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ABSTRACT 

A nonlinear manoeuvring mathematical model of marine 

surface ship model is briefly introduced. In order to obtain the 

hydrodynamic coefficients, system identification is used to 

estimate the parameters using Planar Motion Mechanism 

(PMM) test data. Usually, the obtained parameters using 

measured data have a large uncertainty due to the ill-

conditioned processes of identification. An optimal Truncated 

Singular Value Decomposition (TSVD) method is exploited to 

reduce the uncertainty of the estimated parameters. The optimal 

number of retaining singular values is calculated by using the L-

curve, which is a log-log plot of the norm of a regularized 

solution versus the norm of the corresponding residual norm. It 

is a graphical tool for displaying the trade-off between the 

estimated parameters norm and the corresponding residual error 

norm. The validation process is performed by comparison of the 

prediction values with the experimental data in the time domain. 

NOMENCLATURE 

v   Velocity of rigid body, expressed in Body-fixed 

frame  

MRB Rigid-body mass matrix 

CRB Rigid-body Coriolis-centripetal matrix 

τRB Hydrodynamic forces and moments 

X Surge force 

Y Sway force 

N Yaw moment 

α Hydrodynamic coefficients 

X Input matrix 

y Measurement data  

ˆ( , )y x a
 The added mass in y direction 

y Mean value of measurement data 

2 ( )a   Chi-squared errors

R2 The goodness of fit criterion 

yV Diagonal matrix of variances of y 
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a
V  Error propagation matrix 

U   Left-singular vectors 

   Singular values 

V   Right-singular vectors 

 

 

 

INTRODUCTION 
  

With the development of numerical computation and 

simulation power and techniques, the mathematical models 

are becoming more important in the whole process of marine 

ship design, and ship manoeuvring and operation. Many 

mathematical models of marine vessels have been proposed to 

meet application requirements, such as Abkowitz model [1], 

MMG [2], Nomoto model [3], vectorial model [4], and 4-

DOF nonlinear manoeuvring model developed using a 

Lagrangian approach [5]. These models have different features 

and are proposed considering the trade-off between the 

complexity and fidelity. Estimation of the hydrodynamic 

coefficients is a challenge and an interesting topic [6]. Captive 

model tests, carried out in a multi-purpose towing tank, is an 

effective method to measure the hydrodynamic forces and 

moments from which hydrodynamic coefficients in 

manoeuvring model can be identified. 

System identification has been widely used for 

mathematical modelling and parameters estimation [7]. In [8], 

a neural network has been used to identify the nonlinear 

damping matrix for an underwater vehicle. The method of 

least squares (LS) is a standard approach for parameter 

estimation. In [9],  the nonlinear viscous damping forces in 

the horizontal plane of a surface vessel at low speed was 

estimated using the least square method.  In [10],  least 

square method was used to estimate the hydrodynamic 

coefficients based on Planar Motion Mechanism (PMM) tests. 

The obtained mathematical model was then used to reproduce 

the manoeuvring test conducted in full-scale [11]. In [12, 13], 

the parameters of a nonlinear manoeuvring mathematical 

models were estimated using a least square method based on 

free-running model tests, and a classic genetic algorithm was 

used for minimizing a distance between the reference and 

recovered time histories.  

A genetic algorithm is an intelligent method for solving 

both constrained and unconstrained optimization problems 

[14]. The parameters estimated by least square methods are 

usually largely affected by the noise of training data and it 

usually leads to non-consistent estimates [15]. In [16], a 

regularized least-square method was used to solve the hyper-

parameter estimation problem with large data sets and ill-

conditioned computations. Truncated singular value 

decomposition (TSVD) [17] is also a good option to solve the 

ill-conditioned problem of the least square method [18]. The 

main assumption is to neglect its smallest singular values [19], 

because the data corresponding to smaller singular values 

usually imposes more uncertainty in the process of estimating 

uncertain parameters. 

Extended Kalman filter (EKF) has been used for 

parameter estimation of a ship motion model. In [20, 21], the 

extended Kalman filter was used to estimate the parameters of 

a modified Nomoto model for vessel steering. Fossen et al. 

[22] proposed an off-line parallel extended Kalman filter 

algorithm utilizing two measurement series in parallel to 

estimate the parameters of the dynamic positioning ship 

model. An adaptive wave filter coupled with a maximum 

likelihood parameter identification technique was proposed by 

Hassani et al. [23] and used for dynamic positioning control 

of marine vessels. Recently, the support vector regression 

(SVR) has been applied to estimate the hydrodynamic 

coefficients of a ship model [24]. In [25, 26], Least Squares 

Support Vector Machines has been applied to model the 

controller of the marine surface vehicle for path following 

scenarios based on manoeuvring test. 

This paper adopts a 3-DOF nonlinear manoeuvring model 

for a surface ship from [5, 10] and by applying intelligent data 

processing techniques identifies the uncertain parameter of the 

manoeuvring model. The identification procedure uses a data 

set from a series of PMM tests, carried out by SINTEF Ocean 

[27] in their multi-purpose towing tank [28] using a scaled 

ship model of research vessel Gunnerus [29]. Various captive 

model tests recommended by ITTC [6] have been carried out, 

such as pure sway, pure yaw and mixed sway and yaw. The 

hydrodynamic coefficients of the nonlinear manoeuvring 

model were obtained using a least square method based on 

PMM test data. Optimal TSVD was used to reduce the 

uncertainty of the parameters due to the ill-conditioned 

processes of identification. The goal is to neglect the small 

singular values and the corresponding columns of the matrix, 

whose contribution to the solution vector can be dominated by 

random noise and round-off error in measurements.  

Finally, the validation of the obtained nonlinear 

manoeuvring models is carried out by comparing the outputs 

of the model with the measured data for a portion of test data 

that was not used during the identification process. In order to 

quantify the fit to the data, the statistical metrics, the R2 

goodness of fit criterion, was used to demonstrate the 

accuracy of the obtained model. R2 is the ratio of the 

variability in the data that is not explained by the model to the 

total variability in the data. 

 

NONLINEAR MANOEUVRING MATHEMATICAL  

MODEL 
 

In this paper a 3-DOF manoeuvring model is considered, 

and the rigid-body kinetics in 3-DOF can be expressed as [4]: 
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( )RB RB RBC M v v v τ                (1) 

where [ , , ]Tu v rv represents the velocities decomposed in a 

body-fixed reference and [ , , ]T

RB X Y Nτ is the generalized 

vector of external forces and moments expressed in the body-

fixed frame. 

The hydrodynamic forces and moment can be derived by 

considering zero frequency added mass, Coriolis-centripetal 

forces, linear lift and drag, cross-flow drag. For a 

comprehensive survey of nonlinear manoeuvring model of 

ships, the reader is referred to [5]. As presented in [5, 10], the 

equations of the hydrodynamic forces and moment can be 

expressed as follow: 

0 0 0 01
( )

2

L L

u v v r uu uuu

L L L L L

rvu vv rv uvv rr

L L
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       (4) 

 

PLANAR MOTION MECHANISM (PMM) TESTS 
 

A series of captive model tests were carried out by 

SINTEF Ocean [27] during a research project [30] on the 

scaled ship model according to the recommended procedures 

by ITTC [6]. The captive model test is nowadays commonly 

used to provide data for identification and validation of 

mathematical models of ship manoeuvring motion. It can 

provide a reasonable estimation of the hydrodynamic 

coefficients, however, performing such tests is costly. In this 

section, a brief summary of different PMM tests is presented, 

such as pure surge, pure drift, pure sway, pure yaw and mixed 

sway and yaw, which were carried out in SINTEF Ocean’s 

multi-purpose towing tank [28] using the scaled ship model, 

presented in Fig. 1. The motions in the surge, sway and yaw 

were controlled using a 6-DOF hexapod motion platform, 

which is mounted on the carriage. Each type of test 

emphasises different dynamic characteristics: 

Pure Surge: A pure surge test tows the model forward 

with oscillations around a fixed velocity. It is usually 

sinusoidal oscillations. This test aims to achieve the full 

response of surge motion. 

Pure Drift: A pure drift test tows the model forward with 

a fixed oblique angle. This test is usually used to isolate the 

static derivatives from yaw motion [10]. 

Pure Sway: A pure sway test is used to isolate the sway 

dynamics from the yaw motion. The ship will move forward 

with a constant velocity and with a sinusoidal oscillation in 

Sway. This test aims to achieve the full response of sway 

motion. 

Pure Yaw: Similarly, in a pure yaw test, the model will 

move forward with a sinusoidal oscillation in yaw. The effect 

of sway can be neglected owing to the zero velocity in sway 

motion. 

Mixed Sway and Yaw: This test was carried out using a 

ship model at a set of sway velocity and yaw rate. It is a 

generalization of pure yaw, except the model is held at a 

nonzero sway [5]. 

 

 

FIGURE 1: PLANAR MOTION MECHANISM TESTS IN 

TOWING TANK [ Courtesy of SINTEF Ocean [27]] 

 

OPTIMAL PARAMETER ESTIMATION METHODS AND 

UNCERTAINTY ANALYSIS 
 

In this section, the optimal parameters estimation methods 

based on least square and truncated singular value 

decomposition (TSVD) will be presented. In order to estimate 

the hydrodynamic coefficients of the nonlinear manoeuvring 

model discussed in the previous section, the Equations 2 to 4 

will be reordered in a vector format given by: 

 

a yX                        (5) 
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where the matrix *38nX  contains the measured data,   
38*1a represents the uncertain parameters described in 

equation (6), and  [ , , ]Ty X Y N is the matrix of the recorded 

forces and moments during the tests. In this study, there are 38 

parameters to be estimated. Obviously, the linear equation is 

over-determined n>m. 

0 0 0 0 0[ , , , , , , , , , , , ,

        , , , , , , , , , ,

       , , , , , , , , ,

       ,

L L L L L L L

u v r v r uu uuu rvu vv rv uvv rr

L L L L L L L L L L

urr uv ur uur uuv vvv rrr rrv vvru v

L L L L L L L L L

uv ur uur uuv vvvv r v v r v r r

L

rrr

a X Y Y N N X X X X X X X

X X Y Y Y Y Y Y Y Y

Y Y Y Y N N N N N

N N



, , , , , ]L L L L L L

rrv vvr v r v v r v r r
N N N N N

(6) 

Now, the problem of parameter estimations can be transferred 

to minimization of the difference between the estimated 

values ˆ( ; )y x a and the measured data y. In addition, several 

assumptions need to be made. The first assumption is that the 

sample of measurements yi are uncorrelated because every 

measurement is independent. Each measurement yi has a 

particular variance, 2

y  due to the environmental disturbance 

and sensors. 

Optimal parameter estimation using least square method 

In order to find the optimal parameters, the residual error, 

ˆ( ; )e y x a y   between the measured data y and the 

estimated value ˆ( ; )y x a need to be minimized. Furthermore, 

the error needs to be dominated by the high-accuracy data 

(small-variance) and less affected by the low-accuracy data 

(large-variance). So the weighed sum of the squared residuals, 

also called 'chi-squared' is defined in terms of the vectors: 

   2 ( )
T

ya a y a y   X V X              (7) 

where yV is the diagonal matrix of variances of y. Usually, if 

the variances of y is unknown in advance, the variance matrix, 

yV can be assumed to be the identity matrix. The optimal 

parameters a corresponds to the minimum value of the 2 error 

function, which means the derivative of 2  respect to the a 

equals to zero. 

*

2

1 * 1

                    0

0

a a

T T

y y

da

a y





 




 X V X X V

                (8) 

Then the optimal values of the parameters *a can be 

obtained as 

* 1 1 1[ ]T T

y ya y   X V X X V             (9)  

The 2  error function can be minimized with respect to 

the parameters a. The estimated values, which have the best 

agreement with the measured data, can be computed using 
* *ˆ( ; )y x a a X  . 

The goodness of fit criterion 

The R2 goodness of fit criterion is used to measure the 

goodness of the fitness. It is defined as: 

* 2

2

2

ˆ[ ( ; )]
1

[ ]

i

i

y y x a
R

y y


 






              (10)  

where y  is the mean value of the measured data. The 2R  is 

the ratio of the variability in the data that is not explained by 

the model to the total variability in the data. If 2R equal to 

zero, it means that the model fails to explain the measurement 

variability. Otherwise, if 2R  equal to 1, it means that all the 

variability of measured data can be fully explained by the 

model. If 2R  is negative, it means the model can explain the 

data worse than the mean value. 

Uncertainty analysis of the estimated parameters 

The uncertainty analysis of the parameters is important for the 

mathematical modelling. Usually, poorly identified model 

(models with large parametric uncertainty) is very sensitive to 

the disturbance in the input data. Such model cannot 

reproduce the behaviour of the system with high accuracy. 

This is due to the fact that the parameters with large 

uncertainty will change dramatically with the errors in the 

measured data. In this study, the error propagation matrix or 

the covariance matrix is used to indicate how the random 

errors in y, as described by yV , propagate to the optimal 

parameter *a . The error propagation matrix is given by 

*

* *
1 1[ ]

T

T

y ya

a a

y y

     
    

    
V V X V X       (11)  

where the standard error of the parameters, *a
 , can get by 

calculation of the square-root of the diagonal of the error 

propagation matrix. Then the absolute error can be calculated 

easily. 

Optimal truncated singular value decomposition (TSVD) 

The uncertainty analysis of the identified parameters in the 

model is of paramount importance to obtain a robust model. 

The uncertainty of parameters is affected by noise, and 

quantified by the error propagation matrix, yV . Large 

uncertainty or covariance of the parameters can be due to 

noise in data or an ill-conditioned model (or both). The matrix 

X can be rewritten as 

1

n
T T

i i i

i

u v


  X U V             (12)  
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where the matrix U and V are orthonormal, T IU U and 
T IV V . Furthermore, substitution of Eq. (12) into the 

optimal parameters estimation Eq. (5) give: 

1

Tn
i i

i i

v u y
a



                 (13)  

As presented in Eq. (14), the smaller singular values can 

potentially dominate the solutions a. The smaller the singular 

value 
i  is, the more uncertainty the estimated parameters 

have. The error in the measurement data, y, propagate to the 

estimated parameters, which can be expressed as follows 

T

T i

i

i

u y
v a





                   (14)  

 

FIGURE 2: PLOT OF DISCRETE PICARD CONDITION. 

 

So, in order to get a physically meaningful solution, the SVD 

coefficients T

iu y must decay faster than the
i , which is 

called the Discrete Picard Condition [31]. As presented in 

Fig.2, the solutions are dominated by the small singular 

values. So it is necessary to reduce the effect caused by the 

smaller singular values. In most cases, TSVD is an effective 

tool to reduce the uncertainty of the data set. The TSVD can 

be presented as 

T

r r r r X U V                     (15)  

where the matrix 
r is obtained by retaining the first r singular 

values of  . Similarly, matrices 
rU and 

rV are found using the 

corresponding singular vectors. The resulting 
rX represents the 

reduced data set where the data related to the omitted singular 

values are filtered. It should be noted that truncation of the 

original matrix will inevitably increase the bias error for the 

parameters due to the loss of some information. But the 

uncertainty of the parameters (parameters drift) can be reduced 

significantly. As presented in the following section, the bias 

error for the parameters increases slightly, because the smaller 

singular values contribute little to the parameters. The optimal 

value of r can be estimated using the L-curve. It is a log-log 

plot of the norm of a regularized solution versus the norm of 

the corresponding residual norm. It is a convenient graphical 

tool for displaying the trade-off between the size of a 

regularized solution and its fit to the given data, as the 

regularization parameter varies [32,33] As presented in Figure 

3 in our current data set the optimal r equals to 29. 

 

 

FIGURE 3: OPTIMAL TSVD USING L-CURVE 

 

HYDRODYNAMIC COEFFICIENTS ESTIMATION AND 

VALIDATION 
 

In this section, the parameter estimation based on the least 

square method (LS) and optimal truncated singular value 

decomposition (TSVD) are presented. Firstly, the PMM test 

data needs to be regrouped to be used as a training set in the 

identification process.  The training set should contain enough 

information to excite the 3-DOF manoeuvring model (surge, 

sway and yaw motion). In this paper, the training set contains 

data collected from surge acceleration, pure drift, pure surge, 

pure sway and mixed sway and yaw tests. It is built by simply 

joining all the data in sequence. A small portion of the data was 

kept for validation.  The same process is carried out to 

construct new data set for validation purpose. In order to assess 

the performance of the numerical model, the data for validation 

was not used for training. 

In the first phase, the parameter estimation based on least 

square method have been carried out using training set. The 

prediction of forces and moments compared with training data 

is presented in Figure 4. From this figure, the curves fit well 

with each other, especially for sway force and yaw moments. A 

similar process was also carried out after treating the data set 

using the TSVD. The results are presented in Figure 5. 
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Furthermore, the obtained numerical model also can predict the 

system response successfully. 

 

FIGURE 4: REGRESSED NUMERICAL MODEL 

OBTAINED BY LEAST SQUARE METHOD COMPARED 

WITH TRAINING SET. 

 

FIGURE 5: REGRESSED NUMERICAL MODEL 

OBTAINED BY TSVD COMPARED WITH TRAINING SET. 

The error propagation matrix of the estimated parameters are 

calculated using Eq.(11). The absolute errors of the estimated 

parameters based on least square method and TSVD are given 

in Table 2. From the table, the absolute errors of the parameters 

estimated using TSVD are reduced compared with the 

parameters obtained by the least square method. They are more 

stable and less affected by the error in the measured data. The 

absolute error of parameters estimated by TSVD is below 23%, 

except the two parameters and L

uuvY , while for the least square 

method there are 8 parameters, whose absolute error is bigger 

than 25%. So TSVD is more robust and reduces the uncertainty 

for most parameters. Fig.8 presents the same results 

graphically. The values of the absolute error of the parameters 

are presented in the Table 2. 

 

FIGURE 6: VALIDATION OF NUMERICAL MODEL 

OBTAINED BY LEAST SQUARE METHOD  COMPARED 

WITH TEST SET. 

 

FIGURE 7: VALIDATION OF  NUMERICAL MODEL 

OBTAINED BY TSVD  COMPARED WITH TEST SET. 

TABLE 1: THE R2 GOODNESS OF FIT CRITERION FOR 

VALIDATION. 

Method Surge Sway Yaw 

LS 0.6862 0.9981 0.9269 

TSVD 0.6894 0.9981 0.9220 
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TABLE 2: THE ABSOLUTE ERROR (%) OF THE ESTIMATED PARAMETERS USING LEAST SQUARE AND TSVD. 

NUM. COEF. TSVD LS NUM. COEF. TSVD LS NUM. COEF. TSVD LS 

1 0

uX  5.55 5.17 15 L

uvY  2.92 2.75 27 L

uvN  1.46 1.36 

2 0

vY  0.53 0.49 16 L

urY  2.28 8.45 28 L

urN  0.26 1.00 

3 0

rY  15.18 13.94 17 L

uurY  21.72 20.15 29 L

uurN  2.34 1.43 

4 0

vN  0.38 0.35 18 L

uuvY  86.59 62.54 30 L

uuvN  0.82 0.76 

5 0

rN  0.11 0.10 19 L

vvvY  4.44 4.26 31 L

vvvN  0.93 0.87 

6 L

uuX  16.53 17.29 20 L

rrrY  8.23 55.05 32 L

rrrN  2.32 4.98 

7 L

uuuX  19.15 20.87 21 L

rrvY  4.39 14.09 33 L

rrvN  1.11 10.17 

8 L

rvuX  22.82 21.31 22 L

vvrY  4.20 56.63 34 L

vvrN  0.26 1.59 

9 L

vvX  19.25 17.56 23 L

v r
Y  4.40 135.81 35 L

v r
N  1.11 2.96 

10 L

rvX  5.44 5.07 24 L

v v
Y  7.05 6.35 36 L

v v
N  1.29 1.22 

11 L

uvvX  14.39 12.82 25 L

r v
Y  3.85 19.21 37 L

r v
N  0.24 2.05 

12 L

rrX  17.05 26.86 26 L

r r
Y  3.63 221.84 38 L

r r
N  0.47 5.77 

13 L

urrX  15.54 65.10         

14 L

u v
X  200.01 106.93         

 

 

FIGURE  8:    THE UNCERTAINTY OF THE ESTIMATED PARAMETERS
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The performance of both numerical models needs to be 

verified. The manoeuvring model is validated if the model can 

approximate the measured force and moments of the validation 

data set with high accuracy. The fit of the models obtained by 

least square and TSVD are presented in Figure 6 and 7. From 

the figures, both models work well and can successfully predict 

the test data. The R2 goodness of fit criterion is summarized in 

Table 1. From this table, the two methods have almost equal 

accuracy in predicting the test data, However, figure 8 suggests 

that the TSVD can provide more stable parameters with less 

impact from the measurement noise. 

CONCLUSIONS 
 

In this paper, a nonlinear manoeuvring mathematical model 

of a surface ship model in 3-DOF was revisited. The 

hydrodynamic coefficients were obtained using a least square 

method based on PMM test data.  Usually, the obtained 

parameters using measured data have a large uncertainty and are 

largely affected by the noise in the measured data. Furthermore, 

the identification using least square method for such problems 

is usually ill-conditioned. In this study, by using an optimal 

truncated singular value decomposition (TSVD) approach, the 

size of data set was reduced. Identification of the uncertain 

parameters using the reduced data set resulted in better 

estimating the parameters with smaller covariance. The 

performance of the resulted nonlinear manoeuvring models was 

further tested against the portion of the data, which was not 

used in the identification process. The R2 goodness of fit 

criterion was used to demonstrate the accuracy of the obtained 

models and TSVD algorithm proved to be able to provide more 

stable and accurate parameters based on the PMM data. 
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