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Abstract— In this paper, we consider the problem of real-
time optimization of an oil and gas production network.
The production network is often made of several wells from
different reservoir sections producing to a common processing
facility. In this work, we exploit this spatial structure of the
system and cast the production optimization problem into a
distributed optimization problem and solve it using Lagrangian
decomposition. We extend previous work on decomposition for
static real-time production optimization problem by considering
a dynamic real-time optimization problem. We demonstrate
the applicability of the proposed method using a gas-lifted
well network with shared resources and common capacity
constraints.

I. INTRODUCTION

The optimal operation of an oil and gas production net-
work is a challenging task that has received considerable
attention recently. In order to meet goals and objectives
ranging from long-term decisions to small corrective actions,
the decision making process is typically decomposed in time
as described in [1]. Real-time production optimization (also
known as daily production optimization) is a crucial step
in maximizing the revenue of day-to-day operations of the
production network. This typically involves making decisions
such as allocating production target from different wells,
allocation of shared resources, etc. Hence this is equivalent
to real-time optimization from a process systems perspective.

The optimal decision variables can be computed by em-
ploying mathematical optimization. The authors in [2] re-
ported production increase in the range of 1-4% by using
mathematical optimization tools. Although the more tradi-
tional approach is to formulate the production optimization
problem as a static problem, it was noted in [3] that many
production networks may benefit from dynamic formula-
tions of production optimization problem. By employing
a dynamic optimization problem, the transients are also
optimized, leading to more economical operation during
the transients. In the face of volatile oil prices and higher
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recovery costs, optimizing during the transients may be
desirable.

In this work, we consider such a dynamic production
optimization problem. Recent works such as [4], [5] and
[6] presented a dynamic optimization framework for oil
and gas production networks. However, optimization of a
large scale production network may be complex with several
hundred decision variables. The computational cost of dy-
namic optimization problems has been a prohibitive factor
for implementation in many oil and gas applications [7].
An oil and gas production network typically consists of
several wells producing to a common production manifold,
which takes the produced fluids to the processing facility.
For example, the Troll oil field in the Norwegian continental
shelf has more than one hundred subsea wells producing to
a common offshore facility [8].

To this end, the wells are coupled by the processing
facility. Due to the structure of the production network, it can
be easily decomposed into several smaller subsystems, for
example, into each well or cluster of wells. The authors in [9]
presented Lagrangian decomposition approaches to solve the
static production optimization problem for such a large scale
production network by decomposing it into several smaller
subsystems. The nonlinear steady-state model was described
using a piecewise affine (PWA) model and was solved using
mixed-integer framework. In this paper, we extend the work
in [9] to dynamic production optimization problems. The
system is modelled as a nonlinear dynamic model and is
solved using as a nonlinear programming (NLP) problem.

The Lagrangian decomposition splits the problem into
several smaller subproblems such that the subproblems can
be solved in parallel, significantly reducing the computation
time of the dynamic optimization problem. Besides reducing
computational time and enabling parallelization, decompos-
ing the optimization problem into several smaller systems
also addresses other drawbacks of using a single centralized
optimizer to control a large scale system [10].

• Modelling Effort- With a decentralized approach, it may
be easier to maintain the models for smaller subsystems
than for a large centralized optimizer. Modelling effort
is often complimented with plant experimentation and
system identification. As such, it is also easier to
evaluate, identify and update fewer models for smaller
subsystems. A decentralized approach fits well with the
existing workflow of modelling in the upstream oil and
gas industry.

• Monitoring - A centralized optimizer may be difficult
to understand and monitor the performance due to
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Fig. 1: Production network with gas lifted wells.

the complex interactions. Breaking it up into smaller
subsystems makes the control structure more transparent
and easier for the operators to understand. It also
enables some subsystems to be turned off independently,
instead of turning off the optimizer for the entire pro-
duction network.

Operator understanding, ease of monitoring and maintenance
and flexibility are important aspects in the success of such
advanced control solutions [11], [10]. These are some of the
important reasons to adopt a distributed controller approach
rather than a centralized approach.

The main contribution of this paper is the extension of the
Lagrangian decomposition framework in [9] to dynamic pro-
duction optimization problems. The remainder of the paper
is organized as follows. Section II describes the process and
formalizes the problem statement. The Lagrangian decom-
position framework is presented in Section III. Section IV
presents the simulation results. Discussions are provided in
Section V before concluding the paper in Section VI.

II. PROBLEM FORMULATION

In this work we consider a network of gas lifted oil
wells where nw gas lifted wells are connected to a common
production manifold as shown in Fig.1. In gas lifted wells,
compressed gases are injected into the well tubing via the
annulus to boost production. Injecting gas reduces the fluid
mixture density in the well tubing resulting in reduced
hydrostatic pressure drop and hence increased production.
However injecting too much gas increases the frictional
pressure drop which has a counteracting effect. Therefore,
there is an optimum gas lift injection rate that increases the
oil production. Additionally, the total gas processing capacity
for the production network may be constrained or the total
available gas for gas lift may be limited. The optimization
problem thus involves computing the optimal allocation of
gas lift among the different wells such that the total produc-
tion is maximized while satisfying the process constraints.
The gas-lifted wells are typically controlled using the gas
lift injection rate which are the manipulated variables.

Each gas lifted well model is modelled with two control
volumes, one for the annulus and the other for the well
tubing. The models are made of four different parts, namely,
(i) mass balance of the different phases, (ii) density models,

(iii) pressure models and (iv) flow models [12]. The mass
balances in each control volume for each phase is given by,

ṁi
ga =wigl − wiiv (1a)

ṁi
gt =wiiv − wipg + wirg (1b)

ṁi
ot =wiro − wipo (1c)

∀i ∈ {i, . . . , nw}

where, mi
ga is the mass of gas in the annulus. Note that the

annulus is only filled with the lift gas. The mass of the gas
phase and the oil phase inside the well tubing is denoted
by mi

gt and mi
ot respectively. wigl is the gas lift injection

rate at the top of the annulus and the gas rate that actually
flows from the annulus into the well tubing down hole is
denoted by wiiv . The oil and gas production rates that comes
out of the well is denoted by wipg and wipo respectively and
the oil and gas flow rate that enters the well tubing from
the reservoir are denoted by wirg and wiro respectively. The
superscript i refers to the ith well.

We assume an isothermal system and the average tem-
perature of the fluid in the annulus and the well tubing are
assumed to be known. Ideal gas laws are used to compute the
density of gas in the annulus and the fluid mixture density
inside the well tubing. The density of gas in the annulus ρia
and the fluid mixture density in the tubing ρim for each well
i are given by:

ρia =
Mwp

i
a

T iaR
, (2a)

ρim =
mi
gt +mi

ot − ρioLirAir
LiwA

i
w

(2b)

∀i ∈ {i, . . . , nw}

where Mw is the molecular weight of the gas, R is the gas
constant, T ia is the annulus temperature and the density of oil
in the reservoir is denoted by ρio. L

i
r and Liw are the length

of the well sections above and below the injection point
respectively, and the corresponding cross-sectional areas are
denoted by Ar and Aw respectively.

The annulus pressure pia, wellhead pressure piwh, well
injection point pressure wiiv and the bottom hole pressure
pibh are given by:

pia =

(
T iaR

V iaMw
+

gLia
LiaA

i
a

)
mi
ga, (3a)

piwh =
T iwR

Mw

 mi
gt

LiwA
i
w + LirA

i
r −

mi
ot

ρio

 , (3b)

piwi =piwh +
g

AiwL
i
w

(mi
ot +mi

gt − ρioLirAir)Hi
w, (3c)

pibh =piwi + ρimgH
i
r (3d)

∀i ∈ {i, . . . , nw}

where Lia and Aia are the length and cross sectional area of
the annulus respectively. The average well temperature inside
the well tubing is given by T iw. Hi

r and Hi
w are the vertical

height of the well tubing below and above the injection point



respectively, and g is the acceleration of gravity constant.
The cross-sectional area of the annulus and the tubing are
computed using their respective diameters, Di

a and Di
w.

The flow through the downhole gas lift injection point wiiv
is modelled as a flow through an orifice with no back-flow.
The mixture flow through the wellhead production choke,
wipc is modelled using a choke model with no back-flow.
Using the mass fractions, the individual produced gas and
oil phase flow rates, wipg and wipo are given. A simple linear
inflow model is used to model the reservoir oil and gas flow
rates, wiro and wirg are given by [13]:

wiiv =Ciiv

√
ρia max(0, piai − piwi), (4a)

wipc =Cipc

√
ρiw max(0, piwh − pim), (4b)

wipg =
mi
gt

mi
gt +mi

ot

wipc, (4c)

wipo =
mi
ot

mi
gt +mi

ot

wipc, (4d)

wiro =PIi(pir − pibh), (4e)

wirg =GORi · wiro, (4f)

∀i ∈ {i, . . . , nw}

where Ciiv and Cipc are the valve flow coefficients for the
downhole injection orifice and the production choke, respec-
tively. The reservoir productivity index PIi and the reservoir
pressure pir describes the drawdown from the reservoir.
GORi is the gas–oil ratio in the reservoir. Although the
reservoir conditions change slowly over time, it is fair to
assume that these parameters are constant in the timescale
of short-term production optimization. The manifold pressure
pim is assumed to be tightly regulated to a constant pressure.

Each gas lifted well is modelled as an index-1 semi-
explicit DAE system of the form,

ẋi = f i(xi, zi,ui) (5a)

0 = gi(xi, zi,ui) (5b)
∀i ∈ {i, . . . , nw}

where xi ∈ Rnx and zi ∈ Rnz are the differential and
algebraic states respectively for each well i ∈ {1, . . . , nw}
and ui ∈ Rnu is the control input. f i(xi, zi,ui) and
gi(xi, zi,ui) are the set of differential and algebraic equa-
tions for each well i. For each well, the variables on the
left hand side of equations (1a) form the differential states
xi and (2a)-(4a) form the algebraic states zi. As such there
are nx = 3 differential states, nz = 12 algebraic states and
nu = 1 control input for each gas lifted well.

In the gas lift optimization problem, the stage cost Ji :
Rnx × Rnz × Rnu → R is expressed as

Ji(x
i, zi,ui) := −cowipo + cglw

i
gl (6)

where co and cgl are the oil price and cost of gas lift
compression respectively. wipo represents the oil production
rate from well i and wigl represents the gas lift injection rate
for well i. The gas lifted well system also has some common

resource constraints that couple the different subsystems
together, which are enforced as nonlinear constraints.

nw∑
i=1

(
Gi(xi, zi,ui)

)
− r ≤ 0 (7)

This could be either in the form of gas capacity constraint
where r := wmaxg and (7) is expressed as

nw∑
i=1

(
wipg

)
− wmaxg ≤ 0 (8)

Alternatively the coupling constraint could also be due to
the limited gas available for lifting that has to be optimally
allocated among the wells. In this case, r := wmaxgl and (7)
is expressed as

nw∑
i=1

(
wigl
)
− wmaxgl ≤ 0 (9)

Before solving the infinite dimensional optimal control
problem, the system dynamics are first discretized into a
finite dimensional optimal control problem using a third
order direct collocation, which gives a third order approx-
imation of the system (5). The reader is referred to [12] for
more detailed description. The resulting discretized system
for each well i at any time step k can then be expressed as,

Fi(χik+1,χ
i
k,ν

i
k, ζ

i
k) = 0 (10)

where χ, ν and ζ are the discretized counterparts of the
differential states x, algebraic states z and the control inputs
u respectively.

The centralized dynamic optimization problem can then
be formalized as,

Θ := min
χk,νk,ζk

N∑
k=0

nw∑
i=1

Ji(χ
i
k,ν

i
k, ζ

i
k) (11a)

s.t.: for all i ∈ {1, . . . , nw}, for all k ∈ {1, . . . , N} :

Fi(χik+1,χ
i
k,ν

i
k, ζ

i
k) = 0 (11b)(

χik,ν
i
k, ζ

i
k

)
∈ Z (11c)

χi0 = xi(t) (11d)
nw∑
i=1

(
Gi(χik,ν

i
k, ζ

i
k)
)
− r ≤ 0, ∀k ∈ {1, . . . , N}

(11e)

Z represents the path constraints which are enforced in
the form of bounds on the optimization variables (differential
states, algebraic states and the control inputs), χi

νi

ζi

 ≤
 χik
νik
ζik

 ≤
 χi

νi

ζ
i

 (12)

where the (·) and (·) represents the upper and lower bounds,
respectively. (11d) enforces the initial states χi0 to be equal
to the current measured/estimated state xi(t) at time t.

The centralized problem can be solved by repeatedly
solving (11) at each sampling time k to compute the optimal



input trajectory ζ∗[k,k+N ] over the prediction horizon. The
first step of the optimal control sequence is implemented on
the plant, i.e. u∗

k = ζ∗k.

III. DECOMPOSITION METHOD

It can be seen clearly from the optimization problem (11)
that it is easily separable for each well i except for the cou-
pling constraint (11e). There are many different approaches
to decomposing a system with coupling constraints which are
broadly categorized into primal and dual approaches [14]. In
this work, we consider a dual decomposition approach, also
known as Lagrangian decomposition [15].

The basic idea behind Lagrangian decomposition is to
solve the dual problem obtained by relaxing the coupling
constraint (11e). A master problem then manipulates the dual
variables to co-ordinate the subproblems. To illustrate this,
consider the centralized optimization problem (11) and let
the optimization variables be represented as

Xk =
[
χi

T

k νi
T

k ζi
T

k

]T
(13)

The Lagrangian function for (11) can be written as,

L(X,µ,λ) =

N∑
k=1

[
nw∑
i=1

Ji(X
i
k) +

nw∑
i=1

(
µikc

i(Xi
k)
)

+λk

(
nw∑
i=1

(
Gi(Xi)

)
− r

)]
(14)

∀i ∈ {1, . . . , nw}, k ∈ {1, . . . , N}

where µik represents the Lagrange multiplier for the con-
straints (11b),(11c) and (11d) collectively represented as
ci(Xi

k) which are unique to each subsystem i and do not
have any impact on the other subsystems. λk represents the
Lagrange multiplier for the coupling constraint (11e) which
are common for all the subproblems. Notice that since we
consider dynamic optimization over a prediction horizon of
[k, k + N ], the Lagrange multipliers are also a function of
time and hence are given a subscript k.

It is evident that the Lagrange function (14) is now
additively separable for each subsystem. Hence the problem
may be easily decomposed by assigning prices of the shared
resources, and adding the cost of the resources to the objec-
tive function of each subproblem. In other words, λk is the
price variable and the nw subproblems are solved by fixing
λk. The resulting optimal solution from each subproblem is
then used to assess the constraint in the master problem and
iteratively update λk.

Each decomposed subproblem using Lagrangian relax-
ation can be expressed as,

Pi(λk) := min
Xi,µi

N∑
k=1

[
Ji(X

i
k) + µik

(
ci(Xi

k)
)

+λk

(
Gi(Xi)− r

nw

)]
(15)

∀i ∈ {1, . . . , nw}

· · ·

λ
+

k
= max

(

0;λk − α

[P
Gi(Xi

∗

)− r
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Subproblem
1
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∗

Fig. 2: Schematic representation of the dual decomposition
approach.

The optimal solution Xi∗

[k,k+N ] provided by each of the
subproblem is then used in the master problem to update
the dual variable λk for the next iteration.

Lemma 1: If Xi∗

[k,k+N ] is the optimal solution computed
by each subproblem by fixing λk, the solution to the master
problem is then given by the descent step,

λ+
k = max

(
0,λk + α

[
nw∑
i=1

(
Gi(Xi∗

k )
)
− r

])
(16)

∀k ∈ {1, . . . , N}

where λ+
k represents the updated λk for the next iteration

and α is any suitable step length size.
Proof: The original problem (11) is equivalent to the

dual master problem,

Φ := max
λ

nw∑
i=1

Pi(λk) (17)

Assuming that Φ is differentiable, a steepest-ascent algo-
rithm can be used to solve the dual problem. The descent
direction p for the master problem is then given by, [16]

p = −∇λΦ

⇒ −
nw∑
i=1

(
Gi(Xi∗)− r

)
(18)

The solution to the master problem is then along the descent
direction with a suitable step size α.

λ+
k = max [0, (λk + αp)] ∀k ∈ {1, . . . , N} (19)

Since the coupling constraint is an inequality constraint, the
dual feasibility from Karush-Kuhn-Tucker(KKT) conditions
dictate that the Lagrange multiplier must be non-negative at
all times (λk ≥ 0).
The primal subproblems and the dual master problem is
solved iteratively until the Lagrange multipliers converge
from an initial set of multipliers. Upon convergence, the
relaxed coupling constraints in the subproblems will become
feasible. A sketch of the Lagrange decomposition method is
summarised in Algorithm 1.

IV. SIMULATION RESULTS

In this paper, we consider a production network with 2 gas
lifted well, i.e. nw = 2. The dynamic optimization problem
was setup as a nonlinear programming problem in CasADi



Algorithm 1 Lagrangian decomposition

Define tolerance ε > 0 and ∆λ > ε.
Input: At each time step t initial state xit, initial λ0.

while ∆λ > ε do
for i = 1, 2, . . . , nw do[

Xi∗ ,µi
∗
]
← solution Pi(λ).

end for
Compute gradient p← −

∑nw

i=1

(
Gi(Xi∗)− r

)
.

Update Lagrange multiplier λ+
k ← max [0,λk + αp]

Update ∆λ← ‖λ+
k − λk‖

end while
Reset ∆λ > ε
λ0 = λ+

Output: Xi∗

v3.0.1-rc1 [17] using MATLAB 2017a programming
environment. The resulting NLP problem is then solved
using IPOPT version 3.12.2 [18] running with a mumps
linear solver. The plant simulator was solved using IDAS
integrator.

The dynamic optimization problem for the centralized
approach was solved over a prediction horizon of N = 60
samples with a sample time of Ts = 300s.

For the distributed optimization, the two primal subprob-
lems were posed as dynamic optimization problem and
solved with the same sampling times and prediction horizon.
The dual master problem was posed as a gradient step
update with a fixed step length α = 10. At each time step,
the tolerance was reset to ∆λ = 1. A tolerance limit of
ε = 0.1 was chosen as the stopping criteria for master
and subproblem iterations. Upon convergence of the dual
variable λk, the coupling constraints will become feasible.
The optimal solution is implemented on the plant using a
receding horizon principle. The first sample of the computed
optimal input trajectory is implemented on the plant. At
the next time step, when new measurements are available,
the optimization problem is solved again to compute a new
optimal input trajectory. The closed-loop implementation
incorporates the inherent feedback law u = K(x).

A. Limited gas lift constraint

In the first part of the simulation, we assume that the cou-
pling constraints arise from the limited gas supply available
for gas lift injection. In this case, the limited gas lift injection
rate of wmaxgl = 3kg/s must be optimally allocated among
the wells to maximize oil production. This problem was
first solved using the centralized approach. The problem was
then solved using the Lagrangian decomposition framework
described in Section III and compared with the centralized
approach. The closed loop simulation results are shown in
Fig.3. It can be clearly seen that the solution provided by the
decomposed problem accurately tracks the solution provided
by the centralized optimizer. In terms of the CPU times, the
centralized approach on average required 0.51s as opposed to
the distributed approach, where each subproblem on average

Fig. 3: Simulation results comparing the centralized and
decomposed approach with limited gas lift as the coupling
constraint.

was computed within 0.30s.

B. Gas capacity constraint

In the second part of the simulation, we assume the
coupling constraints arise from the total gas processing
capacity downstream. In this case, the total produced gas
from the different wells must be less than the maximum
processing capacity of wmaxg = 8kg/s. This problem was
first solved using the centralized approach. The problem was
then solved using the Lagrangian decomposition framework
described in Section III and compared with the centralized
approach. The closed loop simulation results are shown in
Fig.4. It can be clearly seen that the solution provided by the
decomposed problem accurately tracks the solution provided
by the centralized optimizer. In terms of the CPU times, the
centralized approach on average required 0.92s as opposed to
the distributed approach, where each subproblem on average
was computed within 0.29s.

V. DISCUSSION

The simulation results in the previous section showed that
the Lagrangian decomposition method is able provide equiv-
alent results compared to solving the problem as a centralized
large-scale optimization problem. It may be noted that the
accuracy of the decomposed method for the simulations
presented in Fig.4 may be improved by further reducing the
tolerance ε.

To speed up the convergence of the Lagrange multipliers
“warm-starting” was used. At time t = 0, λk = 20 was



Fig. 4: Simulation results comparing the centralized and
decomposed approach with total gas processing capacity as
the coupling constraint.

chosen for all k ∈ {1, . . . , N}. At each consecutive time
t > 0, The λk-update was initialized with the λk obtained
in the previous time step. Warm-starting often results in far
fewer iterations to converge [19].

Lagrangian decomposition methods can also be further
improved by using an augmented Lagrangian decomposition
algorithm, where an additional quadratic penalty term is
added to the objective term. However, the improved conver-
gence of the augmented Lagrangian method comes at a cost.
The augmented Lagrangian function is no longer separable.
The subproblems cannot be solved in parallel, but must be
solved sequentially using the alternating directions method
of multipliers [19].

Another future research direction to improve the perfor-
mance could be to use parametric optimization, where the
subproblems can be parameterized with respect to the dual
variable λ. At each iteration, when the master problem
updates λ, the subproblems can then be solved using a
predictor-corrector QP instead of solving a nonlinear pro-
gramming problem (NLP) [20],[21].

Although the simulation results were presented for a two
well network, the decomposition framework can be easily
extended to any number of wells. Different wells may also
be clustered together in the subproblems, for example wells
from each subsea template may be grouped together [9].

VI. CONCLUSION

In this paper, we showed that the structure of large scale oil
and gas production networks can be exploited to decompose

it into several smaller subproblems that can be parallelized.
Lagrangian decomposition method was presented to solve
the resulting distributed dynamic optimization problem. A
gas lifted production model was used to demonstrate the
proposed method. Using simulations we showed that the
Lagrangian decomposition method is able to provide the
same solution as the centralized optimization problem.
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