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In this paper an extension of the theoretical model of Molin (J. Fluid Mech., vol. 430,
2001, pp. 27-50) is proposed, where the assumptions of infinite depth and infinite
horizontal extent of the support are released. The fluid domain is decomposed into
two subdomains: the moonpool (or the gap) and a lower subdomain bounded by the
seafloor and by an outer cylinder where the linearized velocity potential is assumed
to be nil. Eigenfunction expansions are used to describe the velocity potential in
both subdomains. Garrett’s method is then applied to match the velocity potentials at
the common boundary and an eigenvalue problem is formulated and solved, yielding
the natural frequencies and associated modal shapes of the free surface. Applications
are made, first in the case of a circular moonpool, then in the rectangular gap and
moonpool cases. Based on so-called single-mode approximations, simple formulas are
proposed that give the resonant frequencies.
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1. Introduction

‘Moonpools’ are vertical openings, from deck to keel, through the hulls of some
ships and offshore structures, such as drillships or offshore construction vessels
(OCVs). ‘Gaps’ are the narrow spaces in between two ships moored side by side, or
between a ship and a quay. Moonpools and gaps are prone to resonance problems,
under outer wave action and wave-induced motion of the floating supports.

Resonant modes in moonpools consist in sloshing modes, alike in tanks, and in
an additional mode known as the piston, or pumping, mode, where the entrapped
water heaves up and down more or less like a solid body. When resonating, these
modes hinder marine operations such as drilling and installation of subsea equipment.
Due to the increase in size of moonpools in drillships and in OCVs (to install larger
and larger subsea equipment), recently much attention has been given to moonpool
resonance (for example, see Faltinsen, Rognebakke & Timokha 2007; Faltinsen &
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Timokha 2015; Yoo et al. 2017). With the development of offshore LNG (Liquefied
Natural Gas) activity, interest has also increased in gap resonance, that limits ship-
to-ship offloading operations, for instance from floating liquefied natural gas (FLNG)
to LNG-carrier, or from LNG-carrier to floating storage regasification unit (FSRU).
Recent comprehensive reviews on gap resonance can be found, for example, in Sun,
Eatock Taylor & Taylor (2010) or Zhao et al. (2017).

In an earlier paper (Molin 2001), a theoretical model, based on linearized potential
flow theory, was proposed to derive the natural frequencies and associated modal
shapes of the piston and sloshing modes in rectangular moonpools. This model was
based on simplifying assumptions: the floating support is motionless, the water depth
is infinite, and the beam and length of the support are taken to the limit where they
are of infinite extent. The geometry is then equivalent to a rectangular opening in
a rigid ice-sheet. The fluid domain is divided into two sub-domains: the moonpool
and a semi-infinite domain below the keel line. Eigenfunction expansions are used
to describe the velocity potential inside the moonpool. The connection with the flow
in the lower fluid domain is ensured via an integral equation relating the velocity
potential to its vertical derivative, at the base of the moonpool. Then an eigenvalue
problem is formulated and solved numerically.

A drawback of this model is that it cannot apply to the finite depth case. Drillships
and OCVs usually operate in large water depths. However, side-by-side configurations
are often encountered in restricted water depth, for instance in the case of a LNG-
carrier moored along a FSRU or along a gravity-based structure (GBS). Moreover
the infinite beam assumption leads to the natural frequency of the piston mode being
underestimated.

In this paper a slightly different approach is proposed, that applies to the finite depth
case, and where the horizontal dimensions of the floating supports are finite. In this
model, eigenfunction expansions (for example, see Linton & Mclver 2001) are used
both in the moonpool (or gap) and in a lower subdomain bounded by the seafloor,
the hull, and a fictitious outer cylinder (rectangular or circular) where the velocity
potential is taken to be nil. This is a somewhat gross condition to ensure connection
with the outer domain; however, as will be seen, it leads to rather good results.

The organization of the paper is as follows: the circular moonpool case is
considered first, in infinite depth following the previous method of Molin (2001),
then in finite depth following the new model. Both axisymmetric and antisymmetric
resonant modes are considered. In the finite depth and finite outer radius case, the
obtained natural frequencies are validated through comparisons with results from the
diffraction code WAMIT. In the second part of the paper, the rectangular gap case is
tackled, and comparisons are made with numerical results from Molin et al. (2009).
Finally the rectangular moonpool case is addressed, and applications are made to a
barge with a large moonpool, and to a floating foundation for a wind turbine. In all
cases simple formulas are proposed, based on so-called single-mode approximations,
that give first estimates of the resonant frequencies. It is believed that these formulas
can be helpful to offshore engineers for preliminary designs.

2. Circular moonpool
2.1. Infinite depth

In this section, as in Molin (2001), we assume the water depth to be infinite, and the
structure to be of infinite extent in the horizontal direction. The geometry is therefore
equivalent to a circular opening in the middle of an infinite ice-cover.
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FIGURE 1. (Colour online) Circular moonpool. Geometry.

Figure 1 illustrates the geometry: the radius of the moonpool is a, its draft is d. The
origin of the coordinate system is on the axis of symmetry, at the keel level. Natural
modes are eigensolutions of the following boundary value problem:

Ap=0, O0<R<a 0<z<d 2.1
pr=0, R=a, 0<z<d 2.2)
89— ¢=0, O0<R<a z=d, (2.3)

plus a matching condition with the flow in the lower fluid domain which, under the
assumptions of infinite depth and infinite horizontal extent of the support, takes the
form (Molin 2001)

1 @ (x, ¥ 0) '
,y,0)=— dx' dy’, 2.4
0(r.y.0) ZW//S\/(x—x/)z—F(y—y’)z y @4

with S the disc 0 <R <a, R?> =x?+y"”. (In (2.2) and (2.3) the subscripts x and ,
mean partial derivatives.)

Here the linearized velocity potential @ (x, y, z, ) (or @ (R, z, 6, t) in cylindrical
coordinates) is supposed to be harmonic in time at the still unknown frequency w:
D(x,y,z, 1) =@(x,y,2) cos(wt + ).

The reduced velocity potential ¢ (R, z, @) can be decomposed as a Fourier series in
the azimuthal angle 6:

o(R,z,0)= Z Om(R, 2) cosmo. (2.5)

m=0

Associated with each m value is a discrete set of natural modes. Here we shall only
consider the m =0 and m=1 cases, which have the lowest frequencies and which are
the only ones that can be induced by heave, surge or pitch motion of the support.

2.1.1. Axisymmetric modes (m = 0)
The velocity potential inside the circular moonpool can be written as

o(R,0,2) = Ay + By 2 + 3" Jo(kaR) (A, cosh k2 + B, sinh k,2), 2.6)

n=1

with J, the Bessel function and k,a the roots of Ij(k,a) = —J,(k,a) =0, ie. ka=
3.832, kra="17.016, etc.

It is easy to check that the set [1, Jo(k,R)] is orthogonal on the disc 0 <R < a, that
is [ Jo(k,R)RAR=0 and [ Jo(k,R) Jo(k,R) RAR=0 for m # n.



The Laplace equation (2.1) and the no-flow condition (2.2) at the vertical wall are
satisfied. The free surface condition (2.3) gives

B
820 _ % (Mg + By) 2.7)

gk, (A, tanh k,d + B,) = w* (A, + B, tanh k,d). (2.8)

The bottom boundary condition (2.4) can be written as
Bo/d+ > Bk, Jo(kyr)

1 a 27
Ag+ Y A, Jok,R =—/ rdr/ 2 dee. (29
0 ; o(kuR) 27 S, o «/R*+7r?—=2Rr cos(d —a) @ (29

Integrating each side over the disc, then multiplying each side with Jy(k,R)
and integrating again, a vectorial equation is obtained that links the A, and B,
cocfficients:

A=AB-B, (2.10)

with AB a square matrix and A = (Ag, Ay, ...), B=(By, By, ...). See appendix A for
details on the calculation of the matrix AB.
Combining with the free surface (2.7) and (2.8) we get the eigenvalue problem

(D, -AB+ D,) -B=w> (AB+ D;)-B, (2.11)

with Dy, D,, D; diagonal matrices:

diag D, = (0, gk, tanh k,d) (2.12)
diag D, = (g/d, g k) (2.13)
diag D; = (1, tanh k,d). (2.14)

When the series (2.6) is truncated to some order N the numerical resolution of this
eigenvalue problem yields the natural frequencies and the associated modal shapes of
the free surface. Numerical convergence is assessed by repeating the calculations for
increasing values of the truncation order.

Single-mode approximations

When the series (2.6) is reduced to only one term, approximate values are obtained
for the natural frequencies. For the piston mode, only Ay + By z/d is retained in (2.6),
meaning that the water inside the moonpool is considered as solid (or frozen). The
natural frequency is obtained as

2 8
~ 2.15
“0 = 4 8a/(m) 15
For the axisymmetric sloshing modes we get
1+ «, tanh k,d
a)én ~gk, ST Mg (2.16)

o, + tanh k,d ’

where the «, coefficients take the values given in table 1.
It can be observed that these ¢, values are very close to 1, implying that the effect
of the draft d on the frequency is small.
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FIGURE 2. (Colour online) Circular moonpool in finite depth. Geometry.

n 1 2 3 4 5
a, 0924 0956 0.969 0976 0.981

TABLE 1. «, values.

n 1 2 3 4 5
B, 0.649 0933 0961 0972 0978

TABLE 2. f8, values.

2.1.2. Antisymmetric modes (im=1)
The velocity potential inside the circular moonpool is now taken as

o
¢(R.0,2)=cosO > T (1u,R) (A, cosh p,z + B, sinh z,2). (2.17)

n=1

with J; the Bessel function and p,a the roots of J|(u,a) =0. The procedure is then
identical to the m =0 case.

Single-mode approximations
We get

1+ B8, tanh p,d

, 2.18
B, + tanh w,d 2.18)

2
a)ln 2gl’Ln

where S, takes the values given in table 2. As in the m =0 case they are quite close
to 1, except for B,.

2.2. Finite depth

Now we consider the finite depth case. Let ¢ be the clearance between the seafloor
and the keel (see figure 2), so the water depth is A= c + d. As in the infinite depth
case, we divide the fluid domain into subdomains where eigenfunction expansions are
used. We take the moonpool as subdomain 1. We take subdomain 2 as the cylinder
0<R<D; —c<z<0, in-between the seafloor and the hull. In R=>5b, where b is taken
as the outer radius of the floating support (also assumed to be circular), we set ¢ =0
as the boundary condition. This is a somewhat gross condition to ensure matching
with the outer fluid domain b <R < 00; —c < z<d but, as will be seen, it provides
quite acceptable results.



2.2.1. Axisymmetric modes (m = 0)
In the two subdomains the velocity potential is written as follows:

@1 (R, 2) = Ao + By f—i + ) (A, cosh k,z+ B, sinh k,z) Jo(k,R) (2.19)
n=1
. coshA,(z+¢)
R,2)= C,————Jy(4,R), 2.20
(R 2)=) cosh i 0B (2.20)

n=1

with k, the roots of Jj(k,a) =0 and A, the roots of J(1,b) =0. The set [Jo(1,R)] is
orthogonal on the disc 0 <R < b.

There remains to match ¢, and ¢,, and their vertical derivatives, on the common
boundary 0 < R< a; z=0, and also ensure that d¢,/9z=0 for a<R< b, z=0. We
follow Garrett’s method (Garrett 1971). First we write ¢; = ¢,:

Aot A dolluR) = 3 C I (A R). @21)

m=1 n=1

Integrating each side over the disc 0 <R < a, we get

= 1, Q,
A,=2%" 1 a") C,. (2.22)

A

n=I

Then, multiplying each side with Jy(k,,R) and integrating over the disc, we get

2 = /ln J1 (/lna)
A, =-— E C,. 2.23
a & (8~ k) Jo(kya) (229

n=1 m

As a result, in vectorial form:

A=AC-C. (2.24)

Next we write
¢(R,0) = ¢1.(R,0), O0<R<a (2.25)
=0, a<R<b. (2.26)

That is,
o0 B o0
> 4w Gy tanh A, Jo(4,R) = 70 +Y kB Jo(k,R) O<SR<a  (227)

m=1 n=1

=0 a<R<b. (2.28)

Multiplying each side by Jo(1,R) and integrating over the disc 0 <R < b we get

2al(A,a > 2k, aly(k,a) J1(A,,a
1(Ana) 0+Z o(kya) J1(Ana)

Cm —
A2 b*d tanh A,,¢ J3(4,,b) b? (22 — k%) tanh A,,¢ J3(A,,b)

B,. (2.29)

n=1



In vectorial form:
C=CB-B, (2.30)
which, upon combination with (2.24), gives
A=AC-CB-B=AB-B. (2.31)

Like in the infinite depth case, we have obtained a vectorial equation linking A to
B. From here the procedure is identical to that in §2.1.1.

Single-mode approximations
Piston mode:

8
o0
12(1,a)
d+4 L2
+ ; A3 b? tanh A,¢ 13 (4,b)

It can be checked numerically that, in the limit ¢ — oo, b — o0, this expression is
equivalent to (2.15), that is

w2y (2.32)

o8}

B () 2a
=—. 2.33
o, Zl L TLb)  3n (239

When the clearance ¢ goes to zero an alternate expression can be derived from
matched asymptotic expansions:

Wy £ . (2.34)

d+ L1+ 4 b/
8c

Axisymmetric sloshing modes:

1 + «,, tanh k,,d
2~ k,, —————— 2.35
@on =& o,, + tanh k,,d (2.33)
with
Aky & 2, 13 (A,a)
m = s 2.36
= D (22— k2)2 tanh 4,¢ 12 (A,b) (236)

n=1

where it can also be checked numerically that the o, values given in table 1 are
recovered in the limit ¢ — oo, b — oo.

2.2.2. Antisymmetric modes (m =1)
We take ¢; and ¢, as

1R, 2.6)=cos§ D (A, cosh 2+ B, sinh ,2) i (14,R) (2.37)
n=1
S hv,
Rz, 0) =cost 3 C, ST EED ) gy 238)
— cosh vy,c

with u, the roots of J|(u,a) =0 and v, the roots of J,(v,b) =0.



FIGURE 3. Circular moonpool. Panelling used in WAMIT computations for a = 10 m,
b=20m, d=5 m.

From the equality of the potentials ¢;(R, 0) = ¢,(R, 0) for 0 < R < a we get

- 20, 31 (m@) 3 (v,
A=y —— (@) 31 (v,1) C,. (2.39)
2 (12, = v2) R (tn@) = Jo (@) T2(1n)]
From the equality of the derivatives we get
- 2pnali(paa) Jy (v
Cm=—z i palJi(p,a) Y (vua) (2.40)
— b* (u2 —v2) tanh v,cJo(v,b) Jo(v,b)
Single-mode approximation
1+ B, tanhv,d
2 gy —— 2.41
Cim =8 1 B + tanh v,,d 241
with
g — 4 o B (m@) i v, 32 (v,0)
" b2 [J%(/‘Lma) - J()(,mea) JZ(/'Lma)] n—1 (vy% - M,Zn)z tanh V€ JO(an) J2(Unb) )

(2.42)

2.3. Numerical results and validations

Here we present some comparisons between natural frequencies obtained with our
theoretical models and natural frequencies calculated with WAMIT. We take the
moonpool radius a as 10 m and its draft d as 5 m and we vary the clearance ¢
and the outer radius b. Figure 3 shows one of the panellings used in WAMIT for
b=2a= 20 m. In the WAMIT computations the floater is successively undergoing
forced heave motion (to track the axisymmetric modes) then forced surge motion (for
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FIGURE 4. (Colour online) Circular moonpool. Natural frequency of the piston mode for
a=10 m, d=5 m, b=30 m, and varying c.

the antisymmetric modes). Response amplitude operators (RAOs) of the free surface
elevation are obtained at selected locations in the moonpool. From peaks of the RAOs
plotted versus the wave frequency, the resonant frequencies of the considered modes
are derived. The frequency step is progressively refined around the peaks to increase
accuracy.

Figure 4 shows the obtained natural frequency of the piston mode when the outer
radius is kept equal to 30 m and the clearance ¢ below the circular barge varies from
a few metres up to 50 m. The values delivered by the new model are shown as a
solid line, while the WAMIT values are shown as square symbols. The frequencies
predicted with the frozen moonpool approximations (2.32) and (2.34) are also shown,
together with the value given with the original model that assumes infinite depth and
infinite outer radius. It can be seen that the values given by the new model, by the
frozen moonpool approximation and by WAMIT are in good agreement. It is a bit
striking that the WAMIT values agree better with the frozen moonpool approximation
(2.32) than with the ‘exact’ calculations, but the differences are minor.

In figure 5 the clearance ¢ is kept equal to 30 m and the outer radius varies from
10 m up to 50 m. As compared with figure 4 it is to be noted that the frequency
range is much reduced. Again the agreement between the natural frequencies delivered
by WAMIT, by the new model and by the frozen moonpool approximation (2.32) are
in good agreement and, again, the frozen approximation seems to be doing a better
job. As the outer radius decreases, as could be expected, the agreement deteriorates
somewhat. It looks like the outer radius b should be taken somewhat larger than the
actual value to ensure a good fit.

Figures 6 and 7 show analogous results in the case of the first antisymmetric
sloshing mode. Again the natural frequencies given by WAMIT, by the new model
and by the single-mode approximation (2.41) are in good agreement. Note, from
figure 7, that there is very little sensitivity to the outer radius b.

Finally we show some modal shapes of the free surface, along a radius O <R < a.
For the piston mode, in order to observe significant deviations from a purely flat free
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FIGURE 5. (Colour online) Circular moonpool. Natural frequency of the piston mode for
a=10 m, d=5 m, ¢c=30 m, and varying b/a.
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FIGURE 6. (Colour online) Circular moonpool. Natural frequency of the first
antisymmetric sloshing mode for a=10 m, d=5 m, b=30 m, and varying c.

surface, the draft d of the moonpool needs to be substantially reduced. Here we take
a draft d equal to \/3'/40, where S = ma® is the moonpool area. The same \/S/d
ratio was considered in Molin (2001) in the square moonpool case (see figure 10 in
that paper). So keeping the radius a to 10 m we take a draft d equal to 0.443 m.
Figure 8 shows radial cuts of the free surface modal shape for different ¢ and b values.
The infinite depth/infinite radius case, from § 2.1, is also shown. Taking this case as
a reference, it can be seen that, when the water height ¢ is being kept quasi-infinite
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FIGURE 8. (Colour online) Circular moonpool. Modal shape of the piston mode for a =
10 m, d =0.443 m.

(c =100 m), the free surface gets lower and lower at the outer wall as the width b
is reduced. Conversely, when b is kept constant (b = 30 m), the free surface profile
becomes flatter and flatter as the clearance ¢ is reduced.

Figure 9 shows the modal shapes obtained for the first antisymmetric sloshing mode,
for 0SS R<a and 6 =0. The same shallow draft (0.443 m) is considered but a deeper
draft (5 m) is included for reference. In the deep draft case, the maximum elevation
is obtained at the moonpool wall and the free surface shape closely follows the Bessel
function J;(u1R). As the draft is reduced to 0.443 m the point of maximum elevation
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FIGURE 10. (Colour online) Circular moonpool. Modal shapes from our new model (lines)
and from WAMIT (square symbols) for d =0.443 m, »=60 m and ¢=10 m.

migrates away from the wall (a similar behaviour was observed in Molin (2001), for
the first longitudinal sloshing mode, see figure 11 therein). As in the piston mode
case, deviations from the infinite width and depth case increase when the outer radius
decreases and decrease when the clearance decreases.

Finally, in figure 10, we show the modal shapes of the piston mode and of the first
antisymmetric mode, from WAMIT and from our new model, in the case d =0.443 m,
b=60 m and ¢ =10 m. It can be seen that the agreement is excellent.
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FIGURE 11. (Colour online) Rectangular moonpool/gap. Geometry (from above).
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FIGURE 12. (Colour online) Rectangular moonpool/gap. Geometry (transverse cut).

3. Rectangular moonpool and gap in finite depth

In this section we address the cases of a rectangular moonpool, inside a rectangular
barge, and of two rectangular barges side by side. As illustrated in figures 11 and 12,
the geometry is approximately the same in both cases. Mathematically the difference
is that, in the moonpool case, an homogeneous Neumann condition is applied at the
moonpool ends, whereas, in the gap case, an homogeneous Dirichlet condition is
enforced. This simple end condition was first proposed by Newman & Sclavounos
(1988) and found to yield quite good approximations to the resonant frequencies in
the gap.

Figure 11 is a view from above that shows, with a full contour, the moonpool (or
gap), and, in dashed contour, the outer boundary where we state the velocity potential
to be nil. Laterally the position of this boundary would correspond to the outer edges
of the barge(s).

Figure 12 is a transverse cut that shows the two hulls and the moonpool (or gap),
and the lower fluid domain.

The coordinate system is located at one of the lower corners of the moonpool (or
gap). The water height in the moonpool (the draft) is d, the water height below the
hulls (the clearance) is c¢. The length of the moonpool is L,, its width is B;. The width
of the lower domain is B, its length is L,.

3.1. Gap

In the introduction we have argued that it is in the gap case that restricted water
depths can be encountered. So we start with the gap case. Since gaps are usually
very narrow we make the simplifying assumption that the flow within the gap is



two-dimensional, i.e. the velocity potential ¢, only depends on the x and z coordinates.
In §3.3, devoted to the moonpool case, we relax this assumption.

Eigenfunction expansions
The velocity potential in the gap is written as

o0

¢1(x.y.2) =Y (A, coshk,z+ B, sinhk,z) sink,x, (3.1)

n=1

with k, =nm/L;.
In the lower fluid domain it is a double series:

& cosh v, (z+¢) | .
©0(x,y,2) = Z Z Cyq # sin A,(x + a) sin w,(y +b), 3.2)
p=1 g=1 rq

with
by=pn/La, pg=q7/Bs vy =+ ul, (3.3a—c)

p and ¢ integers, and a= (L, — L,)/2, b= (B, — By)/2.

With these expansions the Laplace equation and the boundary conditions at the
vertical boundaries (and at the seafloor) are fulfilled. It remains to match ¢, and ¢,
on the boundary between subdomains 1 and 2, and match their vertical derivatives,
and ensure that d¢,/dz is zero below the two hulls. Again we use Garrett’s method
(Garrett 1971).

Matching of the potentials
We must ensure

Np Noy Noy
D Ay sinkx=> )" Cpy sindy(x +a) sin py(y + b), (3.4)
n=1 p=1 g=1

for 0<x<L; 0<y<B,.
Multiplying both sides with sink,x and integrating in x and y over the gap, we get,
for each m,

Noy Noy

B/ L Ly B
12 SAn=) )Gy / sin A, (x + a) sin k,,x dx / sin o, (y +b)dy, (3.5)
r=1 q=1 0 0
or, in matrix form,
A=AC-C, (3.6)
with
A=(Alv"'3AN|)$ C=(C113C123"'7C|N2y7 C213"')' (3~7a9b)

The series have been truncated to order N; for ¢, and orders N,,, N, for ¢,.

Vertical velocities
We must ensure

0y = @1, 0<x<L;, 0<y<B
= 0, elsewhere. (3.8)



That is

> Gy tanh vy, sind,(x+a) sinp,(y+b) =Yk, B, sink,x

P q n
for 0<x<L, 0<y<B
=0, elsewhere. 3.9

Multiplying both sides with sin Ap(x + a) sin uy(y + b) and integrating over their
domains of validity, we get, for each couple (P, Q):

ByL, vpCpg tanh vpg = _ k,B, / 3 sin Ap(x + a) sin k,x dx / : sin jo(y + b) dy,
0 0
' (3.10)
or, in matrix form:
C=CB-B. (3.11)
From (3.6) and (3.11) we get
A=AC-CB-B=AB:B. (3.12)

The following steps are identical to the cases considered before.

Single-mode approximations
Again single-mode approximations can be derived, when only one term is retained
in (3.1). We obtain

1+ C, tanh k,d

2
~gk, ——————— 3.13
On =8 b kyd + C, (3.13)
with
8ki v KT
SN LR o o .7 A G.14)
B, LB, L, il tanh v,,c
where

Ly By
K, = / sin A,(x +a) sink,xdx, J,= / sin p,(y +b)dy. (3.15a,b)
0 0

3.2. Comparison with resonant frequencies from Molin et al. (2009)

In Molin ef al. (2009) experimental and numerical results are reported for two
identical rectangular barges side by side. The experiments took place in the offshore
wave-tank BGO-FIRST located in la Seyne-sur-mer, near Toulon. This tank is 40 m
long and 16 m wide. The water depth was set at 3 m during the tests. The barges
were rigidly linked to the carriage, as shown in figure 13. The barge models had
a length of 2.47 m, a width of 0.60 m and a draft of 0.18 m. The bilges were
successively square then rounded, with a radius of curvature equal to 4 cm. Two
gap widths were modelled: 12 and 31 cm. Here we only consider the narrower gap



e "l

FIGURE 13. (Colour online) Barge models in the tank.
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FIGURE 14. (Colour online) Gap. Calculated RAOs of the free surface elevation at gauge
2. 0° heading.

case, with the square bilges. The instrumentation consisted in nine resistive wave
gauges on the centreline of the gap. The tests were run in irregular sea-states with
Pierson—-Moskowitz spectra of peak periods 1 s and 1.5 s. From the time series of
the free surface elevation at the different gauges experimental RAOs were derived
through standard spectral analysis.

Computations were carried out with the software Diodore of Principia, analogous
with WAMIT, and good agreement was found between the calculated peak frequencies
of the RAOs and those derived from the experiments. Here we have repeated these
calculations for water depths of 0.38 m, 0.28 m and 0.23 m - that is, ¢ values of
0.20 m, 0.10 m and 0.05 m. Figure 14 shows the calculated RAOs at the second
gauge inside the gap (approximately 33.5 cm from the entrance), in head waves, for
different values of the clearance (¢ =0.05 m not shown). It can be seen that the peak
frequencies shift to lower values as the clearance decreases.

In table 3 we show the first five resonant frequencies obtained from Diodore
and from the new model proposed here, in 3 m water depth. With the single-mode



Mode 1 2 3 4 5

Diodore 573 624 681 745 8.10
New model 583 631 691 755 8.19
Equation (3.13) 5.83 6.31 691 7.55 8.19
Equation (3.16) 553 6.21 686 7.52 8.17

TABLE 3. Gap resonant frequencies (in rad s~') in large water depth.

approximation formula (3.13) exactly the same values are obtained. Here the length L,
of the lower subdomain has been taken equal to the barge length (L, =L, =2.47 m)
and its width B, has been taken equal to two times the barge width plus the gap
width (B, =1.32 m).

In the last line are the resonant frequencies obtained by applying the formula that
was proposed in Molin et al. (2002), based on Molin (2001), where the Neumann
condition at the moonpool ends is replaced with an homogeneous Dirichlet condition.
This formula, based on the single-mode approximation, can be written as

1+J, tanh A, d

2
~gd, , 3.16
Cn = tanh A, d (3.16)
where
J(r) 2 R |+ 2u+ (= 1) cosn ) — —— sin(aru)) d
a\r) = Ea— u u—1l)cos(nmu) — — smrmu u
n’r [ Jo w2 Vu?+r? nm
1 s 0
S Y il (3.17)
sin 6 1 —cos 6

with 4, =nn/L;, r=B,/L, and tan6y =r"".

From table 3 it can be seen that the new model improves the prediction of the
natural frequency of the first mode: the new model gives 5.83 rad s~! while Diodore
gives 5.73 rad s~! and (3.16) gives 5.53 rad s~'. The first gap mode is analogous with
the piston mode in the moonpool case since there is a net mass flux in the far field.
Because of its infinite width assumption, (3.16) underestimates the natural frequency,
while with the new model it seems to be overestimated. As already mentioned for the
piston mode in the circular moonpool case, and as figure 15 suggests, better agreement
would be obtained by slightly increasing the width of the barges in the new model.
As for the following modes, the new model seems to perform less well than (3.16),
but the differences are minor.

In figure 15 we vary the width B, of the lower domain, keeping its length L, equal
to the gap length. As the equivalent barge width (B, — B;)/2 increases the natural
frequencies decrease. The values given in table 3 are for a width of 0.6 m. From the
figure, as written above, it looks like a better prediction of the natural frequency of the
first mode would be achieved by taking a width somewhat larger, between 0.8 m and
1 m. However, it would not improve much the prediction of the natural frequencies
of the following modes.

In figure 16 we keep the largest value of (B, —B;)/2 from the previous calculations
(1.6 m) and we vary the length L, of the lower domain. The natural frequencies
decrease again and we get very close to the values given by (3.16) (approximately
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FIGURE 15. (Colour online) Gap. Variation of the natural frequencies of the first three
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5.56 rad s~! for @, when (3.16) gives 5.53 rad s~!, and even closer for the following
modes).

In the results presented above, the water depth 7 =c + d was taken equal to 3 m.
Finally, in figure 17 we vary the water height ¢ below the barges, while keeping (B, —
B1)/2=0.6 m and L, equal to the length of the barge. In the figure we plot, as square
symbols, the natural frequencies derived from Diodore calculations at c=2.82 m, c=
0.20 m, ¢=0.10 m and ¢=0.05 m (see figure 14). For better clarity the c=2.82 m
values are shown at ¢ =0.8 m (the differences between 2.82 m and 0.8 m are minor).
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FIGURE 17. (Colour online) Gap. Variation of the natural frequencies of the first three
modes with the clearance ¢ below the barges.

Overall the agreement between the values provided by the new model (or (3.13)) and
by Diodore is rather good.

3.3. Moonpool

We assume the flow in the moonpool to be three-dimensional (in order to tackle
the case of moonpools of large widths). The velocity potential in sub-domain 1 (the
moonpool) is taken as

o o0
Z
01(x,y,2) = Ao +Booc—1 +Z Z

m=0

(m,n’)’:éo(oi))
X [A,, cosh v,z + B, sinh v,,,z] cos A,,x cos [1,,y, (3.18)
with

Apn=mn/L, wn,=nmn/B, v —/12+u§. (3.19a—c)

m

In the lower sub-domain it is the same as in the gap case (with different notations
for the wave numbers):

o0 o0
coshy,,(z+¢) . .
0(x,y,2) = pz; ; Coy COSQ'VMC sina,(x+a) sin B,(y+b).  (3.20)
with
O =pu/Ly, B,=qn/Bs, V=0, +p (3.21a—c)

p and q integers, and a= (L, — Ly)/2, b= (B, — By)/2.
The following procedure of matching the potentials, then their vertical derivatives,
is identical to that of the gap case, so it is not repeated here.



Single-mode approximations
Single-mode approximations may again easily be derived. We get:

Piston mode:

8
= , 3.22
Y7 d 14 Cyo (822)
with
Cop=—"7—7"— —r 4 (3.23)
® T B/ LB Ld IZ:; ; Vpq tanh y,.c
and
oLy "By
Ip:/ sin o, (x + a) dx, Jq:/ sin B,(y + D) dy. (3.24a,b)
0 0
Longitudinal sloshing modes:
1+ C, tanh A,,d
W g Ay om0 B And (3.25)
tanh A,,d + C,o
with
8l v~ Ko TS
Com gy Kl (3.26)
B| L| Bz L2 e — Ypq tanh YpqC
and

By

"Ly
Ky = / sina,(x 4+ a) cos A,xdx, J,= / sin B,(y +b)dy. (3.27a.b)
0 0

3.4. Applications

As written earlier, ships and offshore structures equipped with moonpools usually
operate in deep water. So we will focus here on the sensitivity of the natural
frequencies to the beam of the support. We take the case of the WellHead Barge
(WHB) developed by Saipem (for example, see Maisondieu & Le Boulluec 2001a).
Figure 18 shows the panelling of the WHB that was used for diffraction-radiation
analysis with Diodore.

The barge is 180 m long and 60 m wide, the moonpool length is 80 m and its
width 20 m, and the draft is 6.5 m. In the computations we take the length L, of
the lower domain equal to 180 m (the barge length) and we vary its width B,. The
clearance c is taken as 300 m.

Figure 19 shows the frequencies obtained for the piston and first sloshing modes.
For each mode, three curves are shown: the values given by the earlier method
(Molin 2001) that assumes infinite length and width (straight lines in the figure),
the values given by the new method and by the single-mode approximation (3.22)
or (3.25) given above. Diodore calculations give natural frequencies of 0.7 rad s~



FIGURE 18. (Colour online) WellHead Barge. Panelling for Diodore computations.
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FIGURE 19. (Colour online) WellHead Barge. Natural frequencies of the piston (mode 0)
and first sloshing (mode 1) modes versus the width B, of the lower domain.

for the piston mode and 0.84 rad s=' for the first sloshing mode. These values are
taken from the locations of the peaks in the heave and surge radiation dampings.
Taking as a reference position B,/B; = 3 it can be seen that the Diodore value of
the piston mode frequency is in-between the values delivered by the two methods.
Or, in other terms, that the ratio B,/B; used in applying the new method should be
taken somewhat larger than the actual B,/B;. This is consistent with the conclusions
derived in the circular case. As for the first sloshing mode, as already observed, its
natural frequency is only slightly sensitive to the barge width (due to zero mass flux
in the far field), and a minor improvement is obtained in applying the new method.

As a second and final application, we consider a floating foundation for a wind
turbine, with a large square moonpool, described in Guignier ef al. (2016). The
moonpool is 27 m x 27 m, while the outer hull is 45 m x 45 m. It is fitted with
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FIGURE 20. Square moonpool. Free surface shapes for mode 0 (a), mode 4 (b) and

mode 5 (c¢).
Mode 0 1 2 3 4 5 6 7
Calculated (rad s™') 0.794 1.130 1.130 1.305 1.5186 1.5192 1.605 1.605
Estimated (rad s™') 0.784 1.126 1.126 1.517 1.517

Dominant (i, n) 0,0 (1,0) (0, 1) (1, 1) (0,2) + (2,0) (0, 2)—(2,0) (1,2) (2, 1)
TABLE 4. Wind turbine floating foundation. Natural frequencies.

additional bilge keels, 3 m wide (Guignier, personal communication), so we take a
width and length of 51 m for the lower subdomain. The draft is 7 m and the water
depth is 55 m.

Table 4 gives the calculated frequencies of the first eight modes obtained. The
estimated values, given in the second line, are from the single-mode approximations
(3.22) and (3.25). From the peaks in the heave and surge radiation dampings
calculated with the diffraction software Aqwa, the natural frequencies of the piston
and first sloshing modes are, respectively, 0.78 rad s=' and 1.1 rad s=' (Guignier,
personal communication), so the agreement with our values is rather good. With
the former model of Molin (2001) the corresponding values are 0.704 rad s~! and
1.12 rad s~%.

The last line in table 4 gives the (m, n) values of the dominant geometric modes
(cos 4,,x cos A,y) in the modal shapes of the free surface elevation. Mode O is the
piston mode. Modes 1 and 2 are the first sloshing modes in the x and y directions,
hence they have the same natural frequencies. Likewise for modes 6 and 7 which are
identical. However, modes 4 and 5 are not a double mode; they are different and they
have slightly different natural frequencies. They both have the geometric modes (2, 0)
and (0, 2) contributing with equal amplitudes, but different signs: in mode 4 they add
up, in mode 5 they subtract. In mode 4 the corners and the centre of the moonpool
are antinodes, in mode 5 they are nodes. Both modes are shown in figure 20, together
with mode 0. It can be seen that mode 4 looks very much like mode O; however,



the figure is somewhat misleading, as the vertical scales are different: for the piston
mode (mode 0), the range is from 0.89 (in the corner) to 1 (in the centre), the free
surface is nearly flat (due to the large draft) as it heaves up and down. For mode 4
the range is from —1 (in the corner) to +1 (in the centre). However, the geometric
mode (0, 0) does participate to mode 4 (there is also a small contribution from mode
(2, 2)), meaning that the mean water level heaves up and down, and that a net mass
flux is associated. Mode 4 is very much like the first axisymmetric sloshing mode in
the circular moonpool case (see paragraph 2.1.1). As for mode 5, only the geometric
modes (0, 2) and (2, 0) participate, there is no variation in the mean free surface level.

This is very much unlike what happens in a rectangular tank (with a bottom), where
each geometric mode of the form cos 4,,x cos i,y is a natural mode. In the moonpool
case, connection with the lower fluid domain creates coupling between the geometric
modes.

4. Final comments

We have proposed a modification of the original theoretical model of Molin (2001)
that permits one to derive the resonant modes of gaps and moonpools in finite depth.
Another difference from Molin (2001) is that the new model accounts, to some extent,
for the finite horizontal dimensions of the floating support. In the new model the lower
subdomain, below the keel line, is now finite, bounded by the hull, by the seafloor and
by an artificial vertical cylinder where the velocity potential is taken to be nil.

Applications have been made to circular and rectangular moonpools, and to narrow
rectangular gaps. The obtained natural frequencies have been compared with numerical
values derived from calculations with state-of-the-art diffraction-radiation codes
(WAMIT 2016 and Diodore 0000). The new model has been found to correctly
account for finite depth. As for accounting for the finite horizontal dimensions of the
support, it appears that, when the outer artificial cylinder runs through the waterline of
the support, the calculated resonant frequencies of the piston mode (or first sloshing
mode in the gap case) are slightly overestimated. A similar situation occurred in
the two-dimensional moonpool case in Molin (2001), where two sinks were located
at either side at =4 B/2, with B being the beam, and where it was found that the
coefficient A needed to be taken somewhat larger than unity for a good fit (Maisondieu
et al. 2001b; Faltinsen et al. 2007). In very shallow water depth, improvements of the
method could certainly be made, through matched asymptotic expansions, following,
for example, the works of Newman, Sortland & Vinje (1984) or Molin et al. (1999).
However, it might not be that easy in intermediate depth.

Simple expressions (single-mode approximations) have been proposed that give first
estimates of the resonant frequencies. These formulas have more generality than those
given in Molin (2001) and Molin ef al. (2002) and they are easy to implement. It is
believed that they can be helpful to offshore engineers.

Finally, as compared to Molin (2001), the proposed finite depth model is much
easier to implement and much faster to run, allowing for easy variations of the
geometric parameters.

Appendix A. Calculation of the matrix AB
The bottom boundary condition (2.9) can be written as

BO/d + Z Bnkn JO(knr)

1 a 2n
A+ AR =— | rd / " da. (A1
° Z o6k 21'[/0 A N R




(1) Integrate each side over the disc:

Bo/d—l—ZB ky, Jo (kor)

2A =5- [ 4 [ RdR d
T Lo / / /rr/ TR R e
Bo/a’+ZB ky, Jo (k1)

na’A / RdR/ rdr/
o \/R2+r2 2Rr cos B a8 (A2)
) a “ 1 4Rr
na‘Ay=4 RdR rdr K -
0 0 R —r (R—r)

4Rr
Ta A()——Bo—l-anB" |R—r| —m Jo(k,,r)der,

with K the complete elliptic function of the first kind and, for negative argument:

BO/d + Z Bnkn Jo(k”l")

K(—m)= (A3)

1 m
K .
~1+4+m <m+1>

(2) Now multiply each side with Jy(k,,R) and integrate over the disc:

a 1 21 a a
2T[Am/ J(z)(ka)RdR=—/ d9/ RdR/ rdr
0 21 Jo 0 0

Bo/d+ ) Byiky Jo(kur)

2n

J 0 (ka ) do

o «/R*2+1r2—2Rr cos(9 — a)

o) o 430/ / "= (_(R4frr)2> ol dRdr
+4ZkﬂB / / IR—rI < (R4Rr) ) JoknR) Jo(kyr) dR dr. (A 4)

The double integrals in (A2) and (A4) are evaluated numerically. In the
antisymmetric case (§2.1.2) the quadruple integrals can be reduced to double
integrations in a similar fashion.
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