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Abstract—This paper presents a decentralized approach to
multi-area power system state estimation using a combination
of conventional measurement devices and newer phasor mea-
surement units (PMU). We employ a reduced-order approach to
state estimation, wherein the PMU observable and unobservable
components of the state vector are estimated separately in each
control area. The estimation problem is solved by exchanging
information through an improved gossip-based protocol which
takes into account the weak measurement coupling between
control areas. A detailed analysis of the proposed protocol reveals
that the amount of information exchange is always less than the
naı̈ve gossip based scheme. We show through simulations on the
IEEE 118-bus test system that, in practice, the gossip iterations
converge in one iteration regardless of the number of control
areas. Our simulations also show that the marginal information
exchange is also considerably lower when using the proposed
method.

Index Terms—Distributed Estimation, Reduced-Order, Phasor
Measurement Units, Multi-Area State Estimation

I. INTRODUCTION

As we transition towards a smarter grid, three key factors

have emerged which necessitate a rethinking of our energy

infrastructure. Firstly, following the trend towards power in-

dustry deregulation, portions of the grid are being administered

by independent transmission system operators (TSOs) [1].

These TSOs are responsible for the monitoring and mainte-

nance of large parts of the electricity transmission system,

sometimes for an entire country. Secondly, the size of the

power interconnection is set to increase in order to get access

to renewable resources scattered over a large geographical

area. The intermittent nature of these renewable sources call

for near real-time monitoring of the power grid. Finally, the

implementation of a wide-area monitoring system (WAMS)

enabled by a network of synchronized phasor measurement

units (PMUs) is leading to a significant growth in the number,

frequency and accuracy of measurements in the power grid [2],

[3].

State estimation plays a key role in the monitoring of an

electrical grid. Employing a centralized monitoring scheme

in a modernized electrical grid would lead to communication
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bottlenecks [4] which impacts the timeliness of state estima-

tion. Furthermore, this would also create a single point of

failure which goes against the reliability principle of the smart

grid. It is evident that decentralized approaches are needed for

monitoring the energy infrastructure of the future.

Distributed approaches to power system state estimation,

namely, multi-area state estimation (MASE), were first devel-

oped to overcome computational issues involved in centralized

state estimation of large power systems [5], [6]. A summary

of different approaches to MASE can be found in [7]. Some

approaches to MASE rely on a hierarchical two-level method

wherein the estimates obtained by the local state estimator of

each area are sent to a central control center to estimate the

system-wide state vector [8]–[11]. On the other hand, decen-

tralized approaches to MASE do not require a central control

center; instead, the local state estimators share information

amongst themselves through a communication network. This

idea was even briefly discussed in Schweppe’s seminal pa-

per [12]. Several approaches to decentralized MASE have been

proposed since [13]–[18]. Security aspects of such estimation

schemes have been studied recently in [19].

A major limitation in both the aforementioned classes of

methods is that all the local control areas need to have

enough measurement redundancy in order to compute the local

estimates [4], i.e., each area needs to be locally observable. In

contrast, new methods for decentralized MASE only require

that the overall system be observable. Such methods are

presented in [20], [21]. These methods, however, do not

estimate the system-wide state vector in each area, which is

recommended for the implementation of wide-area monitoring

and control [2], [22].

Another method has been proposed in [23], which esti-

mates the system-wide state vector in each area by sharing

information using network gossiping [24]. The method is

shown to converge faster than the method proposed in [4],

and is also robust against bad-data. The method is based

on the gossip-based Gauss-Newton (GGN) algorithm, and

the convergence of this method is analytically proven [25].

The method in [23], however, does not take into account the

fact that, in practical power systems, measurement coupling

between areas is weak [7]. Each area participates in the

information exchange related to all state variables regardless of

whether the state variable was observed in that area. Hence, the

number of gossip iterations performed is larger than necessary,

resulting in an undesirable increase in communication between

areas. In [26] we outline an information exchange scheme for

gossip-based Gauss-Newton which drastically reduces inter-

area communication.
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When performing state estimation with both conventional

and PMU measurements, we posit that it is beneficial to

separate the state vector into PMU observable and PMU

unobservable parts, where the PMU observable states are

estimated using PMU measurements alone. In [27], [28], we

develop a reduced-order formulation of the state estimation

problem which allows us to estimate the PMU unobservable

states from conventional measurements and estimates of PMU

observable states. The following arguments support choosing

the reduced-order approach over a combined approach:

• PMU measurement errors have a much lower variance

than those of conventional measurements. Employing a

mixed-measurement approach [29]–[32] or a two-step

approach [33], [34] would involve operations on an ill-

conditioned matrix when implementing weighted least-

squares estimation. This leads to numerical instabil-

ity [35].

• Since conventional measurements are asynchronous, mea-

surements taken in a window of a few seconds are not

consistent with each other [36]. This induces time-skew

errors in conventional measurements. We show in [27]

that time-skew errors could potentially offset the im-

provement in estimation accuracy gained by the increased

redundancy when using all available measurements in a

combined state estimator.

• As shown in Fig. 1, the measurement architecture of

the PMU network is independent of the conventional su-

pervisory control and data acquisition (SCADA) system.

The PMU measurement system is based on the newer

standards like IEEE C37.118, while the SCADA system is

still largely dependent on a myriad of vendor-dependent,

non-standard legacy devices with proprietary software

and communication protocols.

Fig. 1. Monitoring architecture of the smart grid.

The contributions of this paper are twofold. Firstly, we

extend the centralized reduced-order formulation of the state

estimation problem in [27] to a decentralized multi-area set-

ting. We derive a solution to this problem based on distributed

average consensus through network gossiping. Secondly, we

present a detailed analytical treatment of the CGS information

sharing approach introduced in [26]. We prove that it indeed

achieves distributed average consensus. We also attempt to

quantify the information exchange in the CGS scheme, and

prove that this approach always results in reduced information

exchange when compared with a naı̈ve approach to network

gossiping. We then go on to present the results of numerical

simulations on the IEEE 118-bus test system showing the per-

formance of the proposed reduced-order decentralized multi-

area state estimator with CGS-based information exchange.

We compare the proposed method with that of the method

of [23] and found, in our simulations, that the proposed method

renders lower mean-squared estimation error. We also compare

the amount of information exchanged in both scheme and show

that the proposed method is more scalable as the size of the

interconnection grows and more areas are added to the system.

II. SYSTEM MODEL

Consider an N -bus, balanced three-phase power system di-

vided into K non-overlapping control areas as discussed in [8].

Let the index set of areas be K. The minimal set of network pa-

rameters needed to represent the state of such a power system

is the collection of the voltage magnitudes and phase angles at

every bus in the power network [37]. These state variables con-

stitute the system-wide state vector, denoted by v ∈ R
(2N−1),

where v = (ℜ{V1}, . . . ,ℜ{VN},ℑ{V2}, . . . ,ℑ{VN}), and

Vi, i = 1, . . . , N are the positive sequence complex voltages

at each bus. The phase angles at each bus are measured with

respect to the GPS cosine signal when PMU measurements are

used. In general, however, the phase angle of the reference bus

is assumed to be zero, and therefore, ℑ{V1} = 0.

Let N1 < 2N − 1 state variables be PMU observable [27].

We denote these components of v by vp ∈ R
N1 . The

remaining N2 = 2N −N1 − 1 PMU unobservable states are

denoted by vc ∈ R
N2 . Therefore, the state vector can also be

written as

v =

[

vc

vp

]

(1)

A. WAMS Architecture

PMUs output noisy measurements of the real and imaginary

parts of the positive sequence voltage phasor at the bus to

which they are connected, as well as the real and imaginary

parts of the positive sequence currents flowing through all

transmission lines connected that bus. The measurements

from all PMUs are forwarded to a phasor data concentrator

(PDC) which receives and time-synchronizes phasor data

from multiple PMUs to produce a time-aligned output data

stream. A PDC can exchange phasor data with PDCs at other

locations. The PDCs communicate with each other through the

synchrophasor network [38] as shown in Fig. 1. The PDC in

Area i collects Lpi
measurements from all PMUs in Area i,

denoted by pi ∈ R
Lpi . The measurement vector pi is related

to vp as

pi = Aivp + εi, ∀ i ∈ K (2)

where Ai =
[

BT
i YT

i

]T
. Each row of the matrix Bi is

a unit vector of appropriate dimension with a 1 placed in

the column associated with a particular voltage phasor at

a PMU observable bus. The matrix Yi is an admittance

matrix of appropriate dimension corresponding to the current

phasors [34]. The measurement error is denoted by a zero-

mean random vector εi ∈ R
Lpi with covariance matrix Cεi .
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B. Legacy EMS/SCADA Architecture

The data acquisition part of SCADA system is responsi-

ble for acquiring measurements from remote terminal units

(RTUs), while state estimation is performed in the EMS, as

depicted in Fig. 1. The SCADA measurements consist of

asynchronous power flow and injection measurements, as well

as voltage magnitude measurements taken by remote terminal

units placed throughout the interconnection. Let ci ∈ R
Li

denote a vector consisting of Li measurements taken in Area

i. We have

ci = gi(vc,vp) + µi (3)

where gi(·) is a vector valued nonlinear function defined

by Kirchhoff’s laws, and the zero-mean random vector µi

represents measurement uncertainties associated with SCADA

measurements. Since SCADA measurements are taken asyn-

chronously, they are affected by time-skew errors and there-

fore, therefore SCADA measurements have much higher mea-

surement uncertainties than PMU measurements [27].

III. REDUCED-ORDER DECENTRALIZED MASE

The state estimation algorithm has two separate stages.

In the first stage, the (Super-)PDCs obtain an estimate of

the system-wide PMU observable states vp by solving the

weighted least-squares problem

minimize
vp

∑

i∈K

‖pi −Aivp‖
2
C

−1

ǫi

(4)

The normal equations of the above problem are given by
(

∑

i∈K

AT
iC

−1
ǫi Ai

)

vp =
∑

i∈K

AT
iC

−1
ǫi pi (5)

The PDC in each area i ∈ K initializes a so-called gossip

vector [39], [40] m
(0)
i , AT

iC
−1
ǫi pi. Next the gossip vector

of Area i is updated by combining it with the gossip vectors

of the neighboring areas denoted by Ni, i.e.,

m
(l+1)
i = Wiim

(l)
i +

∑

j∈Ni

Wijm
(l) (6)

for all i ∈ K and l = 0, 1, . . .. The weights Wij are elements

in the ith row and jth column of a doubly stochastic matrix

WK×K such that Wij = Wji = 0 if Area i is unable to

share information with area j. If the spectral radius ρ of W−
(1/K)11T is less than 1, according to [41], we have

lim
l→∞

m
(l)
i =

1

K

∑

j∈K

m
(0)
j , ∀i ∈ K (7)

which is the term in the left hand side of (5). These steps are

summarized in Algorithm 1.

One advantage of estimating the PMU observable states

separately is that they are estimated more frequently than

PMU unobservable states. The term on the right hand side

of (5) depends only on line parameters, and remains constant

throughout several state estimation epochs. Therefore, it can

be precomputed and stored in all the state estimators. This

reduces the estimation of vp to a matrix-vector multiplication.

It also reduces the amount of information that needs to be

Algorithm 1 Estimating PMU observable states in Area i

1: given pi, Ai, and Cεi

2: set l = 0

3: initialize gossip vector m
(l)
i =

[

vec
(

AT
iC

−1
ǫi Ai

)−1

AT
iC

−1
ǫi pi

]

4: repeat

5: m
(l+1)
i = Wiim

(l)
i +

∑

j∈Ni
Wijm

(l)
j

6: l ← l + 1
7: until ‖m

(l)
i −m

(l−1)
i ‖∞ < δp

8: set P = mat
(

m
(l)
i [0 : N2

2 − 1]
)

9: set q = m
(l)
i [N2

2 : N2(N2 + 1)]
10: compute v̂p = P−1q

11: Send v̂p to Stage II estimator in Area i

exchanged. These factors allow for a near real-time view of

the states of PMU observable buses to be presented to the

system operator. Since the second-stage estimator is sensitive

to the variance of v̂p, it is recommended over a buffer

several consecutive PMU measurement snapshots to reduce

the estimation error as shown in [42], [43].

The second stage of the state estimation process involves

estimating vc from (3) by substituting v̂p for vp in (3). This

yields a nonlinear weighted least-squares problem in vc given

by

minimize
vc

∑

i∈K

∥

∥

∥
R

−1/2
i {ci − gi(vc, v̂p)}

∥

∥

∥

2

(8)

where the weighting matrix R must take into account the

estimation error of the first stage. The optimal weighting

matrix is given by [27]

Ri = Cµi
+ Γpi

(vc, v̂p)
(

AT
iC

−1
ǫi Ai

)−1
ΓT
pi
(vc, v̂p) (9)

for all i ∈ K, where Γpi
(vc,vp) = ∂gi(vc,vp)/∂vp. The

problem is solved by employing Gauss-Newton iterations

where the normal equations are written as (10) and (11).

(

∑

i∈K

ΓT
ci(v̂

(j)
c , v̂p)R

−1/2
i (v(j)

c , v̂p)Γci(v̂
(j)
c , v̂p)

)

∆v̂(j)
c

=
∑

i∈K

ΓT
ci(v̂

(j)
c , v̂p)R

−1/2
i (v(j)

c , v̂p)
[

ci − gi(v̂
(j)
c , v̂p)

]

(10)

v̂(j+1)
c = v̂(j)

c +∆v̂(j)
c

(11)

Here again, the averages on either side of (10) are obtained

by iterated network gossiping as described previously. The

initial gossip vector for each Area i is given by

m
(0)
i =





vec
(

ΓT
ci(v̂

(j)
c , v̂p)R

−1/2
i (v

(j)
c , v̂p)Γci(v̂

(j)
c , v̂p)

)

ΓT
ci(v̂

(j)
c , v̂p)R

−1/2
i (v

(j)
c , v̂p)

[

ci − gi(v̂
(j)
c , v̂p)

]





(12)

where where Γci(vc,vp) = ∂gi(vc,vp)/∂vc, and j denotes

the iteration index of the Gauss-Newton iterations. After

each set of gossip iterations, the estimate v̂
(j)
c is updated by

evaluating (10) and (11). Subsequently, another set of gossip
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Algorithm 2 Estimating PMU unobservable states in Area i

1: given ci, gi(·), v̂p and Cµi

2: set j = 0
3: set v̂

(j)
c ⊲ flat start

4: repeat

5: set l = 0
6: compute Ri according to (9)

7: initialize gossip vector according to (12)

8: repeat

9: m
(l+1)
i = Wiim

(l)
i +

∑

j∈Ni
Wijm

(l)
j

10: l ← l + 1
11: until ‖m

(l)
i −m

(l−1)
i ‖∞ < δc

12: set P = mat
(

m
(l)
i [0 : N2

1 − 1]
)

13: set q = m
(l)
i [N2

1 : N1(N1 + 1)]

14: compute v̂
(j+1)
c = P−1q

15: set j ← j + 1
16: until ‖v̂

(j)
c − v̂

(j−1)
c ‖∞ < η

iterations are carried out. This continues until an appropriate

stopping criterion is met, usually given by ‖∆v̂
(j)
c ‖∞ < η

where η is a predefined threshold. These steps are summarized

in Algorithm 2

Thus, iteratively updating the local gossip vectors of a

control area with a weighted sum of the gossip vectors of

neighboring areas allows for the system-wide state vector to be

obtained in each area. In principle, any gossip scheme would

yield an accurate state estimate asymptotically. However, the

speed of obtaining this state estimate can be vastly improved

compared to the naı̈ve gossiping approach employed in [23].

In particular, the state estimation scheme outlined in [23]

uses the uncoordinated random exchange (URE) protocol [44]

to perform gossiping. However, in practical power systems,

most state variables are observed in only one area, and so-

called boundary variables are observed by a few topologically

adjacent areas, i.e., areas with at least one transmission line

connecting them. Therefore, all areas should not participate

in gossip iterations pertaining to state variables observed in

only a few areas. In fact, the zeros contributed by these

irrelevant areas to the gossip iterations will bias the average,

which in turn slows down convergence of the gossip iterations.

It would be more efficient to limit the gossip iterations to

only those areas that observe the state variable, and transmit

the consensus value to the remaining areas. In the following

section, we develop such an information exchange protocol,

wherein the information exchange is limited to only those

areas that actually observe a state variable.

Bad Data Analysis

Bad data analysis is used as a way of identifying and elim-

inating the effect of gross errors in measurements. Two main

approaches are seen in the literature: detection/identification

and suppression. The most well known approaches to bad data

detection identification are the χ2-test and the largest normal-

ized residue (LNR) test [37]. Fully distributed approaches to

these methods have been presented in [45]. Methods for sup-

pression include robust methods [46] or by manipulating the

weights in the weighting matrix of the WLS formulation [47].

Additionally, from the literature on detecting cyber attacks on

state estimation systems, several l1-norm based approached

have been proposed (see e.g., [48], [49]), which are also

applicable for bad-data analysis.

In the proposed method, PMU measurements alone are used

to estimate PMU observable states. This reduces measurement

redundancy, causing some measurements to become critical

measurements. Therefore gross errors in these measurements

will become undetectable. Several steps can be taken to

overcome this. Firstly, PMUs must be placed so as to max-

imize observability and result in the least number of critical

measurements [50]. Secondly, since PMU measurements arrive

at high frequency we can hold several consecutive measure-

ments in a buffer and apply change detection and anomaly

detection methods to identify corrupted measurements. Lastly,

the covariance matrices Cεi can be adjusted according to the

scheme in [47] to suppress the effects of bad data.

In addition to the above, conventional ways of bad-data

detection like LNR can still be applied at the timescale of

estimation of PMU unobservable states. This can be applied

in a distributed manner since all the quantities required to cal-

culate the normalized residuals are available in each area. The

same is true of the normalized Lagrangian test for identifying

parameter errors proposed in [51] and the multiple bad data

detection scheme in [52]. Also, if the PMU measurements that

observe a state variable are found to be corrupted, that state

can be designated as PMU unobservable and estimated with

conventional measurements.

IV. CLUSTERED GOSSIP AND SHARE AVERAGE

CONSENSUS

The information exchange protocol has two steps, namely,

the clustered gossip stage, and the sharing stage. In the

clustered gossip stage, groups of areas exchange information

about the state variables they share. In the subsequent sharing

stage, one of the areas in the group transmits the consensus

value to the remaining areas. We show analytically that this

scheme converges to the average of the initial gossip vectors

of all areas.

A. Clustered Gossip Stage

The main idea behind the proposed method is the notion

of a cluster. Let us denote the initial gossip vector associated

with Area k in an N -bus system by m
(0)
k ∈ R

S for all k ∈ K,

where S = 2N(2N− 1). Let M ∈ R
S×K be a matrix formed

by m
(0)
k for all k ∈ K such that

M ,

[

m
(0)
1 · · · m

(0)
K

]

(13)

A key insight we develop here is that the rows of M are

related to observations of state variables, while its columns

represent the areas in which those measurements are taken.

Let m̄k ∈ R
K , for all k = 1, . . . , S be columns of MT, i.e.,

rows of M. Furthermore, let the index set of all clusters be

J . Now, a cluster is defined as follows:
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Definition 1. For any j ∈ J , a cluster Cj is a pair (Kj ,Sj)
such that for a specific Kj ∈ 2K,

Sj =







m̄k | m̄k =
∑

i∈Kj

aie
T
Ki

, k = 1, . . . , S







(14)

where ai ∈ R, ai 6= 0, 2K is the power set of K, and eKi
is

the ith canonical basis vector in R
K .

Each set Sj consists of those rows of M with an identical

pattern of non-zero elements, where the positions of the non-

zero elements correspond to the areas in Kj .

The gossip vector associated with each cluster is derived

as follows: Let Hj ∈ R
|Sj|×K , be a matrix such that each

element of Sj is a column of HT
j , i.e.,

Hj , TjM, j ∈ J (15)

where Tj ∈ {0, 1}|S|j×S is a selection matrix that selects

those rows of M that belong to Cj . The initial gossip vector

associated with Area i in Cluster Cj , denoted by h
(0)
ji

, is the

ith column of Hj , i.e.,

h
(0)
ji

= HjeKi
i ∈ Kj , j ∈ J (16)

We represent the connectivity model between the areas

by an undirected graph G = (V , E), where the vertex set

V corresponds to areas, i.e, V = K, and the edge set

E ⊂ {(i, j)|∀i, j ∈ V} and (i, j) ∈ E if and only if Areas

i and j can exchange information with each other. Now, the

connectivity model associated with each cluster Cj is denoted

by Gj = (Vj , Ej), where Vj = Kj and Ej ⊆ {(i, j)|i, j ∈
Kj , (i, j) ∈ E} for all j ∈ J . Note that Gj is a subgraph of G.

The local state estimator in each area in Cluster Cj iteratively

updates its gossip vector using its neighbors’ gossip vectors

such that

h
(l+1)
jk

= Wjkk
h
(l)
jk

+
∑

i∈Nji
\k

Wjki
h
(l)
ji
, l = 0, 1 . . . (17)

for all k ∈ Kj and j ∈ J , where the neighborhood of

Area i in cluster Cj is defined as Nji , {k ∈ Kj |(i, k) ∈
Ej}. The weights, Wjki

, are elements of a weighting ma-

trix Wj ∈ R
|K|j×|K|j . If Wj is doubly stochastic and

ρ(Wj − (1/|Kj |)11
T) < 1 for all j ∈ J , then

h∗
j , lim

l→∞
h
(l)
ji

=
1

|Kj |

∑

k∈Kj

h
(0)
jk

(18)

for all j ∈ J and i ∈ Kj .

Remark: The CGS scheme is subject to more stringent con-

nectivity requirements for convergence than naı̈ve gossiping.

The URE information exchange employed in [23] more robust

to failure of communication links since it only requires that

the system-wide connectivity graph G is connected. However,

the convergence of each set of clustered gossip iterations

requires that each local connectivity model Gj is connected

for all j ∈ J . In practice, however, this condition is easy

to satisfy since clusters only contain topologically adjacent

areas. Therefore, it is sufficient that communication links exist

between such neighboring areas to satisfy the above condition.

Following the discussion in Section III, we need the average

of the initial gossip vectors in each area to perform state

estimation, i.e., (1/K)M · 1. We will now show that this is

obtained by means of a permutation on the vector h ∈ R
S

defined as

hT ,
1

K

[

|K1|h∗T

1 · · · |Kj |h∗T

|J |

]

(19)

Theorem 1. Suppose Π is a permutation matrix with dimen-

sion S. If h and M are given by (19) and (13), respectively,

then Π · h = (1/K)M · 1

Proof. From (18) and (16) we have

|Kj |h
∗
j =

∑

k∈Kj

h
(0)
jk

=
∑

i∈K

HjeKi
= Hj

∑

i∈K

eKi

Substituting for Hj using (15), and since
∑

i∈K eKi
= 1, we

have

|Kj |h
∗
j = TjM1 (20)

From (19) and (20), we have

h =
1

K







|K1|h∗
1

...

|KJ |h∗
|J |






=

1

K







T1

...

T|J |






M1 (21)

Definition 1 implies that Sj , ∀j ∈ J are disjoint sets. There-

fore,
[

TT
1 · · · TT

|J |

]T

is a permutation matrix. Hence, we

have ΠTh = (1/K)M1.

Remark: In power systems, buses at the boundary of a

control area are connected to neighboring areas through tie-

lines. due to current limits on buses, it is very unlikely that a

bus is connected to more than a few tie lines. As a result, |Kj |
is very small compared to the number of areas in the system.

This number remains small even as we increase the number of

areas in the system. A cluster would typically contain a few

neighboring areas which can all exchange information with

each other. In this case, |Gj | becomes a fully connected graph

and the clustered gossip iterations converge in one iteration.

B. Sharing Stage

Theorem 1 implies that in order to perform state estimation,

the local state estimator in each control area requires h.

However, at the end of the clustered gossip stage, only a part of

h is available to each local state estimator. In order for h to be

available in each control area, h∗
j for each cluster in J must be

relayed to every area outside that cluster. In principle, the local

state estimator in any area of Kj can transmit its information,

however, it makes sense to choose the local state estimator that

accomplishes this in the most communication-efficient manner.

A good choice is one with the smallest average distance (in

hops) to all other areas outside the cluster.

Let us define a symmetric matrix D ∈ N
K×K
0 such that an

element Dij is the smallest number of hops between Vertices

i and j in the communication graph G. Furthermore, let δ :
K 7→ R such that δ(i) = (1/K)

∑

j∈K Dij . The area in Cj that
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must be chosen to transmit its gossip vector to all other areas,

denoted by i∗j is given by

i∗j = argmin
i∈Kj

δ(i), j ∈ J (22)

Accordingly, Area i∗ ∈ Kj transmits h∗
j to each area in K\

Kj for all j ∈ J . Now, the local state estimator in each control

area has access to h. By applying an appropriate permutation

on h, the average consensus value is recovered. The steps for

performing clustered gossip and share average consensus at

Area i ∈ K is shown in Algorithm 3

Algorithm 3 Clustered gossip and share in Area i

1: given m
(0)
i , Kj , Tj ∀j ∈ J , Ji , {j ∈ J |i ∈ Kj}

2: for each j ∈ Ji do

3: h
(0)
ji

= Tjm
(0)
i

4: set l = 0
5: repeat

6: h
(l+1)
ji

= Wjiih
(l)
ji

+
∑

k∈Njk
\i Wjikh

(l)
jk

7: l ← l + 1
8: until ‖h

(l)
ji
− h

(l−1)
ji
‖∞ < δj

9: Store h∗
j ← |Kj |h

(l)
ji

10: Nominate i∗j according to (22)

11: if i = i∗j then

12: Transmit h∗
j to Kj \ K

13: end if

14: end for

C. Communication Cost

We will now quantify the information exchange involved in

performing MASE using the clustered gossip and share (CGS)

scheme. We assume that each element of a gossip vector can be

encoded in one symbol. A measure of information exchange

is the total number of requires symbols transmitted over a

communication link per iteration.

Consider the best-case scenario for naı̈ve gossiping using

the URE protocol. This is when it behaves equivalently to cen-

tralized estimation, and convergence occurs in one iteration.

This is also when the smallest amount of information that must

be exchanged to perform state estimation, and happens when

the following conditions hold We make following assumptions:

C1 The communication graph G is complete, i.e.,

A(G) = 11T − I.

C2 The maximum-degree weighting scheme [53] is used

to obtain the weighting matrix.

Equation (26) then becomes

IURE = SK(K − 1) (23)

Let nj be the number of gossip iterations required to achieve

consensus in Cj . The amount of communication (in symbols)

during the clustered gossip stage, denoted by ICG, is given

by

ICG =
∑

j∈J

∑

k∈Kj

nj |Sj |(|Njk | − 1) (24)

During the sharing stage, multiple communication links

(hops) may be used to transmit information, as discussed

previously. The amount of communication during the sharing

stage, denoted by IS , is given by

IS =
∑

j∈J

∑

k∈K\Kj

|Sj ||K \ Kj |Di∗
j
k (25)

We now compare the total amount of information exchange

using the CGS scheme with that of the URE scheme employed

in [23]. Let the URE gossip iterations converge in n steps. This

is denoted by IURE , and

IURE = n
∑

k∈K

S(|Nk| − 1) (26)

Theorem 2. Suppose Conditions C1 and C2 hold. If ICG, IS
and IURE are given by (24), (25) and (26), respectively, then

ICG + IS ≤ IURE .

Proof. Since Gj is a subgraph of G, Gj is also complete.

Therefore, we have nj = 1, ∀j ∈ J , and (24) and (25)

become

ICG =
∑

j∈J

|Sj ||Kj |(|Kj | − 1) (27)

IS =
∑

j∈J

|Sj |(K − |Kj |) (28)

Let ICGS , ICG + IS . From (27) and (28), we have

ICGS =
∑

j∈J

|Sj ||Kj |(|Kj | − 1) +
∑

j∈J

|Sj |(K −Kj)

=
∑

j∈J

|Sj |
{

(|Kj | − 1)2 + (K − 1)
}

(29)

Since S =
∑

j∈J |Sj |, we write (23) as

IURE =
∑

j∈J

|Sj |K(K − 1)

=
∑

j∈J

|Sj |
{

(K − 1)2 + (K − 1)
}

(30)

Since 1 ≤ |Kj | ≤ K , comparing (29) and (30), we have

ICG + IS ≤ IURE

Remark: In practice, the majority of information is con-

tained in singleton clusters, i.e., where the cluster has only

one area. These clusters are not involved in the clustered

gossip stage, where only information related to boundary

buses is exchanged. Most state variables are internal and

the elements of the gossip vector related to these variables

is only transmitted in the sharing stage. As a result, the

communication cost is drastically reduced when compared to

the method of [23].

V. NUMERICAL RESULTS

In this section we present the results of simulations carried

out on the IEEE 118-bus system. A load-flow calculation is

performed using the MatPower toolbox in MATLAB [54]

to update voltage magnitudes and phase angles throughout

the system. The results of this load-flow calculation, i.e., the

voltage magnitudes and phase angles, represent the true state
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variables of the system. Measurements are generated from

these values using (2) and (3).

In the SCADA system, it is assumed that voltage magnitude

measurements are taken at every bus in the system and real

and reactive power flow measurements are taken on every

transmission line. The measurement errors have zero-mean and

are normally distributed. The standard deviations of voltage

magnitude and power flow measurements are chosen to be

0.1% and 2% of their true value, respectively, following [55].

We assume that PMUs produce both voltage and current

phasor measurements, and the standard deviation of PMU

measurements is 0.01% of their true value.

We first compare the performance of the DARSE approach

in [23] with the proposed reduced-order method. We use

an IEEE 118 bus system with 9 areas. We place PMUs on

buses 3, 15, 35, 25, 72, 47, 102, 81, and 53. The DARSE

method consists of n gossip iterations followed by a Gauss-

Netwon descent. Furthermore, note that DARSE follows a

mixed measurement approach where PMU and conventional

measurements are estimated together. The performance mea-

sure chosen is the mean squared error (MSE), given by

MSE =
1

2N

(

N2
∑

i=1

(v̂pi
− vpi

)2 +

N1
∑

i=1

(v̂ci − vci)
2

)

(31)

The information exchange model of the SCADA/EMS sys-

tems of control areas is such that only adjacent areas can

exchange information with each other. This is because, mainly

due to historical reasons, the SCADA/EMS uses proprietary

data models and database management systems to handle

data, and such data cannot not be easily exchanged [1].

However, it is reasonable to assume that control areas with tie

lines between them would have some means of exchanging

data. When we employ this model, the clustered gossip stage

converges in one iteration, since the cluster graph is fully

connected.

Due to standardization efforts for PMUs, it is very likely that

PDCs from several vendors will exchange data in a common

format [38], [56]. In that case, the information exchange model

of the WAMS typically would resemble a fully connected

graph (every node is connected to all other nodes). In fact, this

is equivalent to performing a centralized state estimation, and

the results of Theorem 2 are applicable in this case. However,

to demonstrate the efficacy of the CGS approach, we will

assume that only adjacent areas can share information with

each other.

Fig. 2 shows the MSE of the DARSE approach with 10

and 50 gossip iterations after each Gauss-Newton iteration.

We compare this with the MSE of the reduced-order CGS

method after each iteration. We see that the proposed method

performs better in comparison with the DARSE approach. This

is despite the fact that the reduced order approach incurs a

performance penalty when there are no time-skew errors in

conventional measurements [28].

Fig. 3 shows the convergence of the CGS gossip iterations

and the URE gossip iterations for different weighting schemes.

Columns of Mk are gossip vectors for each area at the kth

gossip iteration. Let M∗ be a matrix such that each column

1 2 3 4 5 6 7 8 9 10
10
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M
S

E

Fig. 2. Performance of the proposed method when compared with the DARSE
scheme of [23] with 10 and 50 gossip iterations between Gauss-Newton
descent steps.
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/
‖
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‖
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Fig. 3. Convergence of the CGS and URE schemes for different weighting
matrices. ‘Darse’ indicates the weighting scheme employed in [23].

of M∗ is the consensus gossip vector. We set the performance

measure to be ‖Mk −M∗‖F/‖M∗‖F . We employ a com-

munication graph that minimally satisfies the conditions for

convergence of the CGS method. In this case, the edges of the

communication graph are the edges of each cluster subgraph

which form a Hamiltonian path for that subgraph. It is seen

that in each case, the CGS method outperforms the URE

method.

Employing the CGS information exchange scheme results in

method is also more scalable than the URE scheme employed

in [23]. We see from Figs. 5 and 4 that the convergence speed

of the URE scheme used in [23] degrades considerably as

the number of control areas in the system increases. This is

because weighting matrix becomes sparse and many more

gossip iterations are needed to achieve consensus. On the

other hand, the CGS scheme does not incur any penalty as

the system becomes larger since the local connectively model
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Fig. 4. Comparison of MSE of estimate of the PMU observable states obtained
by WAMS for (a)4, (b)7, (c)11, and (d)14 areas when using CGS and URE
gossip schemes.
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Fig. 5. Comparison MSE of estimate of the PMU unobservable states obtained
by reduced order estimator for (a)4, (b)7, (c)11, and (d)14 areas when using
CGS and URE gossip schemes.

(and hence the weighting matrix) remains dense.

Assume we employ a coding scheme where each symbol is

encoded in 32 bits. With expressions derived in Section IV C,

and the convergence rates of the URE scheme in Figs 5 and 4,

we plot the total information exchange against the number of

areas in Fig. 6. It is evident that employing the CGS scheme

leads to a massive reduction in the amount of communication.

Furthermore, we see that the amount of communication does

not increase as much as traditional gossiping as the number of

areas increases. This is because gossip iterations are localized

to only a few areas, irrespective of the size of the wider

interconnection. The increase in communication is because

the number of areas that a cluster needs to share information

with increases. In fact, we see that on average, each additional
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Fig. 6. Total amount of information exchanged in the synchrophasor network
of the WAMS to arrive at a state estimate when employing CGS and URE
schemes.

control area increases the amount of information by 12kB for

the CGS scheme whereas that increase is 41.4 MB for the

URE scheme.

VI. CONCLUSION

In this paper we presented a method to perform decentral-

ized MASE where the PMU observable states are estimated

by the PMU network, and the remaining states are estimated

using SCADA measurements. We introduce a new protocol for

information exchange between local state estimators of control

areas. The scheme takes into account the weak measurement

coupling between those areas, and estimation is performed

such that the amount of communication is reduced. Addition-

ally, by decoupling the SE functionality of the SCADA/EMS

and the WAMS, we obtain benefits of improved numerical

stability and robustness to time-skew errors. Our simulations

show dramatic improvements in the convergence speed and

communication load when compared to an existing networked

gossip approach to MASE.
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