogram shows
that the distribution of τ2 is more spiked, but note that the scale is different. The Rubin-
Gelman statistic was calculated for five chains with run length 2 ·106 and burn-in 104 to
R̂2 = 1. It is believed that the long run length of 2 ·106 will wash out the autocorrelation
effects and allow the entire range of (τ1, τ2) to be traversed.

Note in table 5.16 that the interval estimates of τ2 are very narrow. Note also that
the estimated mean and median of τ2 are very close to the true value and that the interval
estimates contain the true value of τ2 = 1 400. Note that the interval estimates of τ1
has narrowed, mainly from above. This is because τ1 < τ2, as for tn = 1 450, thus the
narrow distribution of τ2 is pushing the distribution of τ1 towards smaller τ1. However,
the median is not very different from the estimated median of τ1 at tn = 1 450. Thus,
it seems like the it is only the larger values of τ1 that is affected, and that the sampling
from the smaller values of τ1 is as for tn = 1 450.
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Figure 5.2.4: Prior distribution of τ1, π(τ1) and τ2 − τ1, π(τ2 − τ1), and posterior
distributions of τ1,π(τ1|x1, . . . , xn;α, ν, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, ν, σ) and τ2,
π(τ2|x1, . . . , xn;α, ν, σ) given the observed temperature W (t) up until tn = 1 450.

Table 5.15: Statistics of the posterior distribution of τ1, and τ2
π(τ1, τ2|x1, . . . , xn;α, ν, σ), as estimated by MCMC methods. Here, α, ν and σ
were considered known, and the endpoint of observation was tn = 1 450.

τ1

Point estimates Mean 884
Median 725

Interval estimates 2.5 and 97.5 percentile [297, 3 230]
95 % HPD [1, 1 849]
τ2

Point estimates Mean 2 099
Median 1 543

Interval estimates 2.5 and 97.5 percentile [1 397, 5 386]
95 % HPD [1 356, 4 397]
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Figure 5.2.5: Prior distribution of τ1, π(τ1) and τ2 − τ1, π(τ2 − τ1), and posterior
distributions of τ1,π(τ1|x1, . . . , xn;α, ν, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, ν, σ) and τ2,
π(τ2|x1, . . . , xn;α, ν, σ) given the observed temperature W (t) up until tn = 2 000.

Table 5.16: Statistics of the posterior distribution of τ1, and τ2
π(τ1, τ2|x1, . . . , xn;α, ν, σ), as estimated by MCMC methods. Here, α, ν and σ
were considered known, and the endpoint of observation was tn = 2 000.

τ1

Point estimates Mean 716
Median 711

Interval estimates 2.5 and 97.5 percentile [288, 1 225]
95 % HPD [244, 1 153]
τ2

Point estimates Mean 1 416
Median 1 416

Interval estimates 2.5 and 97.5 percentile [1 388, 1 443]
95 % HPD [1 388, 1 443]
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Hitting time CDF estimates

In the formulaic approach, P̂f (T ≤ t), there were m = 500 000 draws from the posterior
distribution in the MC summation. In the simulation approach, P̂S(T ≤ t), there were
10 000 draws from the posterior distribution and 100 simulations of Wiener processes
for each draw from the posterior distribution. Note that the difference in number of
draws from the posterior distribution is done because of computational limitations. The
estimated hitting time CDF by the formulaic approach, P̂f (T ≤ t), is shown in figure
5.2.6 along with 95 % credible intervals and the true distribution, and selected percentiles
of P̂f (T ≤ t) and the corresponding 95 % credible intervals are given in table 5.17. The
estimated hitting time CDF by the simulation approach, P̂S(T ≤ t), is shown in figure
5.2.7 with 95 % credible intervals and the true distribution. Table 5.18 displays selected
percentiles of P̂S(T ≤ t) and the corresponding credible intervals. The two approaches
are compared in figure 5.2.8.

The true distribution shown in the figures is calculated as for one change: with the
true parameters τ1 and τ2 and observations until tn = 2 000. This means that the true
hitting time distribution is inverse Gaussian with drift parameter αν, variance parameter
ασ and threshold parameter a −W (2000). Note that as for one change point, the true
distribution is only one possible realization of the development when tn < 2 000, thus it
only shows the deviance in this particular process.

The overall behavior of the two estimation methods is similar. At tn = 700, before
the first change point, the MCMC sampling gives the belief that the first change point
has probably not occurred, and the second change point has definitely not occurred.
Thus, we are left with the prior information of when in the future the change points will
occur. Note that since λ1 = 1/2000, prior to observing the process, the expectance of
τ1 is E[τ1] = 2000. This explains why the true distribution is partly outside the credible
interval of the estimated hitting time CDFs.

At tn = 1 100, the lower percentiles of the estimated distributions have become
steeper. This is similar to the behavior in the case of one change point, at tn = 1
700, which was shortly after the (only) change point. The distribution has a heavy tail,
which is thought to derive from the fact that there are no firm beliefs on when the second
change point will occur. However, it is clear that the credible intervals have narrowed,
and we make the remark that the true distribution is inside the credible interval, thus our
beliefs about the future development is more similar to the actual future development
for this particular process.

At tn = 1 450, we see that both estimates P̂f (T ≤ t) and P̂S(T ≤ t) are above the
true distribution. Observe that when standing in time tn = 1 450, and believing that
τ2 < tn, the expectation of W (2000), E[W (2000)] = W (tn) + (2000 − tn)αν = 4.9, but
the realized temperature is W (2000) = 3.0. We notice, as is natural, that the credible
intervals of the estimates have narrowed further.

As for the differences in the estimates, we see that at tn = 2 000, there formulaic
estimate P̂f (T ≤ t) and the respective credible interval limits are equal. This is not
true for P̂S(T ≤ t) and its credible interval curves, but this is thought to be due to the
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smaller number of draws from the posterior distribution. That is, it is believed that the
curves would overlap if the number of draws from the posterior distribution and number
of simulated piecewise Wiener processes for each draw were larger.

We notice that at tn = 2 000, the formulaic estimate is actually steeper than the
true distribution. This is difficult to explain by other factors than statistical variations,
due to the fact that we have only one observed temperature process. One could suspect
that the smaller variation in the distribution comes from the fact that we are using the
expected value of W (τ1) in cases where τ1 > tn, but his will not affect the particular
situation when tn = 2 000, because we know from 5.16 that the number of draws where
τ2 > tn is negligible, thus the effect this has on the variation is assumed to be very small.
However, it may be that the calculation of the mean Pf (T ≤ t) = 1/m

∑m
i=1 P (T ≤ t|τ∗i ),

when nearly all terms in the sum are equal, is sensitive to round-off error.
We also remark that the credible intervals of the simulation approach, P̂S(T ≤ t)

are not only broader, but have a gentler slope than the formulaic approach, P̂f (T ≤ t),
for tn = 700 and tn = 1 100. However, this becomes less distinct for tn = 1 450 and tn
= 2 000. As the two latter values of tn correspond to narrower posterior distributions,
the gentler slope in the two former values of tn is thought to be caused by the smaller
number of draws from the posterior distribution, which disables the simulation approach
from accounting for the same amount of variation as the formulation approach. Having
said that, it may also be yet another manifestation of the steepness of the formulaic
approach relative to the true distribution. Nevertheless, the approaches give estimates
that quite close for all the different tn and the estimates for tn are close to the true
distribution when both change points have occurred.
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Figure 5.2.6: Formulaic approach to estimating CDF, P̂f (T ≤ t) shown with 95 %
credible intervals for different observation lengths, tn. Shown with true distribution.
Here, τ1 and τ2 are unknown parameters, ν, σ and α are known parameters. Top panel:
tn = 700. Second panel: tn = 1 100. Third panel: tn = 1 450. Bottom panel: tn = 2
000. The x-axis is time and y-axis is probability.
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Figure 5.2.7: Simulation approach to estimating CDF, P̂S(T ≤ t) shown with 95 %
credible intervals for different observation lengths, tn. Shown with true distribution.
Here, τ1 and τ2 are unknown parameters, ν, σ and α are known parameters. Top panel:
tn = 700. Second panel: tn = 1 100. Third panel: tn = 1 450. Bottom panel: tn = 2
000. The x-axis is time and y-axis is probability.
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Figure 5.2.8: Comparison of the simulation and formulaic approaches, P̂S(T ≤ t) and
P̂f (T ≤ t) shown with 95 % credible intervals with τ , ν and σ as known parameters, for
three different observation lengths tn. Here, τ1 and τ2 are unknown parameters, ν, σ and
α are known parameters. Top panel: tn = 700. Second panel: tn = 1 100. Third panel:
tn = 1 450. Bottom panel: tn = 2 000. The x-axis is time and y-axis is probability.
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5.2.2 τ1, τ2 and ν unknown, σ, α known

The priors on τ1 and ρ2 = τ2 − τ1 are continued, both geometric, with parameters
λ1 = 1/2000 and λ2 = 1/1000 respectively. Now the drift parameter ν is also considered
unknown. We put a gamma prior on ν such that ν ∼ Gam(4, 0.0006), as in the situation
with one change point, where it was necessary to balance out an objective prior with the
numerical difficulties that followed for large ν values.

This section will follow the structure of the previous. Firstly, the MCMC diagnostics
of the Markov chains for the unknown parameters will be reviewed for all tn, and next
the resulting estimated hitting time CDF by the time transformed formulaic approach,
P̂f (T ≤ t) and the simulation approach P̂S(T ≤ t) will be examined.

Observation until tn = 700

Figure 5.2.9 shows the prior and posterior distributions for τ1, ρ2 = τ2−τ1, and ν, π(τ1),
π(τ1|x1, . . . , xn), π(τ2 − τ1), π(τ2 − τ1|x1, . . . , xn), π(ν), π(ν|x1, . . . , xn) as well as the
posterior distribution of π(τ2). Table 5.19 gives the estimates of the mean and median
as well as the 2.5th and 97.5th percentile and 95 % HPD region for τ1, τ2 and ν.

Further diagnostic plots are shown in appendix A.2.2: the trace plot of τ1, τ2 and
ν is shown in figure A.2.17, the histogram of the three variables and τ2 − τ1 is shown
in figure A.2.18, figure A.2.19 shows the three pairwise contour plots of the joint poste-
rior density of the three parameters, namely π(τ1, τ2|x1, . . . , xn), π(τ1, ν|x1, . . . , xn) and
π(τ2, ν|x1, . . . , xn), and finally, figure A.2.20 shows the ACF as function of lag for τ1, τ2
and ν. The ACF is decaying very quickly, and the acceptance rate is clearly high, in fact
it is 0.794, as seen from the trace plots. The Rubin-Gelman statistic was calculated for
five chains with run length 2 ·106 and burn-in 104 to R̂3 = 1. Everything is thus pointing
to convergence of the chain. Thus the analysis is continued with the assumption that
the Markov chain is a representable sample from the posterior distribution of τ1, τ2 and
ν, π(τ1, τ2, ν|x1, . . . , xn;α, σ).0

We see that, as the situation with one change point, when the change point has
not occurred, nearly all proposals of ν are accepted, as is natural, since none of the
temperature increment realizations xi are drawn with expectation ν. This also increases
the probability mass of τ1 < tn compared to figure 5.2.2. This is seen in table 5.19 as
well, compared to table 5.13, where ν was known. However, the effect on τ2 is not as
noticeable. The estimated mean and median as well as interval estimates of ν in table
5.19 is mostly reflecting the prior distribution as discussed in the situation with two
change points and ν known.

Observation until tn = 1 100

Figure 5.2.10 shows the prior and posterior distributions for τ1, ρ2 = τ2 − τ1, and ν,
π(τ1), π(τ1|x1, . . . , xn), π(τ2 − τ1), π(τ2 − τ1|x1, . . . , xn), π(ν), π(ν|x1, . . . , xn) as well
as the posterior distribution of π(τ2). Table 5.20 gives the estimates of the mean and
median as well as the 2.5th and 97.5th percentile and 95 % HPD region for τ1, τ2 and ν.
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Figure 5.2.9: Prior distribution of τ1, π(τ1) , τ2 − τ1, π(τ2 − τ1), and ν, π(ν), and
posterior distributions of τ1,π(τ1|x1, . . . , xn;α, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, σ), τ2,
π(τ2|x1, . . . , xn;α, σ), ν, π(ν|x1, . . . , xn;α, σ) given the observed temperature W (t) up
until tn = 700.



92 CHAPTER 5. APPLICATION TO THE MOTIVATING CASE STUDY

Further diagnostic plots are shown in appendix A.2.2: the trace plot of τ1, τ2 and
ν is shown in figure A.2.21, the histogram of the three variables and τ2 − τ1 is shown
in figure A.2.22, figure A.2.23 shows the three pairwise contour plots of the joint poste-
rior density of the three parameters, namely π(τ1, τ2|x1, . . . , xn), π(τ1, ν|x1, . . . , xn) and
π(τ2, ν|x1, . . . , xn), and figure A.2.24 shows the ACF as function of lag for τ1, τ2 and ν.
The ACF, especially of ν, is now decaying at a slower rate than for tn = 700, however, it
is not worrisome. The acceptance rate was 0.508. The Rubin-Gelman statistic was calcu-
lated for five chains with run length 2·106 and burn-in 104 to R̂3 = 1. Thus, it is believed
that the Markov chain has converged to the posterior distribution π(τ1, τ2, ν|x1, . . . , xn).

Looking at figure 5.2.10, we see that the posterior distribution of τ1, π(τ1|x1, . . . , xn)
now has a large peak around τ1 = 800, which is pushing the posterior distribution of τ2,
π(τ2|x1, . . . , xn), towards larger values of τ2, compared to figure 5.2.9. It is also evident
that ν is pushed further towards larger values of ν. These changes are also detectable
when comparing table 5.20 to table 5.19, where we see that the interval estimates of
τ1 and τ2 have narrowed, whereas the interval estimates of ν has widened, however the
estimated mean and median are now closer to the true value. Comparing table 5.20 to
table 5.14, where the drift parameter ν was known, we see that the interval estimates of
τ1 and τ2 are slightly wider with ν unknown, as is natural.

Observation until tn = 1 450

Figure 5.2.11 shows the prior and posterior distributions for τ1, ρ2 = τ2 − τ1, and ν,
π(τ1), π(τ1|x1, . . . , xn), π(τ2 − τ1), π(τ2 − τ1|x1, . . . , xn), π(ν), π(ν|x1, . . . , xn) as well
as the posterior distribution of π(τ2). Table 5.21 gives the estimates of the mean and
median as well as the 2.5th and 97.5th percentile and 95 % HPD region for τ1, τ2 and ν.

Further diagnostic plots are shown in appendix A.2.2: the trace plot of τ1, τ2 and
ν is shown in figure A.2.25, the histogram of the three variables and τ2 − τ1 is shown
in figure A.2.26, figure A.2.27 shows the three pairwise contour plots of the joint poste-
rior density of the three parameters, namely π(τ1, τ2|x1, . . . , xn), π(τ1, ν|x1, . . . , xn) and
π(τ2, ν|x1, . . . , xn), and figure A.2.28 shows the ACF as function of lag for τ1, τ2 and ν.
The trace plots shows that the acceptance rate has dropped markedly, to 0.130, and
this is reflecting in the ACF, especially of ν. The Rubin-Gelman statistic was calculated
for five chains with run length 2 · 106 and burn-in 104 to R̂3 = 1. The long run length
is assumed to wash out the autocorrelation effects, and allow the chain to traverse the
entire range of the parameters.

The posterior distribution now has a sharp peak around τ2 = 1 400, as was the case
when ν was known, and the tail is still considerable, as seen by the interval estimates
in table 5.15. The interval estimates of τ1 and τ2 have narrowed, especially from above,
and the estimated means and medians are closer. This points to the likelihood of large
values for either change point being small. Note that the intervals of ν are moving
further towards larger values of ν, and the estimate of ν is now very close to the true
value. However, the realized mean of the temperature increments xi in the time interval
[τ1, τ2) = [800, 1400) is x̄i = 0.006, thus it is underestimated. This may be the reason
that the interval estimate is moving towards larger values of ν. However, remember that
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Table 5.19: Statistics of the posterior distribution of τ1, τ2 and ν,
π(τ1, τ2,nu|x1, . . . , xn;α, σ), as estimated by MCMC methods. Here, α and σ
were considered known, and the endpoint of observation was tn = 700.

τ1

Point estimates Mean 2 453
Median 1 849

Interval estimates 2.5 and 97.5 percentile [370, 7 843]
95 % HPD [1, 6 464]
τ2

Point estimates Mean 3 474
Median 2 923

Interval estimates 2.5 and 97.5 percentile [875, 9 218]
95 % HPD [686, 7 833]

ν

Point estimates Mean 0.0024
Median 0.0022

Interval estimates 2.5 and 97.5 percentile [0.0006, 0.0052]
95 % HPD [0.0004, 0.0047]

Table 5.20: Statistics of the posterior distribution of τ1, τ2 and ν,
π(τ1, τ2,nu|x1, . . . , xn;α, σ), as estimated by MCMC methods. Here, α and σ
were considered known, and the endpoint of observation was tn = 1 100.

τ1

Point estimates Mean 1 715
Median 885

Interval estimates 2.5 and 97.5 percentile [279, 6 779]
95 % HPD [1, 5 394]
τ2

Point estimates Mean 2 948
Median 2 338

Interval estimates 2.5 and 97.5 percentile [1 136, 8 176]
95 % HPD [1 070, 6 821]

ν

Point estimates Mean 0.0027
Median 0.0025

Interval estimates 2.5 and 97.5 percentile [0.0007, 0.0057]
95 % HPD [0.0005, 0.0052]
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Figure 5.2.10: Prior distribution of τ1, π(τ1) , τ2 − τ1, π(τ2 − τ1), and ν, π(ν), and
posterior distributions of τ1,π(τ1|x1, . . . , xn;α, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, σ), τ2,
π(τ2|x1, . . . , xn;α, σ), ν, π(ν|x1, . . . , xn;α, σ) given the observed temperature W (t) up
until tn = 1 100.
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when we estimate ν we are implicitly estimating αν as well. This may be the cause of
the underestimation, as there are few temperature increments xi drawn with expectation
αν.

Observation until tn = 2 000

Figure 5.2.12 shows the prior and posterior distributions for τ1, ρ2 = τ2 − τ1, and ν,
π(τ1), π(τ1|x1, . . . , xn), π(τ2 − τ1), π(τ2 − τ1|x1, . . . , xn), π(ν), π(ν|x1, . . . , xn) as well
as the posterior distribution of π(τ2). Table 5.22 gives the estimates of the mean and
median as well as the 2.5th and 97.5th percentile and 95 % HPD region for τ1, τ2 and ν.

As before, further diagnostic plots are shown in appendix A.2.2: the trace plot of
τ1, τ2 and ν is shown in figure A.2.29, the histogram of the three variables and τ2− τ1 is
shown in figure A.2.30, figure A.2.31 shows the three pairwise contour plots of the joint
posterior density of the three parameters, namely π(τ1, τ2|x1, . . . , xn), π(τ1, ν|x1, . . . , xn)
and π(τ2, ν|x1, . . . , xn), and figure A.2.32 shows the ACF as function of lag for τ1, τ2 and
ν. The trace plots shows that the acceptance rate has dropped markedly, and this is
reflecting in the ACF, quite severely, and it is now 0.005. The Rubin-Gelman statistic
was calculated for five chains with run length 2 · 106 and burn-in 104 to R̂3 = 1. The
long run length is thus assumed to wash out the autocorrelation effects, and allow the
chain to traverse the entire range of the parameters.

As when ν was known, the interval estimates of τ1 and τ2 have narrowed distinctly.
The interval estimates of ν has also narrowed, mainly from above. It is believed, as in
the case when ν was known, that it is the change in the variance parameter to ασ that
causes the narrowness in the posterior distribution π(τ2|x1, . . . , xn) of τ2 compared to
the posterior distribution π(τ1|x1, . . . , xn) of τ1.
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Figure 5.2.11: Prior distribution of τ1, π(τ1) , τ2 − τ1, π(τ2 − τ1), and ν, π(ν), and
posterior distributions of τ1,π(τ1|x1, . . . , xn;α, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, σ), τ2,
π(τ2|x1, . . . , xn;α, σ), ν, π(ν|x1, . . . , xn;α, σ) given the observed temperature W (t) up
until tn = 1 450.
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Table 5.21: Statistics of the posterior distribution of τ1, τ2 and ν,
π(τ1, τ2,nu|x1, . . . , xn;α, σ), as estimated by MCMC methods. Here, α and σ
were considered known, and the endpoint of observation was tn = 1 450

τ1

Point estimates Mean 935
Median 737

Interval estimates 2.5 and 97.5 percentile [281, 3 713]
95 % HPD [1, 2 318]
τ2

Point estimates Mean 2 142
Median 1 572

Interval estimates 2.5 and 97.5 percentile [1 398, 5 626]
95 % HPD [1 535, 4 572]
ν

Point estimates Mean 0.0032
Median 0.0032

Interval estimates 2.5 and 97.5 percentile [0.001, 0.0061]
95 % HPD [0.001, 0.0059]

Table 5.22: Statistics of the posterior distribution of τ1, τ2 and ν,
π(τ1, τ2,nu|x1, . . . , xn;α, σ), as estimated by MCMC methods. Here, α and σ
were considered known, and the endpoint of observation was tn = 2 000

τ1

Point estimates Mean 714
Median 714

Interval estimates 2.5 and 97.5 percentile [212, 1 287]
95 % HPD [193, 1 264]
τ2

Point estimates Mean 1 415
Median 1 416

Interval estimates 2.5 and 97.5 percentile [1 388, 1 443]
95 % HPD [1 389, 1 443]

ν

Point estimates Mean 0.0027
Median 0.0025

Interval estimates 2.5 and 97.5 percentile [0.0009, 0.0047]
95 % HPD [0.0008, 0.0045]
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Figure 5.2.12: Prior distribution of τ1, π(τ1) , τ2 − τ1, π(τ2 − τ1), and ν, π(ν), and
posterior distributions of τ1,π(τ1|x1, . . . , xn;α, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, σ), τ2,
π(τ2|x1, . . . , xn;α, σ), ν, π(ν|x1, . . . , xn;α, σ) given the observed temperature W (t) up
until tn = 2 000.
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Hitting time CDF estimates

In the formulaic approach, P̂f (T ≤ t), there were m = 500 000 draws from the posterior
distribution in the MC summation. In the simulation approach, P̂S(T ≤ t), there were
10 000 draws from the posterior distribution and 100 simulations of Wiener processes for
each draw from the posterior distribution. As before, the difference in number of draws
from the posterior distribution stems from computational limitations. The estimated
hitting time CDF by the formulaic approach, P̂f (T ≤ t), is shown in figure 5.2.13 with
the 95 % credible intervals and the true distribution. Selected percentiles of P̂f (T ≤ t)
and the corresponding credible intervals are given in table 5.23. The estimated hitting
time CDF by the simulation approach, P̂S(T ≤ t), is shown in figure 5.2.14 with the 95
% credible intervals and the true distribution. Table 5.24 displays selected percentiles of
P̂S(T ≤ t) and the corresponding credible intervals. The two approaches are compared
in figure 5.2.15.

The general behavior of the estimates P̂f (T ≤ t) and P̂S(T ≤ t) are much like the
estimates when ν was known. The credible intervals narrow as more information is
considered, at tn = 1 100, we can see the effect of the first change point, by elevating
and steepening P̂f (T ≤ t) and P̂S(T ≤ t) for smaller t. Also the effect of tn = 1 450 is
clear, and further steepens P̂f (T ≤ t) and P̂S(T ≤ t) for smaller t.

However, the width of the credible intervals for each is remarkably larger, and the
shapes are also changed. This is of course caused by ν being a random variable to be
estimated. This naturally changes the estimates themselves as well, P̂f (T ≤ t) and
P̂S(T ≤ t), such that the estimated curves become less steep. It seems that it was more
difficult to estimate ν that it was for one change point, because the effect seems more
severe. Perhaps this is linked to the fact that ν2 = αν1, such that in reality, we are
estimating both ν and αν.

The two estimation approaches render similar results, as seen in figure 5.2.15, and it
is not possible say with certainty whether P̂f (T ≤ t) is steeper than P̂S(T ≤ t), as it was
with ν unknown. However, it seems that for all tn, the credible intervals for P̂f (T ≤ t)
are steeper than those for P̂S(T ≤ t), but it is difficult to say if this is caused by the
smaller number of draws from the posterior distribution in the simulation approach or
whether it is the same effect that caused steepness in the case where ν was known, that
is now masked by the added variability caused by ν being unknown.
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Figure 5.2.13: Formulaic approach to estimating CDF, P̂f (T ≤ t) shown with 95 %
credible intervals for different observation lengths, tn. Shown with true distribution.
Here, τ1, τ2 and ν are unknown parameters, σ and α are known parameters. Top panel:
tn = 700. Second panel: tn = 1 100. Third panel: tn = 1 450. Bottom panel: tn = 2
000. The x-axis is time and y-axis is probability. Note that the same legend applies to
all panels and has been omitted in the top panel for visibility.
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Figure 5.2.14: Simulation approach to estimating CDF, P̂S(T ≤ t) shown with 95 %
credible intervals for different observation lengths, tn. Shown with true distribution.
Here, τ1, τ2 and ν are unknown parameters, σ and α are known parameters. Top panel:
tn = 700. Second panel: tn = 1 100. Third panel: tn = 1 450. Bottom panel: tn = 2
000. The x-axis is time and y-axis is probability. Note that the same legend applies to
all panels and has been omitted in the top panel for visibility.
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Figure 5.2.15: Comparison of the simulation and formulaic approaches, P̂S(T ≤ t) and
P̂f (T ≤ t) for different observation lengths tn. Here, τ1, τ2 and ν are unknown param-
eters, σ and α are known parameters. Top panel: tn = 700. Second panel: tn = 1 100.
Third panel: tn = 1 450. Bottom panel: tn = 2 000. The x-axis is time and y-axis is
probability. Note that the same legend applies to all panels and has been omitted in the
top panels for visibility.
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Chapter 6

Concluding remarks

In this thesis, the aim was to find a method to predict the hitting time of a specified
threshold for a piecewise Wiener process with change points. The motivating example
was the failure development in a wind turbine bearing, as described in Valland et al.
(2012). The work was partly based on the theory developed in Lindqvist and Slimacek
(2013), and their modeling of the failure development as a hidden Markov model was
adopted. The theory developed in Lindqvist and Slimacek (2013) was expanded to find
the hitting time CDF, which was the method chosen to predict the hitting time. This
allowed for the user to find the level of risk to take by choosing a credible level α such
that P̂ (T ≤ t) ≤ α.

The hitting time CDF was developed in detail in the case where the failure devel-
opment had one and two change points. For one change point, the approaches to find
the hitting time CDF were a simulation approach and a formulaic approach based on
the inverse Gaussian CDF, as seen in section 4.2.2 and 4.2.1 respectively. The model for
one change point was expanded to include the drift parameter ν and the variance pa-
rameter σ as unknown parameters. For two change points, the simulation approach was
extended, as seen in section 4.3.3. The formulaic approach was extended first straight-
forwardly in section 4.3.1, leading to a method with complicated and computer intensive
expressions. Section 4.3.2 extended the formulaic approach via an elegant time trans-
formation following Doksum and Høyland (1992). The model for two change points was
expanded to include the drift parameter ν1 as an unknown parameter. The methods used
Bayesian inference in the sense that the approaches conditioned on the change points,
and MC summation was employed over the Bayesian posterior distribution of the change
point(s). Generalizations on how to extend the simulation approach and the formulaic
time transformed approach were given for m change points.

To assess the uncertainty in the estimated hitting time CDFs, it was noted that
all approaches used MC summation with m draws, however m varied for the different
approaches. Thus, in each approach, m estimates of the hitting time were available for
each t, and the 1 - α credible interval defined by α and 1−α percentile of them estimates
were chosen to measure the uncertainty in the estimate.

Finally, numerical examples were provided for one and two change points. For one
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change point, examples were given with τ unknown, τ and ν unknown and finally τ, ν and
σ unknown. The methods employed were the simulation and the formulaic approach.
The examples showed that both the formulaic and the simulation approach gave good
results, although the simulation approach proved more computer intensive. The results
were significantly more accurate for ν and σ known. The parameters ν and σ have a
bigger impact on the shape of the hitting time CDF than τ . It was also seen that when
there were many measurements after the change point, the Markov chain in the MCMC
procedure was moving slowly.

For two change points, examples were given with τ1 and τ2 unknown, and with
τ1, τ2 and ν1 unknown. The simulation and the formulaic time transformed approach
were employed to estimate the hitting time CDF. The simulation approach gave good
results also for two change point, and again proved to be the more computer intensive
of the two methods, as expected. For the formulaic time transformed approach, there
was an unexplained steepness in the hitting time CDF estimate which slightly exceeded
the steepness of the true distribution (as calculated the last observation point) which
manifested when there was an abundance of measurements after the second change
points. This was perhaps the reason that the uncertainty estimates for the distribution
were different from the uncertainty estimates for the simulation approach. The formulaic
time transformed approach gave good results despite of this. However, it was not possible
to exclude the possibility that the differences in the uncertainty estimates were due to
the differences in number of draws from the posterior distribution by the two methods.
It was seen that, as for one change point, when there were many measurements after the
change point, the Markov chain in the MCMC procedure was moving slowly.

6.1 Further work

In both the one change point setting and two change point setting, it was clear that a
more efficient MCMC algorithm would be beneficial. In the situation where there were
many observations after the change point(s), in both the case of one and two change
points, the chain was moving slowly as noted above. Thus, if one were worried about the
Markov chain getting stuck, one could for example implement a random walk routine
instead of the independence sampler, taking care not to violate the restrictions that
τ2 > τ1 > 0 and ν > 0. However, we make the note that being in a situation where an
error has occurred a long time ago, and wanting to make predictions a long time in the
future, is perhaps not to realistic. It is more plausible that if one finds that the failure
development started a long time ago, one wishes to do maintenance sooner rather than
later. Thus, this shortcoming of the estimation procedure shown may not be the most
critical for realistic applications.

The unexplained steepness in the formulaic approach must be assessed. By employing
the simulation approach with a larger number of measurements, it may be checked
whether the steepness in the uncertainty estimates is due to the number of draws from
the posterior distribution. If not, the formulaic time transformation approach must be
evaluated.
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It can be noted that when one wishes to calculate the hitting time CDF as a function
of the time t for many t, the calculations for each t is independent of each other, for
the two approaches used with both one and two change points. Thus, the computations
may be parallelized, to speed up the computations.

It was seen in the one and two change point setting that when the drift parameter
ν was unknown, the hitting time CDF was greatly affected. Thus, the importance of
assessment of the model parameters is evident.

This thesis has also implicitly considered the number of change points in the process
known. Another approach could be to condition on the number of change points, if the
failure development process is not known to such a degree as the motivating example.

In the TCI framework, other health indicators were suggested. If these were to be
taken into account, and the Wiener process was appropriate for the indicators, one could
model a multi-dimensional Wiener process. The health indicators would be correlated.
It would be necessary find a measure of a inverse Gaussian distribution corresponding to
multidimensional measurements, or to measure the distance from each health indicators
hitting time distribution in multi-dimensional space.

Another suggestion for model extension is to the include other failure modes, that
is, competing risks. The failure that has been considered in this model is a ’soft’ failure
from mechanical wear. One could add the possibility of a shock, which will have a greater
effect further along in the failure development.

In this thesis, it was suggested to choose an estimator for T according to the risk one
was willing to take, such that T̂α is the t for which P (T ≤ t) = α. Another approach to
include risk could be to use loss functions to estimate the parameters. In this setting it
may be reasonable to penalize more for overestimation than underestimation.

The time transformation that was seen in section 4.3.2 and its following restrictions
on ν2 and σ2 may not be reasonable for all types of failure development. Several other
models are proposed in Doksum and Høyland (1992), including continuously varying
stress and generally changing stress, which give rise to a flexible group of models. Com-
mon for all the models they propose is that the time transformation ξ(t) must be a
nonnegative strictly increasing and continuous function.

The Wiener process was the mathematical model in this thesis. For problems where
the deterioration is cumulative, such as corrosion or crack growth, the gamma process
may be more suitable. An extensive study of the gamma process can be found in van
Noortwijk (2009). A frequentistic approach to finding change points is described in
Fouladirad et al. (2008) and is exemplified through the gamma process.

In order to effectively use the distributions found in this thesis, a maintenance op-
timization strategy should be found, combining the hitting time CDFs of the bearing
temperature in different wind turbines.
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Appendix A

Markov Chain Monte Carlo
diagnostic plots

A.1 One change point

A.1.1 τ unknown, ν and σ known

Observation until tn = 1 400

Figure A.1.1: Trace plot of the last 10 000 iterations of the Markov chain from the
posterior distribution of τ with ν and σ considered known, π(τ |x1, . . . , xn; ν, σ), and the
endpoint of observations was tn = 1 400. Note that few iterations in the Markov chain
are below τ (t) = 1400. This is also reflected in the histogram in figure A.1.2 and the
2.5th percentile in table 5.1.
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Figure A.1.2: Histogram of the MCMC samples from π(τ |x1, . . . , xn; ν, σ), the posterior
distribution of τ with ν and σ considered known, and the endpoint of observation was
tn = 1 400.

Figure A.1.3: Autocorrelation of the MCMC sample from π(τ |x1, . . . , xn; ν, σ), the pos-
terior distribution of τ , as function of the lag. Here, ν and σ are considered known, and
the endpoint of observation was tn = 1 400.
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Observation until tn = 1 700

Figure A.1.4: Trace plot of the last 10 000 iterations of the Markov chain from the
posterior distribution of τ with ν and σ considered known, π(τ |x1, . . . , xn; ν, σ), and the
endpoint of observation was tn = 1 700.

Figure A.1.5: Histogram of the MCMC samples from π(τ |x1, . . . , xn; ν, σ), the posterior
distribution of τ with ν and σ considered known, and the endpoint of observation was
tn = 1 700.
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Figure A.1.6: Autocorrelation of the MCMC samples from π(τ |x1, . . . , xn; ν, σ), the pos-
terior distribution of τ , as function of the lag. Here, ν and σ are considered known, and
the endpoint of observation was tn = 1 700.
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Observation until tn = 3 000

Figure A.1.7: Trace plot of the last 100 000 iterations of the Markov chain from the
posterior distribution of τ with ν and σ considered known, π(τ |x1, . . . , xn; ν, σ), and the
endpoint of observations was tn = 3 000.

Figure A.1.8: Histogram of the MCMC samples from π(τ |x1, . . . , xn; ν, σ), the posterior
distribution of τ with ν and σ considered known, and the endpoint of observation was
tn = 3 000.
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Figure A.1.9: Autocorrelation of the MCMC samples from π(τ |x1, . . . , xn; ν, σ), the pos-
terior distribution of τ , as function of the lag. Here, ν and σ are considered known, and
the endpoint of observation was tn = 3 000.
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A.1.2 τ and ν unknown, σ known

Observation until tn = 1 400

Figure A.1.10: Marginal trace plot of the last 100 000 iterations of the Markov chain
from the posterior distribution of τ , π(τ |x1, . . . , xn;σ), and ν, π(ν|x1, . . . , xn;σ). Here,
σ was considered known, and the endpoint of observation was tn = 1 400.

Figure A.1.11: Histograms of the MCMC sample from the marginal posterior distribu-
tions of τ , π(τ |x1, . . . , xn;σ), and ν, π(ν|x1, . . . , xn;σ). Here, σ was considered known,
and the endpoint of observation was tn = 1 400.
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Figure A.1.12: Contour plot of the joint posterior distribution of τ and ν,
π(τ, ν|x1, . . . , xn;σ), obtained by MCMC methods with σ considered known, and the
endpoint of observation was tn = 1 400.

Figure A.1.13: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ , π(τ |x1, . . . , xn;σ), and ν, π(ν|x1, . . . , xn;σ), as function of
the lag. Here, σ is considered known, and the endpoint of observation was tn = 1 400.
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Observation until tn = 1 700

Figure A.1.14: Marginal trace plot of the last 100 000 iterations of the Markov chain
from the posterior distribution of τ , π(τ |x1, . . . , xn;σ), and ν, π(ν|x1, . . . , xn;σ). Here,
σ was considered known, and the endpoint of observation was tn = 1 700.
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Figure A.1.15: Histograms of the MCMC sample from the marginal posterior distribu-
tions of τ , π(τ |x1, . . . , xn;σ), and ν, π(ν|x1, . . . , xn;σ). Here, σ was considered known,
and the endpoint of observation was tn = 1 700.
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Figure A.1.16: Contour plot of the joint posterior distribution of τ and ν,
π(τ, ν|x1, . . . , xn;σ), obtained by MCMC methods with σ considered known, and the
endpoint of observation was tn = 1 700.

Figure A.1.17: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ , π(τ |x1, . . . , xn;σ), and ν, π(ν|x1, . . . , xn;σ), as function of
the lag. Here, σ is considered known, and the endpoint of observation was tn = 1 700.
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Observation until tn = 3 000

Figure A.1.18: Marginal trace plot of the last 100 000 iterations of the Markov chain
from the posterior distribution of τ , π(τ |x1, . . . , xn;σ), and ν, π(ν|x1, . . . , xn;σ). Here,
σ was considered known, and the endpoint of observation was tn = 3 000.

Figure A.1.19: Histograms of the MCMC sample from the marginal posterior distribu-
tions of τ , π(τ |x1, . . . , xn;σ), and ν, π(ν|x1, . . . , xn;σ). Here, σ was considered known,
and the endpoint of observation was tn = 3 000.



122 APPENDIX A. MARKOV CHAIN MONTE CARLO DIAGNOSTIC PLOTS

Figure A.1.20: Contour plot of the joint posterior distribution of τ and ν,
π(τ, ν|x1, . . . , xn;σ), obtained by MCMC methods with σ considered known, and the
endpoint of observation was tn = 3 000.

Figure A.1.21: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ , π(τ |x1, . . . , xn;σ), and ν, π(ν|x1, . . . , xn;σ), as function of
the lag. Here, σ is considered known, and the endpoint of observation was tn = 3 000.
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A.1.3 τ , ν and σ unknown
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Figure A.1.22: Trace plot of the last 100 000 iterations of the Markov chain from
the marginal posterior distributions of τ , π(τ |x1, . . . , xn), ν, π(ν|x1, . . . , xn), and σ,
π(σ|x1, . . . , xn), and the endpoint of observation was tn = 1 400.



124 APPENDIX A. MARKOV CHAIN MONTE CARLO DIAGNOSTIC PLOTS

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

2

4

6
x 10

4

τ

0 0.002 0.004 0.006 0.008 0.01 0.012
0

2

4

6

8
x 10

4

ν

0.0185 0.019 0.0195 0.02 0.0205 0.021 0.0215 0.022 0.0225
0

5

10

15
x 10

4

σ

Figure A.1.23: Histograms of the MCMC sample from the marginal posterior distribu-
tions of τ , π(τ |x1, . . . , xn), ν, π(ν|x1, . . . , xn), and σ, π(σ|x1, . . . , xn), and the endpoint
of observation was tn = 1 400.

Figure A.1.24: Contour plot of the pairwise joint posterior distributions of τ , ν and σ,
π(τ, ν|x1, . . . , xn), π(ν, σ|x1, . . . , xn) and π(τ, σ|x1, . . . , xn), obtained by MCMC meth-
ods, and the endpoint of observation was tn = 1 400.
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Figure A.1.25: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ , π(τ |x1, . . . , xn), ν, π(ν|x1, . . . , xn) and σ, π(σ|x1, . . . , xn),
as function of the lag. The endpoint of observation was tn = 1 400.
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Observation until tn = 1 700
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Figure A.1.26: Trace plot of the last 100 000 iterations of the Markov chain from
the marginal posterior distributions of τ , π(τ |x1, . . . , xn), ν, π(ν|x1, . . . , xn), and σ,
π(σ|x1, . . . , xn), and the endpoint of observation was tn = 1 700.
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Figure A.1.27: Histograms of the MCMC sample from the marginal posterior distribu-
tions of τ , π(τ |x1, . . . , xn), ν, π(ν|x1, . . . , xn), and σ, π(σ|x1, . . . , xn), and the endpoint
of observation was tn = 1 700.

Figure A.1.28: Contour plot of the pairwise joint posterior distributions of τ , ν and σ,
π(τ, ν|x1, . . . , xn), π(ν, σ|x1, . . . , xn) and π(τ, σ|x1, . . . , xn), obtained by MCMC meth-
ods, and the endpoint of observation was tn = 1 700.
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Figure A.1.29: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ , π(τ |x1, . . . , xn), ν, π(ν|x1, . . . , xn) and σ, π(σ|x1, . . . , xn),
as function of the lag. The endpoint of observations was tn = 1 700.
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Figure A.1.30: Trace plot of the last 100 000 iterations of the Markov chain from
the marginal posterior distributions of τ , π(τ |x1, . . . , xn), ν, π(ν|x1, . . . , xn), and σ,
π(σ|x1, . . . , xn), and the endpoint of observation was tn = 3 000.
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Figure A.1.31: Histograms of the MCMC sample from the marginal posterior distribu-
tions of τ , π(τ |x1, . . . , xn), ν, π(ν|x1, . . . , xn), and σ, π(σ|x1, . . . , xn), and the endpoint
of observation was tn = 3 000.

Figure A.1.32: Contour plot of the pairwise joint posterior distributions of τ , ν and σ,
π(τ, ν|x1, . . . , xn), π(ν, σ|x1, . . . , xn) and π(τ, σ|x1, . . . , xn), obtained by MCMC meth-
ods, and the endpoint of observation was tn = 3 000.
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Figure A.1.33: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ , π(τ |x1, . . . , xn), ν, π(ν|x1, . . . , xn) and σ, π(σ|x1, . . . , xn),
as function of the lag. The endpoint of observation was tn = 3 000.
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A.2 Two change points

A.2.1 τ1 and τ2 unknown, ν, σ and α known

Observation until tn = 700
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Figure A.2.1: Trace plot of the last 100 000 iterations of the Markov chain
from the marginal posterior distributions of τ1, π(τ1|x1, . . . , xn;α, ν, σ) and τ2,
π(τ2|x1, . . . , xn;α, ν, σ). Here, ν, σ and α are considered known, and the endpoint of
observation was tn = 700.
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Figure A.2.2: Histograms of the marginal posterior distributions of τ1,
π(τ1|x1, . . . , xn;α, ν, σ), τ2, π(τ2|x1, . . . , xn;α, ν, σ) and τ2 − τ1, π(τ2 −
τ1|x1, . . . , xn;α, ν, σ). Here, ν, σ and α are considered known, and the endpoint
of observation was tn = 700.
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Figure A.2.3: Contour plot of the joint posterior distribution of τ1 and τ2,
π(τ1, τ2|x1, . . . , xn;α, ν, σ), as obtained by MCMC methods. Here, ν, σ and α were
considered known, and the endpoint of observation was tn = 700.

Figure A.2.4: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ1, π(τ1|x1, . . . , xn;α, ν, σ), and τ2, π(τ2|x1, . . . , xn;α, ν, σ), as
function of the lag. Here, ν and σ are considered known, and the endpoint of observation
was tn = 700.
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Figure A.2.5: Trace plot of the last 100 000 iterations of the Markov chain
from the marginal posterior distributions of τ1, π(τ1|x1, . . . , xn;α, ν, σ) and τ2,
π(τ2|x1, . . . , xn;α, ν, σ). Here, ν, σ and α are considered known, and the endpoint of
observation was tn = 1 100.



136 APPENDIX A. MARKOV CHAIN MONTE CARLO DIAGNOSTIC PLOTS

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4

6

8
x 10

5

τ
1

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3
x 10

5

τ
2

0 5000 10000 15000
0

0.5

1

1.5

2
x 10

5

τ
2
 − τ

1

Figure A.2.6: Histograms of the marginal posterior distributions of τ1,
π(τ1|x1, . . . , xn;α, ν, σ), τ2, π(τ2|x1, . . . , xn;α, ν, σ) and τ2 − τ1, π(τ2 −
τ1|x1, . . . , xn;α, ν, σ). Here, ν, σ and α are considered known, and the endpoint
of observation was tn = 1 100.
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Figure A.2.7: Contour plot of the joint posterior distribution of τ1 and τ2,
π(τ1, τ2|x1, . . . , xn;α, ν, σ), as obtained by MCMC methods. Here, ν, σ and α were
considered known, and the endpoint of observation was tn = 1 100.

Figure A.2.8: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ1, π(τ1|x1, . . . , xn;α, ν, σ), and τ2, π(τ2|x1, . . . , xn;α, ν, σ), as
function of the lag. Here, ν and σ are considered known, and the endpoint of observation
was tn = 1 100.
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Observation until tn = 1 450
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Figure A.2.9: Trace plot of the last 100 000 iterations of the Markov chain
from the marginal posterior distributions of τ1, π(τ1|x1, . . . , xn;α, ν, σ) and τ2,
π(τ2|x1, . . . , xn;α, ν, σ). Here, ν, σ and α are considered known, and the endpoint of
observation was tn = 1 450.
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Figure A.2.10: Histograms of the marginal posterior distributions of τ1,
π(τ1|x1, . . . , xn;α, ν, σ), τ2, π(τ2|x1, . . . , xn;α, ν, σ) and τ2 − τ1, π(τ2 −
τ1|x1, . . . , xn;α, ν, σ). Here, ν, σ and α are considered known, and the endpoint
of observation was tn = 1 450.
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Figure A.2.11: Contour plot of the joint posterior distribution of τ1 and τ2,
π(τ1, τ2|x1, . . . , xn;α, ν, σ), as obtained by MCMC methods. Here, ν, σ and α were
considered known, and the endpoint of observation was tn = 1 450.

Figure A.2.12: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ1, π(τ1|x1, . . . , xn;α, ν, σ), and τ2, π(τ2|x1, . . . , xn;α, ν, σ), as
function of the lag. Here, ν and σ are considered known, and the endpoint of observation
was tn = 1 450.
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Figure A.2.13: Trace plot of the last 100 000 iterations of the Markov chain
from the marginal posterior distributions of τ1, π(τ1|x1, . . . , xn;α, ν, σ) and τ2,
π(τ2|x1, . . . , xn;α, ν, σ). Here, ν, σ and α are considered known, and the endpoint of
observation was tn = 2 000.
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Figure A.2.14: Histograms of the marginal posterior distributions of τ1,
π(τ1|x1, . . . , xn;α, ν, σ), τ2, π(τ2|x1, . . . , xn;α, ν, σ) and τ2 − τ1, π(τ2 −
τ1|x1, . . . , xn;α, ν, σ). Here, ν, σ and α are considered known, and the endpoint
of observation was tn = 2 000.
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Figure A.2.15: Contour plot of the joint posterior distribution of τ1 and τ2,
π(τ1, τ2|x1, . . . , xn;α, ν, σ), as obtained by MCMC methods. Here, ν, σ and α were
considered known, and the endpoint of observation was tn = 2 000.

Figure A.2.16: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ1, π(τ1|x1, . . . , xn;α, ν, σ), and τ2, π(τ2|x1, . . . , xn;α, ν, σ), as
function of the lag. Here, ν and σ are considered known, and the endpoint of observation
was tn = 2 000.
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A.2.2 τ1, τ2 and ν unknown, σ and α known

Observation until tn = 700
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Figure A.2.17: Trace plot of the last 100 000 iterations of the Markov chain from the
marginal posterior distributions of τ1, π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ) and
ν, π(ν|x1, . . . , xn;α, σ). Here, σ and α were considered known, and the endpoint of
observations was tn = 700.
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Figure A.2.18: Histograms of the marginal posterior distributions of τ1,
π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, σ) and
ν, π(ν|x1, . . . , xn;α, σ). Here, σ and α were considered known, and the endpoint of
observation was tn = 700.



146 APPENDIX A. MARKOV CHAIN MONTE CARLO DIAGNOSTIC PLOTS

Figure A.2.19: Contour plot of the pairwise joint posterior distributions of τ1, τ2 and
ν, π(τ1, τ2|x1, . . . , xn;α, σ), π(τ2, ν|x1, . . . , xn;α, σ) and π(τ1, ν|x1, . . . , xn;α, σ). Here, σ
and α were considered known, and the endpoint of observations was tn = 700.

Figure A.2.20: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ1, π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ), and ν,
π(ν|x1, . . . , xn;α, σ)as function of the lag. Here, ν and σ are considered known, and
the endpoint of observation was tn = 700.
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Figure A.2.21: Trace plot of the last 100 000 iterations of the Markov chain from the
marginal posterior distributions of τ1, π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ) and
ν, π(ν|x1, . . . , xn;α, σ). Here, σ and α were considered known, and the endpoint of
observations was tn = 1 100.
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Figure A.2.22: Histograms of the marginal posterior distributions of τ1,
π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, σ) and
ν, π(ν|x1, . . . , xn;α, σ). Here, σ and α were considered known, and the endpoint of
observation was tn = 1 100.



A.2. TWO CHANGE POINTS 149

Figure A.2.23: Contour plot of the pairwise joint posterior distributions of τ1, τ2 and
ν, π(τ1, τ2|x1, . . . , xn;α, σ), π(τ2, ν|x1, . . . , xn;α, σ) and π(τ1, ν|x1, . . . , xn;α, σ). Here, σ
and α were considered known, and the endpoint of observations was tn = 1 100.

Figure A.2.24: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ1, π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ), and ν,
π(ν|x1, . . . , xn;α, σ)as function of the lag. Here, ν and σ are considered known, and
the endpoint of observation was tn = 1 100.
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Observation until tn = 1 450
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Figure A.2.25: Trace plot of the last 100 000 iterations of the Markov chain from the
marginal posterior distributions of τ1, π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ) and
ν, π(ν|x1, . . . , xn;α, σ). Here, σ and α were considered known, and the endpoint of
observations was tn = 1 450.
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Figure A.2.26: Histograms of the marginal posterior distributions of τ1,
π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, σ) and
ν, π(ν|x1, . . . , xn;α, σ). Here, σ and α were considered known, and the endpoint of
observation was tn = 1 450.



152 APPENDIX A. MARKOV CHAIN MONTE CARLO DIAGNOSTIC PLOTS

Figure A.2.27: Contour plot of the pairwise joint posterior distributions of τ1, τ2 and
ν, π(τ1, τ2|x1, . . . , xn;α, σ), π(τ2, ν|x1, . . . , xn;α, σ) and π(τ1, ν|x1, . . . , xn;α, σ). Here, σ
and α were considered known, and the endpoint of observations was tn = 1 450.

Figure A.2.28: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ1, π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ), and ν,
π(ν|x1, . . . , xn;α, σ)as function of the lag. Here, ν and σ are considered known, and
the endpoint of observation was tn = 1 450.



A.2. TWO CHANGE POINTS 153

Observation until tn = 2 000

1.9 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2

x 10
6

0

500

1000

1500

Iterations, t

τ
1(t

)

1.9 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2

x 10
6

1300

1350

1400

1450

1500

Iterations, t

τ
2(t

)

1.9 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2

x 10
6

0

2

4

6

8
x 10

−3

Iterations, t

ν
(t

)

Figure A.2.29: Trace plot of the last 100 000 iterations of the Markov chain from the
marginal posterior distributions of τ1, π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ) and
ν, π(ν|x1, . . . , xn;α, σ). Here, σ and α were considered known, and the endpoint of
observations was tn = 2 000.



154 APPENDIX A. MARKOV CHAIN MONTE CARLO DIAGNOSTIC PLOTS

0 500 1000 1500
0

5

10
x 10

4

τ
1

1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500
0

2

4
x 10

5

τ
2

0 500 1000 1500
0

5

10
x 10

4

τ
2
 − τ

1

0 1 2 3 4 5 6 7 8

x 10
−3

0

5

10
x 10

4

ν

Figure A.2.30: Histograms of the marginal posterior distributions of τ1,
π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ), τ2 − τ1, π(τ2 − τ1|x1, . . . , xn;α, σ) and
ν, π(ν|x1, . . . , xn;α, σ). Here, σ and α were considered known, and the endpoint of
observation was tn = 2 000.
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Figure A.2.31: Contour plot of the pairwise joint posterior distributions of τ1, τ2 and
ν, π(τ1, τ2|x1, . . . , xn;α, σ), π(τ2, ν|x1, . . . , xn;α, σ) and π(τ1, ν|x1, . . . , xn;α, σ). Here, σ
and α were considered known, and the endpoint of observations was tn = 2 000.

Figure A.2.32: Autocorrelation of the iterations in the Markov chain from the marginal
posterior distributions of τ1, π(τ1|x1, . . . , xn;α, σ), τ2, π(τ2|x1, . . . , xn;α, σ), and ν,
π(ν|x1, . . . , xn;α, σ)as function of the lag. Here, ν and σ are considered known, and
the endpoint of observation was tn = 2 000.
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Appendix B

Matlab code

B.1 One change point

B.1.1 Simulation

1 % Function sampling Wiener p roce s s
% One change po int

3 % D i f f e r e n t var iance parameter
func t i on [w] = WP( t , n , nu , sigma , tau )

5 % Input parameters
% t end time po int

7 % n number o f sampling po in t s
% nu d r i f t parameter vec to r [ 0 , nu_1 ]

9 % sigma var iance parameter vec to r [ sigma_0 , sigma_1 ]
% tau change po int ( time )

11

% Reso lut ion o f the sampling
13 dt = t /n ;

15 % Sampling parameters
mean = nu∗dt ;

17 sd = sigma∗ s q r t ( dt ) ;

19 tau_index = f l o o r ( tau /dt ) ;

21 % Sampling normal d i s t r i b u t e d increments
wpbefore = mean (1) + sd (1 ) . ∗ randn ( tau_index , 1 ) ;

23 wpafter = mean (2) + sd (2 ) . ∗ randn (n − tau_index − 1 ,1) ;

25 w = [ 0 ; wpbefore ; wpafter ] ;

27 % Cumulative sum of increments
w = cumsum(w) ;

29 end

Matlab code B.1: Code to simulate a piecewise Wiener process with one predetermined
change point.

157
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B.1.2 MCMC algorithm

1 % Metropol i s −Hast ings a lgor i thm
% Proposal d i s t r i b u t i o n : p r i o r d i s t r i b u t i o n

3

f unc t i on tau = mhTau(w, t , n , sigma , tau_lambda , nu , runs )
5 % Input parameters

% t end time po int
7 % n number o f sampling po in t s

% nu d r i f t parameter
9 % sigma var iance parameter

% w vecto r conta in ing obse rva t i on s
11 % tau_lambda p r i o r parameter f o r tau

% runs number o f i t e r a t i o n s f o r the mh
13 dt = t /n ;

x = d i f f (w) ;
15

% Parameter matrix [ theta , nu ]
17 tau= z e r o s ( runs , 1 ) ;

19 % I n i t i a l tau
tau_0 = random ( ’ geo ’ , tau_lambda ) + 1 ;

21

tau (1 ) = tau_0 ;
23 tau_star_mat = random ( ’ geo ’ , tau_lambda , [ runs , 1 ] ) + 1 ;

25

accept = 0 ;
27 f o r i = 2 : runs

% Proposal
29 tau_star = tau_star_mat ( i ) ;

% Current va lue
31 tau_curr = tau ( i −1 ,1) ;

33 % alpha c a l c u l a t e d on log s c a l e
loga lpha = l o g l i k e l i h o o d ( tau_star , n , dt , nu , sigma , w) − . . .

35 l o g l i k e l i h o o d ( tau_curr , n , dt , nu , sigma , w) ;

37 u = log ( rand (1 ) ) ;
i f u < min (0 , l oga lpha )

39 tau ( i ) = tau_star ;
accept = accept + 1 ;

41 e l s e
tau ( i ) = tau_curr ;

43 end
end

45 acceptance ra te = accept / runs

47 end

Matlab code B.2: Code to simulate from the posterior distribution of τ , by the
Metropolis-Hastings algorithm.
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1 f unc t i on theta = mh(w, t , n , sigma , tau_lambda , nu_lambda , nu_nu , runs )
% Metropol i s −Hast ings

3 % nu unknown , sigma known
% nu sampled from normal d i s t r i b u t i o n

5 % Metropol i s −Hast ings a lgor i thm
% Proposal d i s t r i b u t i o n : p r i o r d i s t r i b u t i o n

7 % tau_lambda : p r i o r parameter f o r tau
% nu_lambda , nu_nu : p r i o r parameters f o r nu

9 dt = t /n ;
x = d i f f (w) ;

11

% Parameter matrix [ theta , nu ]
13 theta = z e r o s ( runs , 2 ) ;

15 % I n i t i a l tau
tau_0 = random ( ’ geo ’ , tau_lambda ) + 1 ;

17 % I n i t i a l nu
nu_0 = random ( ’gam ’ , nu_lambda , nu_nu) ;

19

theta ( 1 , : ) = [ tau_0 , nu_0 ] ;
21 tau_star_mat = random ( ’ geo ’ , tau_lambda , [ runs , 1 ] ) + 1 ;

nu_star_mat = random ( ’gam ’ , nu_lambda , nu_nu , [ runs , 1 ] ) ;
23

accept = 0 ;
25 f o r i = 2 : runs

% Proposal
27 tau_star = tau_star_mat ( i ) ;

nu_star = nu_star_mat ( i ) ;
29 % Current va lue

tau_curr = theta ( i −1 ,1) ;
31 nu_curr = theta ( i −1, 2) ;

% Log M−H r a t i o
33 l oga lpha = l o g l i k e l i h o o d ( tau_star , n , dt , nu_star , sigma , w) − . . .

l o g l i k e l i h o o d ( tau_curr , n , dt , nu_curr , sigma , w) ;
35 % Log random number

u = log ( rand (1 ) ) ;
37 i f u < min (0 , l oga lpha )

theta ( i , 1 ) = tau_star ; theta ( i , 2 ) = nu_star ;
39 accept = accept + 1 ;

e l s e
41 theta ( i , 1 ) = tau_curr ; theta ( i , 2 ) = nu_curr ;

end
43 end

acceptance ra te = accept / runs
45

end

Matlab code B.3: Code to simulate from the joint posterior distribution of τ and ν, by
the Metropolis-Hastings algorithm.
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f unc t i on [ l l h ] = l o g l i k e l i h o o d ( tau , n , dt , nu , sigma , w)
2 % Input parameters

% t end time po int
4 % n number o f sampling po in t s

% nu d r i f t parameter vec to r
6 % sigma var iance parameter

% w vecto r conta in ing obse rva t i on s
8

% Extract ing increments
10 w = d i f f (w) ;

t = n∗dt ;
12 n = n − 1 ;

i f tau <= n
14 l l h = − 1/(2∗ dt∗ sigma ^2) ∗( − 2∗ dt∗nu∗sum(w( tau /dt : n) ) + . . .

(n−tau+1) ∗( dt∗nu) ^2) ;
16 e l s e

l l h = 1 ;
18 end

end

Matlab code B.4: Code to calculate log likelihood in mhTau.m and mh.m.
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1 f unc t i on theta = mhnusigma (w, t , n , tau_lambda , nu_lambda , nu_nu , . . .
sigma_lambda , sigma_nu , runs )

3 % Metropol i s −Hast ings
% nu unknown , sigma known

5 % Metropol i s −Hast ings a lgor i thm
% Proposal d i s t r i b u t i o n : p r i o r d i s t r i b u t i o n

7 % tau_lambda : p r i o r parameter f o r tau
% nu_lambda , nu_nu : p r i o r parameters f o r nu

9 % sigma_lambda , sigma_nu : p r i o r parameters f o r sigma
dt = t /n ;

11 x = d i f f (w) ;

13 % Parameter matrix [ theta , nu ]
theta = z e r o s ( runs , 3 ) ;

15

% I n i t i a l tau
17 tau_0 = random ( ’ geo ’ , tau_lambda ) + 1 ;

% I n i t i a l nu
19 nu_0 = random ( ’gam ’ , nu_lambda , nu_nu) ;

% I n i t a l sigma
21 sigma_0 = random ( ’gam ’ , sigma_lambda , sigma_nu ) ;

23 theta ( 1 , : ) = [ tau_0 , nu_0 , sigma_0 ] ;
tau_star_mat = random ( ’ geo ’ , tau_lambda , [ runs , 1 ] ) + 1 ;

25 nu_star_mat = random ( ’gam ’ , nu_lambda , nu_nu , [ runs , 1 ] ) ;
sigma_star_mat = random ( ’gam ’ , sigma_lambda , sigma_nu , [ runs , 1 ] ) ;

27

accept = 0 ;
29 f o r i = 2 : runs

% Proposal
31 tau_star = tau_star_mat ( i ) ;

nu_star = nu_star_mat ( i ) ;
33 sigma_star = sigma_star_mat ( i ) ;

% Current va lue
35 tau_curr = theta ( i − 1 , 1) ;

nu_curr = theta ( i − 1 , 2) ;
37 sigma_curr = theta ( i − 1 , 3) ;

% log M−H r a t i o
39 l oga lpha = l o g l i k e l i h o o d n u s i g m a ( tau_star , nu_star , sigma_star , . . .

n , dt , w) − . . .
41 l o g l i k e l i h o o d n u s i g m a ( tau_curr , nu_curr , sigma_curr , n , dt , w) ;

% log random number
43 u = log ( rand (1 ) ) ;

i f u < min (0 , l oga lpha )
45 theta ( i , 1) = tau_star ;

theta ( i , 2) = nu_star ;
47 theta ( i , 3) = sigma_star ;

accept = accept + 1 ;
49 e l s e

theta ( i , 1) = tau_curr ;
51 theta ( i , 2) = nu_curr ;

theta ( i , 3) = sigma_curr ;
53 end
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end
55 acceptance ra te = accept / runs

57 end

Matlab code B.5: Code to simulate from the joint posterior distribution of τ, ν and σ,
by the Metropolis-Hastings algorithm.

1 % Log l i k e l i h o o d nu , sigma , tau unknown
func t i on L = l o g l i k e l i h o o d n u s i g m a ( tau , nu , sigma , n , dt , w)

3 % Input parameters
% t end time po int

5 % n number o f sampling po in t s
% nu d r i f t parameter vec to r

7 % sigma var iance parameter
% w vecto r conta in ing obse rva t i on s

9 x = d i f f (w) ; n = n − 1 ;
i f tau <= n

11 L = − n∗ l og ( sigma ) − 1/(2∗ dt∗ sigma ^2) ∗(sum( x . ^ 2 ) − . . .
2∗ dt∗nu∗sum( x ( tau /dt : n ) ) +(n − tau /dt + 1) ∗( dt∗nu) ^2) ;

13 e l s e
L = − n∗ l og ( sigma ) − 1/(2∗ dt∗ sigma ^2) ∗(sum( x . ^ 2 ) ) ;

15 end

Matlab code B.6: Code to calculate log likelihood in mhnusigma.m.
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B.1.3 Hitting time CDF estimates

1 f unc t i on [ cumdist , upper , lower , T_vec ] = formulaicCDF (t_n , n , w, nu , . . .
sigma , burnin , m, endTau , a , tau_mc)

3 % burnin : the burnin l ength f o r the Markov chain
% tau_mc : the tau parameter Markov chain

5 % m : number o f draws from the p o s t e r i o r d i s t r i b u t i o n
% a : th r e sho ld temperature parameter

7 % endTau : the upper t−value f o r which to c a l c u l a t e P(T<= t )
dt = t_n/n ;

9 T_vec = [ t_n + dt : dt : endTau ] ;

11 cumdist = z e r o s ( s i z e (T_vec) ) ;
upper = z e r o s ( s i z e (T_vec) ) ;

13 lower = z e r o s ( s i z e (T_vec) ) ;

15 f o r i = 1 : l ength (T_vec)
i f mod( i , 1000 )==1

17 di sp (T_vec( i ) )
end

19 % Simulate p o s t e r i o r va lue s
% tau_sample = randsample ( 1 : dt : endTau , m, true , post_vec ) ;

21 idx_sample = randsample ( 1 : l ength (tau_mc( burnin : end ) ) , m, t rue ) ;
tau_sample = tau_mc( idx_sample ) ;

23 idx_crossed = [ tau_sample < T_vec( i ) ] ;
tau_sample = tau_sample ( idx_crossed ) ;

25

% Calcu la t e r e l e v a n t a−value vec to r us ing the expected value o f w( t )
27 % at w( tau ) i f tau > t_n which i s w( t_n)

a_vec = a − w(n) ;
29

% Calcu la t e r e l e v a n t t−vec to r
31 t_vec = T_vec( i ) − t_n ∗ [ ( tau_sample )<=t_n ] − . . .

tau_sample . ∗ [ tau_sample>t_n ] ;
33

% Calcu la t e CDF based on p o s t e r i o r va lue s
35 cumdist_vec = normcdf ( ( nu . ∗ t_vec − a_vec ) . / ( sigma . ∗ s q r t ( t_vec ) ) ) + . . .

exp ( 2 . ∗ a_vec . ∗ nu . / sigma ^2) . ∗ normcdf ((−a_vec − . . .
37 nu . ∗ t_vec ) . / ( sigma . ∗ s q r t ( t_vec ) ) ) ;

39 % return cd f as mean
cumdist ( i ) = 1/m∗sum( cumdist_vec ) ;

41

% Find 95 % conf bound
43 upper ( i ) = p r c t i l e ( cumdist_vec , 9 7 . 5 ) ;

lower ( i ) = p r c t i l e ( cumdist_vec , 2 . 5 ) ;
45 end

47 end

Matlab code B.7: Code to estimate the hitting time CDF by the formulaic approach,
with ν and σ known.
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1 f unc t i on [ cumdist , upper , lower , T_vec ] = simulationCDF (w, t_n , . . .
n , sigma , nu , a , m_simu , tau_mc , m_tau , endTau , burnin )

3 % a : th r e sho ld temperature parameter
% m_simu : number o f s i m u la t i o n s f o r each draw from the p o s t e r i o r

5 % d i s t r i b u t i o n
% tau_mc : the Markov chain from the p o s t e r i o r d i s t r i b u t i o n

7 % m_tau : number o f tau draws from the p o s t e r i o r d i s t r i b u t i o n
% endTau : the upper l i m i t f o r t f o r which to c a l c u l a t e P(T <= t )

9 % burnin : burnin l ength to apply to Markov chain from p o s t e r i o r
% d i s t r i b u t i o n

11 s0 = t_n ; dt = t_n/n ;

13

% Simulated tau−va lue s from the p o s t e r i o r d i s t r i b u t i o n
15 idx_sample = randsample ( burnin : l ength (tau_mc) , m_tau , t rue ) ;

17 % A l l o c a t i n g space f o r th r e sho ld t imes
threshold_timedt = z e r o s (m_simu , m_tau) ;

19

f o r i = 1 : m_tau
21 % Take a tau sample

tau = tau_mc( idx_sample ( i ) ) ;
23 f o r j = 1 : m_simu

i f ( tau < s0 )
25 % Tau has a l r eady happened

c ro s s ed = 0 ; % False
27 % Expected time to h i t th r e sho ld

Exp_T = tau + ( a − w( round ( tau /dt ) ) ) /nu ;
29 Exp_left = Exp_T − s0 ;

endtime = s0 ;
31 endtemp = w(n) ;

33 whi le ( c ro s s ed==0)
% Sample f o r twice as long

35 dw = dt∗nu + . . .
s q r t ( dt ) ∗ sigma . ∗ randn ( round (max( s0 /2 , 2∗ Exp_left ) ) , 1 ) ;

37 % At l e a s t one value l a r g e r
i f (sum( f i n d ( endtemp+cumsum(dw)>=a ) ) >0)

39 threshold_timedt ( j , i ) = endtime + . . .
dt∗ f i n d ( endtemp+cumsum(dw)>=a , 1 ) ;

41 c ro s s ed = 1 ;
e l s e

43 endtime = endtime + dt∗ l ength (dw) ;
endtemp = endtemp+sum(dw) ;

45 end

47 end

49 e l s e % Tau has not happened
% Must sample with mean 0 u n t i l tau

51 % Then mean mu
cro s s ed = 0 ; % f a l s e

53 % Sampling u n t i l tau
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dw = s q r t ( dt ) ∗ sigma . ∗ randn ( tau−n , 1) ;
55 endtime = tau ;

endtemp = w(n) + sum(dw) ;
57 Exp_T = tau + ( a − endtemp ) /nu ;

59 i f (sum( f i n d ( endtemp+cumsum(dw)>=a ) ) >0) % Threshold c ro s s ed
threshold_timedt ( j , i ) = endtime + . . .

61 dt∗ f i n d ( endtemp+cumsum(dw)>=a , 1 ) ;
c ro s s ed = 1 ;

63 end

65 whi le ( c ro s s ed == 0)
% Sample f o r twice as long

67 dw = dt∗nu + s q r t ( dt ) ∗ sigma . ∗ randn ( round (Exp_T) ,1 ) ;
i f (sum( f i n d ( endtemp+cumsum(dw)>=a ) ) >0)

69 threshold_timedt ( j , i ) = endtime + . . .
dt∗ f i n d ( endtemp+cumsum(dw)>=a , 1 ) ;

71 c ro s s ed = 1 ;
e l s e

73 endtime = endtime + dt∗ l ength (dw) ;
endtemp = endtemp + sum(dw) ;

75 end
end

77 end
end

79 end
threshold_timedt = s o r t ( threshold_timedt , 1 ) ;

81 T_vec = t_n + dt : dt : min (max(max( threshold_timedt ) ) , endTau ) ;
% Uncerta inty and F est imate

83 cumdist = z e r o s ( s i z e (T_vec) ) ;
upper = z e r o s ( s i z e (T_vec) ) ;

85 lower = z e r o s ( s i z e (T_vec) ) ;

87 f o r i = 1 : l ength (T_vec) ;
i f mod(T_vec( i ) , 1000) == 1

89 di sp (T_vec( i ) )
end

91 cumdist_vec = sum( threshold_timedt<= T_vec( i ) ) ;
cumdist ( i ) = mean( cumdist_vec ) ;

93 upper ( i ) = p r c t i l e ( cumdist_vec , 9 7 . 5 ) ;
lower ( i ) = p r c t i l e ( cumdist_vec , 2 . 5 ) ;

95

end
97 cumdist = cumdist /m_simu ; upper = upper/m_simu ; lower = lower /m_simu ;

end

Matlab code B.8: Code to estimate the hitting time CDF by the simulation approach,
with ν and σ known.
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f unc t i on [ cumdist , T_vec , theta_mc , upper , lower ] = formulaicCDFnu ( . . .
2 t_n , n , w, sigma , theta_mc , endTau , a , burnin , m)

% theta_mc : Markov chain from p o s t e r i o r d i s t r i b u t i o n o f tau and nu
4 % endTau : upper va lue o f t f o r which to c a l c u l a t e P(T <= t )

% a : temperature th r e sho ld parameter
6 % burnin : burnin value f o r the Markov chain

% m number o f draws in the p o s t e r i o r d i s t r i b u t i o n f o r each t
8 dt = t_n/n ;

T_vec = [ t_n + dt : dt : endTau ] ;
10

cumdist = z e r o s ( s i z e (T_vec) ) ;
12 upper = z e r o s ( s i z e (T_vec) ) ;

lower = z e r o s ( s i z e (T_vec) ) ;
14

f o r i = 1 : l ength (T_vec)
16

% Simulate p o s t e r i o r va lue s
18 idx_sample = randsample ( burnin : l ength ( theta_mc ) , m, t rue ) ;

tau_sample = theta_mc ( idx_sample , 1 ) ;
20 nu_sample = theta_mc ( idx_sample , 2 ) ;

idx_crossed = [ tau_sample < T_vec( i ) ] ;
22 tau_sample = tau_sample ( idx_crossed ) ;

nu_sample = nu_sample ( idx_crossed ) ;
24

% Calcu la t e r e l e v a n t a−value vec to r
26 a_vec = a − w(n) ;

28 % Calcu la t e r e l e v a n t t−vec to r
t_vec = T_vec( i ) − t_n ∗ [ ( tau_sample )<=t_n ] − . . .

30 tau_sample . ∗ [ tau_sample>t_n ] ;

32 % Calcu la t e CDF based on p o s t e r i o r va lue s
cumdist_vec = normcdf ( ( nu_sample . ∗ t_vec − . . .

34 a_vec ) . / ( sigma . ∗ s q r t ( t_vec ) ) ) + . . .
exp ( 2 . ∗ a_vec . ∗ nu_sample . / sigma ^2) . ∗ normcdf ((−a_vec − . . .

36 nu_sample . ∗ t_vec ) . / ( sigma . ∗ s q r t ( t_vec ) ) ) ;

38 % return cd f as mean
cumdist ( i ) = 1/m∗sum( cumdist_vec ) ;

40

upper ( i ) = p r c t i l e ( cumdist_vec , 9 7 . 5 ) ;
42 lower ( i ) = p r c t i l e ( cumdist_vec , 2 . 5 ) ;

44 end

46 end

Matlab code B.9: Code to estimate the hitting time CDF by the formulaic approach,
with ν unknown and σ known.
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f unc t i on [ cumdist , upper , lower , T_vec ] = simulationCDFnu (w, . . .
2 t_n , n , sigma , . . .

a , m_simu , theta_mc , m_tau , endTau , burnin )
4 % theta_mc : Markov chain from p o s t e r i o r d i s t r i b u t i o n o f tau and nu

% endTau : upper va lue o f t f o r which to c a l c u l a t e P(T <= t )
6 % a : temperature th r e sho ld parameter

% burnin : burnin value f o r the Markov chain
8 % m_tau number o f draws in the p o s t e r i o r d i s t r i b u t i o n f o r each t

% m_simu number o f Wiener p r o c e s s e s to s imulate f o r each tau
10 s0 = t_n ; dt = t_n/n ;

% Simulated tau−va lue s from the p o s t e r i o r d i s t r i b u t i o n
12 idx_sample = randsample ( burnin : l ength ( theta_mc ) , m_tau , t rue ) ;

14 % A l l o c a t i n g space f o r th r e sho ld t imes
threshold_timedt = z e r o s (m_simu , m_tau) ;

16

f o r i = 1 : m_tau
18 % Take a tau sample

tau = theta_mc ( idx_sample ( i ) , 1) ;
20 nu = theta_mc ( idx_sample ( i ) , 2) ;

f o r j = 1 : m_simu
22 i f ( tau < s0 )

% Tau has a l r eady happened
24 c ro s s ed = 0 ; % False

% Expected time to h i t th r e sho ld
26 Exp_T = tau + ( a − w( round ( tau /dt ) ) ) /nu ;

Exp_left = Exp_T − s0 ;
28 endtime = s0 ;

endtemp = w(n) ;
30 whi le ( c ro s s ed==0)

% Sample f o r twice as long
32 dw = dt∗nu + . . .

s q r t ( dt ) ∗ sigma . ∗ randn ( round (max( s0 /2 , 2∗ Exp_left ) ) , 1 ) ;
34 % At l e a s t one value l a r g e r

i f (sum( f i n d ( endtemp+cumsum(dw)>=a ) ) >0)
36 threshold_timedt ( j , i ) = endtime + . . .

dt∗ f i n d ( endtemp+cumsum(dw)>=a , 1 ) ;
38 c ro s s ed = 1 ;

e l s e
40 endtime = endtime + dt∗ l ength (dw) ;

endtemp = endtemp+sum(dw) ;
42 end

end
44 e l s e % Tau has not happened

% Must sample with mean 0 u n t i l tau
46 % Then mean mu

cro s s ed = 0 ; % f a l s e
48 % Sampling u n t i l tau

dw = s q r t ( dt ) ∗ sigma . ∗ randn ( tau−n , 1) ;
50 endtime = tau ;

endtemp = w(n) + sum(dw) ;
52 Exp_T = tau + ( a − endtemp ) /nu ;
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54 i f (sum( f i n d ( endtemp+cumsum(dw)>=a ) ) >0) % Threshold c ro s s ed
threshold_timedt ( j , i ) = endtime + . . .

56 dt∗ f i n d ( endtemp+cumsum(dw)>=a , 1 ) ;
c ro s s ed = 1 ;

58 end
whi l e ( c ro s s ed == 0)

60 % Sample f o r twice as long
dw = dt∗nu + s q r t ( dt ) ∗ sigma . ∗ randn ( round (Exp_T) ,1 ) ;

62 i f (sum( f i n d ( endtemp+cumsum(dw)>=a ) ) >0)
threshold_timedt ( j , i ) = endtime + . . .

64 dt∗ f i n d ( endtemp+cumsum(dw)>=a , 1 ) ;
c ro s s ed = 1 ;

66 e l s e
endtime = endtime + dt∗ l ength (dw) ;

68 endtemp = endtemp + sum(dw) ;
end

70 end
end

72 end
end

74 threshold_timedt = s o r t ( threshold_timedt , 1 ) ;
T_vec = t_n + dt : dt : min (max(max( threshold_timedt ) ) , endTau ) ;

76 % Uncerta inty and F est imate
cumdist = z e r o s ( s i z e (T_vec) ) ;

78 upper = z e r o s ( s i z e (T_vec) ) ;
lower = z e r o s ( s i z e (T_vec) ) ;

80

f o r i = 1 : l ength (T_vec) ;
82

cumdist_vec = sum( threshold_timedt<= T_vec( i ) ) ;
84 cumdist ( i ) = mean( cumdist_vec ) ;

upper ( i ) = p r c t i l e ( cumdist_vec , 9 7 . 5 ) ;
86 lower ( i ) = p r c t i l e ( cumdist_vec , 2 . 5 ) ;

end
88 cumdist = cumdist /m_simu ; upper = upper/m_simu ; lower = lower /m_simu ;

end

Matlab code B.10: Code to estimate the hitting time CDF by the simulation approach,
with ν unknown and σ known.
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1 f unc t i on [ cumdist , T_vec , upper , lower , theta_mc ] = formulaicCDFnusigma ( . . .
t_n , n , w, endTau , a , m, burnin , theta_mc )

3 % theta_mc : Markov chain from p o s t e r i o r d i s t r i b u t i o n o f tau and nu
% endTau : upper va lue o f t f o r which to c a l c u l a t e P(T <= t )

5 % a : temperature th r e sho ld parameter
% burnin : burnin value f o r the Markov chain

7 % m number o f draws in the p o s t e r i o r d i s t r i b u t i o n f o r each t
dt = t_n/n ;

9 T_vec = [ t_n + dt : dt : endTau ] ;

11 cumdist = z e r o s ( s i z e (T_vec) ) ;
upper = z e r o s ( s i z e (T_vec) ) ;

13 lower = z e r o s ( s i z e (T_vec) ) ;

15 f o r i = 1 : l ength (T_vec)

17 % Simulate p o s t e r i o r va lue s
idx_sample = randsample ( burnin : runs , m, t rue ) ;

19 tau_sample = theta_mc ( idx_sample , 1 ) ;
nu_sample = theta_mc ( idx_sample , 2 ) ;

21 sigma_sample = theta_mc ( idx_sample , 3) ;
idx_crossed = [ tau_sample < T_vec( i ) ] ;

23 tau_sample = tau_sample ( idx_crossed ) ;
nu_sample = nu_sample ( idx_crossed ) ;

25 sigma_sample = sigma_sample ( idx_crossed ) ;

27 % Calcu la t e r e l e v a n t a−value vec to r
a_vec = a − w(n) ;

29

% Calcu la t e r e l e v a n t t−vec to r
31 t_vec = T_vec( i ) − t_n ∗ [ ( tau_sample )<=t_n ] − . . .

tau_sample . ∗ [ tau_sample>t_n ] ;
33

% Calcu la t e CDF based on p o s t e r i o r va lue s
35 cumdist_vec = normcdf ( ( nu_sample . ∗ t_vec − . . .

a_vec ) . / ( sigma_sample . ∗ s q r t ( t_vec ) ) ) + . . .
37 exp ( 2 . ∗ a_vec . ∗ nu_sample . / sigma_sample . ^ 2 ) . ∗ normcdf ((−a_vec − . . .

nu_sample . ∗ t_vec ) . / ( sigma_sample . ∗ s q r t ( t_vec ) ) ) ;
39

% return cd f as mean
41 cumdist ( i ) = 1/m∗sum( cumdist_vec ) ;

upper ( i ) = p r c t i l e ( cumdist_vec , 9 7 . 5 ) ;
43 lower ( i ) = p r c t i l e ( cumdist_vec , 2 . 5 ) ;

45 end
end

Matlab code B.11: Code to estimate the hitting time CDF by the formulaic approach,
with ν and σ unknown.
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f unc t i on [ cumdist , upper , lower , T_vec ] = simulationCDFnusigma (w, s0 , n ,
. . .

2 theta_mc , m_tau , a , burnin , m_simu , endTau )
% theta_mc : Markov chain from p o s t e r i o r d i s t r i b u t i o n o f tau and nu

4 % endTau : upper va lue o f t f o r which to c a l c u l a t e P(T <= t )
% a : temperature th r e sho ld parameter

6 % burnin : burnin value f o r the Markov chain
% m_tau number o f draws in the p o s t e r i o r d i s t r i b u t i o n f o r each t

8 % m_simu number o f Wiener p r o c e s s e s to s imulate f o r each tau
t_n = s0 ; dt = t_n/n ;

10 % Simulated tau−va lue s from the p o s t e r i o r d i s t r i b u t i o n
runs = length ( theta_mc ) ;

12 idx_sample = randsample ( burnin : runs , m_tau , t rue ) ;

14 % A l l o c a t i n g space f o r th r e sho ld t imes
threshold_timedt = z e r o s ( m_simu , m_tau) ;

16

f o r i = 1 : m_tau
18 % Take a tau sample

tau = theta_mc ( idx_sample ( i ) , 1 ) ;
20 % Take a nu sample

nu = theta_mc ( idx_sample ( i ) , 2 ) ;
22 % Take a sigma sample

sigma = theta_mc ( idx_sample ( i ) , 3 ) ;
24 f o r j = 1 : m_simu

i f ( tau < s0 )
26 % Tau has a l r eady happened

c ro s s ed = 0 ; % False
28 % Expected time to h i t th r e sho ld

Exp_T = tau + ( a − w( round ( tau /dt ) ) ) /nu ;
30 Exp_left = Exp_T − s0 ;

endtime = s0 ;
32 endtemp = w(n) ;

whi l e ( c ro s s ed==0)
34 % Sample f o r twice as long

dw = dt∗nu + . . .
36 s q r t ( dt ) ∗ sigma . ∗ randn ( round (max( s0 /2 , 2∗ Exp_left ) ) , 1 ) ;

% At l e a s t one value l a r g e r
38 i f (sum( f i n d ( endtemp+cumsum(dw)>=a ) ) >0)

threshold_timedt ( j , i ) = endtime + . . .
40 dt∗ f i n d ( endtemp+cumsum(dw)>=a , 1 ) ;

c ro s s ed = 1 ;
42 e l s e

endtime = endtime + dt∗ l ength (dw) ;
44 endtemp = endtemp+sum(dw) ;

end
46 %keyboard ;

end
48 e l s e % Tau has not happened

% Must sample with mean 0 u n t i l tau
50 % Then mean mu

cro s s ed = 0 ; % f a l s e
52 % Sampling u n t i l tau
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dw = s q r t ( dt ) ∗ sigma . ∗ randn ( tau−n , 1) ;
54 endtime = tau ;

endtemp = w(n) + sum(dw) ;
56 Exp_T = tau + ( a − endtemp ) /nu ;

i f (sum( f i n d ( endtemp+cumsum(dw)>=a ) ) >0) % Threshold c ro s s ed
58 threshold_timedt ( j , i ) = endtime + . . .

dt∗ f i n d ( endtemp+cumsum(dw)>=a , 1) ;
60 c ro s s ed = 1 ;

end
62 whi le ( c ro s s ed == 0)

% Sample f o r twice as long
64 dw = dt∗nu + s q r t ( dt ) ∗ sigma . ∗ randn ( round (Exp_T) ,1 ) ;

i f (sum( f i n d ( endtemp+cumsum(dw)>=a ) ) >0)
66 threshold_timedt ( j , i ) = endtime + . . .

dt∗ f i n d ( endtemp+cumsum(dw)>=a , 1 ) ;
68 c ro s s ed = 1 ;

e l s e
70 endtime = endtime + dt∗ l ength (dw) ;

endtemp = endtemp + sum(dw) ;
72 end

end
74 end

end
76 end

78 threshold_timedt = s o r t ( threshold_timedt , 1 ) ;
T_vec = t_n + dt : dt : min (max(max( threshold_timedt ) ) , endTau ) ;

80 % Uncerta inty and F est imate
cumdist = z e r o s ( s i z e (T_vec) ) ;

82 upper = z e r o s ( s i z e (T_vec) ) ;
lower = z e r o s ( s i z e (T_vec) ) ;

84

f o r i = 1 : l ength (T_vec) ;
86 cumdist_vec = sum( threshold_timedt<= T_vec( i ) ) ;

cumdist ( i ) = mean( cumdist_vec ) ;
88 upper ( i ) = p r c t i l e ( cumdist_vec , 9 7 . 5 ) ;

lower ( i ) = p r c t i l e ( cumdist_vec , 2 . 5 ) ;
90 end

cumdist = cumdist /m_simu ; upper = upper/m_simu ; lower = lower /m_simu ;
92

end

Matlab code B.12: Code to estimate the hitting time CDF by the simulation approach,
with ν and σ unknown.
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B.2 Two change points

B.2.1 Simulation

1 % Function sampling Wiener p roce s s
% Two change po int

3 % D i f f e r e n t var iance parameter
func t i on [w] = WP2( t , n , nu , sigma , tau )

5 % Input parameters
% t end time po int

7 % n number o f sampling po in t s
% nu d r i f t parameter vec to r [ 0 , nu_1 , nu_2 ]

9 % sigma var iance parameter vec to r [ sigma_0 , sigma_1 , sigma_2 ]
% tau change po in t s [ tau_1 , tau_2 ] ( time )

11

% Reso lut ion o f the sampling
13 dt = t /n ;

15 % Sampling parameters
mean = nu∗dt ;

17 sd = sigma∗ s q r t ( dt ) ;

19 tau_index = f l o o r ( tau /dt ) ;

21 % Sampling normal d i s t r i b u t e d increments
wp0 = mean (1) + sd (1 ) . ∗ randn ( tau_index (1 ) −1 ,1) ;

23 wp1 = mean (2) + sd (2 ) . ∗ randn ( tau_index (2 ) − tau_index (1 ) ,1 ) ;
wp2 = mean (3) + sd (3 ) . ∗ randn (n − tau_index (2 ) ,1 ) ;

25 %keyboard
w = [ 0 ; wp0 ; wp1 ; wp2 ] ;

27

% Cumulative sum of increments
29 w = cumsum(w) ;

end

Matlab code B.13: Code to simulate a piecewise Wiener process with two
predetermined change points.
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B.2.2 MCMC algorithm

% Metropol i s −Hast ings a lgor i thm
2 % Proposal d i s t r i b u t i o n : p r i o r d i s t r i b u t i o n

func t i on tau = mh(w, t , n , nu , sigma , alpha , lambda1 , lambda2 , runs )
4 dt = t /n ;

tau = z e r o s ( runs , 2 ) ;
6

% I n i t i a l tau
8 [ tau1_0 , tau2_0 ] = priordraw ( lambda1 , lambda2 , dt ) ;

10

tau ( 1 , : ) = [ tau1_0 , tau2_0 ] ;
12

accept = 0 ;
14 f o r i = 2 : runs

% Proposal
16 [ tau1_star , tau2_star ] = priordraw ( lambda1 , lambda2 , dt ) ;

% Current tau va lue s
18 tau1_curr = tau ( i −1 ,1) ;

tau2_curr = tau ( i −1, 2) ;
20 %log o f L ike l i hood r a t i o

loga lpha = l o g l i k e l i h o o d ( tau1_star , tau2_star , w , . . .
22 nu , sigma , alpha , n , dt ) − . . .

l o g l i k e l i h o o d ( tau1_curr , tau2_curr , w, nu , sigma , alpha , n , dt ) ;
24 u = log ( rand (1 ) ) ;

i f u < min (0 , l oga lpha )
26 tau ( i , 1 ) = tau1_star ; tau ( i , 2 ) = tau2_star ;

accept = accept + 1 ;
28 e l s e

tau ( i , 1 ) = tau1_curr ; tau ( i , 2 ) = tau2_curr ;
30 end

end
32 acceptance ra te = accept / runs

34 end

Matlab code B.14: Code to simulate from the joint posterior distribution of τ1 and τ2,
by the Metropolis-Hastings algorithm.
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f unc t i on logL = l o g l i k e l i h o o d ( tau1 , tau2 , w, nu , sigma , alpha , n , dt )
2 % Function to c a l c u l a t e l og l i k e l i h o o d

% Input parameters
4 % dt r e s o l u t i o n o f samples

% n number o f sampling po in t s
6 % nu d r i f t parameter vec to r

% sigma var iance parameter
8 % w vecto r conta in ing obse rva t i on s

10 nu1 = nu (2) ;
nu2 = nu (3) ;

12

x = d i f f (w) ;
14

i f tau2 < n∗dt
16 logL = −(n−tau2 /dt ) ∗ l og ( alpha ) − . . .

1/(2∗ dt∗ sigma ^2) ∗(sum( x ( 1 : c e i l ( ( tau1−dt ) /dt ) ) . ^ 2 ) + . . .
18 sum ( ( x ( c e i l ( tau1 /dt ) : c e i l ( ( tau2−dt ) /dt ) )−dt∗nu1 ) . ^ 2 ) + . . .

sum ( ( x ( c e i l ( tau2 /dt ) : n−1)−dt∗nu2 ) . ^ 2 ) / alpha ^2) ;
20 e l s e i f tau1 < n∗dt

logL = −1/(2∗ dt∗ sigma ^2) ∗(sum( x ( 1 : max(1 , c e i l ( ( tau1−dt ) /dt ) ) ) . ^ 2 ) + . . .
22 sum ( ( x ( c e i l ( tau1 /dt ) : n−1)−dt∗nu1 ) . ^ 2 ) ) ;

e l s e
24 logL = −1/(2∗ dt∗ sigma ^2) ∗(sum( x . ^ 2 ) ) ;

end
26

end

Matlab code B.15: Code to Calculate the log likelihood in mh2CP.m and mhnu2CP.m
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1 f unc t i on tau = mhnu(w, t , n , sigma , alpha , nu_lambda , . . .
nu_nu , lambda1 , lambda2 , runs )

3 dt = t /n ;
tau = z e r o s ( runs , 3 ) ;

5

% nu draws
7 nudraws = random ( ’gam ’ , nu_lambda , nu_nu , runs , 1) ;

rho1draws = geornd ( lambda1 , runs , 1) ;
9 rho2draws = geornd ( lambda2 , runs , 1) ;

11 tau1draws = rho1draws + 1 ; tau2draws = tau1draws + rho2draws + 1 ;

13 tau ( 1 , : ) = [ tau1draws (1 ) , tau2draws (1 ) , nudraws (1 ) ] ;

15 accept = 0 ;

17 f o r i = 2 : runs
tau1_star = tau1draws ( i ) ;

19 tau2_star = tau2draws ( i ) ;
nu_star = nudraws ( i ) ;

21 nu_star_vec = [ 0 , nu_star , alpha ∗nu_star ] ;

23 tau1_curr = tau ( i − 1 , 1) ;
tau2_curr = tau ( i − 1 , 2) ;

25 nu_curr = tau ( i − 1 , 3) ;
nu_curr_vec = [ 0 , nu_curr , alpha ∗nu_curr ] ;

27

l oga lpha = l o g l i k e l i h o o d ( tau1_star , tau2_star , w , . . .
29 nu_star_vec , sigma , alpha , n , dt ) − . . .

l o g l i k e l i h o o d ( tau1_curr , tau2_curr , w, . . .
31 nu_curr_vec , sigma , alpha , n , dt ) ;

33 u = log ( rand (1 ) ) ;

35 i f u < min (0 , l oga lpha )
tau ( i , 1 ) = tau1_star ; tau ( i , 2 ) = tau2_star ; tau ( i , 3 ) = nu_star ;

37 accept = accept + 1 ;
e l s e

39 tau ( i , 1 ) = tau1_curr ; tau ( i , 2 ) = tau2_curr ; tau ( i , 3 ) = nu_curr ;
end

41 end
acceptance ra te = accept / runs

43

end

Matlab code B.16: Code to simulate from the joint posterior distribution of τ1, τ2 and
ν1 by the Metropolis-Hastings algorithm.



176 APPENDIX B. MATLAB CODE

B.2.3 Hitting time CDF estimates

f unc t i on [ cumdist , T_vec , upper , lower , post_mc ] = formulaicCDF2cp (w, . . .
2 t_n , n , nu , sigma , . . .

alpha , m, endTau , burnin , a , post_mc )
4 % theta_mc : Markov chain from j o i n t p o s t e r i o r d i s t r i b u t i o n o f tau1 and tau2

% endTau : upper va lue o f t f o r which to c a l c u l a t e P(T <= t )
6 % a : temperature th r e sho ld parameter

% burnin : burnin value f o r the Markov chain
8 % m number o f draws in the p o s t e r i o r d i s t r i b u t i o n f o r each t

nu1 = nu (2) ;
10 dt = t_n/n ;

T_vec = [ t_n + dt : dt : endTau ] ;
12 cumdist = z e r o s ( s i z e (T_vec) ;

upper = z e r o s ( s i z e (T_vec) ) ;
14 lower = z e r o s ( s i z e (T_vec) ) ;

f o r i = 1 : l ength (T_vec)
16

% Sample p o s t e r i o r tau−va lue s
18 tau_idx_sample = randsample ( burnin : l ength ( post_mc ) , m, t rue ) ;

tau1_sample = post_mc ( tau_idx_sample , 1 ) ;
20 tau2_sample = post_mc ( tau_idx_sample , 2 ) ;

22 % I s tau_1 cro s s ed ?
idx_crossed = [ tau1_sample < T_vec( i ) ] ;

24

tau1_sample = tau1_sample ( idx_crossed ) ;
26 tau2_sample = tau2_sample ( idx_crossed ) ;

28 % Calcu la t e r e l e v a n t a−value vec to r uses expected temp
a_vec = a − w(n) ;

30

% Calcu la t e r e l e v a n t t−vec to r
32 t_vec = [ alpha ∗(T_vec( i ) − t_n) ] . ∗ [ tau2_sample<t_n ] + . . .

[ tau2_sample + alpha ∗(T_vec( i ) −tau2_sample ) − . . .
34 t_n ] . ∗ [ tau1_sample<t_n ] . ∗ [ tau2_sample > t_n ] . ∗ . . .

[ tau2_sample<= T_vec( i ) ] + . . .
36 [ tau2_sample + alpha ∗(T_vec( i ) − tau2_sample ) − . . .

tau1_sample ] . ∗ [ tau1_sample>=t_n ] . ∗ [ tau2_sample > t_n ] . ∗ . . .
38 [ tau2_sample <= T_vec( i ) ] + . . .

[ T_vec( i ) − tau1_sample ] . ∗ [ tau1_sample>=t_n ] . ∗ . . .
40 [ tau2_sample >= T_vec( i ) ] + . . .

[ T_vec( i ) − t_n ] . ∗ [ tau1_sample<t_n ] . ∗ [ tau2_sample>=T_vec( i ) ] ;
42

44 % Calcu la t e d i s t r i b u t i o n based on p o s t e r i o r va lue s
cumdist_vec = 1 − ( normcdf ( ( a_vec − nu1 . ∗ t_vec ) . / . . .

46 ( sigma . ∗ s q r t ( t_vec ) ) ) − . . .
exp (2∗ a_vec . ∗ nu1 . / sigma ^2) . ∗ normcdf ((−a_vec − . . . ’

48 nu1 . ∗ t_vec ) . / ( sigma . ∗ s q r t ( t_vec ) ) ) ) ;

50 % Normalize and s t o r e in vec to r
cumdist ( i ) = 1/m∗sum( cumdist_vec ) ;
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52 upper ( i ) = p r c t i l e ( cumdist_vec , 2 . 5 ) ;
lower ( i ) = p r c t i l e ( cumdist_vec , 9 7 . 5 ) ;

54

end
56 end

Matlab code B.17: Code to estimate the hitting time CDF by the formulaic approach,
with ν and σ known.
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f unc t i on [ cumdist , upper , lower , T_vec ] = simulationCDF2cp (w, . . .
2 t_n , n , nu , sigma , alpha , . . .

post_mc , m_tau , burnin , a , m_simu , endTau )
4 % theta_mc : Markov chain from j o i n t p o s t e r i o r d i s t r i b u t i o n o f tau1 and tau2

% endTau : upper va lue o f t f o r which to c a l c u l a t e P(T <= t )
6 % a : temperature th r e sho ld parameter

% burnin : burnin value f o r the Markov chain
8 % m_tau number o f draws in the p o s t e r i o r d i s t r i b u t i o n

% m_simu number o f Wiener p r o c e s s e s to s imulate f o r each tau1 tau2 draw
10 nu1 = nu (2) ; nu2 = nu (3) ;

dt = t_n/n ;
12 % Sampling tau1 , tau2

tau_idx_sample = randsample ( burnin : l ength ( post_mc ) , m_tau , t rue ) ;
14 tau1_sample = post_mc ( tau_idx_sample , 1 ) ;

tau2_sample = post_mc ( tau_idx_sample , 2 ) ;
16

% A l l o c a t i n g space
18 threshold_time = z e r o s (m_simu , m_tau) ;

20 f o r i = 1 : m_tau
% Take one o f the tau−samples

22 tau1 = tau1_sample ( i ) ; tau2 = tau2_sample ( i ) ;
f o r j = 1 : m_simu

24 % Both change po in t s passed
i f tau2 < t_n

26 c ro s s ed = 0 ;
endtime = t_n ;

28 endtemp = w(n) ;
whi l e c ro s s ed == 0

30 % Sample f o r t_n time longe r
dw = dt∗nu2 + s q r t ( dt ) ∗ alpha ∗ sigma∗ randn ( t_n/dt , 1 ) ;

32 % At l e a s t one value l a r g e r
i f (sum ( ( endtemp + cumsum(dw) )>=a ) >0)

34 c ro s s ed = 1 ;
threshold_time ( j , i ) = endtime + . . .

36 dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;
e l s e

38 endtime = endtime + t_n ;
endtemp = endtemp + sum(dw) ;

40 end
end

42 % Only the f i r s t change po int i s passed
e l s e i f tau1 < t_n

44 c ro s s ed = 0 ;
endtime = t_n ;

46 endtemp = w(n) ;
% Sample u n t i l tau2

48 dw = dt∗nu1 + s q r t ( dt ) ∗ sigma∗ randn ( ( tau2−t_n) /dt , 1 ) ;

50 % Check f o r c r o s s i n g
i f (sum ( ( endtemp + cumsum(dw) )>=a ) >0)

52 c ro s s ed = 1 ;
threshold_time ( j , i ) = endtime + . . .



B.2. TWO CHANGE POINTS 179

54 dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;
e l s e

56 endtime = tau2 ;
endtemp = endtemp + sum(dw) ;

58 end

60 whi le c ro s s ed == 0
dw = dt∗nu2 + s q r t ( dt ) ∗ sigma∗ alpha ∗ randn ( t_n/dt , 1) ;

62 % At l e a s t one value l a r g e r
i f (sum ( ( endtemp + cumsum(dw) )>=a ) >0)

64 c ro s s ed = 1 ;
threshold_time ( j , i ) = endtime + . . .

66 dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;
e l s e

68 endtime = endtime + t_n ;
endtemp = endtemp + sum(dw) ;

70 end
end

72 % Neither o f the change po in t s passed
e l s e

74 c ro s s ed = 0 ;
endtime = t_n ;

76 endtemp = w(n) ;

78 % Sample u n t i l tau1
dw = s q r t ( dt ) ∗ sigma∗ randn ( ( tau1−t_n) /dt , 1) ;

80 % Check f o r c r o s s i n g
i f (sum ( ( endtemp + cumsum(dw) )>=a ) >0)

82 c ro s s ed = 1 ;
threshold_time ( j , i ) = endtime + . . .

84 dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;
e l s e

86 endtime = tau1 ;
endtemp = endtemp + sum(dw) ;

88 % Sample u n t i l tau2
dw = dt∗nu1 + s q r t ( dt ) ∗ sigma∗ randn ( ( tau2 − tau1 ) /dt , 1 ) ;

90 % Check f o r c r o s s i n g
i f (sum ( ( endtemp + cumsum(dw) )>=a ) >0)

92 c ro s s ed = 1 ;
threshold_time ( j , i ) = endtime + . . .

94 dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;
e l s e

96 endtime = tau2 ;
endtemp = endtemp + sum(dw) ;

98 end
end

100 whi le c ro s s ed == 0
dw = dt∗nu2 + s q r t ( dt ) ∗ sigma∗ alpha ∗ randn ( t_n/dt , 1) ;

102 % At l e a s t one value l a r g e r
i f (sum ( ( endtemp + cumsum(dw) )>=a ) >0)

104 c ro s s ed = 1 ;
threshold_time ( j , i ) = endtime + . . .

106 dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;
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e l s e
108 endtime = endtime + t_n ;

endtemp = endtemp + sum(dw) ;
110 end

end
112 end

end
114 end

116 threshold_time = s o r t ( threshold_time , 1 ) ;
T_vec = t_n + dt : dt : min (max(max( threshold_time ) ) , endTau ) ;

118 % Uncerta inty and F est imate
cumdist = z e r o s ( s i z e (T_vec) ) ;

120 upper = z e r o s ( s i z e (T_vec) ) ;
lower = z e r o s ( s i z e (T_vec) ) ;

122

f o r i = 1 : l ength (T_vec) ;
124 cumdist_vec = sum( threshold_time<= T_vec( i ) ) ;

cumdist ( i ) = mean( cumdist_vec ) ;
126 upper ( i ) = p r c t i l e ( cumdist_vec , 9 7 . 5 ) ;

lower ( i ) = p r c t i l e ( cumdist_vec , 2 . 5 ) ;
128 end

cumdist = cumdist /m_simu ; upper = upper/m_simu ; lower = lower /m_simu ;
130

end

Matlab code B.18: Code to estimate the hitting time CDF by the simulation approach,
with ν and σ known.
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1 f unc t i on [ cumdist , T_vec , upper , lower , post_mc ] = formulaicCDF2cpnu (w , . . .
t_n , n , sigma , alpha , . . .

3 a , m, burnin , endTau , post_mc )
% theta_mc : Markov chain from p o s t e r i o r d i s t r i b u t i o n o f tau1 , tau2 and nu

5 % endTau : upper va lue o f t f o r which to c a l c u l a t e P(T <= t )
% a : temperature th r e sho ld parameter

7 % burnin : burnin value f o r the Markov chain
% m number o f draws in the p o s t e r i o r d i s t r i b u t i o n f o r each t

9

dt = t_n/n ;
11 T_vec = [ t_n+dt : dt : endTau ] ;

13 % Al lo ca t e space
cumdist = z e r o s ( s i z e (T_vec) ) ;

15 upper = z e r o s ( s i z e (T_vec) ) ;
lower = z e r o s ( s i z e (T_vec) ) ;

17

f o r i = 1 : l ength (T_vec)
19 % Sample p o s t e r i o r tau−va lue s

tau_idx_sample = randsample ( burnin : l ength ( post_mc ) , m, t rue ) ;
21 tau1_sample = post_mc ( tau_idx_sample , 1) ;

tau2_sample = post_mc ( tau_idx_sample , 2) ;
23 nu_sample = post_mc ( tau_idx_sample , 3) ;

% I s tau_1 cro s s ed ?
25 idx_crossed = [ tau1_sample < T_vec( i ) ] ;

27 tau1_sample = tau1_sample ( idx_crossed ) ;
tau2_sample = tau2_sample ( idx_crossed ) ;

29 nu_sample = nu_sample ( idx_crossed ) ;
% Calcu la t e r e l e v a n t a−value vec to r uses expected temp

31 a_vec = a − w(n) ;

33

% Calcu la t e r e l e v a n t t−vec to r
35 t_vec = [ alpha ∗(T_vec( i ) − t_n) ] . ∗ [ tau2_sample<t_n ] + . . .

[ tau2_sample + alpha ∗(T_vec( i ) −tau2_sample ) − . . .
37 t_n ] . ∗ [ tau1_sample<t_n ] . ∗ [ tau2_sample > t_n ] . ∗ . . .

[ tau2_sample<= T_vec( i ) ] + . . .
39 [ tau2_sample + alpha ∗(T_vec( i ) − tau2_sample ) − . . .

tau1_sample ] . ∗ [ tau1_sample>=t_n ] . ∗ [ tau2_sample > t_n ] . ∗ . . .
41 [ tau2_sample <= T_vec( i ) ] + . . .

[ T_vec( i ) − tau1_sample ] . ∗ [ tau1_sample>=t_n ] . ∗ . . .
43 [ tau2_sample >= T_vec( i ) ] + . . .

[ T_vec( i ) − t_n ] . ∗ [ tau1_sample<t_n ] . ∗ [ tau2_sample>=T_vec( i ) ] ;
45

% Calcu la t e d i s t r i b u t i o n based on p o s t e r i o r va lue s
47 cumdist_vec = 1 − ( normcdf ( ( a_vec − . . .

nu_sample . ∗ t_vec ) . / ( sigma . ∗ s q r t ( t_vec ) ) ) − . . .
49 exp (2∗ a_vec . ∗ nu_sample . / sigma ^2) . ∗ normcdf ((−a_vec − . . .

nu_sample . ∗ t_vec ) . / ( sigma . ∗ s q r t ( t_vec ) ) ) ) ;
51

% Normalize and s t o r e in vec to r
53 cumdist ( i ) = 1/m∗sum( cumdist_vec ) ;
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upper ( i ) = p r c t i l e ( cumdist_vec , 2 . 5 ) ;
55 lower ( i ) = p r c t i l e ( cumdist_vec , 9 7 . 5 ) ;

end
57 end

Matlab code B.19: Code to estimate the hitting time CDF by the formulaic approach,
with ν unknown and σ known.
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1 f unc t i on [ cumdist , upper , lower , T_vec ] = simulationCDF2cpnu (w , . . .
t_n , n , sigma , alpha , post_mc , . . .

3 m_tau , burnin , a , m_simu , endTau )
% theta_mc : Markov chain from j o i n t p o s t e r i o r d i s t r i b u t i o n o f tau1 , tau2

5 % and nu
% endTau : upper va lue o f t f o r which to c a l c u l a t e P(T <= t )

7 % a : temperature th r e sho ld parameter
% burnin : burnin value f o r the Markov chain

9 % m_tau number o f draws in the p o s t e r i o r d i s t r i b u t i o n
% m_simu number o f Wiener p r o c e s s e s to s imulate f o r each tau1 tau2 draw

11 dt = t_n/n ;

13 % Sampling tau1 , tau2
tau_idx_sample = randsample ( burnin : l ength ( post_mc ) , m_tau , t rue ) ;

15 tau1_sample = post_mc ( tau_idx_sample , 1 ) ;
tau2_sample = post_mc ( tau_idx_sample , 2 ) ;

17 nu_sample = post_mc ( tau_idx_sample , 3) ;

19 % A l l o c a t i n g space
threshold_time = z e r o s (m_simu , m_tau) ;

21

f o r i = 1 : m_tau
23 % Take one o f the tau−samples

tau1 = tau1_sample ( i ) ; tau2 = tau2_sample ( i ) ; nu1 = nu_sample ( i ) ;
25 nu2 = alpha ∗nu1 ;

f o r j = 1 : m_simu
27 % Both change po in t s passed

i f tau2 < t_n
29 c ro s s ed = 0 ;

endtime = t_n ;
31 endtemp = w(n) ;

33 whi le c ro s s ed == 0
% Sample f o r t_n time longe r

35 dw = dt∗nu2 + s q r t ( dt ) ∗ alpha ∗ sigma∗ randn ( t_n/dt , 1 ) ;
% At l e a s t one value l a r g e r

37 i f (sum ( ( endtemp + cumsum(dw) )>a ) >0)
c ro s s ed = 1 ;

39 threshold_time ( j , i ) = endtime + . . .
dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;

41

e l s e
43 endtime = endtime + t_n ;

endtemp = endtemp + sum(dw) ;
45

end
47 end

% Only the f i r s t change po int i s passed
49 e l s e i f tau1 < t_n

cro s s ed = 0 ;
51 endtime = t_n ;

endtemp = w(n) ;
53
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% Sample u n t i l tau2
55 dw = dt∗nu1 + s q r t ( dt ) ∗ sigma∗ randn ( ( tau2−t_n) /dt , 1 ) ;

57 % Check f o r c r o s s i n g
i f (sum ( ( endtemp + cumsum(dw) )>=a ) >0)

59 c ro s s ed = 1 ;
threshold_time ( j , i ) = endtime + . . .

61 dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;

63 e l s e
endtime = tau2 ;

65 endtemp = endtemp + sum(dw) ;
end

67

whi le c ro s s ed == 0
69 dw = dt∗nu2 + s q r t ( dt ) ∗ sigma∗ alpha ∗ randn ( t_n/dt , 1) ;

% At l e a s t one value l a r g e r
71 i f (sum ( ( endtemp + cumsum(dw) )>=a ) >0)

c ro s s ed = 1 ;
73 threshold_time ( j , i ) = endtime + . . .

dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;
75

e l s e
77 endtime = endtime + t_n ;

endtemp = endtemp + sum(dw) ;
79 end

end
81

% Neither o f the change po in t s passed
83 e l s e

c ro s s ed = 0 ;
85 endtime = t_n ;

endtemp = w(n) ;
87

% Sample u n t i l tau1
89 dw = s q r t ( dt ) ∗ sigma∗ randn ( ( tau1−t_n) /dt , 1) ;

% Check f o r c r o s s i n g
91 i f (sum ( ( endtemp + cumsum(dw) )>=a ) >0)

c ro s s ed = 1 ;
93 threshold_time ( j , i ) = endtime + . . .

dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;
95

e l s e
97 endtime = tau1 ;

endtemp = endtemp + sum(dw) ;
99

% Sample u n t i l tau2
101 dw = dt∗nu1 + s q r t ( dt ) ∗ sigma∗ randn ( ( tau2 − tau1 ) /dt , 1 ) ;

% Check f o r c r o s s i n g
103 i f (sum ( ( endtemp + cumsum(dw) )>a ) >0)

c ro s s ed = 1 ;
105 threshold_time ( j , i ) = endtime + . . .

dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;
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107

e l s e
109 endtime = tau2 ;

endtemp = endtemp + sum(dw) ;
111 end

end
113

whi le c ro s s ed == 0
115 dw = dt∗nu2 + s q r t ( dt ) ∗ sigma∗ alpha ∗ randn ( t_n/dt , 1) ;

% At l e a s t one value l a r g e r
117 i f (sum ( ( endtemp + cumsum(dw) )>=a ) >0)

c ro s s ed = 1 ;
119 threshold_time ( j , i ) = endtime + . . .

dt∗ f i n d ( ( endtemp + cumsum(dw) )>=a , 1 ) ;
121

e l s e
123 endtime = endtime + t_n ;

endtemp = endtemp + sum(dw) ;
125 end

end
127

129 end
end

131

end
133

threshold_time = s o r t ( threshold_time , 1 ) ;
135 T_vec = t_n + dt : dt : min (max(max( threshold_time ) ) , endTau ) ;

% Uncerta inty and F est imate
137 cumdist = z e r o s ( s i z e (T_vec) ) ;

upper = z e r o s ( s i z e (T_vec) ) ;
139 lower = z e r o s ( s i z e (T_vec) ) ;

141 f o r i = 1 : l ength (T_vec) ;

143 cumdist_vec = sum( threshold_time<= T_vec( i ) ) ;
cumdist ( i ) = mean( cumdist_vec ) ;

145 upper ( i ) = p r c t i l e ( cumdist_vec , 9 7 . 5 ) ;
lower ( i ) = p r c t i l e ( cumdist_vec , 2 . 5 ) ;

147

end
149 cumdist = cumdist /m_simu ; upper = upper/m_simu ; lower = lower /m_simu ;

151 end

Matlab code B.20: Code to estimate the hitting time CDF by the simulation approach,
with ν unknown and σ known.


