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The first-order plus delay process model with parameters k (gain), τ (time
constant) and θ (delay) is the most used representation of process dynamics.
This paper has three objectives. First, we derive optimal pi- and pid-settings
for this process. Optimality is here defined as the minimum Integrated
Absolute Error (iae) to disturbances for a given robustness level. The
robustness level, which is here defined as the sensitivity peak (Ms), may be
regarded as a tuning parameter. Second, we compare the optimal
iae-performance with the simple simc-rules, where the simc tuning
parameter τc is adjusted to get a given robustness. The “original” simc-rules
give a pi-controller for a first-order with delay process, and we find that the
simc pi-controller is close to the optimal pi-controller for most values of the
process parameters (k, τ, θ). The only exception is for delay-dominant
processes where the simc-rule gives a pure integrating controller. The third
objective of this paper is to propose and study a very simple modification to
the original simc-rule, which is to add a derivative time τd = θ/3 (for the
serial pid-form). This gives performance close to the iae-optimal pid also for
delay-dominant processes. We call this the “improved” simc-rule, but we put
“improved” in quotes, because this controller requires more input usage, so in
practice the original simc-rule, which gives a pi-controller, may be preferred.

1 Introduction

The pid controller is by far the most common controller in industrial practice.
However, although it has only three parameters, it is not easy to tune unless
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one uses a systematic approach. The first pid tuning rules were introduced by
Ziegler and Nichols (1942). Although some other empirical rules were
suggested, the Ziegler-Nichols (zn) rules remained for about 50 years as the
best and most commonly used rules. However, there are at least three
problems with the zn-rules:

1. The zn-settings are rather aggressive for most processes with
oscillations and overshoots.

2. The zn-rule contains no adjustable tuning parameter to adjust the
robustness and make it less aggressive.

3. For a pure time delay process, the zn-pid settings give instability and
the zn-pi settings give very poor performance (also see discussion
section).

For many years there was almost no academic interest in revisiting the pid

controller to obtain better tuning rules. Dahlin (1968) considered
discrete-time controllers and introduced the idea of specifying the desired
closed-loop response and from this backing out the controller parameters.
Typically, a first-order response is specified with closed-loop time constant τc
(called λ by Dahlin). Importantly, τc (or λ) is a single tuning parameter which
the engineer can use to specify how aggressive the controller should be. For
first or second-order plus delay processes, the resulting controller can be
approximated by a pid controller. This idea is also the basis of the internal
model control (imc) pid-controller of Rivera et al. (1986) which results in
similar pid tuning rules. The imc pi-tuning rules, also known as lambda
tuning, became widely used in the pulp and paper industry around 1990

(Bialkowski, 1996).
However, the Dahlin and imc rules set the controller integral time equal to

the dominant process time constant (τi=τ) and this means that integral action
is effectively turned off for “slow” or “integrating” processes with a large
value of τ. This may be acceptable for setpoint tracking, but not for load
disturbances, that is, for disturbances entering at the plant input. This led
Skogestad (2003) to suggest the simc rule where τi is reduced for processes
with large time constants. However, to avoid slow oscillations it should not be
reduced too much, and this led to the simc-rule τi = min(τ, 4(τc + θ), where
θ is the effective time delay of the process.

Since about 2000, partly inspired by the work of Åström (e.g., O’Dwyer
(1988); Åström et al. (1992)), there has been a surge in academic papers on pid
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control as can be seen by the Handbook on pid rules by O’Dwyer (2006)
which lists hundreds of tuning rules.

In particular, the very simple simc pid tuning rules (Skogestad, 2003) have
found widespread industrial acceptance. However, there has also been
suggestions to improve the simc rules (Haugen, 2010; Lee et al., 2014). One
question then naturally arises: Is there any point in searching for better pid

rules for first-order plus delay processes, or are the simc rules good enough?
To answer this question, we want in this paper to answer the following three
more detailed questions: 1. What are the optimal pi and pid settings for a
first-order with delay process? 2. How close are the simple simc rules to these
optimal settings? 3. Can the simc rules be improved in a simple manner?

We consider the stable first-order plus time delay processes

G(s) =
ke−θs

(τs + 1)
, (1)

where k is the process gain, τ is the process time constant, and θ is the process
time delay. We mainly consider the serial (cascade) form pid controller,

Kpid(s) =
kc(τis + 1)(τds + 1)

τis
, (2)

where kc, τi and τd are the controller gain, integral time and derivative time.
The main reason for choosing this form is that the simc pid-rules become
simpler. For the more common parallel (ideal) pid implementation

Kparallel
pid (s) = kc

′
(

1 +
1

τi
′s
+ τd

′s
)

, (3)

one must compute the factor f = 1 + τd/τi, and use the following settings

kc
′ = kc f , τi

′ = τi f , and τd
′ = τd/ f . (4)

For pi-control, f = 0 and the two forms are identical. In addition, a filter F is
added, at least when there is derivative action, so the overall controller is

K(s) = Kpid(s) F(s). (5)

Normally, we use is a first-order filter,

F =
1

τf s + 1
. (6)

3



K(s) Σ
u

G(s)

du

Σ

dy

y

−1 Σ (n = 0)

Σ
e(ys = 0)

Figure 1: Block diagram of one degree-of-freedom feedback control system.
We may treat a setpoint change (ys) as a special case of an output disturbance
(dy).

Note that τf is not considered a tuning parameter in this paper, but rather set
at a fixed small value, depending on the case. The filter is generally needed
when we have derivative action, and we may write τf = τd/α where α often
is in the range from 5 to 10. For other notation, see Figure 1.

The main trade-off in controller design is between the benefits of high
controller gains (performance) and the disadvantages of high controller gain
(robustness and input usage) e.g., (Boyd and Barratt, 1991; Kristiansson and
Lennartson, 2006). In this paper, we focus on the trade-off between
iae-performance and Ms-robustness. More pricesly, we use the integrated
absolute error (iae) for combined input and output disturbances as the
performance measure and obtain optimal pi and pid settings for various
robustness levels, where robustness is measured in terms of the peak
sensitivity (Ms) The resulting Pareto-optimal trade-off between performance
and robustness is subsequently used to evaluate the simc pi and pid rules.

The paper is structured as follows. In Section 2 we define the measures
used to quantify the performance/robustness trade-off. Based, on this
optimal pi and pid controllers are presented in Section 3. In Section 4 we
present the simc rules and propose “improved” rules, referred to as isimc

and isimc-pi in this paper. In Section 5, the various simc and the improved
rules are isimc evaluated. In Section 6, we discuss input usage and some
other issues.

Preliminary versions of some of the results were presented in Grimholt
and Skogestad (2012a) and Grimholt and Skogestad (2013).
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2 Quantifying the optimal controller

The first authors to use the terms “optimal settings” for pid-control where
Ziegler and Nichols (1942) in their classical paper. Generally, it is difficult to
define “optimality” of a controller, as there are many important aspects to
take into consideration, including set-point response, disturbance rejection,
robustness, input usage, and noise sensitivity. Often a control loop is
evaluated solely on the basis of its response to a setpoint change, but in
process control, disturbance rejection is usually the major concern. Another
important aspect is robustness, which often is completely omitted. Åström
and Hägglund (2006) emphasise the need of including all the behaviours of
the control loop.

2.1 Performance

In this paper, we quantify performance in terms of the iae,

iae =
∫ ∞

0

∣∣y(t)− ys(t)
∣∣dt. (7)

To balance the servo/regulatory trade-off we choose a weighted average of
iae for a step input disturbance du (load disturbance) and a step output
disturbance dy:

J(p) = 0.5

(
iaedy(p)

iae
◦
dy

+
iaedu(p)

iae
◦
du

)
(8)

where iae
◦
dy and iae

◦
du are weighting factors, and p is the controller

parameters. Note that we do not consider setpoint responses, but instead
output disturbances. For the system in Figure 1, the closed-loop responses in
the error e = ys − y to an output disturbance dy and to a setpoint change ys
are identical, except for the sign. The difference is that since the setpoint is
known we could further enhance the setpoint performance using a
two-degrees-of freedom controller (which is not considered in this paper),
whereas the unmeasured output disturbance can only be handled by the
feedback controller K (which is the focus of this paper). Of course, we may
consider other disturbance dynamics, but step disturbances at the plant input
and output give are believed to be representative for most cases.

The two weighting factors iae
◦ for input and output disturbances,

respectively, are selected as the optimal iae values when using pi control (as
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recommended by Boyd and Barratt (1991)). To ensure robust reference pi

controllers, they are required to have Ms = 1.59
∗, and the resulting weighting

factors are given for four processes in Table 1. Note that two different
reference pi controllers are used to obtain the weighting factors.

2.2 Robustness

Robustness may be defined in many ways, for example, using the classical
gain and phase margins, which are related to robustness with respect to the
model parameters k and θ, respectively. However, as a single robustness
measure, we in this paper quantify robustness in terms of Mst, defined as the
largest value of Ms and Mt (Garpinger and Hägglund, 2008),

Mst = max{Ms, Mt}. (9)

where Ms and Mt are the largest peaks of the sensitivity S(s) and
complimentary sensitivity T(s) functions, respectively. Mathematically,

Ms = max
ω

∣∣S(jω)
∣∣ =∥∥S(jω)

∥∥
∞ ,

Mt = max
ω

∣∣T(jω)
∣∣ =∥∥T(jω)

∥∥
∞ ,

∗ For those that are curious about the origin of this specific value Ms = 1.59, it is the resulting
Ms value for a simc tuned pi controller with τc = θ on first-order plus time delay (foptd) process
with τ ≤ 8θ.

Table 1: Reference pi-controllers and resulting weighting factors for four
processes

Output disturbance Input disturbance

Process kc τi iae
◦
dy kc τi iae

◦
du

e−s
0.20 0.32 1.61 0.20 0.32 1.61

e−s/(s + 1) 0.55 1.14 2.07 0.52 1.05 2.02

e−s/(8s + 1) 4.00 8.00 2.17 3.33 3.67 1.13

e−s/s 0.50 ∞ 2.17 0.40 5.78 15.10

iaedy and iaedu are for a unit step disturbance on output (y) and input (u),
respectively.
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where‖·‖∞ is the H∞ norm (maximum peak as a function of frequency), and
the sensitivity transfer functions are defined as

S(s) = 1/(1+G(s)K(s)) and T(s) = 1− S(s). (10)

For most stable processes, Ms ≥ Mt. In the frequency domain (Nyquist plot),
Ms is the inverse of the closest distance between the critical point -1 and the
loop transfer function G(s)K(s). For robustness, small Ms and Mt values are
desired, and generally Ms should not exceed 2. For a given Ms we are
guaranteed the following gain margin (gm) and phase margin (pm),(Rivera
et al., 1986).

gm ≥ Ms

Ms − 1
and pm ≥ 2 arcsin

(
1

2Ms

)
≥ 1

Ms

. (11)

For example, Ms = 1.6 guarantees gm ≥ 2.67 and pm ≥ 36.4◦ = 0.64 rad.

2.3 Optimal controller

For a given process and given robustness level (Mub), the iae-optimal
controller is found by solving the the following optimization problem:

min
p

J(p) = 0.5

(
iaedy(p)

iae
◦
dy

+
iaedu(p)

iae
◦
du

)
(12)

subject to: Ms(p) ≤ Mub (13)

Mt(p) ≤ Mub (14)

where in this paper the parameter vector p is for a pi or pid controller. For
more details on how to solve the optimization problem, see Grimholt and
Skogestad (2015). The problem is solved repeatedly for different values of
Mub. One of the constraints in (13) or (14) will be active if there is a trade-off
between robustness and performance. This is the case for values of Mub less
than about 2 to 3. Usually the Ms-bound is active, except for integrating
processes with a small Mub (less than about 1.3), where the Mt-bound is
active (see Figure 4, later).

In retrospect, looking at the results of this paper, we would have obtained
similar optimal pi- and pid-settings for the process (1) if we only considered
input disturbances for performance and only used Ms for robustness.
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Figure 2: Pareto-optimal iae-performance (J) for pi and pid control.

3 Optimal PI and PID control

3.1 Trade-off between robustness and performance and
comparison of PI and PID control

In this section, we present iae-optimal (J) settings for pi and pid controllers
as a function of the robustness level (Mst). However, before presenting the
optimal settings, we show in Figure 2 the Pareto optimal iae-performance (J)
as a function of robustness (Mst) for optimal pi and pid controllers for three
processes. Note that the curves in Figure 2 stop when Mst is between 2 and 3.
This is because performance (J) actually gets worse and the curve for J bends
upwards (Grimholt and Skogestad, 2012a) when Mst increases beyond this
value. Thus, there is no trade-off and the region with Mst larger than about 2

should be avoided.

We see from Figure 2 that for a pure time delay process there is no
advantage in adding derivative action; and it is optimal to use simple pi

control. As the time constant τ increases, the benefit of using derivative
action also increases. For an integrating process, derivative action improves
IAE-performance by about 40%, compared to optimal pi control. This is
emphasised again in Figure 3, where performance is shown as a function of
the normalized time constant for robust controllers with Mst = 1.4.
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Figure 3: pid control: Normalized iae-optimal performance for Mst = 1.4 as a
function of the normalized time constant τ/θ.

Table 2: pi control: Comparison of optimal, simc, and isimc-pi controllers
with Mst = 1.59.

Optimal pi simc isimc-pi

Process kc τi J kc τi τc J kc τi τc J Mst

e−s
0.20 0.32 1.00 0

a
0 1.00 1.35 0.21 0.33 0.61 1.00 1.59

e−s

(s+1) 0.54 1.10 1.01 0.50 1.00 1.00 1.03 0.61 1.33 1.20 1.08 1.59

e−s

(8s+1) 3.47 4.04 1.23 4.00 8.00 1.00 1.38 4.01 8.31 1.08 1.41 1.59

e−s

s 0.41 6.22 1.50 0.45 8.97 1.24 1.63 0.45 8.97 1.24 1.63 1.59

a This is an i controller with integral gain ki = kc/τi=0.5.

3.2 Optimal PI control

The iae-optimal pi settings are shown graphically in Figure 4 as a function of
τ/θ for different robustness levels (Mst) and are also given for Ms = 1.59 for
four processes in Table 2. For pi control we observe three main regions
(Figure 4) in terms of optimal integral time τi:
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Delay dominant: τ/θ< 0.4 τi ≈ θ/3
Balanced: 0.4 <τ/θ< 4 τi ≈ τ
Lag dominant:a 4 <τ/θ τi ≈ kθ

a Where k depends on Mst (k ≈ 6 for Mst = 1.59).

These regions match well the classification of first-order plus time delay
processes in Garpinger et al. (2014).

In contrast with the imc rules (Rivera et al., 1986) and the simc rules
(Skogestad, 2003), the optimal controller does not converge to a pure integral
controller (Ki(s) = ki/s, corresponding to τi → 0) as τ/θ → 0 (Figure 4).
Rather, for a pure time delay processes, the integral time is approximately
θ/3, which we will use in the proposed isimc-pid and isimc-pi rules (see
below). The optimal integral time of about θ/3 is almost independent of the
robustness level (Mst-values) . For balanced processes, the integral time is
similar to the time constant (τi ≈ τ, see dashed line), and also almost
independent of the robustness level. This value agrees with the imc and simc

rules.
For lag-dominant processes (with τ > 4θ), the integral time for Mst = 1.59

approaches τi = 6.22θ for τ/θ = ∞ (integrating process) (Figure 4, lower right).
This is somewhat smaller than the value τi = 8θ obtained from the simc rule.
Also the normalized controller gain, kckθ/τ approaches a constant value as τ
goes to infinity (Figure 4, upper right). For example, for Mst = 1.59, the
optimal value is kckθ/τ = 0.414 for τ/θ = 50, and 0.409 for τ/θ = ∞
(integrating process). This is close to the value kckθ/τ = 0.5 obtained with the
simc-rule with Mst = 1.59.

3.3 Optimal PID control

The iae-optimal pid settings are shown graphically in Figure 5 and are also
given for Ms = 1.59 for four processes in Table 3. The optimal pid settings
can be divided into the same regions as for pi control. Note that for a pure
time delay process, it is optimal with pi control, that is, it is optimal to have
τd = 0 and τi = θ/3. Actually, if we allow for having the derivative time larger
than the integral time, then we could interpret it differently, and say that for a
pure time delay process, the optimal controller is a integral-derivative
(id)-controller with τi = 0 and τd = θ/3. We will see that this latter
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Figure 4: pi control: iae-optimal settings as a function of τ/θ for five values
of Mst.

interpretation is consistent with the proposed improved simc pid-rule,
whereas the first interpretation is consistent with the improved simc pi-rule.

For pid-control, the balanced region (0.2 < τ/θ4) can be divided in two.
In the lower part (τ/θ<1.25), the optimal derivative and integral time are the
same, τi = τd, and increase with τ/θ. In the upper part, τi increases with τ/θ,
whereas τd remains approximately constant. Note that the region with τi = τd
agrees with the recommendation of Ziegler and Nichols (1942)∗. However, we

∗ Ziegler and Nichols (1942) recommend the integral time to be 4 times the derivative time for
the parallel (ideal) pid controller, which for the serial (cascade) pid form corresponds to τi=τd,
see (4).
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Table 3: pid control: Comparison of optimal and simc controllers with
Mst = 1.59.

Optimal pid isimc

Process kc τi τd J kc τi τd τc J Mst Performance (J) loss

e−s
0.20 0.32 0 1.00 0

a
0 0.33 0.61 1.00 1.59 0%

e−s

(s+1) 0.42 0.61 0.61 0.74 0.62 1.00 0.33 0.61 0.79 1.59 6%
e−s

(8s+1) 4.34 2.63 0.49 0.81 4.92 6.50 0.33 0.63 1.00 1.59 23%
e−s

s 0.53 3.18 0.51 0.89 0.59 6.81 0.33 0.70 1.09 1.59 22%

a This is an id controller with integral gain ki = kc/τi = 0.62. The id controller can be rewritten
as a pi controller (τd = 0) with kc = 0.62×0.33 = 0.21 and τi = 0.33.

see from Figure 5 that τi = τd is optimal only for a fairly small range of
first-order plus time delay processes with τ/θ between about 0.2 and 1.25.

From Figure 5 we see that the integral time (τi) is smaller than the process
time constant (τ) for all processes with τ/θ > 4, whereas we found that
τi ≈ τ was optimal in the balanced region for pi control. For given values of
Mst, the optimal pid controller gain is slightly larger than the optimal pi

controller gain, and the integral action is also larger (with a lower value of τi).
For lag-dominant processes (τ/θ > 4), the normalized controller gain

kckθ/τ approaches a constant value as τ → ∞. For example, for Mst = 1.59
we have kckθ/τ → 0.54. The same can be observed for the integral and
derivative times which for Mst = 1.59 approach τi/θ = 3.24 and τd/θ = 0.48,
respectively (Figure 5, bottom right). For increasing Mst values (less
robustness), the optimal controller gain increases and the optimal integral
time decreases. Interestingly, for all lag-dominant processes the optimal
derivative time is τd ≈ 0.47θ almost independent of the Mst-value.

3.4 Parallel vs. serial PID controller

The above optimization was for the serial pid controller in (2). A more
general pid controller is the parallel, or ideal, pid controller in (3), which
allows for complex zeroes. The parallel pid controller is better only for
processes with τ/θ between 0.4 and 1.2, which is the region where τi = τd
(two identical real zeros) for the serial pid controller. Furthermore, the
improvement with the parallel (ideal) pid form is very minor as illustrated in
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Figure 5: pid control: optimal settings as a function of τ/θ for five values of
Mst.

Figure 6, which compares the iae performance for a “balanced” process with
τ/θ = 1. Therefore, the serial pid implementation in (2) is sufficient for
first-order plus time delay processes.

13



1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

serial

p
arallel

G(s) = e−s
/(s+1)

Robustness, Mst

P
er
fo
rm

a
n
ce
,
J

Figure 6: pid control: Comparison of iae-optimal performance (J) for serial
pid control (2) and parallel pid control (3) for a process with τ/θ = 1.

4 The original and improved SIMC rules

4.1 Original SIMC rule

We consider the first-order with delay process in (1). The original simc pid

tunings for this process give a pi controller (Skogestad, 2003):

kc =
1
k

τ

(τc + θ)
, τi = min

{
τ, 4(τc + θ)

}
. (15)

Here the closed-loop time constant τc is an adjustable tuning parameter
which is used to get the desired trade-off between output performance,
robustness and input usage. For “tight control” (good performance) with
acceptable robustness (Ms about 1.6 to 1.7), Skogestad (2003) recommends
selecting τc = θ. However, in many cases “smooth control” is desired and we
should use a larger value for τc.

4.2 “Improved” SIMC rule with derivative action (iSIMC)

In this paper, we propose the “improved” simc pid-rule for a first-order with
delay process. Since an important feature of the simc rules is simplicity, we
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keep the same expressions for kc and τi as in the original pi-rule in (15), but
derivative action is added to improve the performance for a time delay,

isimc : τd = θ/3 (16)

Note that the isimc tunings are for the serial pid implementation in (2). For
the more common parallel (ideal) pid implementation in (3), one must
compute the factor f = 1 + τd/τi and use the values in (4).

As seen from Figure 5), the value τd = θ/3 is close to the optimal for a
pure time delay process (with τ = 0). For larger values of process time
constant τ, the optimal value of τd is closer to θ/2. However, we chose to use
the smaller value τd = θ/3 in order to reduce possible other disadvantages of
adding derivative action.

If we use the same value for the tuning constant (e.g. τc = θ) as for the
original simc pi controller in (15), then the addition of the derivative action in
(16) mainly improves robustness (lower Ms). However, the main reason for
introducing derivative action is usually to improve performance, and to
achieve this one should reduce τc. In the original simc rule (Skogestad, 2003)
it was recommended to select τc = θ to achieve “tight control” with acceptable
robustness (Ms about 1.6 to 1.7). However, as will become clearer from the
results below, for the isimc pid rule we recommend reducing the value of τc
and select τc ≥ θ/2.

The simc pi-tunings parameters with τc = θ and the isimc pid-tunings
with τc = θ/2 are given for four first-order plus delay processes in Table 4.2.
As seen from, isimc pid-improves iae performance (J) by about 30%
compared to the original simc pi controller, while keeping about the same
robustness level (Mst about 1.7).

Note that we have put “improved” in quotes for the isimc rule. Indeed, in
the original simc paper, Skogestad (2003) considered adding the derivative
time τd = θ/2 to counteract time delay, but concluded that it was probably not
worth the increased complexity of the controller and the increased sensitivity
to measurement noise and input usage. Therefore, in most practical situations
in industry, the original simc pi-rule is most likely preferable. Nevertheless, if
performance is important and τc is adjusted as mentioned above, then the
results of this paper show (e.g. see Figure 9), that significant improvements in
performance may be achieved with the isimc rule. Additionally, we have
found that pid control with isimc tunings is better in almost all respects than
a well-tuned Smith Predictor controller (Grimholt and Skogestad, 2018).
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Table 4: simc pi controller and isimc pid controller with tuning constant τc =
θ and τc = θ/2, respectively.

simc (pi, τc = θ) isimc (pid, τc = θ/2)

Process kc τi iaedy iaedu J Mst kc τi τd iaedy iaedu J Mst

e−s
0.50

a
0 2.17 2.17 1.35 1.59 0.67

?
0 0.33 1.50 1.50 0.93 1.66

e−s

(s+1) 0.50 1.00 2.17 2.04 1.03 1.59 0.67 1.00 0.33 1.50 1.50 0.73 1.66

e−s

(8s+1) 4.00 8.00 2.17 2.00 1.38 1.59 5.33 6.00 0.33 1.80 1.12 0.91 1.67

e−s

s 0.50 8.00 3.92 16.00 1.43 1.70 0.67 6.00 0.33 2.83 9.00 0.95 1.73

a Integral gain ki = kc/τi .

4.3 Alternative improved SIMC rule without derivative
action (iSIMC-PI) for delay dominant processes

Note that for a pure time delay process (τ = 0), the isimc pid-controller in
(15-16) is actually a id-controller, since kc = 0. As noted earlier this
id-controller (with τd = θ/3 and τi = 0) may be realized instead as a
pi-controller (with τi = θ/3 and τd = 0). This is the basis for the following
“improved” simc pi rule for a foptd process, denoted isimc-pi (Grimholt and
Skogestad, 2012b):

isimc-pi : kc =
1
k

τ + θ/3
(τc + θ)

, τi = min
{

τ + θ/3, 4(τc + θ)
}

. (17)

Note that for a pure time delay process (τ = 0), the isimc pid-controller in
(15-16) and the isimc-pi pi-controller in (17) are identical. The isimc-pi

tunings in (17) may give significant performance improvements benefits
compared to the original simc pi-tunings for delay-dominant processes, but
at the expense of larger input usage. However, for processes with τ > θ/2,
approximately, we find that the benefits are marginal or even negative.

5 Evaluation of the SIMC and iSIMC rules

5.1 SIMC PI-rule (original)

We compare in Figure 7 the Pareto-optimal iae performance (J) of the simc pi

controller with the iae-optimal pi controller for four different processes. The
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pi settings for Mst = 1.59 are given in Table 2. In addiion, the simc controllers
for three specific choices of the tuning parameter,

• τc = 1.5θ (smoother tuning)
• τc = θ (tight/redcommended tuning)
• τc = 0.5θ (more aggressive tuning)

are shown by circles. For the simc controller (Figure 7), the trade-off curves
were generated by varying the tuning parameter τc from a large to a small
value. Except for the pure time delay process, the iae-performance simc

pi-controller is very close (within 10%) to the iae-optimal pi controller for all
robustness levels. In other words, by adjusting τc we can generate a
close-to-optimal pi-optimal controller with a given desired robustness.
Another important observation is that the default pid-recommendation for
“tight” control, τc=θ (as given by middle of the three circles), in all cases is
located in a desired part of the trade-off region, well before we reach the
minimum. Also, the recommended choice gives a fairly constant Ms-value, in
the range from 1.59 to 1.7. From this we conclude that, except for the pure
time delay process, there is little room to improve on the simc pi rule, at least
when performance and robustness are as defined above (J and Ms).

5.2 Improved SIMC PI rule (iSIMC-PI)

The main “problem” with the original simc rule is for pure time delay
processes, where the iae-performance (J) is about 40% higher than the
optimal (Figure 7). The proposed isimc-pi rule in (17) rectifies this. As seen
from Figure 7 (upper left), the proposed isimc-pi rule is almost identical to
the iae-optimal controller when τc is adjusted to give the same robustness
(Mst). This is further illustrated by the simulation in Figure 8.

5.3 Improved SIMC PID rule (iSIMC)

Next, we consider pid control, that is, the addition of derivative action using
τd = θ/3, as proposed with the isimc rule (16). We compare in Figure 9 the
iae performance (J) of the isimc pid controller with the iae optimal pid

controller with the same robustness (Mst) for four different processes (green
curves). pid settings for Mst = 1.59 are given in Table 3. To illustrate the
benefits of derivative action we also show in Figure 9 the curves with pi

control (blue curves).
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Figure 7: pi control: Pareto optimal iae-performance (J) for optimal-pi, simc

(15), and isimc-pi (17) control for four processes. The trade-off for simc and
isimc-pi is generated by changing the value of the closed-loop tuning constant
τc.
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Figure 8: Time response for optimal, simc and isimc controllers (Mst=1.59)
for an input/output disturbance (at time 0/1) for the pure time delay process
G(s) = e−s. For pure time delay process the input u response is equal to the
output y response time shifted one time delay earlier. Also the response is the
same for an input or output disturbance (but shifted). Note that for a pure
time delay process there is no benefit of adding derivative action (τd = 0 is
optimal).

We see from Figure 9 that the simc pid-controller (dashed green curve) is
close to the optimal pid-controller (solid green line) for all four processes and
all robustness levels. By considering the location of the middle green circles,
we see that if we keep the value of τc unchanged at τc = θ, then adding
derivative action mainly improves robustness. For example, for an integrating
process and τc = θ, the value of Mst is improved from 1.70 for pi to 1.46 for
pid, but there is only a 6% improvement in performance. However, by
reducing τc we can significantly improve performance for a given Mst value.
For the four processes, we see from Figure 9 that τc = θ/2 (rightmost green
circles) is a good choice for the tuning constant for the isimc pid controller.
Compared to simc pi controller tuned with τc = θ, this gives about 30% better
iae-performance and similar robustness (Mst about 1.7).

We said that the simc pid-controller is close to the optimal pid-controller.
However, we see from the two lower plots in Figure 9 that the performance
loss is somewhat larger for processes with large time constants. To study this
further, we compare in Figure 10 the step responses for various pi and pid

controllers for an integrating process. Because of a larger integral time, the
simc and isimc controllers settle more slowly than the optimal pi and pid

controllers for both input and output disturbances. This results in a 22%
higher average iae-performance (J) for the isimc pid controller when
compared with the optimal pid controller. However, it is usually the
maximum deviation that is of main concern in industry. Because of a larger
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Figure 9: Pareto optimal iae-performance (J) as a function of robustness Mst

for optimal pi and pid, and simc (15), isimc (16) and zn for four processes.
The trade-off for the various simc rules are generated by changing the value
of the closed-loop tuning constant τc. pi controllers are shown with blue and
pid controllers with green.
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input disturbances (at time 20), for an integrating process G(s) = e−s/s. To
get a proper system, a first order measurement filter with τf = 0.02 was
applied to the pid controllers.

controller gain, the simc controllers have roughly the same peak deviation as
the optimal pi and pid controllers for input disturbance (see Figure 10), and a
smaller overshoot for output disturbances (setpoint) than the optimal. Thus,
we conclude that the performance of the simc controllers are better than
indicated from the iae-value (J), when we take into account other aspects of
performance. In conclusion, also for pid control, we conclude that isimc is
close to the optimal pid-controller, so the benefit of looking for even more
“improved” rules for first-order plus time delay processes is limited.

6 Discussion

6.1 Input usage and filtering

Input usage is an important aspect for control, but have not been explicitly
treated in this work. From Figure 1 we have

u = −T du − KS
(

dy + n
)

.
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Thus, input usage is determined by two transfer functions: T = GK/(1 + GK)
(for input disturbance) and KS = K/(1 + GK) (for output disturbance and
noise). Input disturbances will not pose a new problem because T is closely
related to performance and is in addition already bounded by Mt.

The important new transfer function is therefore KS, and by limiting its
peak one can adjust input usage related to measurement noise and output
disturbances (Kristiansson and Lennartson, 2002). For pi control, KS has a
peak at intermediate frequencies which is approximately (Åström and
Hägglund, 2006):

‖KS‖pi

∞ ≈ kc Ms. (18)

Here, Ms is already bounded in our analysis, and is typically smaller than 1.7.
Thus, we find that the controller gain kc provides direct information about the
input usage related to measurement noise and output disturbances.

For pid control, the value of |KS| is generally higher at higher frequencies,
and we find the input usage is dominated by the selected measurement filter.
If there is no measurement filtering, τf = 0, then the high-frequency peak
goes to infinity. Therefore, for pid control it is important to filter out the high
frequency noise, and the resulting peak will depend heavily on the selected
filter time constant. With a first or second order measurement filter

F1(s) =
1

τf s + 1
or F2(s) =

1
(τf s)2 +

√
2 τf s + 1

, (19)

the high-frequency peak can be approximated by

‖KS‖pid

∞ ≈ αkc (20)

where α = τd/τf . Note that τf here is for the cascade pid-controller in (2) and
not for the ideal form in (3). Typically, α is between 5 and 10. The ratio in
input magnitude between pi and pid related to measurement noise and
output disturbances can then be expressed as

‖KS‖pid

∞
‖KS‖pi

∞
≈ kc

pid

kc
pi

α

Ms

pi
. (21)

With the recommended tight tuning (τc = θ for simc pi and τc = θ/2 for
isimc pid), we get kc

pid

kc
pi = (θ + θ)/(θ/2 + θ) = 1.33 and the ratio in input

usage can be expressed as

‖KS‖isimc(pid)
∞

‖KS‖simc(pi)
∞

≈ 1.33
1.6 α ≈ 0.8α (22)
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where we have assumed Ms

pi to be 1.6. Since α is typically larger than 5, this
means that the improved iae performance of pid control may require an
input magnitude related to measurement noise and output disturbances
which is at least 4 times larger than for pi control ∗.

Trade-off curves for isimc with different first-order measurement filters
are shown in Figure 11. For the recommended pid tuning, τc = θ/2,
performance and robustness will deteriorate with increased measurement
filtering. With τc = θ/2 and α = 3, the robustness is quite low, and a retuning
of the controller by selecting a larger τc might be necessary. With α=1, we
recover the original simc pi-controller for which we recommend τc = θ to get
a good trade-off between performance and robustness.

Based on Figure 11, we recommend for pid-control to choose α in the
range from 5 to 10, which gives most of the benefit of the D-action. The
high-frequency input usage may then increase by a factor 4 to 8 compared to
pi-control. This increase in input usage may be undesirable, so for many real
process applications where performance is not the key issue, the original
simc rule, which gives a PI-controller, is the best choice.

If noise filtering is an important factor, an iterative design approach can be
used in combination with simc to ensure that the controller has both good
robustness and low noise sensitivity (Segovia et al., 2014).

6.2 Trade-off between input and output disturbance
response

As already noted from Table 1 and observed from the simulations in
Figure 12, the optimal controller that minimizes the average iae performance
(J) in (12), puts more emphasis on disturbance rejection at the input (iaedu)
than at the output (iaedy), especially for larger values of the process time
constant. For example, for an integrating process we find ĩaedu = 1.02 (close
to optimal for input disturbance), whereas ĩaedy=1.99 (twice the optimal).
This is further illustrated in Figure 13, where we show ratio between the two
terms in the iae-performance index J (Huba, 2013), which in this paper we
term controller balance,

controller balance =
iaedu
iae
◦
du

/
iaedy

iae
◦
dy

, (23)

∗ We have assumed that the selected filter does not influence controller performance and
robustness in a significant way. Otherwise, we have a proportional-integral-derivative-filter (pidf)
controller where also the filter constant τf should be considered a degree of freedom in the
optimization problem.

23



1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

isimc

simc α = 2
α = 3

α = 5
α = 10

τc
=

0.5
θ

τc
=

1θ
τc

=
1.5
θ

G(s) = e−s/(8s+1)

F (s) = 1
τf s+1

τf = τd/α

Robustness, Mst

P
er
fo
rm

a
n
ce
,
J
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case with α = 1.

as a function of τ/θ. From Figure 13, we also note that for time constants less
than about 3θ, the optimal controller has roughly equal weight on input and
output (also seen in Figure 12, top). For larger time constants, the emphasis
shifts towards input disturbances. Interestingly, if we use a cost function with
only a small weight (1%) on input disturbances

J(p) =

(
0.99

iaedy(p)
iae
◦
dy

+ 0.01
iaedu(p)

iae
◦
du

)
, (24)

we find for an integrating process the optimal settings kc = 0.462 and
τi = 12.2θ, with ĩaedu = 1.72 and ĩaedy = 1.91. We notice that there is only a
minor improvement in setpoint performance (iaedy decreases about 4%),
whereas disturbance rejection is much worse (iaedu increases about 69%). The
conclusion is this that we may put emphasis mainly on input disturbances
when tuning pi controllers for lag-dominated processes.
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6.3 Further evaluation of SIMC PI rule for integrating
processes

When comparing the optimal pi settings with the original simc rule for an
integrating process, we find that the simc integral time is larger than the
optimal (Figure 4, bottom). Specifically, for an integrating process with τc = θ
(giving Mst = 1.70), the simc rule gives τi/θ = 8, whereas the optimal
performance (J) for the same robustness is with τi/θ=5.6. This indicates that
the simc rule puts more emphasis on output disturbances than input
disturbances, tham for the iae-optimal controller witrh equal weighting. To
shift the trade-off between output (setpoint) and input disturbance, one may
introduce an extra parameter in the tuning rule (Alcántara et al., 2010;
Di Ruscio, 2010). Haugen (2010) suggested to introduce an extra
servo/regulator trade-off parameter c in the expression for the integral time,

τi = min{τ, c(τc + θ)}, (25)

where c = 4 gives the original simc rule. However, introducing an extra
parameter adds complexity, and the potential performance benefit of
approximately 10% (see Figure 7) does not seem sufficiently large to justify it.

26



1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

optimal
c = 4

τc
=

0.5
θ

τc
=

1θ

τc
=

1.5
θ

(simc)
c = 2τc

=
1θ

G(s) = e−s/s

Robustness, Mst

P
er
fo
rm

a
n
ce
,
J

Figure 14: pi control: Evaluation of suggested modification c = 2 in (24) for
integrating process.

Nevertheless, one may consider choosing another (lower) fixed value for c,
and Haugen (2010) suggests using c = 2 to improve performance for input
disturbances. If we use the recommended tuning τc = θ, we find indeed that
iae performance J is improved compared to simc (see Figure 14). However,
robustness is worse, with Mst close to 2 (where the simc rule gives Mst close
to 1.7). More importantly, as seen from Figure 14 the simc performance is
better if we decrease τc to get the same robustness in terms of Mst. In fact,
simc is closer to the Pareto optimal curve for most values of Mst. Actually, a
better fixed value would be c = 3. However, changing the parameter c causes
the recommended tuning τc = θ to shift to the less robust region. In summary,
we find that the value c = 4 in the original simc rule provides a well balanced
servo/regulator trade-off. To improve performance for input disturbances on
an integrating process, we recommend decreasing the tuning constant τc/θ,
say to around 0.7, rather than changing the value of c.

6.4 iSIMC for second-order plus delay process

For a second-order plus delay process,

G =
ke−θs

(τ1s + 1)(τ2s + 1)
(26)
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where τ1 > τ2, the original simc rule gives a pid controller on the series form
(2) with

kc =
1
k

τ

(τc + θ)
, τi = min

{
τ, 4(τc + θ)

}
, τd = τ2. (27)

The direct extension of the isimc rule would be to add another derivative
term, ( θ

3 s + 1), to the numerator of the pid controller in (2). First, this would
not be a standard industrial controller and, second, it would give even more
aggressive input usage. Thus, to get a pid controller, the following modified
derivative time is recommended ∗

isimc : τd = τ2 + θ/3 (28)

with the controller gain and integral time as given in (27). To get a good
trade-off between performance and robustness, we may select τc = θ, but τc
may be reduced towards θ/2 for processes where τ2 is smaller than θ/3.
Again, to get settings for the parallel (ideal) pid-controller in (3) one must
compute the factor f = 1 + τd/τi, and use (4).

6.5 Ziegler-Nichols tuning rule

We also show in Figure 9 by red triangles the location of the classical Ziegler
and Nichols (1942) (zn) pi and pid controllers. The zn-tunings are obtained
by first bringing the process to sustained oscilattions using a P-controller and
recording the resulting “ultimate” period and controller gain. Since the zn

rules have no tuning parameter we get a single point in Figure 9. With
exception of the pure time delay process (where zn-pid is unstable and zn-pi

has very poor performance), the iae performance for zn is very good, but the
zn controllers are located in the “flat” trade-off region with poor robustness
(large Mst value).

The Ziegler-Nichols pid tuning rules were the by far most used rules for
about 50 years, up to about 1990. The very poor performance of the zn rules
for pure time delay processes may then partly explain the myth that "time
delay compensators", such as the Smith Predictor, may give significant
performance benefits compared to pi- or pid-control for processes with large
time delays (Grimholt and Skogestad, 2018).

∗ If τ2 is very large, specifically if τ2 > 4(τc + θ), then one should approximate the process as a
double integrating process, G(s) ≈ k′′e−θs/s2 with k′′ = k/(τ1τ2), and use the pid-tunings for a
double integrating process (Skogestad, 2003).
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7 Conclusion

The iae-optimal pi- and pid-settings for a first-order plus delay process (1)
are shown for various robustness levels (as expressed by the Ms-value) in
Figures 4 and 5, respectively. However, in practice, we recommend using the
SIMC-rules for pi- and pid-tuning.

For pi-control, Figure 7 shows that the “original” simc rule in (15)
(Skogestad, 2003) gives close-to optimal pi-performance. That is, by adjusting
the tuning constant τc to get a desired robustnes, we can closely track the
Pareto-optimal trade-off curve between performance and robustness. The
only exception is for delay-dominant foptd processes, where the simc

proportional gain is too small, but this can be corrected for by using the
isimc-pi rule in (17).

For pid-control, we propose the isimc rule where derivative action with
τd = θ/3 (16) is added. Note that this is for the cascade pid-controller in (2).
Figure 9 shows that this rule gives close-to optimal pid-performance, even for
delay-dominant processes. For a pure time delay process, the isimc

pid-controller is an id-controller which can by rewritten to give the isimc-pi

rule in (17).
The improved performance/robustness trade-off of the isimc-pi and isimc

rules, comes at the expense of increased input usage in response to
measurement noise, output disturbances and setpoint changes. Thus, for
most industrial cases where output performance is not the main concern, the
original simc rule may be the best choice.
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