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Abstract

The melting point (Tm) of an ionic liquid (IL) is of crucial importance in many
applications. The Tm can vary considerably depending on the choice of the an-
ion and cation. This study explores the use of various machine learning (ML)
methods to predict the melting points (−96◦C - 359◦C range) of structurally di-
verse 2212 ILs based on a combination of 1369 cations and 141 anions. Among
the ML models applied to independent training and test sets, tree-based en-
semble methods (Cubist, random forest and gradient boosted regression) were
found to demonstrate slightly better performance over support vector machines
and k-nearest neighbour approaches. In comparison, quantum chemistry based
COSMOtherm predictions were generally found to have significant deviations
with respect to the experimental values. However, classification models were
more efficient in discriminating between ILs with Tm > 100◦C and those below
100◦C.

Keywords: QSPR, ionic liquids, melting point, machine learning,
experimental, quantum chemistry

1. Introduction

In recent years, there has been a dramatic increase in the number of ionic
liquids (ILs) synthesized and tested. This explosion of interest has been due to
the various advantageous properties that ILs possess such as a negligible vapour
pressure, a liquid range of up to more than 400 K and non-flammability under
ambient conditions. This has lead to a wide range of applications such as en-
ergy storage[1], solvents for CO2 capture[2], catalysis [3], lubricant additives[4],
pharmaceuticals[5, 6], cellulose dissolution[7] and, foods and bioproducts[8].
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Ionic liquids are molten salts composed of cations (mostly organic) and an-
ions(inorganic or organic). The unique properties of the ILs are largely deter-
mined by the structure and interaction between the ions.

Of particular interest in a number of applications such as gas separation,
catalysis and electrochemistry, there is a demand for room-temperature ionic
liquids that have melting points below 100◦C[9]. Factors such as the charge
distribution on the ions, hydrogen bonding ability etc. are seen to strongly in-
fluence melting points. Given the large variety of cations and anions to choose
from, the potential combinations[10] (assuming all to be feasible) of the two
are indeed quite staggering (∼ 1018). For such a large collection, the abil-
ity to predict melting points accurately in a short time without expensive and
laborious experiments would therefore be of great value. In this regard, quanti-
tative structure-property relationship-based (QSPR) methods have had reason-
able success[11]. These methods rely on correlating physicochemical features
(ranging from fragment based counts to quantum chemistry-based descriptors)
with the melting point values that are summarised in Table 1. Compared with
the regression based approaches listed in Table 1, Kireeva et al.[12] propose a
classification model based on splitting the ionic liquids into individual classes
according to the values of their melting points. The models reported accuracies
ranging between 78 − 85% depending on the data set. In summary, while the
models for closely related groups of ionic liquids have yielded reasonable predic-
tions, the performances for cases where there was significant structural diversity
were found to be less robust. Other efforts have attempted to create thermo-
dynamic melting point prediction models [13, 14] based on COSMO-RS [15]
computations. For a set of 520 organic salts, the thermodynamic model yielded
a mean absolute error of 34◦C. In recent years, approaches based on molecular
dynamics simulations[16–18] and density functional theory[19] (DFT) have also
been used to determine melting points. Given the high computational expense
associated with such calculations, the studies so far have been limited to a very
small sets of ionic liquids.
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In this article, we evaluate the performance of various machine learning
models for melting point predictions of a large diverse set of 2212 ILs for which
the melting points vary in the range of −96◦C - 359◦C. Given the relative
success of quantum chemistry-based descriptors (see Table 1) we focus primarily
on such variables for establishing structure-property relationship models based
on both regression and classification schemes. Among the modelling schemes
analysed, non-linear methods, in particular regression tree-based approaches
were found to have moderate performance. In comparison, both linear and non-
linear classification models were able to better distinguish between ILs with
Tm > 100◦C and those below 100◦C.

2. Methods and Materials

2.1. Ionic Liquid Melting Points

IMIDAZOLIUM

MORPHOLINIUM

PHOSPHONIUM

PIPERIDINIUM

PYRIDINIUM

PYRROLIDINIUM

TRIAZOLIUM

−100 0 100 200 300

Melting Point  (°C)

BORATE

CARBOXYLATE

HALIDE

HEXAFLUOROPHOSPHATE

SULFATE

SULFONATE

TFSI

−100 0 100 200 300

Melting Point  (°C)

Figure 1: Boxplot shows the distribution of the melting points based on the different cation
(left) and anion (right) classes. The distribution of the temperatures is summarised by the
minimum, median, maximum and the first and third quartiles.

Experimental melting point temperatures (Tm) for a set of 2212 ILs compris-
ing 1369 cations and 141 anions were extracted from over ∼300 references in the
literature with a primary source being Zhang et al[39] and Varnek et al[23]. Ad-
ditional experimental data was obtained by performing a literature search on the
ISI Web of Science using the keywords ”ionic liquids and melting points”. Most
measurements are carried out using differential scanning calorimetry or differen-
tial thermal analysis. As ionic liquid melting points are influenced factors such
as presence of impurities and measurement protocols[40], discrepancies in the Tm
data are seen with associated experimental uncertainties seldom reported[41].
In order to ensure a chemically diverse data set with relatively low noise levels,
we have adopted the following protocol: (i) ILs for which a melting point range
was specified, the mid-point of this range was chosen, (ii) For ILs with multiple
Tm values, the most frequent value was retained (iii) ILs for which only glass
transitions or alternatively those for which the Tm was reported as below or
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above a certain threshold, were omitted. In addition, ILs composed of multiple
cations or anions were excluded. The structures of the cations and anions, the
experimental Tm values and associated references are listed in Tables S1 and
S2 in the supplementary material. The cations span several compound classes
such as imidazoliums, azaniums, triazoliums, pyridiniums and piperidiniums
while the anions consist largely of halides, hexfluorophosphates and borates.
Boxplots in Figure 1 summarize the melting point distributions for the ILs.
The temperatures range between −90◦C for trialkylammonium perfluoroalkyl
β-diketonate salts[42] to over 300◦C for pyrrolidinium perfluorobutanesulfonates
[43] (see Figure F1 in the supplementary material).

2.2. Molecular Representation

Quantum mechanical descriptors have met with reasonable success in mod-
elling a number of IL properties[44]. While previous studies [14, 20, 27, 33]
have made use of ab initio methods as a starting point for descriptor gener-
ation, here, we employ molecular descriptors[45] obtained from computation-
ally low-cost PM6[46] calculations. The initial structures of the ions were
drawn using the MarvinSketch[47] software and subsequently converted to three-
dimensions using OpenBabel[48] (based on the Universal Force Field[49]). Each
ion was then optimized using the PM6 Hamiltonian in MOPAC[50] with the
keywords: ”PM6 XYZ PRECISE STATIC POLAR MMOK SUPER ENPART
LARGE”. Using the data supplied by MOPAC output files, the software KRAK-
ENX(downloadable from www.krakenminer.com) was used to calculate vari-
ous quantum chemical and molecular orbital based descriptors such as the
HOMO/LUMO energies, polarizabilities, superdelocalizabilities, charge partial
surface areas (CPSA) and geometrical indices. For computational ease, the
cations and anions are treated independently and ion-ion interaction effects are
ignored in the current work. A total of 113 descriptors were calculated for each
anion and cation.

2.3. Statistical Modelling

Variables Pretreatment. Prior to modelling, low variance columns and those
containing missing values were excluded. With a view to reducing the dimen-
sionality of the original descriptor matrix, only one among the highly correlated
pair of variables (R2 > 0.95) was retained[51]. The remaining variables were
then autoscaled to zero mean and unit variance. The data set was further split
randomly (67:33) into independent calibration and test sets containing 1486 and
726 ILs respectively.

Methods. Both linear and non-linear approaches were used to create the structure-
property models. The statistical software R[52] was used to build the models us-
ing available packages such as pls[53] for partial least squares regression (PLSR),
kernlab[54] for support vector regression (SVR), randomForest [55] for random
forests regression (RF), gbm[56] for generalized boosted regression (GBM), Cu-
bist [57] for tree-based regression for and KernelKnn[58] for k-nearest neigh-
bours (k-nn) regression. In addition, classification models were also attempted
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by discretizing the melting points into two levels. Here, we focused on par-
tial least squares discriminant analysis (PLSDA), random forests and gradient
boosting. Variable importance was further used as a means to interpret models
and where possible, reduce model complexity by way of feature selection.

PLSR Given the descriptor matrix (X) partial least squares regression[59] cal-
culates latent variables that are oriented along the directions of maximum
covariance between the independent variables in X and the response Y .
For categorical responses, partial least squares discriminant analysis[60]
was applied. The optimal number of latent variables was determined us-
ing cross-validation.

RF In the random forests (RF) approach, multiple decision trees are trained
on random sub-samples of the data set and predictions from each tree
are aggregated to determine the final outcome[61]. For RF, the variable
selection step was carried out using the package VSURF [62] which makes
use of permutation-based score of importance combined with a stepwise
forward strategy for variable introduction.

k-nn k-nearest neighbours regression is a non-parametric method that calcu-
lates an output based on a weighted mean of the number of neighbours
ranked by the Euclidean distance. In this study, the weighting scheme
combines a tricube weight function (which gives the greatest weight to
the closest observations) with a Gaussian kernel to optimize the output
predictions[63]. The optimal value of k (varied between 2-20 neighbours)
was determined using cross-validation. A simulated annealing based fea-
ture selection[64] was further used to identity simpler models with better
predictive performance.

GBM In generalized boosted regression[65], regression trees are fit sequentially
with respect to a differentiable loss function (residual error plus function
complexity) that is being minimized. During each iteration, a subsample
of the training data is drawn at random and is used to calculate the model
update. The prediction model is thus an ensemble of weak prediction
models.

Cubist Cubist regression is an extension of the M5 model tree approach by
Quinlan[66, 67]. It is a rule-based model where each rule is associated
with a multivariate linear model. In this study, both the number of com-
mittees (a boosting scheme where iterative model trees are created in
sequence) and the number of nearest-neighbors were optimized to adjust
the predictions from the model. The committees are made up of several
rule-based models and used to fine-tune the models. Each member of the
committee predicts the target value for a given case and the predictions
from the members are averaged to give a final prediction.

Model performances were assessed using multiple metrics such as the squared
coefficient of correlation (R2), root mean square error (RMSE) and the mean
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absolute error which estimates the bias in the predictions. The robustness of
the models were assessed using 5-fold cross-validation which were repeated three
times to account for the randomness of the splits. Further to guard against
chance correlations, y−randomization tests[68] (repeated 500 times) were also
performed. For both GBM and SVR, recursive feature elimination protocol
(which recursively considers smaller sets of features) as implemented in the
caret [69] package was used. Source code implementing the above metrics and
methods was written in-house. All calculations were carried out on a desktop
PC with Intel i5-2400 Quad-Core 3.10GHz CPU and 8GB RAM. The final set
of descriptors and the model predictions are provided in the Supplementary
material.

2.4. COSMO-RS

For comparison, the software COSMOtherm[70] which implements the melt-
ing point prediction model proposed by Preiss et al.[13] was also used. Each
cation and anion was subjected to DFT calculations using the ORCA quan-
tum chemistry program[71]. Here, the BP functional B88-p86 with a triple-ζ
valence polarized basis set[72] (TZVP) and the resolution of identity standard
(RI) approximation was employed. The output from ORCA (COSMO files)
were then used as an input to the software COSMOtherm[70] along with the
parameterization set BP TZVP C30 01601.

2.5. Distribution of the ILs

As an initial step, the distribution of the analysed ILs in the multidimen-
sional descriptor space was studied using principal component analysis (PCA).
As can be seen from the plots in Figure 2, the first 5 principal components (PCs)
explain nearly 73% of the variance in the data. The score plots (Figure 2B-D)
with respect to the first two principal components show groupings that corre-
spond to the different cation and anion classes. For example, the halide-based
ILs occupy a significant cluster (shown in orange) while imidazoliums are a little
scattered but are largely concentrated in the largest cluster located in the cen-
ter. Variable contributions summarising the information shared by each variable
(Figure 2E-F) and a particular component were additionally analysed[73]. The
first PC is dominated by contributions from both cations and anions while the
second is more influenced by the cations with descriptors focusing on the geo-
metrical and quantum-chemical characteristics. For instance, the energy related
terms such as the HOMO-LUMO gap reflect the stability of the IL while the
electronic structural features (most negative or most positive atomic charge)
and partial surface area descriptors encode factors that influence intermolecular
interactions. The radius of gyration, here calculated for the anion, is a size
descriptor based on the distribution of atomic masses[74]. It has been observed
that the increase in the size of the anion can lead to a decrease in the melting
point[75].
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Figure 2: Graphical summary of the principal component analysis. (B) shows the score
plot for the first two PCs. (C) and (D) show the score plot with respect to the prominent
cationic (imidazolium, pyridinium, pyrrolidinium, triazolium) and anionic (borates, halides,
hexafluorophosphates, TFSI) groups. For the variable contributions, only the top 25 variables
are shown.
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Table 2: Table summarises the machine learning performances for different regression methods
applied to independent calibration and test sets. R2

cv is the 5-fold cross-validated squared
correlation coefficient averaged over 3 independent runs. Numbers in brackets in the RMSE
column are the corresponding mean absolute errors.

Method
Training Testing

RMSE (MAE) R2 RMSE (MAE) R2

PLSR 55 (41) 0.50 58 (41) 0.53
SVR 47 (16) 0.64 46 (34) 0.65
k-nn 47 (35) 0.64 49 (36) 0.61
RF 44 (14) 0.67 46 (34) 0.66

GBM 45 (13) 0.66 45 (33) 0.67
CUBIST 45 (12) 0.67 47 (33) 0.64

2.6. Regression modelling

Summaries of the model performances are presented in Table 2. A com-
plete list of the model parameters and results is presented in Table S4 in the
supplementary material. Among the methods used, the ensemble tree-based
Cubist, GBM and RF models were found to have the best performance aver-
aging R2 > 0.65 for both calibration and test sets. Mean absolute errors for
the Cubist model were seen to be the lowest across both calibration and test
sets. While both k-nn and SVR models showed similar trends, the linear PLSR
model is the least accurate. Interestingly, both k-nn and RF models use less
than 35 variables after feature selection, while for the other approaches the
variable reduction was not found to improve calibration results. Randomiza-
tion tests applied to the response (MP ) yielded p−values < 0.001 (based on
500 iterations) suggesting that the chances of overfitting are small. The per-
formance of models, obtained using descriptors calculated for the more recent
PM7[76] method was also investigated. However, no discernible improvement
improvement in the results was observed (see Table S7 in the Supplementary
information).

In order to examine which variables are influencing the performances, an
importance measure was computed based on the corresponding reduction in
error when the predictor of interest is permuted. Figure 3 shows the top rank-
ing features for the Cubist, GBM and RF models. Although, the influence
of the different descriptors on the melting point behaviour is not directly ob-
vious, they are nonetheless suggestive of a contributory effect. For both RF
and GBM models, a mixture of both cation and anion-based descriptors are
prominent and mirror the trends seen with respect to the first principal com-
ponent. On the other hand, the top ranking features for the Cubist method
are largely based on the cation. The chemical reactivity parameters such as the
HOMO/LUMO energies are closely related to electrophilic/nucleophilic attack
and the chemical hardness that is associated with the stability and reactivity
of a chemical system feature prominently in all models. The atom specific de-
localizabilities, which are dynamic reactivity indices are reflective of the energy
stabilization due to electron redistribution during the formation of the complex
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Figure 3: Prominent variables (top 20) influencing the model predictions (A) RF (B) GBM
(C) Cubist. For Cubist models, the importance is taken as the percentage of times each
variable was used in a condition and/or a linear model. For RF, the importance is calculated
by permuting each predictor variable and computing the mean square error on the out-of-bag
data for each tree.

with a second molecule[77]. These descriptors can be understood as quantifying
the interactions between the cation and anion and are likely to influence the
molecular packing and extent of hydrogen bonding[20, 75]. For instance, the
alkylation pattern on the cations/anions can lead to a poor packing efficiency
and contributes to low melting points[78]. Other geometric descriptors such as
the spherosity which varies between 0 (flat molecules) and 1 (totally spherical)
can be interpreted as the relative surface on which the charge is accessible to the
counterion wherein the charge distribution can impact the melting points[34, 79].

Although a comparison with other published models was attempted, the lack
of sufficient detail and unavailability of required parameters made it difficult to
do so. Melting point estimations were also carried out using COSMOtherm
which uses the mathematical model published by Preiss et al[13]. Of the 2212
ILs analysed, the COSMOtherm model was unable to provide estimates for 951
cases. For the remaining ILs, a mean absolute deviation of 89◦C was obtained.
Corresponding values for the RF, Cubist and GBM approaches are 21, 17 and
20 ◦C respectively. A popular approach to developing QSPRs has been the
use of congeneric series of structures. Given that the imidazoliums form (645
ILs) the biggest structural group in the analysed data, ML models for only this
class were examined. The predictive abilities of the models (RF and Cubist) see
only a marginal improvement. However, for other structural groups such as the
pyridiniums and bistriflimides, the results were relatively inferior (see Tables
S4-S6 in the supplementary material). These results mirror the trends observed
in an earlier article by Varnek et al[23].

The variability in the predictions can be attributed to a number of reasons.
A better choice of descriptors such as those focusing on cation-anion interactions
may be beneficial[80]. Attempts to include this by way of creating a product
matrix containing product of every pair of cation-anion descriptor values, was
however not found to improve the quality of predictions. A closer inspection of
the literature shows that for a number of ILs, multiple melting point values were
reported. 1-butyl-3-ethylimidazolium bis((trifluoromethyl)sulfonyl)imide for in-
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Table 3: Summary of the classification model performances in terms of the κ statistic and
accuracies (ACC).

Method
Training Testing
κ ACC κ ACC

PLSDA 0.64 0.83 0.57 0.79
RF 0.69 0.84 0.61 0.81

GBM 0.69 0.85 0.63 0.82

stance has reported melting points of -40 and -9◦C[81, 82]. The experimental
deviations are much larger in the case of 1-dodecyl-3-methylimidazolium chlo-
ride which has reported values of 97 and -3 ◦C[83, 84]. These variations have
been attributed to a number of factors such as the purity of the ionic liquid
sample being tested, its water content, formation of liquid-crystalline phases
etc[14, 85]. In addition, there have been instances where glass transition tem-
peratures (Tg) have been confused with Tm[40]. From a modelling perspective,
these factors can cause the models to have poor generalizability[41].

2.7. Classification models

Given the moderate accuracy of regression models, a classification-based ap-
proach was used understand the structure-property relationships. The ionic
liquids were divided into two classes according to the values of their melting
points wherein those with melting points above 100◦C were assigned to class
A (876 ILs) and those below to class B (1336 ILs). Performance of classifica-
tion models was gauged using both the kappa statistic[86] and accuracy. While
both tree-based approaches yield similar metrics, the linear partial least squares
discriminant analysis model performs comparably with accuracies for both cal-
ibration and test sets > 80%. Comparing the performance with the regression
models, one notes that the correlation coefficient is indeed much smaller and
suggests a less than perfect relationship between the observed and predicted.
However, the Spearman ranked correlations (calculating Pearson’s correlation
on the ranked values of the data) between the experimental and ML-predicted
values are considerably better with values of 0.93, 0.93 and 0.94 for RF, GBM
and Cubist regression models (across the entire data) and indicates a strong
positive association between the trends seen for the two sets of values.

2.8. Experimental validation

Given the relative differences in performances of the classification and regres-
sion models, an independent verification of the predictive abilities was carried
out. Five new ILs were synthesized and their melting points recorded (see Sup-
plementary information for experimental details). A further 14 ILs were taken
from recent literature[87–89]. The new ILs (cations and anions shown in Figure
4) span a temperature range of −84 − 195◦C with nine ILs having very low
melting points (close to 0◦C or less), the rest had MP > 50. Table 4 shows
the prediction results for the new ILs. Mean absolute errors of 56, 50 and 45◦C
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Figure 4: List of cations and anions used as part of the external validation.

are seen for the RF, Cubist and GBM models respectively. Classification mod-
els based on the GBM and PLSDA yield better performances with the former
showing an accuracy of 84%.

2.9. Applicability Domain Analysis

Owing to a constrained chemical space coverage of the calibration data, the
developed machine learning models need to be applied with caution[90, 91].
In order to establish the boundaries within which the model predictions can
be trusted, a probability-oriented distance-based[92] approach was examined.
Here, the structural similarity of a given compound (calculated as the average
Euclidean distance in the n−dimensional descriptor space) to the training set
ILs is used as a means to gauge whether the model prediction is reliable. In
addition, the prediction uncertainty for each observation was calculated using

bootstrapping[93, 94] as: ỹi =

√∑N
j=1(ŷj−ȳ)

N−1 where, ŷj is the uncertainty in
prediction associated with object i, N is the number of bootstrap ML models
(set to 100 in this study), ŷj is the prediction for the jth model and ȳ, the mean
of predictions obtained by using the complete training set. Predictions with
small standard deviations are typically considered to be reliable.

Figure 5 shows the applicability domain regions for the GBM model, wherein
the reliable prediction space is obtained by computing the 95% and 99% con-
fidence interval (based on Student’s t-distribution) boundaries with respect to
the calibration data. For the larger test set, 64 predictions are flagged as being
outside the 95% confidence interval boundary while the corresponding number
for the second validation set is 4. Thus, the GBM model accounts for nearly 90%
and 79% reliable predictions across the two test sets. Examination of the struc-
tures for which the GBM model predictions were flagged as unreliable, shows
that a number of cation/anion chemistries are potentially underrepresented in
the calibration. For instance, the ILs based on the organosilanesulfonate anions
(A0381-A0382) have large deviations and are also flagged as outside the respec-
tive applicability domains for the Cubist, SVR and RF models (see Figures
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Table 4: Experimental and predicted melting points for 19 new ionic liquids. Predictions for
both regression and classification models are reported. Here MP > 100◦C are assigned to
class A (above) and B (below) otherwise.

Cation Anion
Regression Classification

Reference
Expt. RF Cubist GBM COSMO PLSDA GBM RF

C0505 A0295 -68 -10 -20 -21 -105 B B B This study
C0505 A0205 -70 -5 1 2 -105 B B B This study
C0315 A0295 -68 41 -27 -14 -102 B B B This study
C2187 A0048 -84 17 16 2 -13 B B B This study
C2188 A0048 -67 20 15 15 -5 B B B This study
C2189 A0069 150 120 159 147 NA A A A [88]
C2189 A0011 170 112 119 130 115 B A A [88]
C2190 A0069 70 126 170 152 NA A A A [88]
C2190 A0011 130 112 112 142 89 B A A [88]
C2191 A0069 195 113 104 161 NA A A A [88]
C2192 A0011 225 89 155 135 143 A A B [88]
C2193 A0069 130 115 157 167 NA A B B [88]
C2193 A0011 145 95 158 149 98 A A B [88]
C1203 A0381 -6 29 32 17 4 B B B [87]
C0638 A0381 5 29 41 28 2 B B B [87]
C1203 A0382 2 32 46 33 -11 B B B [87]
C0638 A0382 -5 31 53 41 -11 B B B [87]
C2018 A0102 50 94 95 40 -118 B B B [89]
C2018 A0383 100 73 94 30 -98 B B B [89]
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Figure 5: Applicability domain boundaries for the (A) test set and (B) external validation set
based on the GBM model. Compounds located within the 95% (green zone) and 99% (orange
zone) confidence intervals are said to be inside the domain (reliable) of the model.
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F2-F4 in the Supplementary material). Examination of the prediction uncer-
tainties with respect to Cubist, GBM, RF and SVR models (see Figure F5 in
the Supplementary material) show that approximately 39%,33%,62% and 40%
of the compounds exhibit uncertainties and absolute deviations less than 20◦.
This illustrates the trend towards compounds with the smallest uncertainties
having relatively small prediction errors. For cases with large deviations (say
greater than 100◦), the uncertainty estimates are less precise and therefore less
effective as a technique to identify unreliable predictions.

3. Conclusions

This paper presents a machine learning framework for the prediction of the
melting temperatures of a large and diverse set of ionic liquids. To the best
of our knowledge, the ILs used in this study form one of the largest data sets
analysed. Despite the moderate accuracy of prediction, the developed mod-
els can predict the melting point trends reasonably well and should facilitate
high-throughput screening of compounds in search for new potential ILs. In
this article, we have mainly focused on ILs with a single cation and anion. Re-
cently, there has been much interest in mixtures of ionic liquids[95] that not
only increases the synthetic flexibility but also provides new avenues for their
application. Although experimental data in this case is somewhat limited, it
would nonetheless be interesting to see whether machine learning models can
be extended successfully to the modelling of properties of IL mixtures.
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gren, J. Demšar, S. Boyer, B. Zupan, J. St̊alring, Assessment of machine
learning reliability methods for quantifying the applicability domain of
QSAR regression models, J. Chem. Inf. Model. 54 (2) (2014) 431–441.
doi:10.1021/ci4006595.
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