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Problem formulation

To formulate bivariate additive genetic models such that integrated nested Laplace
approximations (INLA) can be used for inference. Further the methodology should
be tested through simulation studies, and a case study of partial diallel design of

Scots pine.
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Abstract

In this study we focus on performing inference on bivariate animal models using
Integrated Nested Laplace Approximation (INLA). INLA is a methodology for
making fast non-sampling based Bayesian inference for hierarchical Gaussian

Markov models. Animal models are generalized mixed models (GLMM) used in
evolutionary biology and animal breeding to identify the genetic part of traits.

Bivariate animal models are derived and shown to fit the INLA framework.
Simulation studies are conducted to evaluate the performance of the models. The
models are fitted to a real data set of Scots pine to investigate correlations and

dependencies.





Sammendrag

I dette studiet fokuserer vi p̊a å utføre inferens p̊a bivariate slektstrebaserte
modeller ved å bruke Integrated Nested Laplace Approximations (INLA). INLA er

en metodikk for å utføre Bayesiansk inferens p̊a hierarkiske Gaussiske Markov
modeller. Slektstrebaserte modeller er generaliserte mikset modeller som blir brukt
i evolusjonsbiologi og dyreavl for å identifisere andelen av et trekk som er bestemt
av gener. Bivariate slektstrebaserte modeller blir utledet og vist til å passe i INLA
rammeverket. Simuleringsstudier er utført for å evaluere modellene. Modellene er

ogs̊a tilpasset et ekte datasett for å undersøke korrelatsjon og avhengigheter.
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Glossary of notations

Variable Meaning
yi,j Trait (tree height) for individual i at age level j
ai,j Additive genetic effect for individual i at age level j
ui,j Breeding value for individual i at age level j
zi,j Individual environmental effects for individual i at age level j
σ2
aj

Additive genetic variance for age level j

σ2
zj

Individual variance for age level j

A Additive relationship matrix
I Identity matrix
ΣΣΣ Covariance matrix
Q Precision matrix

Table 1: Variable glossary used in this study



1 Introduction

The ability to identify if a given trait is explainable by environmental effects or genet-
ics is of great interest in evolutionary biology, animal breeding and plant breeding.
In the study of quantitative traits it is interesting to identify the cause of the given
trait. Quantitative traits are the product of multiple genes acting additively. Genes
are said to act additively if a set of two or more genes have the same effect as the
sum of those same genes individually (Lynch & Walsh 1998).

The essence of the model I use, the animal model, is the assumption that ani-
mal i’s trait, yi, can be divided into a genetic part, ai, and an individual part zi.
The genetic part, ai are the additive genetic effects, also known as the breeding
value. To calculate the breeding value for individual i, its pedigree and data from
its relatives are required.

Calculation of breeding values have been popular in animal and plant breeding
for decades. This has been successful in many disciplines, e.g. increased meat yield
from beef cattle and higher milk production in dairy cattle (Simm 1998).

The modelling is performed in a Bayesian framework. All parameters are then
considered random variables, an it is (in theory) straightforward to account for all
uncertainty in parameter estimates. Bayesian modelling also solves many of the
issues regarding analysis of breeding values discussed in (Postma 2006) and (Wilson
et al. 2009) as both breeding values and functions of breeding values are considered
random variables, and hence both uncertainty and dependencies are accounted for.
This flexibility has made Bayesian animal models increasingly popular.

Both in plant and animal breeding and in evolutionary biology, it is often of in-
terest to consider several traits simultaneously, e.g. amount and quality of milk. In
plant and animal breeding selection of multiple traits is often desired. This requires
knowledge about the additive genetic variances and correlation between traits. The
additive genetic covariance matrix is also of interest to understand evolution in the
wild because it contains information about evolutionary trajectories of several traits.
(Lynch & Walsh 1998)

This study is based on the same dataset as (Finley et al. 2009). The data con-
sists of height measurements from two grids with Scots pine (Pinus sylvestris L.)
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in northern Sweden. The northern grid contains 2598 trees and the southern grid
contains 2372 trees. In addition to the trait (Finley et al. 2009) examined, tree
height at 26, we include tree height at age 10 as well.

To be able to look at the correlation between the two measurements, we propose
a bivariate animal model. The bivariate animal model is under the same assump-
tions as the univariate animal model and allows us model two traits simultaneously.
Modelling two traits simultaneously enables us to take both additive genetic cor-
relation and individual environmental correlation into account. We will investigate
the performance of several bivariate animal models, specified in Section 2.7.

To do inference on Bayesian animal models there are two popular methods, Markov
Chain Monte Carlo, MCMC, and Integrated nested Laplace approximation, INLA.
INLA being the more recent method. In (Holand et al. 2013) these two methods
are compared by using them on Bayesian models that include genetic terms. Their
conclusion was that MCMC is flexible, but slow and INLA is less flexible, but faster.
In their example the computation times were 24 hours for MCMC and 1 hour for
INLA. In this paper I will use the INLA method. A brief description of INLA is
found in Section 2.5.

The goal of this paper is to demonstrate that also the bivariate animal model fits
the INLA framework. When it is established that it is possible to use INLA for
inference on the models, simulation studies are performed to explore identifiability
issues with the bivariate animal model. The simulation studies are based on the
same pedigree as the Scots pine data.

After the simulation studies are concluded, a case study is performed. The case
study looks at the Scots pine data and assess the correlation between the two mea-
surements.

This paper is organized as follows:
Section 2 gives a overview of the data, presents our model and a brief description
of the methods that were used . Section 3 contains four simulation studies. Section
4 presents the results with some comments. Section 5 contains the case study. Sec-
tion 6 includes discussion of the results as well as some interesting topics for further
research. Appendix A gives an example of R-INLA implementation.
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2 Background and models

This section presents the Scots pine study system. The simulation studies are based
on this system, and it is analysed in Section 4.

2.1 Scots pine data

Our study system consists of two plantations of Scots pine in northern Sweden.
It started out in 1971 by breeding 52 parent trees according to a partial diallel
design.(Figure 1)
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Figure 1: Mating design for the Scots pine

The parent trees were assumed unrelated and the seedlings were planted out on
the grids unrestricted randomly. Each grid is divided into 8.8 x 22 m blocks each
containing 40 seedlings placed on a 2.2 x 2.2 m grid. The northern grid contained
105 blocks and the southern grid contained 99 blocks.(Figure 2)
The design was done by Skogforsk (trial identification S23F7110264 Vindeln).
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Figure 2: Spatial layout of the surviving trees. The red dots are the northern grid
and the black dots are the southern grid

In 1997 there were 4970 surviving trees, 2598 on the northern grid and 2372 on
the southern grid. Different kinds of measurements were done on the trees, including
tree height, during their lifetime. This paper will look at the height measurements
at age 10 and age 26 (Figure 3a and 3b). Ten of the trees died between age 10 and
26 and is therefore removed from the dataset.
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Scots Pine data: age 26
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(a) Height of the Scots Pine at age 26

Scots Pine data: age 10
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(b) Height of the Scots Pine at age 10

Figure 3: Height of the Scots Pine data

2.2 Univariate animal model

The animal model is based on the assumption that the trait is determined by genetic
and environmental effects, where the genetic effects is known as the breeding value.

Trait = Genetic effects + Environmental effects

To be able to identify the cause of the given trait we use a methodology that is able
to utilize the pedigree of the population. This enables us to do inference and get
information about how large contribution the different effects have on the trait.

A general linear mixed model (GLMM) made based on these assumptions is
called the animal model and is used to make inference about the genetic parameters.
The model links trait values to genetic and environmental effects using information
about the relation between the individuals. This model has been used for breeding
purposes in plant- and animal breeding for a long time with great success.
We present a Gaussian animal model

yi = β0 + ai + zi (1)

where yi is some trait, i.e height, β0 is the intercept, ai is the additive genetic effect
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and zi is the individual environmental effect.
Equation (1) can be written in matrix form for the whole population

y = Bβββ + Wa + z (2)

where y is a vector of traits, i.e heights, βββ is a vector with the intercepts, I is the
identity matrix, a is a vector with the additive genetic effects, W and B are known
incidence matrices and z is a vector with the individual environmental effects. The
individual environmental effects are assumed independent and Gaussian distributed;
z ∼ N(0, Iσ2

z). The breeding values are assumed to follow a dependency structure
given by the pedigree and Gaussian distributed; a ∼ N(0,Aσ2

a).

To perform Bayesian inference on the animal model, likelihood for the observed
data and prior distributions for the latent variables and hyperparameters must be
defined. The traits are Gaussian distributed.

y ∼ N (Bβββ + Wa, Iσ2
z ) (3)

The animal model is a latent Gaussian model, since the latent variable(a) is assigned
a Gaussian prior.

a|σ2
a ∼ N (0,Aσ2

a) (4)

(5)

Further,

z|σ2
z ∼ N (0, Iσ2

z) (6)

βββ ∼ N (0, I103) (7)

(8)

where A is the additive relationship matrix. A is a symmetric matrix whose ele-
ments are twice the coefficient of co-ancestry. The coefficient of co-ancestry is the
probability that two homologous genes, one from individual i and the other from j,
are identical by descent, i.e. are ascended from the same ancestral gene. (Lynch &
Walsh 1998)

To complete the model priors need to be assigned to the hyperparameters, σ2
z and

σ2
a. We have chosen to give them independent inverse gamma priors.

σ2
a ∼ IG(0.5, 0.5) (9)

σ2
z ∼ IG(0.5, 0.5) (10)
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2.3 Bivariate animal model

The bivariate animal model is an extension of the univariate animal model, Equation
(1). It is based upon the same assumptions as the univariate animal model, i.e that a
trait is determined by genetic and environmental effects. The bivariate animal model
applies to situations were two response variables are of interest simultaneously. This
can either be two different traits or a trait measured at two different life stages.
Modelling two traits simultaneously have been of interest in animal breeding for
a long time. (Smith 1936) considered the problem of selecting among varieties of
wheat differing in yield and quality traits and (Hazel 1943) applied some of the ideas
to pig breeding schemes where body weights and scores had been collected in each
of the animals. We assume the following model

yi,1 = βi,1 + ai,1 + zi,1

yi,2 = βi,2 + ai,2 + zi,2 (11)

where yi,j is some trait, βi,j is the intercept, ai,j is the additive genetic effect and
zi,j is the individual environmental effect, for j ∈ {1, 2}.
Equation 11 can be written in matrix form for the whole population

y =

[
y1

y2

]
=

[
B 0
0 B

] [
βββ1

βββ2

]
+

[
W1 0
0 W2

] [
a1

a2

]
+

[
z1

z2

]
(12)

where yj is a vector containing the traits, βββj is a vector containing the intercepts,
aj is a vector containing the additive genetic effects and zj is a vector with the
individual environmental effects. Bj and Wj are known incidence matrices.
We now set βββ = [βββ1,βββ2]

T , aaa = [aaa1, aaa2]
T and z = [z1, z2]

T with appropriate partitions
for matrices B and W such that

B =

[
B1 0
0 B2

]
and W =

[
W1 0
0 W2

]
To perform Bayesian inference on the bivariate animal model, likelihood for the
observed data and prior distributions for the latent variables and hyperparameters
must be defined. The traits are Gaussian distributed

y ∼ N (Bβββ + Wa, I⊗ΣΣΣz) (13)

where ⊗ denotes the Kronecker product and ΣΣΣz =

[
σ2
z1

ρzσz1σz2
ρzσz1σz2 σ2

z2

]
is the indi-

vidual environmental covariance matrix.
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The bivariate animal model is a latent Gaussian model, since the latent variables
are assigned Gaussian priors.

a|G,A ∼ N (0,G⊗A) (14)

z|ΣΣΣz ∼ N (0, I⊗ΣΣΣz) (15)

βββ ∼ N (0, I103) (16)

where A is the additive relationship matrix and G =

[
σ2
a1

ρaσa1σa2
ρaσa1σa2 σ2

a2

]
is the

additive genetic covariance matrix. The covariance matrices, G and ΣΣΣz are assigned
inverted Wishart priors. To complete the model priors need to be assigned to the
hyperparameters, σ2

zj
and σ2

aj
. We have chosen to give them independent inverse

gamma priors.

σ2
aj
∼ IG(0.5, 0.5) (17)

σ2
zj
∼ IG(0.5, 0.5) (18)

For a more in depth introduction to animal models, see (Sorensen & Gianola 2002).

2.4 Gaussian Markov Random Fields

In this section we briefly review Gausian Markov random fields (GMRF), for a more
thorough description see (Steinsland & Jensen 2010) and (Rue & Held 2005).
Gaussian Markov random fields models are multivariate Gaussian models with a
Makrov property. The Markov property refers to conditional independence struc-
ture, often visualized with a conditional independence graph. In a conditional inde-
pendence graph, each variable is a node. If two variables are conditionally depen-
dent, conditioned on all the other variables, there is a edge between their nodes.
In our setting, we can think of each node as a tree. For breeding values, we can find
the conditional independence graph from the pedigree. A pedigree is a directional
acyclic graph with arrows from parents to offspring. According to graph-theory
(Wermuth & Lauritzen 1982), we find the conditional independence graph by in-
serting edges between parents with a common offspring, and removing the direction
of the parents-offspring edges, see Figure 4. Hence, each tree is conditionally depen-
dent only on its parents, its offspring and the other parent(s) of its offspring.

The Markov structure is reflected in the nonzero pattern of the precision matrix,
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Figure 4: Left: the pedigree for the breeding values of seven trees. Tree 1 and 2
are the parents of tree 4, and tree 2 and 3 are the parents of tree 5. Right: the
conditional independence graph that can be found from the pedigree. Edges are
inserted between the trees with a common child, and the direction of the parent-
child edges is removed.

the inverse of the covariance matrix, Q = ΣΣΣ−1: Only off-diagonal elements that cor-
respond to conditionally dependent variables (two nodes with edges between) are
nonzero. It is this sparseness of Q that imposes computational benefits for sampling
and evaluation of GMRF. The computationally expensive part of both these opera-
tions is the calculation of Q’s Cholesky factor L, Q = LTL (L is lower triangular).
In most cases, a sparse precision matrix imposes a sparse Cholesky factor, fewer ele-
ments have to be calculated, and the computations are orders of magnitude cheaper
than for a full Q.

2.5 INLA and latent Gaussian models

Latent Gaussian models are hierarchical models were we assume a np-dimensional la-
tent field x to be point-wise observed through nd ≤ np data y, f(y|x) =

∏nd

i=1 f(yi|x).
The latent field x, includes both random and fixed effects and is assumed to have a
Gaussian density conditional on hyperparameters φ : x|φ ∼ N (0,Q−1(φ)). Where
Q is the precision matrix.

Our models are in a Bayesian framework, therefore the goal of inference is to obtain
posterior distributions for the latent variables and hyperparameters. This can be
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achieved by using Markov Chain Monte Carlo methods to sample from the posterior
of he latent variables and hyperparameters. The drawback of using MCMC is that
it is often time consuming and can suffer from slow mixing and convergence. An
alternative approach is to use integrated nested Lapalce approxmiation. INLA is a
fairly new methodology, introduced by (Rue et al. 2009), that provides a recipe for
computing approximations to marginal posterior densities for the latent variables
and hyperparameters.
INLA has the potential to be far more efficient, in terms of running times, than
MCMC, if the latent Gaussian field satisfies some properties. First, the latent Gaus-
sian field, x, often of large dimension, admits conditional independence properties,
that is it should be a GMRF with a sparse precision matrix Q (Rue & Held 2005).
Second, because INLA needs to integrate over the hyperparamater space φ, the num-
ber of hyperparameters should not be too large. The models specified in Section 2.7
have sparse precision matrices and relatively few hyperparameters.
The INLA methodology explores the joint posterior of the hyperparameters, π(φφφ|y),
by utilizing that the identity

π(φφφ|y) =
π(x0,φφφ|y)

π(x0|φφφ,y)
(19)

is valid for any value of x0. It can be shown that both π(x0,φφφ|y) and π(x0|φφφ,y)
can be evaluated efficiently up to a normalising constant, independent of φφφ when
the likelihood is Gaussian (Steinsland & Jensen 2010). Therefore we are able to
evaluate the unormalised posterior, π(φφφ|y), for every value of φφφ by inserting a value
of x in Equation (19). In order to choose good evaluation points of π(φφφ|y) its mode
is found by a numerical optimisation algorithm. Then he Hessian at the mode is
used to distribute evaluation points.
Since all our models, Section 2.7, have Gaussian likelihoods, the accuracy of the
approximations depends only on the numerical integration scheme.

For a more complete description of the INLA methodology, see (Rue et al. 2009).
In this paper these procedures are done using the package R-INLA in R (http:
//www.r-inla.org/).
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2.6 Bivariate Gaussian models

A vector Y =

[
y1
y2

]
has a bivariate Gaussian distribution, N (µ,Σ), if its probability

density function is

f(Y ) =
1

2π
√∣∣Σ∣∣ exp(−1

2
(Y − µ)TΣ−1(Y − µ)) (20)

where Σ is the covariance matrix and µ is a column vector containing the means.

If Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
, where ρ is the correlation coefficient, the density function

becomes

f(Y ) =
1

2πσ1σ2
√

1− ρ2
exp(− 1

2(1− ρ2)
(
(y1 − µ1)

2

σ2
1

+
(y2 − µ2)

2

σ2
2

−2ρ(y1 − µ1)(y2 − µ2)

σ1σ2
))

(21)

2.6.1 Bivariate Gaussian distribution as the sum of independent Gaus-
sian vectors

Any bivariate Gaussian distribution can be constructed as a sum of two univariate
Gaussian vectors. To sample from a simple bivariate Gaussian model we can draw
two independent Gaussian variables, żi,1 ∼ N (0, σ2

ż1
) and żi,2 ∼ N (0, σ2

ż2
). Then we

define yi,1 = zi,1 and yi,2 = αzi,1 + zi,2, where α is a scale parameter that defines the
dependency between yi,1 and yi,2.

We now set Yz = Wzxz, where Wz =

[
1 0
α 1

]
and xz =

[
żi,1
żi,2

]
∼ N (

[
0
0

]
,

[
σ2
ż1

0
0 σ2

ż2

]
)

, which allows us to calculate the distribution of Yz. Since zi,1 and zi,2 are indepen-

dent we are able to use Yz ∼ N (

[
0
0

]
,WzΣΣΣxzW

T
z ) to show that Yz ∼ N (

[
0
0

]
,

[
σ2
ż1

σ2
ż1
α

σ2
ż1
α α2σ2

ż1
+ σ2

ż2

]
)

The distribution of Yz is the equivalent of a bivariate Gaussian distribution with

µµµ =

[
0
0

]
and ΣΣΣ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
, where σ2

1 = σ2
ż1

, σ2
2 = α2σ2

ż1
+σ2

ż2
and ρ =

ασ2
ż1√

σ2
ż1
σ2
ż2

.
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2.6.2 Bivariate animal model as the sum of independent Gaussian vec-
tors

The same procedure can be used to construct a simple bivariate animal model.
We start by defining two independent additive genetic effects, ȧi,1 ∼ N (0, A) and
ȧi,2 ∼ N (0, A), where A is the additive genetic relationship matrix. Then set
yi,1 = σȧ1 ȧi,1, yi,2 = κȧi,1 + σȧ2 ȧi,2, where κ is a scale parameter that defines the
dependency between ȧi,1 and ȧi,2.Then define Ya = Waxa,

where Wa =

[
σȧ1 0
ρ σȧ2

]
and xa =

[
a1
a2

]
∼ N (

[
0
0

]
,

[
A 0
0 A

]
).

Since ai,1 and ai,2 are independent we can utilize that Ya ∼ N (

[
0
0

]
,WaΣΣΣXaW

T
a )

to show that Ya ∼ N (

[
0
0

]
,

[
σ2
ȧ1
A κσȧ1A

κσȧ1A κ2A+ σ2
ȧ2
A

]
) = Ya ∼ N (

[
0
0

]
,G⊗A),

where ⊗ denotes the Kronecker product.
We recognize Yz as the genetic part of the bivariate animal model, Section 2.3,
where σ2

a1
= σ2

ȧ1
, σ2

a2
= κ2 + σ2

ȧ2
and ρa =

κσȧ1√
σ2
ȧ1

(κ2+σ2
ȧ2

)
.

The sum of Ya and Yz equals the bivariate animal model specified in Section 2.3

with no intercept, ΣΣΣz =

[
σ2
ż1

σ2
ż1
α

σ2
ż1
α α2σ2

ż1
+ σ2

ż2

]
and G =

[
σ2
ȧ1

κσȧ1
κσȧ1 κ2 + σ2

ȧ2

]
.

σ2
ȧ1

can be interpreted as the genes that influence height at age 10, κ2 + σ2
ȧ2

as the
genes that influence height at age 26 and κσȧ1 as the genetic covariance. σ2

ż1
can be

interpreted as the individual environmental effects that influence height at age 10,
α2σ2

ż1
+ σ2

ż2
as the individual environmental effects that influence height at age 26

and σ2
ż1
α as the individual environmental covariance.

This model, and variations of it, will be used in both the simulation studies, Section
3, and the case study, Section 5. The variations are specified in Section 2.7.

2.7 Bivariate Animal model specification

This section presents the models and priors used in the simulation studies, Section
3, and the case study, Section 5.
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2.7.1 The basic bivariate model

The first model is without additive genetic effects, but with correlated individual
environmental effects.

yi,1 = zi,1

yi,2 = αzi,1 + zi,2 (22)

The latent variables, zi,1 and zi,2, are assigned zero mean Gaussian prior distribu-
tions,

zi,j ∼ N (0, Iσ2
zj

) (23)

where σ2
zj

is an unknown hyperparameter. To complete the full Bayesian model the

hyperparameters, σ2
zj

and α, are assigned priors, we use inverse gamma and zero
mean Gaussian respectively.

σ2
zj
∼ IG(0.5, 0.5) (24)

α ∼ N (0, 10) (25)

This model, Equation (22), is the equivalent of a bivariate Gaussian distribution

with covariance matrix Σ =

[
σ2
z1

ασ2
z1

ασ2
z1

α2σ2
z1

+ σ2
z2

]
and will later be referred to as the

basic bivariate model.

2.7.2 The additive bivariate model

The second model assumes that the traits are determined by independent individual
environmental effects and dependent additive genetic effects.

yi,1 = ai,1 + zi,1

yi,2 = κai,1 + ai,2 + zi,2 (26)

The latent variables, zi,j and ai,j, are assigned zero mean Gaussian prior distribu-
tions,

zi,j ∼ N (0, Iσ2
zj

) (27)

ai,j ∼ N (0,Aσ2
aj

) (28)
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where σ2
zj

and σ2
aj

are unknown hyperparametrs. To complete the full Bayesian

model the hyperparameters, σ2
zj

, σ2
aj

and κ, are assigned priors. We use inverse
gamma priors for the variances and zero mean Gaussian for κ.

σ2
zj
∼ IG(0.5, 0.5) (29)

σ2
aj
∼ IG(0.5, 0.5) (30)

κ ∼ N (0, 10) (31)

This model, Equation (26), is the equivalent of a bivariate Gaussian distribution

with covariance matrix Σ =

[
σ2
a1
A+ σ2

z1
κσ2

a1
A

κσ2
a1
A κ2σ2

a1
A+ σ2

a2
A+ σ2

z2

]
and will later be

referred to as the additive bivariate model.

2.7.3 The environmental bivariate model

The third model assumes that the traits are determined by dependent individual
environmental effects and independent additive genetic effects.

yi,1 = ai,1 + zi,1

yi,2 = ai,2 + αzi,1 + zi,2 (32)

The latent variables, zi,j and ai,j, are assigned zero mean Gaussian prior distribu-
tions,

zi,j ∼ N (0, Iσ2
zj

) (33)

ai,j ∼ N (0,Aσ2
aj

) (34)

where σ2
zj

and σ2
aj

are unknown hyperparametrs. To complete the full Bayesian

model the hyperparameters, σ2
zj

, σ2
aj

and α, are assigned priors. We use inverse
gamma priors for the variances and zero mean Gaussian for α.

σ2
zj
∼ IG(0.5, 0.5) (35)

σ2
aj
∼ IG(0.5, 0.5) (36)

α ∼ N (0, 10) (37)

14



This model, Equation (32), is the equivalent of a bivariate Gaussian distribution

with covariance matrix Σ =

[
σ2
z1

+ σ2
a1
A ασ2

z1

ασ2
z1

α2σ2
z1

+ σ2
z2

+ σ2
a2
A

]
and will later be re-

ferred to as the environmental bivariate model.

2.7.4 The full bivariate model

The fourth model assumes that the traits are determined by dependent individual
environmental effects and dependent additive genetic effects.

yi,1 = ai,1 + zi,1

yi,2 = κai,1 + ai,2 + αzi,1 + zi,2 (38)

The latent variables, zi,j and ai,j, are assigned zero mean Gaussian prior distribu-
tions,

zi,j ∼ N (0, Iσ2
zj

) (39)

ai,j ∼ N (0,Aσ2
aj

) (40)

where σ2
zj

and σ2
aj

are unknown hyperparametrs. To complete the full Bayesian

model the hyperparameters, σ2
zj

, σ2
aj

, κ and α are assigned priors. We use inverse
gamma priors for the variances and zero mean Gaussian priors for κ and α.

σ2
zj
∼ IG(0.5, 0.5) (41)

σ2
aj
∼ IG(0.5, 0.5) (42)

κ ∼ N (0, 10) (43)

α ∼ N (0, 10) (44)

This model, Equation (38), is the equivalent of a bivariate Gaussian distribution

with covariance matrix Σ =

[
σ2
z1

+ σ2
a1
A κσ2

a1
aA+ ασ2

z1

κσ2
a1
A+ ασ2

z1
α2σ2

z1
+ σ2

z2
+ κ2σ2

a1
A+ σ2

a2
A

]
and will

later be referred to as the full bivariate model.
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2.8 Our models as Latent GMRF models in INLA frame-
work

The bivariate animal models, specified in Section 2.7, are latent GMRF, since the
pedigree imposes a Markov structure. Individual i’s breeding value is only dependent
on it’s parents, offspring and the other parents of its offspring. Information about
the rest of the population will not affect that particular individual’s breeding value.
Since the breeding values form a GMRF, the inverse of the relationship marix, A−1,
is a sparse matrix (Steinsland & Jensen 2010).

The models are latent GMRF models with latent field x = (zi, ai) and hyperparam-
eter vector θ includes the variances (σ2

ai
, σ2

zi
) and the parameters in the likelihood

function. Since the inverse of A is sparse, the precision matrix for the latent field x
is sparse.

Those properties makes our models suitable for fast and efficient computation of
inference with INLA. We have implemented our models in INLA using multiple
likelihoods and the copy function (Martins et al. 2013). The multiple likelihood fea-
ture allows us to fit our bivariate models with independent likelihoods. To achieve
independent likelihoods we have specified the variance of the likelihoods, σ2

L, to be
very small, which can be interpreted as measurement errors. The disadvantage is
that we are unable to use deviance information criterion (Spiegelhalter et al. 2002)
to compare models. The copy feature allows us to estimate our dependence param-
eters.
The full bivariate animal model, Equation (38), can be formulated in the INLA
framework with likelihoods

yi,1 ∼ N (ηi,1, σ
2
L) (45)

yi,2 ∼ N (ηi,2, σ
2
L) (46)

where ηi,1 = ai,1 + zi,1 and ηi,2 = κai,1 + ai,2 + αzi,1 + zi,2. An example of imple-
mentation of the additive bivariate animal model, Equation (26), using R-INLA is
found in Appendix A.

3 Simulation studies

Simulation studies were conducted to evaluate the performance of the the proposed
models. Datasets were simulated based on the same pedigree and structure as the
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Scots pine dataset. The simulated datasets were then fitted to the simulation model.

3.1 Simulation study 1

In this study phenotypic values were simulated according to the basic bivariate
model, Equation (22), which states that the phenotypic values are subject to indi-
vidual environmental effects with dependence.

yi,1 = zi,1

yi,2 = αzi,1 + γzi,2 (47)

The individual environmental effects were generated from a zero mean univariate
Gaussian distribution, zi,j ∼ N (0, 1), α varied according to Table 2 and γ =

√
1− α2

to simulate standardized values. 100 datasets were simulated for each value of α.

α 0 0.2 0.4 0.6 0.8
corr(yi,1, yi,2) 0 0.2 0.4 0.6 0.8

Table 2: Parameters used in the simulation of Equation (47)

For each simulation posterior mean, standard deviation and 95% credible intervals
were calculated for σ2

zi,1
, σ2

zi,2
and α. Results follows in Section 4.

3.2 Simulation study 2

In this study phenotypic values were simulated according to the additive bivariate
animal model, Equation (26), which states that the phenotypic values are subject to
both additive genetic effects and individual environmental effects, with dependence
in the additive genetic effects.

yi,1 = ai,1 + zi,1

yi,2 = κai,1 + γai,2 + zi,2 (48)

The individual environmental effects were generated from a zero mean univariate
Guassian distribution, zi,j ∼ N (0, 0.5), the additive genetic effects, ai,j, were gener-
ated from a zero mean multivariate Gaussian distribution with dependency structure
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κ 0 0.2 0.4 0.6 0.8
corr(yi,1, yi,2) 0 0.1 0.2 0.3 0.4

Table 3: Parameters used in the simulation of Equation (48)

determined by the additive relationship matrix A, ai,j ∼ N (0, 0.5A), κ varied ac-
cording to Table 3 and γ =

√
1− κ2 to simulate standardized phenotypic values.

100 datasets were simulated for each value of κ.
For each simulation posterior mean, standard deviation and 95% credible intervals
were calculated for σ2

zi,1
, σ2

zi,2
, σ2

ai,1
, σ2

ai,2
and κ. Results follows in Section 4.

3.3 Simulation study 3

In this study phenotypic values were simulated according to the environmental bi-
variate animal model, Equation (32), which states that the phenotypic values are
subject to both additive genetic effects and individual environmental effects, with
dependence in the individual environmental effects.

yi,1 = ai,1 + zi,1

yi,2 = ai,2 + αzi,1 + γzi,2 (49)

The individual environmental effects were generated from a zero mean univariate
Guassian distribution, zi,j ∼ N (0, 0.5), the additive breeding values, ai,j, were gener-
ated from a zero mean multivariate Gaussian distribution with dependency structure
determined by the additive relationship matrix A, ai,j ∼ N (0, 0.5A), α varied ac-
cording to Table 4 and γ =

√
1− α2 to simulate standardized phenotypic values.

100 datasets were simulated for each value of α.

α 0 0.2 0.4 0.6 0.8
corr(yi,1, yi,2) 0 0.1 0.2 0.3 0.4

Table 4: Parameters used in the simulation of Equation (49)

For every simulation posterior mean, standard deviation and 95% credible intervals
were calculated for σ2

zi,1
, σ2

zi,2
, σ2

ai,1
, σ2

ai,2
and α. Results follows in Section 4.
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3.4 Simulation study 4

In this study the phenotypic values were simulated according to the full bivariate
animal model, Equation (38), which states that the phenotypic values are subject to
both additive genetic effects and individual environmental effects, with dependence
in both the additive genetic effects and the individual environmental effects.

yi,1 = ai,1 + zi,1

yi,2 = κai,1 + γκai,2 + αzi,1 + γαzi,2 (50)

The individual environmental effects were generated from a zero mean univariate
Guassian distribution, zi,j ∼ N (0, 0.5), the additive breeding values, ai,j, were gener-
ated from a zero mean multivariate Gaussian distribution with dependency structure
determined by the additive relationship matrix A, ai,j ∼ N (0, 0.5A), α and κ varied
according to Table 5 and γκ =

√
1− κ2 and γα =

√
1− α2 to simulate standardized

phenotypic values. 100 datasets were simulated for each combination of κ and α,
resulting in 2500 datasets.

κ 0 0.2 0.4 0.6 0.8
α 0 0.2 0.4 0.6 0.8

Table 5: Parameters used in the simulation of Equation (50)

corr(yi,1, yi,2) =
κ+ α

2
(51)

For every simulation posterior mean, standard deviation and 95% mean credible
intervals were calculated for σ2

zi,1
, σ2

zi,2
, σ2

ai,1
, σ2

ai,2
, κ and α. Results follows in

Section 4.

4 Results simulation studies

In this section the results from the simulation studies, described in Section 3, are
presented and briefly discussed. Further discussion is found in Section 6.
All the models are fitted using integrated nested Laplace integration (Section 2.5).
100 datasets are simulated for each value of the dependency parameters, κ and α.
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4.1 Simulation study 1

The results from simulation study 1 are summarized in Tables 6, 7 and 8.
The basic bivariate model, Equation (22), performs well for all values of α. The
bias, Table 6, is relatively small for all the estimated parameters. The coverage in-
tervals, Table 7, are all above 90%, with the exception of σ2

a1
when α = 0.6, which is

89%. The mean credible intervals, Table 8, all cover the true value and are relatively
narrow.

α α̂− α σ2
z1

σ̂2
z1
− σ2

z1
σ2
z2

σ̂2
z2
− σ2

z2

0 0.000 1 -0.001 1 0.002
0.2 -0.002 1 -0.006 0.96 -0.002
0.4 -0.001 1 -0.009 0.84 0.005
0.6 -0.001 1 -0.002 0.64 -0.002
0.8 0.001 1 0.001 0.36 -0.001

Table 6: Bias (σ̂2
x− σ2

x) from simulation study 1. Each value is the mean of the 100
simulations per value of α

α Coverage σ2
z1

Coverage σ2
z2

Coverage
0 0.94 1 0.95 1 0.95

0.2 0.97 1 0.94 0.96 0.95
0.4 0.96 1 0.97 0.84 0.95
0.6 0.98 1 0.89 0.64 0.94
0.8 0.98 1 0.93 0.36 0.91

Table 7: Coverage intervals from simulation study 1. Percentages of estimates whose
95% credible intervals cover the true value.
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α CI σ2
z1

CI σ2
z2

CI
0 (-0.03,0.03) 1 (0.96,1.04) 1 (0.96,1.04)

0.2 (0.17,0.23) 1 (0.96,1.04) 0.96 (0.92,0.99)
0.4 (0.37,0.43) 1 (0.96,1.04) 0.84 (0.81,0.88)
0.6 (0.58,0.62) 1 (0.96,1.04) 0.64 (0.61,0.66)
0.8 (0.78,0.82) 1 (0.96,1.04) 0.36 (0.35,0.37)

Table 8: Mean credible intervals from simulation study 1. Each value is the mean
upper and lower limit of the 95% CI. Intervals are in bold if the mean CI does not
contain the true value.

4.2 Simulation study 2

The results from simulation study 2 are summarized in Tables 9, 10 and 11, as well
as Figures 5a and 5b.
The additive bivariate model, Equation (26), performs well in regards of coverage
intervals, Table 10, and mean credible intervals, Table 11. The coverage intervals
are relatively large and all the mean credible intervals covers the true values. The
bias, Table 9, is quite large for several of the parameters, e.g. for σ2

ai,1
and σ2

zi,1
.

The additive variances, σ2
ai,1

and σ2
ai,2

, are clearly overestimated and the individual

environmental variances, σ2
zi,1

and σ2
zi,2

, clearly underestimated. Large credibility
intervals together with baises might be symptoms of identification issues. Figures
5a and 5b shows the posterior mean of the additive genetic effects plotted against
the individual environmental effects for yi,1 and yi,2 respectively. They show that the
posterior means are definitely negatively correlated, which supports our suspicion
regarding identification issues. The model does well overall, but seems to have some
minor problems with allocating the variance between the additive genetic effects and
the individual environmental effects.
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Figure 5: (a) Posterior mean of σ2
ai,1

plotted against the posterior mean of σ2
zi,1

from

simulation study 2. The true values are σ2
ai,1

= σ2
zi,1

= 0.5, illustrated with a filled

red circle. (b) Posterior mean of σ2
ai,2

plotted against the posterior mean of σ2
zi,2

from simulation study 2. The true values are σ2
zi,2

= 0.5 and σ2
ai,2

= 0.5(1 − κ2),
illustrated with filled red circles.

κ κ̂− κ σ2
a1

σ̂2
a1
− σ2

a1
σ2
z1

σ̂2
z1
− σ2

z1
σ2
a2

σ̂2
a2
− σ2

a2
σ2
z2

σ̂2
z2
− σ2

z2

0 -0.002 0.5 0.059 0.5 -0.022 0.5 0.053 0.5 -0.019
0.2 -0.012 0.5 0.056 0.5 -0.020 0.48 0.074 0.5 -0.029
0.4 -0.008 0.5 0.023 0.5 -0.006 0.42 0.049 0.5 -0.019
0.6 0.006 0.5 0.012 0.5 0.005 0.32 0.037 0.5 0.003
0.8 -0.028 0.5 0.019 0.5 -0.006 0.18 0.053 0.5 -0.026

Table 9: Bias (σ̂2
x− σ2

x) from simulation study 2. Each value is the mean of the 100
simulations per value of κ
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κ Coverage σ2
a1

Coverage σ2
z1

Coverage σ2
a2

Coverage σ2
z2

Coverage
0 0.96 0.5 0.80 0.5 0.92 0.5 0.82 0.5 0.89

0.2 0.88 0.5 0.83 0.5 0.90 0.48 0.73 0.5 0.88
0.4 0.85 0.5 0.83 0.5 0.82 0.42 0.88 0.5 0.95
0.6 0.88 0.5 0.86 0.5 0.82 0.32 0.85 0.5 0.90
0.8 0.86 0.5 0.95 0.5 0.87 0.18 0.84 0.5 0.93

Table 10: Coverage intervals from simulation study 2. Percentages of estimates
whose 95% credible intervals cover the true value.

κ CI σ2
a1

CI σ2
z1

CI σ2
a2

CI σ2
z2

CI
0 (-0.07,0.07) 0.5 (0.42,0.71) 0.5 (0.41,0.57) 0.5 (0.42,0.70) 0.5 (0.41,0.57)

0.2 (0.10,0.28) 0.5 (0.42,0.71) 0.5 (0.41,0.56) 0.48 (0.41,0.70) 0.5 (0.40,0.56)
0.4 (0.26,0.52) 0.5 (0.40,0.70) 0.5 (0.43,0.56) 0.42 (0.34,0.61) 0.5 (0.41,0.57)
0.6 (0.45,0.74) 0.5 (0.40,0.64) 0.5 (0.45,0.56) 0.32 (0.25,0.49) 0.5 (0.42,0.57)
0.8 (0.62,0.92) 0.5 (0.43,0.64) 0.5 (0.44,0.55) 0.18 (0.14,0.34) 0.5 (0.42,0.55)

Table 11: Mean credible intervals from simulation study 2. Each value is the mean
upper and lower limit of the 95% CI. Intervals are in bold if the mean CI does not
contain the true value.
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4.3 Simulation study 3

The results from simulation study 3 are summarized in Tables 12, 13 and 14, as well
as Figures 6a and 6b.
The environmental bivariate model, Equation (32), performs adequate for low values
of α. We see that the bias, Table 12, is relatively small, the coverage intervals, Table
13, are relatively large and the mean credible intervals, Table 14, covers the true
values. When α increases problems arises. As α increases we see that the estimations
are more biased, the coverage intervals decreasing and some of the mean credible
intervals does not contain the true value. This is illustrated in Figure 6, where the
posterior mean of σ2

z1
and σ2

a1
are plotted against the posterior mean of α. We see

clearly from the figure that as α increases the estimates for σ2
z1

and σ2
a1

becomes less
accurate. We suspect this may be related to prior sensitivity, which we will take a
closer look at in Section 4.5.
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Figure 6: (a) Posterior mean of α plotted against the posterior mean of σ2
zi,1

. The

true value is σ2
zi,1

= 0.5, illustrated with filled black triangles. (b) Posterior mean of

α plotted against the posterior mean of σ2
ai,1

. The true value is σ2
ai,1

= 0.5, illustrated
with filled black triangles.

24



α α̂− α σ2
a1

σ̂2
a1
− σ2

a1
σ2
z1

σ̂2
z1
− σ2

z1
σ2
a2

σ̂2
a2
− σ2

a2
σ2
z2

σ̂2
z2
− σ2

z2

0 0.001 0.5 0.064 0.5 -0.023 0.5 0.039 0.5 -0.008
0.2 0.019 0.5 0.083 0.5 -0.031 0.5 0.058 0.48 -0.027
0.4 0.060 0.5 0.109 0.5 -0.051 0.5 0.011 0.42 -0.015
0.6 0.117 0.5 0.154 0.5 -0.066 0.5 -0.029 0.32 -0.018
0.8 0.165 0.5 0.157 0.5 -0.076 0.5 -0.074 0.18 -0.020

Table 12: Bias (σ̂2
x − σ2

x) from simulation study 3. Each value is the mean of the
100 simulations per value of α.

α Coverage σ2
a1

Coverage σ2
z1

Coverage σ2
a2

Coverage σ2
z2

Coverage
0 0.92 0.5 0.79 0.5 0.89 0.5 0.82 0.5 0.84

0.2 0.89 0.5 0.66 0.5 0.91 0.5 0.84 0.48 0.89
0.4 0.75 0.5 0.62 0.5 0.72 0.5 0.83 0.42 0.82
0.6 0.59 0.5 0.45 0.5 0.53 0.5 0.83 0.32 0.76
0.8 0.40 0.5 0.35 0.5 0.35 0.5 0.55 0.18 0.64

Table 13: Coverage intervals from simulation study 3. Percentages of estimates
whose 95% credible intervals cover the true value.

α CI σ2
a1

CI σ2
z1

CI σ2
a2

CI σ2
z2

CI
0 (-0.05,0.05) 0.5 (0.42,0.71) 0.5 (0.41,0.57) 0.5 (0.40,0.70) 0.5 (0.42,0.58)

0.2 (0.16,0.27) 0.5 (0.44,0.73) 0.5 (0.40,0.57) 0.5 (0.42,0.70) 0.48 (0.39,0.54)
0.4 (0.37,0.68) 0.5 (0.48,0.73) 0.5 (0.39,0.53) 0.5 (0.40,0.66) 0.42 (0.35,0.47)
0.6 (0.61,0.81) 0.5 (0.54,0.76) 0.5 (0.38,0.50) 0.5 (0.37,0.62) 0.32 (0.25,0.36)
0.8 (0.86,1.05) 0.5 (0.57,0.73) 0.5 (0.39,0.48) 0.5 (0.35,0.55) 0.18 (0.13,0.20)

Table 14: Mean credible intervals from simulation study 3. Each value is the mean
upper and lower limit of the 95% CI. Intervals are in bold if the mean CI does not
contain the true value.
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4.4 Simulation study 4

The results from simulation study 4 are summarized in Tables 15 and 16.
The full bivariate model, Equation (38), suffers from the same problems as the
environmental bivariate model, Equation (32), and the additive bivariate model,
Equation (26), combined. As κ increases we see that the estimations are more
biased and the coverage intervals decreasing. The mean credible intervals are not
included in this study, since the bias and coverage intervals already indicate poor
inference. We also recognize that the bias for σ2

aj
and σ2

zj
have opposite signs as

symptoms of identification issues. These overall poor inference results needs to be
investigated further. We suspect they are related to prior sensitivity. In Section
4.5 we will run some diagnostic tests on the worst case scenarios of this simulation
study. The parameter pairs we have chosen to investigate further are marked with
* in the tables.
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κ κ̂− κ α α̂− α σ2
a1

σ̂2
a1
− σ2

a1
σ2
z1

σ̂2
z1
− σ2

z1
σ2
a2

σ̂2
a2
− σ2

a2
σ2
z2

σ̂2
z2
− σ2

z2

0 -0.042 0 0.021 0.5 0.006 0.5 0.001 0.5 -0.040 0.5 0.020
0 -0.032 0.2 0.015 0.5 0.044 0.5 -0.018 0.5 -0.015 0.48 0.004
0 0.071 0.4 0.049 0.5 0.174 0.5 -0.086 0.5 -0.004 0.42 0.002
0 0.325 0.6 -0.121 0.5 0.395 0.5 -0.185 0.5 0.049 0.32 0.023
0 0.514 0.8 -0.178 0.5 0.482 0.5 -0.259 0.5 0.099 0.18 0.051

0.2 -0.122 0 0.051 0.5 0.020 0.5 -0.005 0.48 -0.028 0.5 0.019
0.2 -0.050 0.2 0.028 0.5 0.093 0.5 -0.042 0.48 -0.010 0.48 0.001
0.2 -0.028 0.4 0.070 0.5 0.144 0.5 -0.064 0.48 -0.020 0.42 -0.009

0.2(*) 0.252 0.6 -0.099 0.5 0.522 0.5 -0.251 0.48 0.033 0.32 0.013
0.2 0.355 0.8 -0.077 0.5 0.451 0.5 -0.226 0.48 0.024 0.18 0.037
0.4 -0.123 0 0.049 0.5 0.049 0.5 -0.020 0.42 0.008 0.5 0.008
0.4 -0.069 0.2 0.008 0.5 0.144 0.5 -0.069 0.42 0.013 0.48 -0.006
0.4 -0.005 0.4 0.014 0.5 0.412 0.5 -0.188 0.42 0.008 0.42 -0.002
0.4 0.126 0.6 -0.102 0.5 0.530 0.5 -0.276 0.42 -0.032 0.32 0.024
0.4 0.128 0.8 -0.031 0.5 0.200 0.5 -0.095 0.42 0.008 0.18 0.010
0.6 -0.158 0 0.034 0.5 0.108 0.5 -0.047 0.32 0.043 0.5 0.008
0.6 -0.165 0.2 0.055 0.5 0.162 0.5 -0.076 0.32 0.015 0.48 0.001

0.6(*) -0.136 0.4 -0.025 0.5 0.550 0.5 -0.260 0.32 0.058 0.42 -0.017
0.6 -0.001 0.6 0.006 0.5 0.420 0.5 -0.211 0.32 -0.042 0.32 0.021
0.6 0.074 0.8 -0.032 0.5 0.172 0.5 -0.080 0.32 -0.004 0.18 0.003
0.8 -0.243 0 -0.026 0.5 0.254 0.5 -0.128 0.18 0.092 0.5 -0.011
0.8 -0.304 0.2 0.045 0.5 0.345 0.5 -0.166 0.18 0.130 0.48 -0.029
0.8 -0.259 0.4 0.070 0.5 0.516 0.5 -0.256 0.18 0.085 0.42 -0.015
0.8 -0.068 0.6 -0.034 0.5 0.271 0.5 -0.131 0.18 0.017 0.32 -0.005
0.8 -0.031 0.8 0.017 0.5 0.326 0.5 -0.148 0.18 -0.007 0.18 0.001

Table 15: Bias (σ̂2
x − σ2

x) from simulation study 4. Each value is the mean of the
100 simulations per combination of κ and α. The rows marked with * is selected for
further investigation in Section 4.5
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κ Cover α Cover σ2
a1

Cover σ2
z1

Cover σ2
a2

Cover σ2
z2

Cover
0 0.82 0 0.83 0.5 0.87 0.5 0.82 0.5 0.75 0.5 0.71
0 0.83 0.2 0.89 0.5 0.86 0.5 0.93 0.5 0.77 0.48 0.77
0 0.68 0.4 0.77 0.5 0.45 0.5 0.48 0.5 0.74 0.42 0.76
0 0.13 0.6 0.54 0.5 0.16 0.5 0.21 0.5 0.58 0.32 0.55
0 0.01 0.8 0.60 0.5 0.01 0.5 0.02 0.5 0.09 0.18 0.58

0.2 0.65 0 0.69 0.5 0.86 0.5 0.88 0.48 0.86 0.5 0.73
0.2 0.78 0.2 0.78 0.5 0.53 0.5 0.69 0.48 0.80 0.48 0.80
0.2 0.66 0.4 0.70 0.5 0.47 0.5 0.60 0.48 0.72 0.42 0.58

0.2(*) 0.02 0.6 0.37 0.5 0.03 0.5 0.04 0.48 0.62 0.32 0.40
0.2 0.07 0.8 0.53 0.5 0.08 0.5 0.11 0.48 0.38 0.18 0.45
0.4 0.69 0 0.75 0.5 0.78 0.5 0.90 0.42 0.92 0.5 0.87
0.4 0.74 0.2 0.78 0.5 0.42 0.5 0.46 0.42 0.83 0.48 0.78
0.4 0.89 0.4 0.79 0.5 0.19 0.5 0.27 0.42 0.76 0.42 0.76
0.4 0.11 0.6 0.26 0.5 0.00 0.5 0.01 0.42 0.61 0.32 0.42
0.4 0.47 0.8 0.75 0.5 0.40 0.5 0.48 0.42 0.64 0.18 0.65
0.6 0.57 0 0.82 0.5 0.59 0.5 0.74 0.32 0.90 0.5 0.88
0.6 0.46 0.2 0.69 0.5 0.40 0.5 0.53 0.32 0.79 0.48 0.69

0.6(*) 0.05 0.4 0.55 0.5 0.03 0.5 0.03 0.32 0.73 0.42 0.74
0.6 0.95 0.6 0.35 0.5 0.11 0.5 0.17 0.32 0.73 0.32 0.66
0.6 0.58 0.8 0.76 0.5 0.34 0.5 0.49 0.32 0.57 0.18 0.59
0.8 0.25 0 0.76 0.5 0.15 0.5 0.20 0.18 0.38 0.5 0.83
0.8 0.21 0.2 0.53 0.5 0.19 0.5 0.17 0.18 0.32 0.48 0.68
0.8 0.02 0.4 0.44 0.5 0.03 0.5 0.03 0.18 0.28 0.42 0.96
0.8 0.64 0.6 0.81 0.5 0.27 0.5 0.29 0.18 0.90 0.32 0.90
0.8 0.78 0.8 0.68 0.5 0.29 0.5 0.37 0.18 0.68 0.18 0.58

Table 16: Coverage intervals from simulation study 4. Percentages of estimates
whose 95% credible intervals cover the true value. The rows marked with * is
selected for further investigation in Section 4.5

4.5 Diagnostic simulations

In this section we investigate the poor results from simulation study 3, Section 4.3,
and simulation study 4, Section 4.4. We suspect the poor results to be due to prior
sensitivity. This will be investigated by refitting the models with varying variance
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for the priors of κ and α, while keeping the prior mean equal to the true value.
Another possible explanation is the size of the dataset. To investigate this we will
refit the bivariate environmental model, Equation (32), to a dataset twice the size
of the one used in the simulation studies. All the datasets were simulated 100 times
for each value of κ and α.

4.5.1 Size of the dataset

The dataset was doubled by cloning each tree except the parents. This results in
a dataset where each parent has twice the amount of children. Then we fitted the
environmental bivariate model, Equation (32), to the new dataset with dependency
parameter, α, equal to 0.8. We chose this parameter to investigate one of the
worst case scenario from simulation study 3. We see from Tables 17 and 18 that
the results does not imply any significant improvement, or decline, compared to
simulation study 3.

α α̂− α σ2
a1

σ̂2
a1
− σ2

a1
σ2
z1

σ̂2
z1
− σ2

z1
σ2
a2

σ̂2
a2
− σ2

a2
σ2
z2

σ̂2
z2
− σ2

z2

Sim stud 3 0.8 0.165 0.5 0.157 0.5 -0.076 0.5 -0.074 0.18 -0.020
Double data 0.8 0.173 0.5 0.145 0.6 -0.087 0.5 -0.069 0.18 -0.032

Table 17: Bias (σ̂2
x−σ2

x) from diagnostic study with doubled dataset compared with
the bias from simulation study 3. Each value is the mean of the 100 simulations per
value of α

α Cover σ2
a1

Cover σ2
z1

Cover σ2
a2

Cover σ2
z2

Cover
Sim stud 3 0.8 0.40 0.5 0.35 0.5 0.35 0.5 0.55 0.18 0.64

Double data 0.8 0.42 0.5 0.37 0.5 0.33 0.5 0.51 0.18 0.67

Table 18: Coverage intervals from diagnostic study with doubled dataset compared
with the coverage intervals from simulation study 3. Percentages of estimates whose
95% credible intervals cover the true value.
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4.5.2 Prior sensitivity

We investigate prior sensitivity in the environmental bivariate model, Equation (32),
by constructing three different prior distributions for the dependency parameter, α.
The mean of the priors is set equal to the true value, which is α = 0.8 to investigate
the worst case scenario from simulation study 3. The variance of the priors is set
to be 1, 0.1 and 0.02, which is referred to as Prior #1, Prior #2 and Prior #3
respectively.

α ∼ N (0.8, 1) (52)

α ∼ N (0.8, 0.1) (53)

α ∼ N (0.8, 0.02) (54)

The results are summarized in Tables 19 and 20. We can clearly see an improvement
of the inference as the variance of the dependency paramater prior is lowered. Both
the bias, Table 19, and the coverage intervals, Table 20, are improved for all the
parameters. These results implies that the environmental bivariate model, Equation
(32), is prior sensitive.

α α̂− α σ2
a1

σ̂2
a1
− σ2

a1
σ2
z1

σ̂2
z1
− σ2

z1
σ2
a2

σ̂2
a2
− σ2

a2
σ2
z2

σ̂2
z2
− σ2

z2

Sim stud 3 0.8 0.165 0.5 0.157 0.5 -0.076 0.5 -0.074 0.18 -0.020
Prior #1 0.8 0.155 0.5 0.142 0.5 -0.070 0.5 -0.067 0.18 -0.016
Prior #2 0.8 0.125 0.5 0.120 0.5 -0.053 0.5 -0.051 0.18 -0.013
Prior #3 0.8 0.035 0.5 0.040 0.5 -0.013 0.5 -0.006 0.18 -0.007

Table 19: Bias (σ̂2
x − σ2

x) from diagnostic study with varying priors compared with
the bias from simulation study 3. Each value is the mean of the 100 simulations per
value of α
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α Cover σ2
a1

Cover σ2
z1

Cover σ2
a2

Cover σ2
z2

Cover
Sim stud 3 0.8 0.40 0.5 0.35 0.5 0.35 0.5 0.55 0.18 0.64
Prior #1 0.8 0.48 0.5 0.46 0.5 0.42 0.5 0.62 0.18 0.69
Prior #2 0.8 0.55 0.5 0.62 0.5 0.65 0.5 0.70 0.18 0.72
Prior #3 0.8 0.73 0.5 0.70 0.5 0.76 0.5 0.90 0.18 0.86

Table 20: Coverage intervals from diagnostic study with varying priors compared
with the coverage intervals from simulation study 3. Percentages of estimates whose
95% credible intervals cover the true value.

We investigate prior sensitivity in the full bivariate model, Equation (38), by
constructing three different prior distributions for each of the dependency parame-
ters, α and κ. The mean of the priors is set equal to the true value and the variance
of the priors is set to be 1, 0.1 and 0.02 which is referred to as Prior #1, Prior #2
and Prior #3 respectively. We have chosen to investigate the full bivariate animal
model with dependency parameters , (α, κ), (0.4, 0.6) and (0.6, 0.2).
The results are summarized in Tables 21 and 22. We can clearly see an improvement
of the inference as the variance of the dependency paramaters prior is lowered for
both our parameter pairs. Both the bias, Table 21, and the coverage intervals, Table
22, are improved for all the parameters. These results implies that the full bivariate
model, Equation (38), is prior sensitive.

κ κ̂− κ α α̂− α σ2
a1

σ̂2
a1
− σ2

a1
σ2
z1

σ̂2
z1
− σ2

z1
σ2
a2

σ̂2
a2
− σ2

a2
σ2
z2

σ̂2
z2
− σ2

z2

Sim stud 4 0.2 0.252 0.6 -0.099 0.5 0.522 0.5 -0.251 0.48 0.033 0.32 0.013
Prior #1 0.2 0.138 0.6 -0.073 0.5 0.315 0.5 -0.132 0.48 0.032 0.32 0.010
Prior #2 0.2 0.044 0.6 -0.016 0.5 0.167 0.5 -0.093 0.48 0.029 0.32 0.008
Prior #3 0.2 0.026 0.6 -0.005 0.5 0.021 0.5 -0.017 0.48 0.013 0.32 0.003

Sim stud 4 0.6 -0.136 0.4 -0.025 0.5 0.550 0.5 -0.260 0.32 0.058 0.42 -0.017
Prior #1 0.6 -0.093 0.4 -0.019 0.5 0.214 0.5 -0.163 0.32 0.037 0.42 -0.016
Prior #2 0.6 -0.062 0.4 -0.016 0.5 0.091 0.5 -0.087 0.32 0.025 0.42 -0.012
Prior #3 0.6 -0.022 0.4 -0.009 0.5 0.037 0.5 -0.047 0.32 0.009 0.42 -0.008

Table 21: Bias (σ̂2
x−σ2

x) from the diagnostic studies compared with simulation study
4. Each value is the mean of the 100 simulations per combination of κ and α.
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κ Cover α Cover σ2
a1

Cover σ2
z1

Cover σ2
a2

Cover σ2
z2

Cover
Sim stud 4 0.2 0.02 0.6 0.37 0.5 0.03 0.5 0.04 0.48 0.62 0.32 0.40
Prior #1 0.2 0.35 0.6 0.49 0.5 0.28 0.5 0.33 0.48 0.69 0.32 0.53
Prior #2 0.2 0.53 0.6 0.64 0.5 0.52 0.5 0.56 0.48 0.75 0.32 0.76
Prior #3 0.2 0.75 0.6 0.82 0.5 0.78 0.5 0.83 0.48 0.89 0.32 0.89

Sim stud 4 0.6 0.05 0.4 0.55 0.5 0.03 0.5 0.03 0.32 0.73 0.42 0.74
Prior #1 0.6 0.29 0.4 0.69 0.5 0.23 0.5 0.29 0.32 0.80 0.42 0.78
Prior #2 0.6 0.49 0.4 0.78 0.5 0.51 0.5 0.58 0.32 0.83 0.42 0.87
Prior #3 0.6 0.65 0.4 0.92 0.5 0.69 0.5 0.73 0.32 0.91 0.42 0.95

Table 22: Coverage intervals from the diagnostic studies compared with simulation
study 4. Percentages of estimates whose 95% credible intervals cover the true value.

The inference for both the environmental bivariate animal model, Equation (32),
and the full bivariate model, Equation (38), improved significantly when we varied
the priors. The biases became smaller and the coverage intervals became larger.
These results indicate that both models are sensitive to priors.

5 Case study

The proposed models, Section 2.7, are now fitted to the standardized Scots pine
data, Section 2.1. The objective of the analysis is to estimate the dependency be-
tween the additive genetic variances and the individual environmental variances, as
well as the variances themselves. This information can give us indications to sim-
ilarities between growth rates and to what degree the different parameters affects
height. For instance a high dependency between additive genetic variances indicates
that many of the same genes control the growth rate at both age 10 and age 26,
whereas a lower dependency would indicate that different genes operate at different
ages.
The poor performance of the models in the simulation studies, Section 4, gives us
reason to doubt our inference. We saw that as α and κ increased the results became
less accurate. In this section we will treat the results of the real data as if the simu-
lation studies were adequate. The impact of the simulation studies with respect to
the case study will be discussed in Section 6.
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The first model that was fitted to the standardized Scots pine data was the bivariate
animal model without dependency, which assumes that the phenotypic values are
the sum of additive genetic effects and individual environmental effects.

y1 = a1 + z1 (55)

y2 = a2 + z2 (56)

The posterior marginal densities are plotted in Figure 7 and the posterior mean with
credible intervals are found in Table 23.
According to this model both traits, tree height at age 10 and age 26, have close to
none trait specific additive effects, σ2

a1
= σ2

a2
= 0.04. The individual environmental

effects are clearly dominating, σ2
z1

= 0.97 and σ2
z2

= 0.98, indicating that the tree
height is mostly affected by individual environmental effects.

σ2
a1

CI σ2
z1

CI σ2
a2

CI σ2
z2

CI
0.04 (0.03,0.07) 0.97 (0.94,1.02) 0.04 (0.03,0.06) 0.98 (0.93,1.02)

Table 23: Posterior mean with credible intervals for the bivariate animal model
fitted to the Scots pine data.
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(b) Posterior marginal density for σ2
z1

0.02 0.03 0.04 0.05 0.06 0.07 0.08

0
10

20
30

40

P
os

te
rio

r 
m

ar
gi

na
l d

en
si

ty

(c) Posterior marginal density for σ2
a2
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(d) Posterior marginal density for σ2
z2

Figure 7: Posterior marginal densities for the bivariate animal model

The second model that was fitted to the standardized Scots pine data was the
basic bivariate model, Equation (22). It assumes that the phenotypic values are
subject to individual environmental effects with dependence.

y1 = z1 (57)

y2 = αz1 + z2 (58)

The posterior marginal densities are plotted in Figure 8 and posterior means with
credible intervals are found in Table 24.
These results suggests a fairly high dependency between the individual environmen-
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tal variances, α = 0.74,

corr(y1, y2) =
ασ2

z1√
σ2
z1

(α2σ2
z1

+ σ2
z2

)
(59)

. which equals a correlation of 0.73. This means that the tree height at age 10 and
at age 26 are affected by quite similar individual environmental effects, or there are
dependencies due to similar genetic effects.
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(c) Posterior marginal density for α

Figure 8: Posterior mean density for the basic bivariate model
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α CI σ2
z1

CI σ2
z2

CI
0.74 (0.72,0.78) 0.98 (0.94,1.03) 0.46 (0.44,0.47)

Table 24: Posterior mean with credible intervals for the basic bivariate model fitted
to the Scots pine data.

The third model that was fitted to the standardized Scots pine data was the
additive bivariate model, Equation (26). It assumes that the phenotypic values are
subject to both additive genetic effects values and individual environmental effects,
with dependence in the additive genetic effects, but not in the individual effects.

y1 = a1 + z1 (60)

y2 = κa1 + a2 + z2 (61)

The posterior marginal densities are plotted in Figure 9 and posterior means with
credible intervals are found in Table 25.
According to this model the height at age 10 is clearly dominated by the additive
genetic effects, σ2

a1
= 1.28, compared to the individual environmental effects, σ2

z1
=

0.34. The large dependency, κ = 1.13, leads to the same tendencies for the trees
at age 26. These values result in a additive genetic variance of 1.67 for y2 and the
individual environmental effects, σ2

z2
, equal to 0.19.

corr(y1, y2) =
κσ2

a1√
(σ2

a1
+ σ2

z1
)(κ2σ2

a1
+ σ2

a2
+ σ2

z2
)

(62)

The correlation between the two traits is 0.83. The results indicate that the additive
genetic effects influence tree height most at both ages. The low trait specific additive
variance at age 26 and large dependency implies that many of the same genes affects
height for trees at age 10 and 26.

κ CI σ2
a1

CI σ2
z1

CI σ2
a2

CI σ2
z2

CI
1.13 (1.08,1.16) 1.28 (1.22,1.36) 0.34 (0.31,0.36) 0.04 (0.02,0.07) 0.19 (0.17,0.22)

Table 25: Posterior mean with credible intervals for the additive bivariate model
fitted to the scots pine data.
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(b) Posterior marginal density for σ2
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(c) Posterior marginal density for σ2
a2
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(d) Posterior marginal density for σ2
z2
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(e) Posterior marginal density for κ

Figure 9: Posterior marginal densities for the additive bivariate model
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The fourth model that was fitted to the standardized Scots pine data was the
environmental bivariate model, Equation (32). It assumes that phenotypic values
are determined by the sum of the individual environmental effects and additive
genetic effects, with dependence in the individual effects, but not in the additive
genetic effects.

y1 = a1 + z1 (63)

y2 = a2 + αz1 + z2 (64)

The posterior marginal densities are plotted in Figure 10 and posterior means with
credible intervals are found in Table 26.
According to this model height at age 10 is affected by both additive genetic effects,
σ2
a1

= 0.42, and individual environmental effects, σ2
z1

= 0.76. The height at age
26 is dominated by individual environmental effects, since the dependency is large,
α = 0.98. The trait specific additive genetic variance for height at age 26 is 0.04
and the individual environmental variance is 0.99.

corr(y1, y2) =
ασ2

z1√
(σ2

z1
+ σ2

a1
)(α2σ2

z1
+ σ2

z2
+ σ2

a2
)

(65)

The correlation between the two traits is 0.67. These results contradict the results
from the additive bivariate model, which indicated that the additive genetic effects
had the most influence. This may be a symptom of identification issues. To investi-
gate this matter further, the next model we fit to the standardized Scots pine data
is the full bivariate model, which includes both dependencies.

α CI σ2
a1

CI σ2
z1

CI σ2
a2

CI σ2
z2

CI
0.98 (0.89,1.03) 0.42 (0.33,0.51) 0.76 (0.71,0.84) 0.04 (0.02,0.06) 0.27 (0.24,0.34)

Table 26: Posterior mean with credible intervals for the additive bivariate model
fitted to the scots pine data.
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(b) Posterior marginal density for σ2
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(c) Posterior marginal density for σ2
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(d) Posterior marginal density for σ2
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(e) Posterior marginal density for α

Figure 10: Posterior marginal densities for the environmental bivariate model
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The last model that was fitted to the standardized Scots pine data was the full
bivariate model, Equation (38). It assumes that the phenotypic values are subject to
both additive genetic effects and individual environmental effects, with dependence
in both the additive genetic effects and the individual environmental effects.

y1 = a1 + z1 (66)

y2 = κa1 + a2 + αz1 + z2 (67)

The posterior marginal densities are plotted in Figure 11 and posterior means with
credible intervals are found in Table 27.
The height at age 10 is clearly dominated by the additive genetic effects, σ2

a1
= 1.13,

compared to the individual environmental effects, σ2
z1

= 0.31. The total additive
genetic variance at age 26 is 0.89 and the total individual environmental variance is
0.48, which indicates that tree height at age 26 is also dominated by additive genetic
effects. The strong dependence in this model , κ = 0.81 and α = 0.53, indicates that
the influence of both additive genetic effects and individual environmental effects is
quite similar between the traits.

corr(y1, y2) =
κσ2

a1
+ ασ2

z1

(σ2
z1

+ σ2
a1

)(α2σ2
z1

+ σ2
z2

+ κ2σ2
a1

+ σ2
a2

)
(68)

The correlation between the two traits is 0.82. These results indicate that tree height
is mostly influenced by additive genetic effects at both age 10 and age 26.

κ CI α CI σ2
a1

CI σ2
z1

CI
0.81 (0.74,0.87) 0.53 (0.40,0.67) 1.31 (1.23,1.40) 0.31 (0.28,0.36)
σ2
a2

CI σ2
z2

CI
0.04 (0.02,0.06) 0.40 (0.37,0.42)

Table 27: Posterior mean with credible intervals for the full bivariate model fitted
to the scots pine data.

40



1.20 1.25 1.30 1.35 1.40 1.45

0
2

4
6

8

P
os

te
rio

r 
m

ar
gi

na
l d

en
si

ty

(a) Posterior marginal density for σ2
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(b) Posterior marginal density for σ2
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(d) Posterior marginal density for σ2
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(e) Posterior marginal density for κ
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(f) Posterior marginal density for α

Figure 11: Posterior marginal densities for the full bivariate model
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All the models indicate a fairly large dependence between the two traits, both
for the individual environmental effects and additive genetic effects. The results
for the additive genetic effects are in particular interesting. In all the models the
trait specific additive genetic variance for trees age 26 very small, σ2

a2
< 0.05, while

the dependency is quite large. This strongly indicate that many of the same genes
influences tree height at age 10 and 26.

6 Discussion and further work

We have showed that the bivariate animal models specified in Section 2.7 are suit-
able for the INLA framework. This enables us to do inference on the models with
the R-INLA library. R-INLA is very beneficial because it is relatively easy to specify
models and inference is fast.

The results from simulation study 1, Section (4.1), indicates that the basic bivariate
model, Equation 22, performs well in terms of bias, coverage intervals and mean
credible intervals.

Simulation study 2 shows that the additive bivariate animal model, Equation (26),
performs well in terms of coverage intervals and mean credible intervals. It seems
to have some issues allocating the trait specific variances. The trait specific addi-
tive genetic effects and individual environmental effects have opposite signed bias,
indicating identification issues.

Simulation study 3 shows that the environmental bivariate animal model, Equa-
tion (32), performs well when the dependency parameter, α, is low. As α increases
the bias increases and the coverage intervals decreases. We suspect this behaviour
to be the result of prior sensitivity and investigate the matter further in Section 4.5.
Setting the mean of the prior for the dependency parameter to the true value and
lowering the variance resulted in a significant improvement of the inference.

The results from simulation study 4 indicates that the full bivariate model, Equation
(38), suffers from the same problems as the environmental bivariate model, Equation
(32). As the dependency parameters increases the overall performance of the infer-
ence decreases. The bias increases and the coverage intervals decreases. We suspect
this behaviour occurs for the same reason as for the environmental bivariate model,
which is prior sensitivity. We have selected two of the parameter pairs, (κ, α), that
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gives the worst outcome and investigated them further in Section 4.5. Setting the
mean of the prior for the dependency parameters to the true value and lowering the
variance resulted in significant improvement of the inference.

The case study indicates a large correlation between tree height at age 10 and age 26.
The dependency parameters for both additive genetic effects and individual environ-
mental effects where estimated to be quite large. These results indicate that many
of the same genes influence tree height at both age 10 and age 26. Unfortunately
there are several reasons indicating that we should not trust these results blindly.
Two of the models estimated the trait specific additive genetic effect for trees age 10
to be larger than 1, when the data was standardized. This may be due to prior sen-
sitivity, since the estimated trait specific additive variances are estimated to be close
to zero, when we fitted an bivariate animal model without dependence. The simula-
tion studies showed poor inference for large dependency parameters, which indicates
uncertainties regarding the case study as well. The simulation study showed that
the models performed well for low dependency parameters, which in the context of
the case study indicates that there is in fact a quite large dependency, even though
the inference may be poor.

Several aspects of this study are suited for further research. It would be very in-
teresting to conduct a more comprehensive study regarding prior sensitivity. The
results from Section 4.5 showed us that varying the prior of the dependence param-
eter significantly improved the inference. A study where the prior distributions of
several hyperparameters are varied, could lead to some interesting results.

Another approach would be to include other effects to the models, such as dom-
inative genetic effects and spatial effects. It is done for univariate animal models
with the Scots pine data in both (Finley et al. 2009) and (Bøhn 2013), but not
for bivariate animal models. It would be interesting to see the effect of dominative
genetic effects compared with the additive genetic effects.
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A Implementation of bivaraiate Gaussian models

using R-INLA

The following R-code shows how to simulate and fit bivariate Gaussian models. This
example shows the procedure used in Simulation study 2, Section 3.2

y1 = a1 + z1

y2 = ρa1 +
√

1− ρ2a2 + z2

#Sample the environmental and additive effects.

#simulate.breeding is a function from the Animal INLA package and

#ainv is the inverse of the additive relationship matrix

RandomDraw = function (var.e,var.a) {

n=5012

z1=rnorm(n,sd=sqrt(var.e))

z2=rnorm(n,sd=sqrt(var.e))

a1 = simulate.breeding(ainv,var.a)

a1 = unlist(a1)

a2 = simulate.breeding(ainv,var.a)

a2 = unlist(a2)

drawlist = list("z1"=z1,"z2"=z2,"a1"=a1,"a2"=a2,"n"=n)

return(drawlist)

}

#Preparing the simulated data matrix

SimG = function(randomdraw,rho,rho.2) {

scale = sqrt(1-rho^2)

scale.2 = sqrt(1-rho.2^2)

n=randomdraw$n

y1 = randomdraw$a1 + randomdraw$z1

y2 = scale*randomdraw$a2 + rho*randomdraw$a1 +

scale.2*randomdraw$z2 + rho.2*randomdraw$z1

Y=matrix(NA,2*n,2)
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Y[1:n,1]=y1

Y[(n+1):(2*n),2]=y2

return(Y)

}

#Prepare covariates

y1a1=c(1:n, rep(NA, n))

y1z1=c(1:n, rep(NA, n))

y2a2=c(rep(NA, n), 1:n)

y2z2=c(rep(NA, n), 1:n)

y2rho=c(rep(NA, n), 1:n)

intcpt = c(rep(1, n),rep(2, n))

#Specify the the formula to be used in inla()

formula=data ~

f(y1a1, model="generic0",hyper = list(theta = list(param = c(0.5, 0.5), fixed=F)),

constr=FALSE, Cmatrix=NewSimCmatrix) +

f(y2a2, model="generic0",hyper = list(theta = list(param = c(0.5, 0.5), fixed=F)),

constr=FALSE, Cmatrix=NewSimCmatrix) +

f(y1z1,model="iid",hyper = list(theta = list(fixed=F))) +

f(y2z2,model="iid",hyper = list(theta = list(fixed=F))) +

f(y2rho,copy="y1a1",hyper = list(theta = list(fixed=FALSE,

param=c(0,0.1),initial=1))) +

f(intcpt,model="iid",hyper = list(theta = list(fixed=TRUE))) - 1

#Fit model using inla()

res = inla(

formula,

data = data.frame(simulated.data),

family = c("gaussian", "gaussian"),

control.family=list(list(hyper=list(prec=list(initial=10, fixed=TRUE))),

list(hyper=list(prec=list(initial=10, fixed=TRUE)))))
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