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Abstract. Power producers with flexible production systems such as
hydropower may sell their output in the day–ahead and balancing power
markets. We present how the coordination of trades across multiple mar-
kets may be described as a stochastic program. Focus is on how the in-
formation structure inherent in the multi–market setting is represented
through the scenario tree and mathematical modelling. In the model,
each market is represented by a price or premium and an upper limit
on the volume that can be traded at the given price. We illustrate our
modelling by comparing coordinated versus sequential bidding strategies.
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1 Introduction

Most European power markets are organized as day–ahead auctions where ex-
pected production and consumption for the next day is traded. However, due
to unforeseen events that may happen between closure of the day–ahead market
and real–time, the transmission system operator (TSO) is responsible for main-
taining the instantaneous balance between supply and demand. To accomplish
this, the TSO procures several types of reserves from the agents in the power sys-
tem. Usually, reserve products are defined based on response time, and referred
to as frequency containment (primary), frequency restoration (secondary) and
replacement (tertiary) reserves. In this paper, the term balancing market will
be used to describe the market where the TSO procures replacement reserves.
The TSO is the only buyer in the balancing market and the supply side are
producers or consumers with flexible portfolios. To participate in the balancing
market, agents must be able to ramp up or down a given minimum amount in
a short time interval. Approved participants submit their willingness to ramp
up/down, and the TSO chooses the most cost–efficient bids as need arises.

Hydropower is well suited for participating in the balancing market because
of low start–up cost and the possibility of storing water in reservoirs. The ques-
tion raised in this paper is how a flexible hydropower producer may maximize
its revenues from participating in both the day–ahead and balancing market.
Several works have investigated optimization models for multi–market trade of
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electricity, see for instance [1] that uses stochastic programming [2]. The reason
why stochastic optimization is appropriate, is that the trading strategy must be
determined prior to market clearing, i.e. when prices are still unknown.

In this work, we present a stochastic program for a hydropower producer
that coordinates its trades between the day–ahead and the balancing market.
We focus on the information structure inherent in the multi–market setting and
how this is represented through the scenario tree and mathematical modelling.
The optimization model is an extension of [4] which showed how optimal bids for
the day–ahead market may be determined using the production scheduling model
that is used by the Nordic hydropower industry today [5]. In this work, multi–
market trade is modelled by including several sale variables in the model, and by
letting let each market be represented by a price or premium and an upper limit
to the volume that can be traded at the given price. To generate scenario trees
for this paper, we use the forecast–based scenario generation method described
in [3], and use a set of time–series models to generate the forecasts required
as input. The optimization model, however, is general and may be used with
any type of scenario–generation method that creates scenarios for the stochastic
parameters, i.e. prices and the volume limit.

2 Modelling the markets

The forecast–based scenario generation method presented in [3] generates sce-
nario trees based on point–forecasts combined with historical forecast errors. We
therefore develop a set of time–series models that generates a daily point forecast
for the most important properties of the day–ahead and the balancing market.
Each market is characterized by a price and a maximum quantity that may be
traded at this price. The full presentation of how the markets are modelled by
time–series is given in [6], but the most important aspects are repeated here for
clarity.

When it comes to the characteristics of each market, the day–ahead market
is a daily, centrally cleared auction. Due to the daily clearing of the day–ahead
market, the hourly day–ahead market prices cannot really be represented as a
pure time–series process. In normal time series, the information set is assumed to
be updated when moving from one time step to the next. This is not the case for
day–ahead prices because the information set is updated on a daily rather than
an hourly basis. Thus, it is more correct to model the day–ahead prices, pDt , as
a time series of 24–hour panel data rather than a single time series. Our method
is based on [7], but in addition we account for seasonal variations. Treating the
hourly day–ahead prices as panel data allows for modelling correlations between
consecutive hours as well as correlations to the same hour on consecutive days.

In regards to the volume limit in the day–ahead market, we assume that the
day–ahead market has perfect competition, and that the producer may sell all
its output to the market at the given price. The limit on the maximum volume
that can be traded is therefore set to be so large that it is never binding for the
producer’s problem. No separate time–series model is therefore developed for the
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volume limit in the day-ahead market, it is simply a very large constant for all
hours, V D. The optimization model can take either a deterministic parameter
or a stochastic series as input for the volume limit, depending on assumptions
on perfect competition or limited liquidity.

Turning to the balancing market, we observe that this market is event–driven,
i.e. there is only a demand in the balancing market if there is an imbalance
between supply and demand of power. An event is here taken to mean any
random event that could not be accurately predicted before closing of the day–
ahead market, from power plant failures to line outages to smaller events such
as forecasting errors or even structural imbalances. In terms of modelling, the
balancing market is described by three properties, namely i) the balancing state,
ii) the balancing volume and iii) the balancing price or premium. The balancing
state is determined by the real–time balance of supply and demand. If demand
exceeds supply the system will need up regulation and vice versa. In fact, the
balancing market may be seen as two markets: one for up regulation where the
producer offers to ramp up production, and one for down regulation where the
producer offers to ramp down. The price for up regulation will be higher than
the day–ahead market price, while the price for down regulation will be lower. In
an optimization model for multi–market trade, it is the difference between the
market prices that are important for the trading strategy. We therefore consider
balancing market premiums, ρB+

t and ρB−t , rather than prices. Another benefit of
modelling the premiums rather than prices, is that, as found in [6], the premiums
may be modelled as independent from the day-ahead prices.

There is demand in the balancing market only if there is an imbalance be-
tween supply and demand, and the size of demand is given by the amount of
power needed to bring the system back in balance. Due to this limited demand,
we model the balancing market by stocahstic trade limits as well as premiums.
That is, for each time step, the maximum volume that may be traded is limited
by upper bounds, vB+

t and vB−t . These upper bounds are stochastic parameters
in the multi–market optimization problem, and are zero in hours where there is
no imbalance.

We thus need a total of four time series to describe the balancing market:
premiums and volumes in each direction. However, all of the models for the
balancing market are based on one of the models found to have good performance
in [8], namely the model based on [9]. This model considers the event-driven
nature of the balancing market by using unevenly spaced time–series. In our
model, the timing between balancing events is modelled by a moving–average
process that is updated every time an event occurs. The balancing volume (i.e.
the size of the balancing event if it occurs) is modelled as an autoregressive
stationary unevenly spaced time series of order 1. The same type of series is
fitted to the balancing market premiums.

The historical data used to fit the time–series for the balancing market de-
scribes the total volume of activated power in the balancing market. We must
make assumptions on how much of the total volume that can be supplied by
an individual agent or hydropower system. One approach is to assume that the
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individual producer may take a percentage of the total market volume, e.g., 10
%, in every hour where there is demand. Another approach is to assume that
in each hour, the total market volume may be activated from a single producer
with a given probability, e.g., one in ten times. The probability may be related
to the number of agents in the power market. In the case studies in Section 4,
these two approaches are denoted “Percentage” and “Probability”.

The process of using the time–series models and the forecast–based scenario–
generation method to create input to the optimization model is illustrated in Fig.
1. To develop the time–series models, we use data from Nord Pool’s ftp server for
the years 2014–2016. For each day of 2017, we then generate a daily forecast with
a 72–hour forecast horizon. We then use realized data from 2017 to determine
historical forecast errors by comparing our daily forecast to historical realized
values. This gives us a “database” of historical forecast errors made over a year
for forecasting lengths up to 72 hours. We only need to initialize this database
once before the start of the test period which are the first 18 weeks of 2018. For
test instance, the historical forecast errors are used together with new daily point
forecasts to generate scenarios. We generate a set of scenarios for the day–ahead
market prices and another set of scenarios for the balancing market premiums
and volumes. This is because the balancing market premiums and volume are
independent of the day–ahead price as explained above. The two set of scenarios
are then combined all against all to generate a total scenario tree that describes
all the possible outcomes for the day–ahead and balancing market. This total
scenario tree is used as input to the stochastic optimization model.

Data
2014-2016

Fit time-series models for 
𝑝𝑝𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷 ,𝜌𝜌𝑡𝑡𝐵𝐵𝐷𝐷+,𝜌𝜌𝑡𝑡𝐵𝐵𝐷𝐷−,𝑣𝑣𝑡𝑡𝐵𝐵𝐷𝐷+,𝑣𝑣𝑡𝑡𝐵𝐵𝐷𝐷+

Historical forecast errors

Data
2017

Scenario generation

Daily point forecasts for 2017 
𝑝𝑝𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷 ,𝜌𝜌𝑡𝑡𝐵𝐵𝐷𝐷+,𝜌𝜌𝑡𝑡𝐵𝐵𝐷𝐷−,𝑣𝑣𝑡𝑡𝐵𝐵𝐷𝐷+,𝑣𝑣𝑡𝑡𝐵𝐵𝐷𝐷+

Daily point forecasts for 2018 
𝑝𝑝𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷 ,𝜌𝜌𝑡𝑡𝐵𝐵𝐷𝐷+,𝜌𝜌𝑡𝑡𝐵𝐵𝐷𝐷−,𝑣𝑣𝑡𝑡𝐵𝐵𝐷𝐷+,𝑣𝑣𝑡𝑡𝐵𝐵𝐷𝐷+

𝑝𝑝𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷

𝜌𝜌𝑡𝑡𝐵𝐵𝐷𝐷+,𝜌𝜌𝑡𝑡𝐵𝐵𝐷𝐷−, 𝑣𝑣𝑡𝑡𝐵𝐵𝐷𝐷+, 𝑣𝑣𝑡𝑡𝐵𝐵𝐷𝐷+
Combine

𝑝𝑝𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷,𝜌𝜌𝑡𝑡𝐵𝐵𝐷𝐷+,𝜌𝜌𝑡𝑡𝐵𝐵𝐷𝐷−,𝑣𝑣𝑡𝑡𝐵𝐵𝐷𝐷+,𝑣𝑣𝑡𝑡𝐵𝐵𝐷𝐷+

Optimization

Fig. 1. Process for generating input to the optimization model. The grey boxes are
repeated for every test instance, while the white boxes are performed only once to
initialize the process.
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3 Problem formulation

This section presents the basic mathematical modellig of the stochastic opti-
mization model that coordinates multi–market trades for a power producer. The
producer must determine the trade volumes that maximizes the value of trades
made in the day–ahead and the balancing market. This may be expressed as

max
∑
t

∑
s

πs

(
pDtsx

D
ts + (pDts + ρB+

ts )xB+
ts + (pDts + ρB−ts )xB−ts

)
(1)

where xDts, x
B+
ts , xB−ts are the volumes sold in the day–ahead and the up balancing

and down balancing market for delivery at time t in scenario s, and πs is the
probability of scenario s. The need for coordination across markets arises because
the final commitment, i.e. the actual volume to be produced in a specific hour,
yts, is the summation over the position made in each market,

yts = xDts + xB+
ts + xB−ts . (2)

In addition, the volumes sold in any market must be less than the demand in
the market, i.e.,

xDts ≤ V D, xB+
ts ≤ vB+

ts and xB−ts ≤ vB−ts . (3)

The above model assumes that any volume yts may be produced. Actual pro-
duction systems are much more complex. Details of hydropower production are
however omitted from the presentation here. In fact, the above model may be
used by any producer that participates in the day–ahead and balancing market
as long as it is combined with a representation of the specific production sys-
tem. In our case, the multi–market model is implemented within the framework
of models that is used for short–term production scheduling by most large hy-
dropower producers in the Nordic region [5]. The volume to be produced, yts, is
thus determined by this more complex model that includes all technical, hydro-
logical and environmental constraints relevant for hydropower production, e.g.,
minimum production levels, forbidden operating zones, start/stop, discharge de-
pendent losses in tunnels and penstocks, minimum and maximum reservoir levels,
minimum and maximum river or tunnel flows and more.

The simple model formulation above is however not complete without mod-
elling the information structure in the multi–market setting. The day–ahead
prices are revealed once every day when the market clears. This means that the
scenario tree for day–ahead prices must have a new stage every 24 hours. For a
72–hour horizon where the scenario tree branches into two new scenarios at each
branching step, daily branching would yield 22 = 4 scenarios, see the left part
of Fig. 2 for an illustration. In the balancing market, however, prices and vol-
umes are revealed in real–time, which would lead to a scenario tree with hourly
branching. This would quickly lead to a very large problem, especially consid-
ering that more than two new scenarios at each branching point is necessary to
represent the full uncertainty of prices. To avoid this curse of dimensionality, we
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choose to have daily branching also for the balancing market, i.e., that both the
day–ahead prices and the balancing market premiums and volumes are revealed
together when the day–ahead market clears. This assumption means that the
models sees no uncertainty in the balancing market during each day. This will
likely cause an overestimation of the profits obtained by participating in the
balancing market because the producer can determine its sales in the balancing
market based on known prices and volumes within each day.

In the stochastic program, we use a scenario representation rather than a
node formulation, see the right part of Fig. 2. This means that we must explicitly
include non–anticipativity constraints stating that if two scenarios s and s′ are
indistinguishable at time t on the basis of information available at time t, then
the decisions made in scenario s must be equal to the decisions made in scenario
s′. In our case, this means that the produced volume must be equal between all
scenarios belonging to the same node,

yts = yts′ . (4)

The same is true for the traded volumes xDts, x
B+
ts , xB−ts . The non–anticipativity

constraints are illustrated by the fully drawn grey boxes in Fig. 2. In addition to
non–anticipativity related to the daily clearing of the markets, the optimization
model also needs to know that trades must be done prior to market clearing
and that day–ahead trades must be made prior to balancing market trades. This
means that the day–ahead trades cannot depend on any particular realization
of prices for the next day. We call this the market non–anticipativity constraints
and formulate them as

xDts = xDts′ . (5)

The market non–anticipativity constraints are illustrated by the dotted grey
boxes in Fig. 2. Similar constraints may also be applied to the balancing market
trades, xB+

ts and xB−ts , depending on whether the trades in the balancing market
are to be decided in real–time or not. If the constraint is imposed on the balancing
trades, it means that the trades must be determined prior to clearing of the day–
ahead market. If the constraints are not imposed, the balancing trades may be
determined after clearing of the day–ahead market, i.e. when the producer has
knowledge of the realized balancing market prices and volumes. This is of course
not possible in reality, but we include it in our case study to measure the value
of having perfect information of the balancing market.

Some cases in Section 4 also consider the case when the producer is allowed
to submit a price–dependent bid curve to the day–ahead market instead of just a
single quantity. How the model for short–term hydropower scheduling is extended
to also include decisions for optimal bids to the day–ahead market is explained
in [4]. In the current framework, determining optimal bids translates to inequality
constraints on the volumes traded in the day–ahead market,

xDts ≤ xDts′ if pDts ≤ pDts′ , (6)

instead of the market non–anticipativity constraints in Eq. (5).This means that
the equality constrainst in the dotted grey boxes in Fig. 2 are relaxed to inequal-
ity constraints.
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1 24 48 72 1 24 48 72

Node formulation Scenario formulation

Fig. 2. (Left) Node representation of a scenario tree with daily branching. The dotted
grey boxes illustrate that the traded volumes must be determined before prices are
revealed. (Right) Scenario representation of a scenario tree with daily branching. The
fully drawn grey boxes illustrate the normal non–anticipativity constraints, while the
dotted grey boxes represent the market non–anticipativity constraints.

4 Results

In this section, we illustrate how the multi–market model is applied to a simple
hydropower system. The system has one reservoir connected to a plant with two
generators. The total capacity is 90 MW. We test the optimization model for 30
instances corresponding to initial conditions of 30 different days in the first 18
weeks of 2018. The results given in Tables 1 and 2 are average numbers over the
30 instances. For each instance we use a 72–hour horizon with branching in the
scenario tree after hour 24 and 48. We use 5 new scenarios at each branching
point for the day–ahead prices and 3 scenarios for the balancing market. This
results in 5 ∗ 5 ∗ 3 ∗ 3 = 225 scenarios in total for each instance.

We first consider the case when the producer participates in the day–ahead
market only. The next case is when the producer participates in both the day–
ahead and balancing market, but consider the two markets sequentially and
determines the volumes in the day–ahead market without seeing the balancing
market. This is called sequential bidding [1]. In the first case of sequential bid-
ding, we assume that the producer determines all trades in the balancing market
at once right after clearing of the day–ahead market. In the second case, we as-
sume that trades in the balancing market may be done in real–time. In the next
set of cases, the producer can coordinate its trades in the two markets, that is,
the producer may determine the day–ahead bids while also seeing the balancing
market. For the coordinated case we also consider cases when balancing market
decisions are done only once or in real–time. The different cases are summarized
in Table 1, showing the percentage increase in objective function value compared
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to the base case of participating in the day–ahead market only. We also use dif-
ferent assumptions on the volumes available in the balancing market. Columns
2 and 3 of Table 1 show results when the volume available to the individual
producer is 10 % and 5 % of the total market volume. This means that a low
volume is available in most hours. In Columns 4 and 5, however, the total market
volume is available to the producer 1 in 10 and 1 in 20 times. This means that
large volumes are available in just a few hours. We see that for the 10 % and
5 % cases, there is a gain in profits from participating in the balancing market.
The gain is larger if trades may be coordinated, and even larger if balancing
market trades may be done in real–time. The gain of real–time trading is higher
than the gain of coordination. The option of trading in real–time corresponds
to having perfect information about the balancing market, which is not possible
in reality. For the 1/10 and 1/20 cases, there is a gain of real–time trading but
not from coordinating trades. This is because balancing markets volumes are so
rare that they do not influence the trading strategy if they are to be determined
prior to operations.

Table 1. Percentage increase in objective function value compared to participating the
the day–ahead market only. The producer submits only one production volume to the
market.

Percentage Probability
Case 10 % 5% 1/10 1/20

DAM - - - -
DAM + BM sequential 1.12 0.56 - -
DAM + BM sequential + real–time 1.56 0.82 0.20 0.10
DAM + BM coordinated 1.32 0.55 - -
DAM + BM coordinated + real–time 2.73 1.28 0.20 0.10

We repeat the same cases as above, but now we assume that the producer
can submit a price–dependent bid curve to the day–ahead market. The results
are summarized in Table 2. In general, we see similar results as in the case
without bidding: there is a gain from coordinating trades and an even larger
gain if balancing markets trades may be done in real–time, i.e. with perfect
information. Another result, although not evident from the tables, is that the
objective function value when submitting bids is higher than when the producer
submits just a single quantity, i.e., the base case of participating in only the day–
ahead market is 0.88 % higher in Table 2 than in Table 1. This is because the
market non–anticipativity constraints (equality constraints between scenarios)
are relaxed to inequality constraints in the bidding problem.
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Table 2. Percentage increase in objective function value compared to participating
the day–ahead market only. The producer submits a price-dependent bid curve to the
market.

Percentage Probability
Case 10 % 5% 1/10 1/20

DAM - - - -
DAM + BM sequential 0.21 0.10 - -
DAM + BM sequential + real–time 2.07 1.14 0.19 0.06
DAM + BM coordinated 1.19 0.46 - -
DAM + BM coordinated + real–time 2.66 1.30 0.19 0.07

5 Conclusions

This paper has presented a stochastic program that illustrates how the informa-
tion structure in a multi–market setting may be modelled for a power producer
participating in the day–ahead and balancing power market. The formulation
includes normal non–anticipativity constraints that represents the daily clearing
of the markets. We also include market non–anticipativity constraints which rep-
resents that trades must be made prior to market clearing and that day–ahead
trades must be made prior to balancing market trades. Similar restrictions may
be applied to the balancing market trades, depending on whether they are to be
determined in real–time or not. We find that there is a gain from coordinating
trades across markets, and an even larger gain from bidding in the balancing
market in real–time. The option of trading in real–time corresponds to having
perfect information about the balancing market, which is not possible in real-
ity. We also use two different methods for representing the balancing market
volume that is available to an individual producer: either the producers see a
small percentage of the total market volume in all hours, or the entire market
volume is available for the producer with a given probability. The probability
may be based on the number of agents in the market and may thus be a realistic
representation of the balancing market volume.
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