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ABSTRACT 

The Least-square support vector machine (LS-SVM) is 

used to estimate the dynamic parameters of a nonlinear marine 

vessel steering model in real-time. First, manoeuvring tests are 

carried out based on a scaled free-running ship model. The 

parameters are estimated using standard LS-SVM and 

compared with the theoretical solutions. Then, an online 

version, a sequential least square support vector machine, is 

derived and used to estimate the parameters of vessel steering in 

real-time. The results are compared with the values estimated 

by standard LS-SVM with batched training data. By 

comparison, sequential least square support vector machine can 

dynamically estimate the parameters successfully, and it can be 

used for designing a dynamic model-based controller of marine 

vessels. 

NOMENCLATURE 

MR Rigid-body mass matrix 

NR Damping matrix 

BR Rudder parameter matrix 

, , , ,v r v rN N N N N
Hydrodynamic coefficients of yaw motion 

, , , ,v r v rY Y Y Y Y
Hydrodynamic coefficients of sway 

motion 

v Generalized velocity in body-fixed frame 

δ Rudder angle 

r Yaw rate 

a The coefficient of nonlinear term in 

Nomoto model 

1 2 3, ,T T T Nomoto constant  

K
Rudder constant 

w Weight matrix 

( )φ  Kernel function 

C Regularization factor 
2

1

N

ii
e

 Empirical error 

b Bias term 

( , , , )i ib e w  Lagrange function 

NA Input matrix 

NY Output matrix 

Nθ Parameter matrix 
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INTRODUCTION 

  

Mathematical models of marine vehicles are playing a 

more important role in marine control with the development of 

numerical computation. Linear Nomoto model is widely used 

for heading control, but due to its over-simplified structure [1], 

Nomoto model with fixed parameters usually cannot provide an 

accurate prediction of heading response due to the 

environmental disturbances. A model with dynamic parameters 

is a good option and is now drawing more attention [2]. A 

steering model with dynamic parameters can provide more 

accurate response compared with the static model, and it is 

more capable of dealing with the dynamic environment 

disturbance due to waves, wind and current. 

System identification has been used to improve and 

validate models with data from either free-model or full-scale 

tests [3]. Various techniques have been proposed for 

mathematical modelling of marine vessels. For example, in [4], 

a neural network was used to identify the nonlinear and 

coupled damping for an underwater vehicle. In [5], the 

nonlinear viscous damping forces in the horizontal plane of a 

surface vessel at low speed was estimated using the least square 

method. The least square method is very classic technique for 

system identification. It was used to estimate the hydrodynamic 

coefficients based on Planar Motion Mechanism (PMM) tests 

by Ross and Hassani et. al. [6,7]. But it usually will drop into 

local optimum and is largely affected by the noise of training 

data [8]. In [9, 10], the least square method was used to 

estimate the parameters of a nonlinear manoeuvring 

mathematical model, and a classic genetic algorithm, which is 

an intelligent algorithm for solving both constrained and 

unconstrained optimization problems [11], is used to search the 

global optimum of a cost function using free-running model test 

data. In [12], a regularized least-squares method was used to 

solve the hyper-parameter estimation problem with large data 

sets and ill-conditioned computations. Truncated singular value 

decomposition (TSVD) [13] is also a popular method to solve 

the ill-conditioned problem of least square method, and its 

application for parameters estimation of ship manoeuvring 

model is presented in [14]. 

Extended Kalman filter (EKF) is an optimal recursive 

estimator, so it can update the unknown variables in real-time 

when new measurements arrive. In [2, 15], the extended Kalman 

filter was used to estimate the dynamic parameters of a 

modified Nomoto model for vessel steering. Fossen et al. 

discussed an off-line parallel extended Kalman filter (EKF) 

algorithm utilizing two measurement series in parallel to 

estimate the parameters in the DP ship model [16]. In [17], the 

maximum likelihood method was used to determine ship 

steering dynamics.  

Recently, support vector machine (SVM) was applied to 

estimate the hydrodynamic coefficients of ship model [18, 19]. 

SVM is a universal learning machine in the framework of 

structural risk minimization (SRM) [20]. In [21, 22], a 

modified version, Least Squares Support Vector Machines, was 

applied to model the controller of the marine surface vehicle 

for path following scenarios based on the manoeuvring tests. In 

order to estimate the parameters in real- time, an incremental 

update algorithm for training SVM online was proposed by 

Cauwenberghs et al. [23]. A nonlinear generalized predictive 

controller based on online LS-SVM was presented in [24]. 

Tang et al. [25] used an online sequential weighted LS-SVM to 

identify the structural parameters and their changes.  

The main result of this paper is the implementation of 

online parameter estimations of nonlinear vessel steering model 

based on LS-SVM. Firstly, a nonlinear 2nd order Nomoto 

model for ship steering is briefly introduced and manoeuvring 

tests recommended by ITTC [26] have been carried out based 

on a scaled free-running ship model. The standard LS-SVM is 

introduced and used to estimate the parameters of vessel 

steering model using batched training data. The effectiveness of 

parameters estimation based on standard LS-SVM is 

demonstrated by comparison with the theoretical solution. 

 Then, a sequential LS-SVM is derived based on 

incremental updating algorithm. It is different from the online 

SVM using dynamic windows, which usually train the model 

using the truncated data. Sequential LS-SVM can estimate the 

parameters dynamically with the arrival of a new measurement. 

Parameters are updating in an incremental way, which avoids 

expensive inversion operation for training the model. Last, 

sequential LS-SVM is used to estimate the parameters of 

nonlinear Nomoto model with the free-running test data. 

This paper is organized as follows: Section 2 is a brief 

introduction of the nonlinear model for ship steering. Section 3 

offers a detail description of the principle of standard LS-SVM 

and sequential LS-SVM based on incremental updating 

algorithm. In section 4, Free-running model test is presented 

using a scaled ship model. In section 5, the validation of 

parameter estimation using standard LS-SVM is presented and 

sequential LS-SVM is used to estimate the parameters in real-

time. The conclusions are presented in Section 6. 

 

NONLINEAR MATHEMATICAL MODEL FOR SHIP 

STEERING 

 

The Abkowitz model [27] is widely used to describe the 

ship dynamic motion. It is obtained using Newton's laws, and 

the hydrodynamic forces are approximated using Taylor 

expansions. In order to simplify the control problem, surge 

speed can be assumed as a constant value, so the surge force 

equation can be decoupled from the other two and plays no 
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further part in any linear treatment of ship steering. The linear 

expansions of Y and N can be expressed: 

 

( ) ( )

( ) ( )

v G r v r

G v Z r G v r

m Y v mx Y r mur Y v Y r Y

mx N v I N r mx ur N v N r N









      

      
  (1) 

 

Rewrite the equation (1) in the state-space representation [28], 

which gives as: 

 

( )R R R R M v N v v B    (2) 

where [ , ]Tv rv is the sway velocity and yaw rate in the body-

fixed frame. The matrices , ( )R RM N v  and 
RB are: 

 

( )

v G r

R

G v z r

v r

R

v G r

R

m Y mx Y

mx N I N

Y mu Y
u

N mx u N

Y

N





  
  

  

  
  

  

 
  
 

M

N

B

  (3) 

 

The inertia matrix, 
RM , is positive and reversible. The sate-

space model, as described in Eq.3, can be rewritten as: 

 
1 1( )R R R R R

A B

u    v M N v M B    (4) 

By eliminating the equation of sway motion in Eq.4, the 

resulted equation is the 2nd order linear yaw motion, which is 

well known as 2nd- Nomoto model [29]. 

 

1 2 1 2 3( ) ( )R RTT r T T r r K T          (5) 

 

The yaw rate equation is widely used to describe the course 

keeping behaviour of a ship and its Laplace Transform version 

is used in many ship control and autopilot studies [30]. The 

transfer function of 2nd-Nomoto model is given as: 

 

3

1 2

(1 )

(1 )(1 )R

K T sr

T s T s








  
   (6) 

 

The 2nd-order linear Nomoto model can be used for the course 

control but its accuracy for the prediction of the yaw rate is not 

adequate due to the over-simplified structure [1]. Therefore, the 

nonlinear Nomoto model can get by including the nonlinear 

term in Eq.5 

 
3

1 2 1 2 3( ) ( )R RTT r T T r ar r K T           (7) 

 

where a is the coefficient of the nonlinear term. In Eq.6, the 

pole term 
2(1 )T s  and the zero term 

3(1 )T s  nearly cancel 

each other [17, 31, 32], because the difference between T2 and 

T3  is small, they are usually of the same order of magnitude. 

Therefore, the pole-zero cancellation can be implied to simplify 

this equation. The resulted equation is the well-known 1st-order 

Nomoto model. 

 

RTr r K     (8) 

 

NONLINEAR MATHEMATICAL MODEL FOR SHIP 

STEERING 

 

In this section, the standard LS-SVM [33] will be 

introduced briefly and an extended version, the sequential LS-

SVM based on incremental updating algorithm, is also derived. 

The sequential LS-SVM can update the estimated parameters in 

real-time when new data added to the training set. 

 

Standard LS-SVM for parameter estimation 

Firstly considering the training set, 

1{ | ( , ), , }n N

i i i i i i is s x y x y    S , where 
ix is the input 

and 
iy is the output. For regression purposes, Support Vector 

Regression (SVR) gives a general approximation function form: 

 

( ) ( )Ty x x b w φ    (9) 

 

where x is the training sample; y(x) is the target value; b is the 

bias term; w is a weight matrix; ( )xφ  is kernel function, which 

is used to map the training sample to a higher dimensional 

feature space. For parameter estimation purpose using LS-

SVM, the following optimization problem is formulated: 

 

2

, , 1

1 1
      ( , )min

2 2

. .           ( )

i

N
T

i
b e i

T

i i i

f w e C e

s t y x b e



 

  


w

w w

w φ

   (10) 

 

where , 1ie i N , is the error, and C is the regularization 

factor. As presented in Eq.10, the minimization of T
w w is 

closely related to the use of a weight decay term in the training 

of neural networks, and the 
2

1

N

ii
e

 is the empirical error. 

Therefore, the regularization factor, C balance the model 

accuracy and the model complexity, which also known as 

structural risk. 

The corresponding Lagrange function is given by: 

 

2

1 1

1 1
( , , , ) [ ( ) ]

2 2

N N
T T

i i i i i i i

i i

b e C e x b e y 
 

      w w w w φ    

(11) 
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where 
i is the Lagrange multipliers. The optimality condition, 

Karush-Kuhn-Tucker conditions (KKT) [33], are defined by 

computing the derivative of Eq.11 with respect to , , ,i ib e w  : 

 

1

1

0      ( )

0      0

0      

0      ( ) 0

N

i i

i

N

i

i

i i

i

T

i i i

i

x

b

Ce
e

x b e y














  




  




  




     







w φ
w

w φ

   (12) 

 

where 1i N . Eliminating variables w and ei and rewriting 

Eq.12 in matrix representation. 

 

1

00 1
 

1 ( )

N N
N

b

YK C 

     
     

       
θ YA

I
   (13) 

 

where I is an N N  identity matrix.
1[ , ]T

N   , 

1[ , , ]T

NY y y . ( ) ( ) ( ), 1T

k i k iK x x x x i N    is the 

kernel function that represents an inner product between its 

operands. It is positive definite and satisfies the Mercer 

condition [34, 35]. In this paper, the linear kernel function is 

used for parameter identification. LS-SVM model for function 

estimation yield: 

 

1

( ) ( )
N

i i

i

y x K x x b


      (14) 

 

Sequential LS-SVM 

 

 Based on the above discussion, assume the LS-SVM has 

been trained using the first N pairs of data, and a new data 

pair (xN+1,yN+1) is observed. As presented in Eq.13, when a 

new data added to the train set, LS-SVM can be written as: 

 

-1

1 1 1 1 1 1          N N N N N N       A θ Y θ A Y    (15) 

 

where 

1

N

N T c


 
  
 

A b
A

b
   (16) 

1, 1 2, 1 , 11, , , ,
T

N N N NK K K  
   b    (17) 

1

1, 1N Nc C K

      (18) 

1

1

N

N

Ny




 
  
 

Y
Y    (19) 

Now, in order to get the new parameters matrix, 
1 Nθ , 

the problem is how to find the solution of the matrix 
1NA . In 

batched LS-SVM, matrix inversion is calculated directly. But 

for real-time parameter estimated, computing of the matrix 

inverse is impractical, because it is usually time-consuming 

and needs a lot of memory when handling large sets of data. 

In the following part, an incremental updating algorithm will 

be presented for calculation of the inverse of the matrix 

1NA . Two lemmas need to be given first. As presented in 

[36]: 

Lemma 1.  The matrix A is invertible if A11 and A22 exist, and 

the inverse matrix, A-1 is given as: 

11 12

21 22

 
  
 

A A
A

A A
 

1 1
1 1 1 1

11 12 22 21 11 12 21 22 12 221

1 1
1 1 1 1

21 11 12 22 21 11 22 21 11 12

 
   



 
   

         
 
         

A A A A A A A A A A
A

A A A A A A A A A A

 Lemma 2.  The matrixs A, B, C, D, where A-1, C-1 exist, then 

the following equation is true: 

1 1 1 1 1 1 1( ) ( )         A BCD A A B C DA B DA  

According to the Lemma 1 and Lemma 2, obviously, the 

inverse matrix of AN and c exist. Therefore, the inverse 

matrix, 1

1N



A is given: 

1
1

1 11

1

1

1 1
1 1 1

1 T T

N N NN

N T

T T

N N N

c
c

c
c c




 





 
  

  
        

     
   

         

A bb A b b A bA b
A

b
b A b bA b A b

 (20) 

In which, the top left submatrix in Eq.20 can be rewritten 

as: 

1

1 1 1 11 T T T

N N N N Nc
c



    
       

 
A bb A A b b A b b A   (21) 

Assume, 
1

1T

Nc


    b A b , then Eq.20 can be rewritten in 

matrix expression: 
1 1

1 1

1

0
1

10 0

N N

N N

 

 



   
             

A A b
A A b   (22) 

With Eq.22, the inverse matrix of 
NA is computed in an 

incremental way, which avoids expensive inversion operation. 

The parameter matrix can be updated with the new data added 

to the training set. Therefore, the real-time parameters 

estimation can be implemented with Eq.22. 
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FREE-RUNNING MODEL TESTS 

 

In this section, the results of manoeuvring tests onboard a 

self-running ship model are presented. The self-propelled 

vehicle is a scaled ship model of a chemical tanker, and the total 

length is 2.58 meters. On the ship, various sensors have been 

equipped. The tests were conducted in an open-door pool with 

moderate wind conditions. 

Ship model dimensions and hardware structure 

The self-propelled vehicle is presented in Fig.1. The model 

is constructed from single skin glass reinforced polyester, with 

plywood framing and its design speed is 0.98 m/s. Its main 

particularities are given in Table 1. 

 

 
 

FIGURE 1: Scaled self-running ship model in the test. 

 

TABLE 1: Main particularities of the ship model 

CHEMICAL TANKER MODEL 

Length (m) 2.58 

Breadth (m) 0.43 

Draught (estimated at the tests) (m) 0.10 

Propeller diameter (m) 0.08 

Design speed (m/s) 0.98 

Scaling factor  

 

The self-running ship model is equipped with several 

sensors and actuators, i.e. 6-DOF fibre-optic gyrocompass, 

differential GPS, DC motor, industrial WI-FI communication, 

Compact-RIO embedded acquisition system, and batteries. All 

those equipment is controlled and synchronized using 

LABVIEW 2013 software, based on a real-time acquisition 

program. The hardware structure is presented as in Fig.2. The 

software architecture consists of several program loops: 

FPGA loop, real-time loop and TCP/IP loop [37,38]. 

Free-running model test results 

Free-running model tests on the scaled model were 

conducted during the period of March 2016 to May 2016 at 

swimming pool of "Piscina Oceânica", Oeiras, Portugal. The 

weather was sunny and dry, but some wind was constantly 

present, changing its speed (approximately in the interval of 

1–3 m/s) and direction as time passed. The pool is deep 

enough to neglect any shallow-water effects. The pool has a 

maximum length of 50 m and an average breadth of 20 m. 

 
 

FIGURE 2:  Onboard sensors and actuators. 

 

The model was carefully launched in water and partly 

ballasted to get zero list and trim, although the design draught 

was not reached in these tests. Also, the model was not 

calibrated in the sense of reaching the scaled vertical position 

of the centre of gravity and scaled values of the moments of 

inertia. During all manoeuvres, the rpm was kept constant. 

The 20 20  zigzag manoeuvring tests [26] have been 

carried out and the results are presented in Fig.3-4. Fig.3 

shows that the collected data have a high quality and is 

suitable to carry out further manoeuvrability analysis of the 

scaled ship model. In Fig.4, the wind speed is about 2 m/s and 

the direction are changing rage from80 100 . 
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FIGURE 3: The 20 20  zigzag manoeuvring test using 

free-running ship model. 

 

FIGURE 4: Wind conditions during the 20 20 zigzag 

manoeuvring tests. 

 

REAL-TIME PARAMETERS ESTIMATION AND 

VALIDATION 

 

In this section, the standard LS-SVM is used to estimate 

the parameters of the 1st-order Nomoto model using batched 

training data. The validation is presented by comparing the 

obtained parameters with theoretical solutions, which are 

calculated directly using 20 20  zigzag manoeuvring test. 

Then, the sequential LS-SVM is used to estimate the 

parameters of the nonlinear 2nd order Nomoto model in real-

time, and the obtained parameters are compared with the 

results of standard LS-SVM. 

Validation of standard LS-SVM 

In order to validate the effectiveness of standard LS-SVM, 

the analysis method presented in Refs. [39, 40, 41] will be used 

to obtain the parameters. Integrate Eq.8 with respect to time t, 

gives as: 

 

0 0 0

t t t

RT rdt rdt K dt       (23) 

 

By choosing the range of time, the parameters and can be given 

by the following equation 

 

2

1

1 2

t

R
t

K
dt



 




 


  (24) 

4

3

3 4

t

R
t

K r r

T dt






 


  (25) 

As shown in Fig.5, the shaded area gives the integral term at 

points delimited by the cross, where the yaw rate r is zero. 

According to the Eq.24 the parameter K  can be found, as 

0.2062K  . Similarly, the Eq.25 is applied to the first two 

zero crossing points of the heading record as shown in the 

Fig.5.  In this case, the heading equal to zero and T =2.5221  

can be calculated from Eq.25. As presented in Table 2, the 

difference between estimated and theoretical values is small. 

Therefore, standard LS-SVM based on batched training data is 

an effective method and can provide accurate parameters. It will 

be used to estimate the parameters of nonlinear 2nd-order 

Nomoto model in the following part. 

 

 
(a) 

 
(b) 

FIGURE 5: Calculation of Kδ (5a) and T (5b) using 20 20  

zigzag manoeuvring test data. 
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TABLE 2: The values of the parameters of 1st-order Nomoto 

model 

Method T Kδ 

Theoretical values 2.5221 0.2062 

LS-SVM 2.8540 0.2036 

 

Real-Time parameter estimation using sequential LS-SVM 

 

In this part, 20 20 and 30 30  zigzag manoeuvring 

tests are used as training data. Firstly, the stranded LS-SVM is 

used to estimate the parameters of nonlinear 2nd order Nomoto 

model. In order to simulate the online situation, the sample in 

the training set will feed into the Sequential LS-SVM by time 

step. Therefore, the dynamic parameters can be obtained and 

updated with the feedback measurement at each time step. 

Before the simulation, the number of the initial training set (N) 

need to be defined. It is used to estimate the initial parameters. 

In this paper, the size of the initial training set is 10. The 

Sequential LS-SVM is described in the Algorithm (1). 

 

Algorithms 1: Sequential LS-SVM algorithm 

Initialize:  Set 
410 ; 10;C N    

( ) ( ) ( )T

k i k iK x x x x  φ φ   

Result: 
1Nθ   

If New measurement (xN+1,yN+1)  Then 

 Compute the parameter b, c; 

Compute the inverse matrix 1

1N



A ; 

Update the parameter matrix 
1Nθ ; 

1N N   ; 

 

else  

 Output the previous parameter Nθ  

end  

 

The standard LS-SVM is used to estimate the parameters of 

nonlinear Nomoto model using the batched 20 20 and 

30 30  zigzag manoeuvring data. The obtained parameters 

are given in Table 3. The parameters Kδ has a bit drift from the 

theoretical value since the nonlinear model is selected. Usually, 

parameter T can be estimated using the empirical formula 

(T=T1+T2-T3 = 2.8011 and 2.5049, respectively). It is close to 

the theoretical value. Then the obtained Nomoto model is used 

to predict the response of yaw and yaw rate during the 

20 20 and 30 30 zigzag manoeuvring test.  The 

prediction and experimental results are presented in Fig.6, and 

they are in good agreement. The dynamic estimation of 

nonlinear parameters using sequential LS-SVM is presented in 

Fig.7. As shown in the figure 7a, the parameters are zero at the 

begin, because initial training set needs to be built first. Then 

the parameters converge to the values, which are estimated 

using standard LS-SVM. After 30 seconds, most the parameters 

converge the estimated values, it means that the sequence LS-

SVM can find the optimal values with limited samples, which is 

an advantageous feature compared with the least square 

method. The least squares method, theoretically, need an 

infinity training data to find the optimal values, but in most 

cases, the training data is limited. In Fig. 7b, the parameters, T1 

and Kδ , converges to the estimated values after $20$ seconds. 

For both cases, the coefficient of the nonlinear term donot 

converge due to the change of the environmental disturbance. 

 

TABLE 3: The parameters of Nonlinear 2nd order Nomoto 

Model using standard LS-SVM. 

Data T1 T2 T3 a Kδ 

20 20  2.7879 0.1716 0.1585 -0.2807 0.2028 

30 30  2.2464 0.4667 0.2082 -0.4222 0.1647 

 

 
(a) 

 
FIGURE 6: Prediction of 20 20   (6a) and 30 30  (6b) 

Zigzag manoeuvre using nonlinear 2nd order Nomoto model. 

 

 

7 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 04/05/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



  

 

 
(a) 

 
(b) 

FIGURE 7: Real-time parameters estimation of nonlinear 2nd 

order Nomoto model using 20 20 (7a) and 30 30 (7b) 

Zigzag manoeuvre test data. 

CONCLUSIONS 
 

In this paper, a nonlinear mathematical model for ship 

steering was introduced. It is an extended version of 2nd order 

Nomoto model by including nonlinear terms. In order to 

estimate the parameters, a scaled ship model was built, and a 

control and measure system was programmed in platform using 

LABVIEW. Various manoeuvring test has been carried out in a 

swimming pool successfully. Then Standard LS-SVM is 

introduced briefly and used to estimate the parameters of the 

manoeuvring model. The obtained parameters agree well with 

the theoretical values, which validate its effectiveness. 

 

In order to estimate the parameters dynamically, a 

sequential LS-SVM was derived based on an incremental 

updating algorithm. Sequential LS-SVM can update the 

parameters dynamically when a new data feedback into the 

identification system. It is different from the well-established 

estimation method based on a dynamic window. For the 

estimation based on the dynamic window, it can estimate the 

parameters in real-time, but the model needs to be trained in 

each time step. For sequential LS-SVM, the parameters are 

updated in an incremental way, which avoids expensive training 

operation in each time-step. The parameters obtained by 

sequential LS-SVM are compared with the values estimated 

using standard LS-SVM and theoretical values. They are in very 

good agreement, and the parameters converge to the values with 

limited training data. Therefore, the proposed method can 

dynamically update the parameters and converge to the true 

values fast, and it can be used for designing a dynamic model-

based autopilot of marine vessels. 
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