
Split payments in payment networks

Dmytro Piatkivskyi and Mariusz Nowostawski

NTNU, Norway
dmytro.piatkivskyi,mariusz.nowostawski@ntnu.no

1 Abstract

Traditional blockchain systems, such as Bitcoin, focus on transactions in which
entire amount is transferred from one owner to the other, in a single, atomic
operation. This model has been re-used in the context of payment networks such
as Lightning network. In this work, we propose and investigate new payment
model, called split payments, in which the total amount to be transferred is split
into unit-amounts and is transferred independently through the same or different
routes. By splitting the payments this way, we achieve an improved total liquidity
of the payment network, simplify the route advertising, reduce the amount of
funds needed to be locked in the channels, and improve the privacy properties of
the payment network. This article provides details on the split payment method,
motivation for the work, experimental setup as well as results obtained from
simulating various topologies using atomic and split payment mechanisms.

2 Introduction

The scalability problem of Bitcoin has received considerable attention by the
community. Various solutions have been proposed [1–3] and one of the most
promising is the utilization of off-chain transactions, for example through the
Lightning network [4].

In the battle with the blockchain’s main problem, scalability, the idea of off-
chain payment networks has evolved. Off-chain payment network is based on the
concept of state channels that can operate offline, consulting the blockchain only
when opening or closing a channel. The state channels form a payment network
which allows for peer-to-peer instantaneous transactions.

The front-runner of the payment networks in the area of cryptocurrencies
is the Lightning network [4]. Even though our work focuses specifically on the
Lightning network, it applies to any payment network that follows the idea of
state channels.

Off-chain payments are a novel concept that has received relatively little aca-
demic attention. Nevertheless, the first publications have demonstrated that the
off-chain payment network cannot satisfy all the desirable properties and a num-
ber of trade offs will have to be made to balance security, privacy, throughput
and liquidity of the network. In addition, the self-emerging network topology and
its usage is highly uncertain, as it depends on market forces, public uptake and

financial feasibility of operating the intermediary nodes. Yet, it is the topology
that will play one of the fundamental roles in the performance and character-
istics of the network properties. For that reason, we have studied the network
properties and worked on an operational mode that improves various properties
of the payment network. Our suggestion is to split payments and spread them
among a number of unit payments. We experimentally demonstrate, that such a
method not only solves some of the principle issues within the network, but also
increases the liquidity, while reducing the need of investment from intermediate
nodes.

The concept of shifting from atomic payments to money flows has been dis-
cussed before [5, 6, 4]. It changes and redefines the concept of money. In addition
to store of value and medium of exchange, it becomes apparent that aspects such
as fairness and easiness of transacting one’s funds are fundamentally important.
The efficient money flow networks have not yet been technically designed, nor
adequately studied. The cryptocurrency domain offers numerous advancements
and insights that can be investigated in the context of money flows. One of
them, deployed and used on top of Bitcoin network, is the Lightning network,
that provide relative simplicity when operating money flows. It makes the net-
work appropriate for practical use and, possibly, wider market adoption.

The payment networks ultimately solve the inherent blockchain scalability
limitation, however, the payment networks themselves are limited in many ways.
They require careful consideration and appropriate balancing of multiple, often
competing, trade offs. Many properties of the network will depend on the way
the network organizes itself. Implementation choices will make a great difference.

How to choose the appropriate protocol? What topology would facilitate
better network properties? How can the network increase its liquidity while pre-
serving other properties at the same level? What parameters affect the network
liquidity – the number of channels in the network, their capacities, the path
selection algorithm? The answer to these questions requires thorough research
on a number of individual research questions. In this research we are specifically
focusing on the liquidity of the network, simplicity of the route advertisements,
and funds being locked in the channels.

The main constraint of the payment-channel networks, such as the Lightning
network, is that funds have to be invested in channels beforehand, and, if used
inefficiently, can be considered locked in the corresponding channels for an ex-
tended periods of time. Therefore, this suggests an obvious incentive to invest
in the network as little as possible, to achieve little funds lock-in. However, the
network has to provide enough liquidity to route all the payments, therefore
it is natural that larger investments (larger amounts being locked in the chan-
nels) will offer improved transaction liquidity. Beside locking money in channels,
these networks pose a number of other trade offs – privacy, security, concurrency,
efficiency, complexity of route advertising, and others.

In this paper we demonstrate how to better organize the network. In partic-
ular, we suggest to abandon the idea of single atomic payments and to embrace
the concept of money flows, and the use of split payments. We show that split-

ting payments into a number of unit payments improves a number of important
properties, such as liquidity, funds lock-in, and privacy.

3 Past work

Payment networks are not a new concept. They are studied under different vari-
ations of the notion – trust networks [5–7], credit networks [8], path-based trans-
action (PBT) networks [9] and Payment-Channel Networks (PCN) [10]. These
concepts differ in various aspects, and at the same time, they have many things
in common. They all rely on the concept of a network (directed graph) and
interactions between participating nodes. An important aspect, in the light of
this paper, is the theoretical foundation laid by Dandekar et al. [8]. They dived
into the problem of network liquidity, defined the prominent metrics that affect
it and demonstrated credit networks’ effectiveness with the growing number of
connections.

There were efforts undertaken to improve the Lightning network. There were
efforts undertaken to extend specifically the Lightning protocol, or define the
parts that have not been specified in the original paper. Some of them target
payment routing, i.e. a way to find a route between nodes. The first proposal,
Flare [11], suggests maintaining routing tables to be able to discover paths in
the network. Roos et al. [9] proposed an alternative routing scheme that is pri-
vacy preserving. Grunspan and Pérez-Marco [12] put forward an idea of ant
routing where path lookup requests are passed from node to node in the net-
work. Another group of papers suggested changes to the initial protocol proposal.
Decker et al. [13] suggested an improvement over the Lightning transaction up-
date mechanism. Malavolta at al. [14] studied the mechanism which binds trans-
actions together, so they can be routed. They formally defined multi-hop locks
and suggested an improvement over the technique. Another paper from this re-
search group [10] demonstrated a rather surprising trade off between privacy and
concurrency in PCNs, and impossibility to achieve both simultaneously. In the
later parts of this article, we will show that our proposed mechanism addresses
and mitigates the problem. Piatkivskyi et al. [15] brought attention to the prob-
lem of colluding nodes and discussed how it influences forensics of the Lightning
network. Herrera-Joancomarti et al. [16] gave an overview on the state of the art
in privacy issues of payment networks.

Note, that there is no prior work specifically focusing on the payment flows
or payment splitting that investigates the properties of the payment network
based on split payment mechanism. Atomic Multi-Path Payments (AMP) [17]
have been proposed to split payments across multiple paths to increase the pay-
ment flow possible between two nodes. This method can be seen as an evolution
between single atomic payments and our proposal. The difference is discussed in
Section 5.2. In fact, in our experiments we compare split payments to AMP.

4 Background

4.1 The Lightning network

The Lightning network is a payment protocol built on top of the Bitcoin proto-
col. It allows for transaction throughput scaling by keeping and updating Bit-
coin transactions off-chain. A Lightning network transaction is processed within
Lightning channels which are actually Bitcoin transactions. The idea is that
two users mutually fund a Bitcoin transaction, the Funding 1 transaction, in
Figure 1, and spend it returning the invested funds with the Commitment 1
transaction. They both sign the commitment transactions, but only publish the
funding transactions on the blockchain.

Fig. 1. A funding transaction Fig. 2. Transacting 0.1BTC

Once a channel is established, i.e. the funding transaction reaches the blockchain,
funds can be moved within the channel (up to the channel capacity) by simply
updating the commitment transaction. When any participant wants to spend
funds outside the payment network, the channel is closed by publishing the cur-
rent state of the commitment transaction to the blockchain.

The described payment channels allow a nearly unlimited number of trans-
actions within a channel. Note however, that this simple scheme requires two
parties to have a pre-existing channel open. One would need to open a channel
with everyone one ever interacts with. This is cumbersome, as well as costly in
terms of initial channel setup and funding transaction costs. A solution to this
problem is to route payments through existing channels. The next subsection
describes this payment routing in detail.

Payment Routing The Lightning network protocol facilitates the ability for
making a payment to a node, without having a direct channel with it. To achieve
that, One can route a payment through intermediate nodes, each of which has
a channel opened with one another. For example, if there is a channel between
Alice and Bob and a channel between Bob and Charlie, Alice can send funds
to Charlie through Bob. The technique that makes payment routing possible is

called Hashed Timelock Contract (HTLC). By utilizing Hashed Timelock Con-
tracts (HTLCs), the two transfers, from Alice to Bob and from Bob to Charlie,
are atomic, that is either both of them are executed, or none are. HTLCs allow
Bob to receive money from Alice after Charlie has received money from Bob.

HTLC is an agreement of payment upon revealing a secret, pre-image R of a
certain hash value H. The scheme starts with the recipient, Charlie, generating
and sharing H with the sender, Alice. Based on the hash value H Alice creates
an HTLC contract with Bob, which says that Alice will pay Bob when Bob
knows R. Bob then creates an HTLC contract with Charlie (see Figure 3).

Fig. 3. A chain of HTLCs in a channel Fig. 4. Commitment transaction
with an HTLC

Having received an HTLC from Bob, Charlie reveals R and gets his money
from Bob even before Alice sends funds to him. Bob is safe, because he has his
money promised by Alice. The promise is enforced on the blockchain if Alice does
not comply. When Bob and Charlie execute their HTLC, Bob gets to know the
R value. Knowing the R value Bob can pull the money from Alice by executing
their HTLC. The scheme works the same way with more than three parties on
the path.

An HTLC is realized as one additional output in the commitment transaction
– the last output in the Figure 4. For more details on its implementation the
reader should refer the original paper [4].

The Lightning network topology The Lightning network has been deployed
on both, the Bitcoin testnet as well as the mainnet. However, it is still in its early
stage of deployment and testing. Many properties of the system will depend on
its wider user and service provider adaption. The main important uncertainty
arises around the Lightning network topology [18]. The main possible emerging
topologies are hub-and-spoke and organic. The hub-and-spoke topology implies
big payment processing hubs which would route the payments. Such a topol-
ogy comes with drawbacks such as high centralisation, threat to anonymity,
and money locking. The alternative organic topology does not suffer from these
problems to the same extent. However, taking into account the potentially low
channel capacities, organic routing might be highly inefficient. Another downside
for the organic topology is that the number of on-chain transactions is expected

to be much higher than with the hub-and-spoke topology, hence less users can
be served having the same block size limit. The comparison of these topologies
poses an interesting research question that has not yet been studied.

One aspect of the emerging topology can be safely assumed — there will be
nodes in the network more connected than others (hub) and nodes that use the
network to transfer funds (end users). The hub nodes will be routing payments
between end nodes, or end users. We will be using the terminology borrowed from
Prihodko et al. [11] and call the former routing nodes and the latter wallet nodes.
Wallet nodes are end users that wish to send and receive payments. They are
not expected to route payments, although can in principle do so. Routing nodes,
on the other hand, are nodes that offer their participation in the infrastructure
as a service, route payments and charge a fee for that. The whole responsibility
of providing the necessary and efficient infrastructure lies on the routing nodes.

We call an investment in the network all the funds that are locked in chan-
nels with the purpose of facilitating payments. Generally, these are the funds
invested by the routing nodes. We expect routing nodes not to invest in chan-
nels with wallet nodes, or invest short-term, which we do not count as a network
investment.

4.2 Model

A payment network is modelled as a directed graph G = (V,E), where V is
a set of payment network nodes (e.g. Lightning network nodes) and E is a set
of channels between them. A node is an abstract notion, that represents an
entity holding control of a number of Bitcoin addresses that has locked funds in
Lightning funding transactions. An edge e = (v1, v2) in the graph G corresponds
to a Lightning channel (or possibly multiple channels) between two nodes v1
and v2. For convenience, we consider a bidirectional Lightning channel as two
directed edges (v1, v2) and (v2, v1). Hence, it holds that if (v1, v2) ∈ E, then
(v2, v1) ∈ E. The two edges are updated together, if both parties agree. We
further use the terms edge and channel interchangeably.

A channel has a number of properties associated with it. cap(v1, v2) is channel
capacity, i.e. the amount of bitcoins node v1 can send to node v2. Sum of opposite
edges c(v1, v2) + c(v2, v1) is a constant, equalling to the total amount of funds
locked in the channel (in the funding transaction). It is possible that two nodes
create multiple channels between themselves. If so, we consider capacity of such
edge as a sum of channel capacities.

A transaction in the network is defined by a tuple (s, t, v), where s is the
source, t is the destination and v is the value of the transaction. Each transaction
needs to find a route to be routed by. It is posed as maximum flow problem.
Please note that we already assume that a payment can be split as the maximum
flow consists of possibly multiple flows. However, such a splitting is not timely
spread. A transaction upon its successful execution changes the distribution of
balances of all the channels on the route.

5 Split payments

5.1 Payment splitting proposal

The core idea of our proposal is to split payments into a number of smaller
sub-payments of equal amounts, i.e. a number of payments of unit amounts,
and send them independently, not preserving the atomicity property. There are
various ways to split payments up. One way of doing so is amounts of the orders
of 10. If a user wants to pay 23k satoshi, she splits the payment into 2 sub-
payments of 10k satoshi and 3 sub-payments of 1k satoshi.

Split payments are to be sent independently. At the moment of payment ini-
tiation, the sender calculates the cheapest path and begins establishing HTLCs
by that path starting with the larger sub-payments. If at any point of time an
HTLC establishment fails, or the sender receives a fee update, she suspends the
sub-payments for which HTLCs have not yet been established and re-calculates
the cheapest path again. Then the suspended sub-payments are resumed to be
sent by the new cheapest path. It may happen that for some larger sub-payment
there is no path of needed capacity. In such a case the sub-payment has to be
further split. If there is no capacity to route any payments in the needed direc-
tion, the whole sub-payment queue is suspended for a timeout. After the timeout
is elapsed, an attempt to send the sub-payment is repeated. This process could
continue indefinitely until the payment is complete. The user sets a time frame
within which the payment is expected to execute. We call such parameter time
to live (TTL). Obviously, some payments have to be carried out instantly,
while other can wait. It will make a trade off between the time it takes to com-
plete a payment and the fee paid for that payment. A payment is considered
successful if all sub-payments are successfully delivered within the set TTL. If a
payment has not been delivered within the set TTL, it is marked as failed, even
though it could have been partially sent. Such payments are not sent back, con-
sequentially failed payments change the balances of the nodes en route. Partial
transitions are further discussed in the following sections.

5.2 Atomic multi-path payments

Atomic multi-path payments (AMP) [17] are the implementation of the concept
of flows in a flow network. There are number of principal differences that sets
AMP and split payments apart. The main difference is that the whole AMP
flow executes atomically, that is either all of the sub-payments are sent at once
or none. For that, each extended sub-payment remains pending until all sub-
payment flows are extended. That increases the duration of funds being locked.

The superiority of split payments success rate comes from the fact that an
AMP fails if maximum flow between two nodes is less than the payment amount.
Split payments still attempt to execute. As sub-payments are timely spread,
there is a chance that within the execution window some payments will pass
in the opposite direction increasing the maximum amount that can be sent.
A substantial disadvantage is that a payment can be only partially executed.

Notwithstanding the transaction acknowledgement complications, we deem par-
tial payments harmless as the rest of the payment can be sent on-chain using
splicing [19], if to be sent from a Lightning channel. We stress that partially exe-
cuted payments do not introduce additional inconvenience. If a payment cannot
be executed, it has to be sent in any other way anyway. The non-executed part
of a payment can be sent the very same way the whole failed payment would
have to be sent.

5.3 Network analysis

Privacy The privacy benefits of the proposed strategy are many. First of all,
there is no need for routing nodes to disclose current channel capacities, which are
highly volatile, and typically have to be constantly requested, which otherwise
may yield high error rates. Instead, the paying node, knowing the static topology,
can simply request unit payments. The probability that a particular path is able
to route a payment is relatively high, given the small unit payment amount.

The compromise here is that unlike in [10], where channel participants are
kept secret when routing and only disclosed on the chain when closing the chan-
nel, participants have to be known when advertising channels. The major gain
comparing to their scheme is route calculation efficiency. The two schemes are
not in competition with each other and can be combined and work together.
Besides, the fact that all the payments could only be of a certain unit amount
makes the payment correlation analysis difficult. Timing analysis will be signifi-
cantly complicated as there expected to be a large number of such unit payments
in the network.

Even if a sub-payment is related along the route it is just one out of many
sub-payments. The routing nodes will not know the actual amount being sent as
the task of de-multiplexing a payment, that is to reconstruct a single payment
from a number of sub-payments, poses a big challenge even if all of sub-payments
were routed through the same router. Some sub-payments may originate from
the sender, or from nodes before the sender, and be destined further than the
receiver. Thus, even payment correlation by the single value of HTLC riddle
becomes a minor threat, if considered to be a threat at all, as each sub-payment
is based on a different riddle. Finally, be the sub-payments not all sent using the
same route, an attacker would have to control all the nodes used to be able to
reconstruct the payment.

Even though the question of privacy constitutes a research endeavour on its
own and goes beyond the scope of this article, we are confident to claim that
split-payment network will improve privacy and it would make the transaction
tracking analysis harder.

Security Generally, we believe that with the proposed strategy a payment
network becomes much more robust to instabilities and dishonest nodes. Money
locking is an inherent problem where a dishonest node stops responding with the
purpose of increasing the time for which money are locked in passing HTLCs. The

larger the payment being sent, the greater the associated risk. Consequentially,
in our proposal the collateral risk is relatively low with split payments because
all the actual payments are of unit amount only. If a sub-payment gets stuck,
the sender stops using the routing node that failed. Therefore, the collateral risk
is notably reduced, and contained only to the unit amount. Moreover, as there
exists a threat of losing money to colluded receiver and a node en route [15],
the maximum loss is limited by the amount of the largest sub-payment. If the
sender loses money to the colluding nodes, it can simply stop casting the flow.

Concurrency Split payments transform the problem of possible occurrence of
a deadlock into a performance bottleneck. While deadlocks are still theoretically
possible, for it to happen a number of sub-payments totaling to the channel
capacity have to conglomerate simultaneously at two nodes. We consider the
chance of such a deadlock negligible, resolving the trade-off between privacy and
concurrency in payment networks described in [10]. Besides, a naive approach to
cancel stuck payments would easily resolve a deadlock. We can simply assume
that the split payment mechanism resolves the trade-off between privacy and
concurrency in payment networks described in [10], and it becomes a non-issue.
After all, the whole cryptography is based on making the chance of failure in-
credibly small. Here, we tolerate negligibly small chance of payments being stuck
for a while and having to be resent.

Lower fees The described use of network will presumably yield lower fees for
transactions. First of all, it may happen that the cheapest path is not able
to process the whole payment due to capacity limitation. If not splitting the
payment, the sender would have to use another, a more expensive, channel.
Secondly, since payments are sent sequentially, it may happen that a cheaper
path will appear some time after the payment has been issued. Most importantly,
the more efficient network will naturally drive the transaction cost down. This
will both, improve the liquidity as well as keep the dynamic fee pricing efficient
for the network.

6 Simulation

The choice of methods in our research has been dictated by the complexity of
the theoretical model which is limited in what answers it can provide. Using
a simulation for such an immense problem space is both laborious and error
prone. Even so, it can provide insightful answers and help to shape the research
landscape.

A massive effort have been invested into developing a Lightning network
simulator called Blyskavka (a Ukrainian word for Lightning). The simulator is
meant to be open source, yet making it public requires certain preparations
which hinders the release. Blyskavka is a multi-agent simulator that was built
for general purpose payment network simulations. It is written in java and uses

MASON [20] as a simulation engine. The choice of the simulation engine comes at
a high cost of poor scalability. We were able to run networks up to 50000 nodes,
which, however, was too slow to run extensive simulations, therefore the largest
network we run in our experiments is of 10000 nodes. Blyskavka simulates the
Lightning network operation rather than the Lightning network itself, meaning
it does not simulate the actual transactions being signed and the blockchain
communication. It does open and close channels that are modelled as graph
edges. It also simulates HTLC’s by blocking and then releasing amounts on the
path.

The simulation is built in a modular way, so each module can be substituted
with an alternative implementation in code, and be configured through configu-
ration file. An example of configuration file is provided in Appendix A. Structural
and behavioral parts of the network are separated as well. Network graph gen-
eration is decoupled from the simulation at all. The network generation module,
cracow, outputs the generated graph into a file which the simulation then reads
and translates into entities it operates with. At the moment, of writing, cra-
cow module The simulation works with the Newman-Watts–Strogatz model of
the small-world network family, the uniform random graph model and a custom
model that we call peripheral. A respective model is specified in the configuration
file with ALGO parameter. Every model takes the NETWORK SIZE and the
number of channels K as parameters. In addition to the network graph, cracow
generates, currently uniformly only, capacities and costs for each edge. The re-
spective parameters are MIN CAPACITY, MAX CAPACITY, MIN COST and
MAX COST. The peripheral graph model differentiates between the core net-
work that consists of routing nodes and the wallet nodes that connect to the core
network — the peripheral network. The core network is generated following any
other model. If the parameter ALGO is set to PERIPHERAL, the program ex-
pects a block of parameters with prefix CORE parameterizing the core network
model. Having generated the core network, the wallet nodes are added, choosing
randomly K routing nodes to connect to.

The behavioral part of the simulator distinguishes node behavior and network
behavior. The node behavior defines payment issuance and, in theory, channel
management. The experiments this article describes treat the topology as static,
consequently include no channel management. The network behavior defines the
way paths are discovered and payments are sent.

The simulation is discrete event based. Each simulation step a node decides
what to do — whether to send a payment or not. In all the experiments the pay-
ment frequency for each node is once every 25 simulation steps. If a node decides
to transfer money, it randomly with uniform distribution selects the destination
node and the payment amount within the set range — between 0.1 and 20. As
a result, nodes create uniform and symmetric traffic in the network. The node
behavior is defined within a single class. It can be simply substituted with any
implementation of the node behavior interface to fit one’s needs. Currently, all
users are endowed the same behavior which could be simply changed as well.
As payments can be delayed, they are scheduled as well. The network behavior

in the simulation is described by entity Payment. Each step a payment makes
an attempt to execute itself – atomic payments at once, split payments a unit
amount sub-payment at a time. If a payment cannot be executed, it is scheduled
for the next step until it is out of time to live (TTL).

Paths are discovered in an extensive depth-first search, until one is found.
Two strategies were examined – randomizing paths on each hop or choosing next
hop in an ordered fashion. Both have proven to produce the same effect on the
studied metrics. The explanation comes from the work of Dandekar et al. [8]
where they proved that path choice in payment networks does not affect the
liquidity of the network. Even though the underlying assumptions are different
in the Lightning network, the theorem seems to stand. We are set to investigate
in full the theorem’s applicability to the Lightning network and split payment
as well. It is to be described in yet another paper.

An important feature implemented in Blyskavka is the for-of-war like visibil-
ity, as Flare [11] suggests. Each node is only aware of channels within the reach
of N hops. We used N=3 which, given the small size of the network, gave nearly
full visibility of the network. Before searching for a path, two nodes, the sender
and the receiver, join their views on the network, after which the path discover-
ing algorithm is applied. The simulation is flexible on what metrics it can take
measurements of. For the purpose of the described research, only success rate
was of interest. An example of program output is given in Appendix B

Financial services are expected to meet the most strict requirements. Usabil-
ity and availability are among them, although not currently met by Bitcoin. The
foremost requirement for the payment network is to always be able to route a
payment. Under this assumption, we set a goal of providing all time available
service, having invested as less in the network as possible. We do not consider
anomalously large payments. If an unusually large payment is issued, the net-
work has to rebuild itself to be able to route it. The traffic we create in our
simulation is rather uniform and constant. We consider it to be the peak traffic.
Therefore, anything less of that can be easily processed by the network.

Generated networks For this research we generate both, hub-and-spoke and
organic topologies. Hub-and-spoke topology correspond to the peripheral graph
model, organic topology is described by either the Newman-Watts–Strogatz model
or by the uniform random graph model.

In our experiments we study networks of 1000 and 10000 nodes with different
level of connectivity, defined by the parameter K. The small network size is
dictated by the poor scalability of the simulator. Hub-and-spoke network has the
core network consisting of 20 nodes for the network size of 1000 nodes and 50
nodes for the network size of 10000 nodes. The numbers are chosen deliberately
so that the success rate starts low enough to show its increase with TTL value.
Each node, regardless if it is a routing or wallet node, has K channels with initial
capacity of 5 on each side. For this research channel cost is disregarded.

Intuitively, and then proven experimentally, the organic topology efficiency
grows with the number of channels in the network. Organic topology with K=2

is very inefficient, hence we set K=4. To match the total funds invested into
the hub-and-spoke network under scrutiny, the initial channel capacities should
remain 5. We also generate higher connectivity networks with K=4 for hub-and-
spoke network and K=8 for organic network.

Table 6 summarizes the generated networks.

Table 1. Generated networks

Hub-and-spoke Organic
1000 nodes, low connectivity K=2 K=4
1000 nodes, high connectivity K=4 K=8
10000 nodes K=2 K=8

7 Experiments

It is hard to study the effects a change of a variable causes in the various net-
work properties. For that, all variables that could also affect the success rate of
the network have to be fixed, while still conserving the adequate liveliness and
soundness of the network. To reduce the number of confounding variables, we
randomly generate an instance of a particular network topology, with a given
fixed properties. Any comparison is done then for exactly the same network
configuration.

In the effort to define the network variables important to the research we also
have to think about implicit correlations that may exist. To give an example,
comparing split and non-split payments we have to make sure that the partic-
ular path selection strategy that we employ does not favor either of them (see
Section 7.2).

In the experiments described in this article TTL is an independent variable,
i.e. we study the dependency of success rate on the TTL value. For that, TTL
is being varied from 50 simulation steps (where slight TTL increase brings a
considerable difference in success rate) to 2000 simulation steps (where there is
no longer any substantial increase in success rate with growing value of TTL).
That demonstrates how the network improves with longer TTL.

The experiments were performed within a strictly defined framework. Each
run lasts at least N = 3 ∗ TTL simulation steps and repeated multiple times
to investigate the variance across runs. Furthermore, network topologies were
generated randomly and for the same configuration there were generated multiple
instances of the same topology, to compensate for a particular instance favouring
one or the other model, just out of pure chance of the connectivity of a given
instance.

The ultimate benchmark for the network we deem the success rate. To ad-
equately measure it, we run the simulation for a number of steps N , but stop
accounting transactions into statistics TTL steps before it finishes. This leaves

each transaction enough time to either complete or fail. The transactions in the
network, however, are continously generated and they continue creating traffic.

7.1 Split payments vs. AMP

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hub−and−spoke topology, K=2

TTL

S
uc

ce
ss

 r
at

e

split
non−split

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hub−and−spoke topology, K=4

TTL

S
uc

ce
ss

 r
at

e

split
non−split

Fig. 5. A 20-1k hub-and-spoke network.

The core of the experiments was focused on the comparison of split payments
and AMPs. Split payments were implemented in the simulation as described in
Section 5.1. Below are shown two families of charts – for hub-and-spoke (Fig. 5)
and organic (Fig. 6) topologies, having had invested the same amount in the
network. Both topologies are generated for different sizes of the network – 1000
(Fig. 5 and 6) and 10000 nodes(Fig. 7).

The first thing to notice is the striking difference the splitting makes across
all charts, particularly in case of the organic topology. With TTL > 1000, the
difference is above 35%. The hub-and-spoke network also shows a significant im-
provement which is more constant and makes up over 10% improvement, reach-
ing 20% difference for TTL > 1000. Those experimental results demonstrate
the superiority of split payments when it comes to liquidity. Apart from proving
the better performance of split payments these graphs provide hints about what
network configurations are more efficient. Even though promising, those hints
are not to be considered facts and need to be verified in a more rigorous manner.

Better connectivity networks In all of the experiments we keep the amount
invested in the network at the same level to make the comparisons meaningful.
Therefore, when increasing the number of channels K twofold, we divide the
average channel capacity by 2. All the figures suggest that it is better to invest

less in a single channel and have more channels established. In other words,
the more interconnected the network the greater its performance. The better
connectivity comes at the cost of more on-chain transactions, the problem the
payment networks are trying to solve. For that reason, the trade off will settle
naturally depending on the block size and the number of users in the system. It
would be interesting to give an estimate once fees for Bitcoin and the Lightning
network settle down.

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Organic topology, K=4

TTL

S
uc

ce
ss

 r
at

e

split
non−split

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Organic topology, K=8

TTL

S
uc

ce
ss

 r
at

e

split
non−split

Fig. 6. An organic topology of 1000 nodes.

Hub-and-spoke topology efficiency Hub-and-spoke topology is by far out-
performing the organic topology, even when the latter has twice as many chan-
nels (of half capacity, so the total investment in the network remains constant).
Important to note that wallet nodes in the hub-and-spoke topology are not con-
sidered when routing. If they take part relaying payments, the efficiency, hence
the liquidity, grows considerably. This suggests that in spite of all the shortcom-
ings, some form of centralization will be present as it constitutes a major factor
to the network efficiency.

High intensity traffic Having the same core network, but increased number
of wallet nodes increases the success rate in the hub-and-spoke network. The
organic network, on the other hand, suffers from the growing number of nodes.
On the other hand, the splitting strategy shows the best efficiency for larger
organic topologies making the difference of about up to 65%, taking up 34%
success rate of atomic multi-path payments to 99% of split payments. This is a
rather considerable improvement over the atomic baseline.

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hub−and−spoke topology, K=2

TTL

S
uc

ce
ss

 r
at

e

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Organic topology, K=8

TTL

S
uc

ce
ss

 r
at

e

split
non−split

Fig. 7. Networks of 10000 nodes.

7.2 Split amounts

This section attempts to discover an optimal splitting strategy. Naturally, we
need to answer what amounts should the payments be split in. The experiments
described above used the strategy of breaking the payments into single units of
value – 1s (unit payments), but the payment amounts in the simulation where
generated with decimal precision. When the payment amount to be sent becomes
less than 1, the rest is sent in 0.1s (one tenth of a unit payment).

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 vs 0.1

TTL

S
uc

ce
ss

 r
at

e

split 1
split 0.1

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 vs 2

TTL

S
uc

ce
ss

 r
at

e

split 1
split 2

Fig. 8. Network performance depending on splitting amounts.

In this experiment we have introduced two alternative splitting strategies –
sending bigger bulks of 2 units and smaller in 0.1s. The results are depicted in
Fig. 8. Both strategies are of the same performance as the reference strategy.
The minor deviations are explained by the not ideal precision of the simulation
due to randomness introduced to preserve the network liveliness. The heavy tail
of low valued TTLs for 0.1 strategy is explained by the fact that some high
amount payments are split in the number of sub-payments higher than TTL, so
they cannot be completed within such low TTL.

The actual amounts to be split in will be dictated by the network use. With
the growth of the splitting unit amount the efficiency will start dropping. On
the other hand, the sub-payments being too small bring operational overhead,
therefore a balance between these two competing objectives needs to be estab-
lished.

7.3 Path choice

A question of great interest that relates to payment routing is whether the choice
of path selected for a particular payment affects the overall efficiency of the net-
work and its liquidity. There are many on-going projects, Khalil et al. [21] for
example, that suggest using re-balancing techniques in the fashion of cycle trans-
actions to increase network liquidity. The idea is to re-distribute the channels’
balances in the network, so a transaction of interest becomes possible. All done
not changing the total balance of each individual. This suggests that having the
same balances, the distribution of funds in channels matters.

Dandekar et al. [8] provide a strong contradiction to such a claim. They prove
the following theorem for trust networks.

Theorem 1. Let (s1, t1), (s2, t2), ..., (sT , tT) be the set of transactions of value
v1, v2, ..., vT respectively that succeed when the payment from si to ti is routed
along a path Pi. Then the same set of transactions succeed when the payment
from si to ti is routed along any other feasible path P ′

i.

In the words of the authors this ”obviates the need to route payments along
the shortest path”. Obviously, not taking the implementation details of a partic-
ular payment network. Moreover, in their proof they state the following lemma.

Lemma 1. For any equivalence class C of a given network, if a transaction
(s, t, v) is feasible in some state S ∈ C, it is feasible in all states S′ ∈ C.

An equivalence class is defined by a generalized score vector, i.e. nodes’ bal-
ances. A state is a distribution of the the balances in the channels. Paraphrasing
the lemma, total balances of nodes in the network define the feasibility of a
particular transaction, not the distribution of balances.

Consequentially, the choice of path does not affect the liquidity of the net-
work, when dealing with atomic payments that are strictly ordered. Proving
this theorem for split payments poses a bigger challenge. We omit the proof for
this paper and only verify it experimentally. For this experiment two path selec-
tion algorithms were implemented. One imposes an order on candidate channels

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random vs deterministic paths

TTL

S
uc

ce
ss

 ra
te

split random
split deterministic
non-split random
non-split deterministic

Fig. 9. Network performance with different path selection algorithms.

and always selects the first candidate. An individual node, by such strategy, al-
ways chooses the same channel until it depletes. The second algorithm randomly
selects channels on each hop, keeping channels rather balanced out. Both algo-
rithms ended up with exactly the same performance (see Fig. 9), supporting the
theorem.

8 Discussion

This paper only presents the concept of split payments and demonstrates the
performance gain it can yield. The technique needs an extensive discussion before
it can take a certain implementation. One way the idea of split payments can be
taken further is to abandon HTLCs and turn to script-less micro-payments. A
script-less micro-payment is completely insecure and is basically a trustless and
unenforceable request to forward a small amount payment. Any intermediate
node is free to receive such a payment and refuse to forward it. If a node cheats
and saves the payments for itself, the sending node punishes it by blacklisting it
and never routing through it again. The premise here is that nodes’ reputations
worth more than the value of a micro-payments. Adaption of script-less micro-
payments has many advantageous. Among them are the lower computational
load on devices as no HTLCs have to be created, and removal of the limit

on the maximum number of payments in fly for one channels (the number of
simultaneous HTLCS in one channel is currently restricted by transaction size
limit [22]).

Since the form the split payments will take is not known, it is hard to esti-
mate, at the moment, every aspect of the system that will be affected. For in-
stance, splitting involves increased complexity which inevitably results in higher
computational load on devices. On the other hand, many processes may be
simplified with split payments. For example, abandoning scripting as described
earlier in this section. Further in this section we consider split payments effect
as if they were adopted in the Lightning network as it is now.

Naturally, the computational cost will increase many fold as there will be
many more transactions. That is a severe restriction. None the less, this should
increase the best effort time from initiating a payment to its confirmation only
sublinearly, as sub-payment can be executed in parallel. Additionally, we foresee
no communication overhead as all the hashes’ pre-images can be generated and
shared in one round.

Another possible complication is payment acknowledgement, which has been
actively discussed by the community in the thread on the mailing list which
presented AMP [17]. In the discussion there was found no general consensus on
the matter. It is not known yet what level of inconvenience the splitting will
bring to invoicing.

Important to note that in our study of split payments we disregard fees
in the system. Whereas being a determinative part of the system, it does not
affect the success rate of payments. It does, however, suffers consequences from
adapting split payments. Currently, fees are baserate+ ratepertransactionsize.
Such approach lays a burden on splitting by paying multiple base rates. Should
splitting be adopted, base rate component is likely to be abandoned.

Another problem with fees is that they have to be attached to payments,
changing payment amounts. A node forwarding payments could then try to spec-
ulate its position on the route by analyzing payment amounts. A possible way
around could be paying fees separately to each routing node prior to the actual
money flow. Alternatively, the amounts to be split in could be not unit amounts
sharp, but randomly chosen within a small window around unit amounts.

Finally, there is a failure mode when many simultaneous payments originate
in one part of the network. When two payments, for instance, start being simul-
taneously cast through the same path in the same direction, it may happen that
both of them will be partially executed while if being atomic payments one of
them would get fully executed one would not initiate the execution at all. If that
proves to be a real threat, the proposal has to be modified as follow: try sending
a payment atomically first, if not possible split it up.

9 Future work

The introduced direction of research in the money flow networks is new and
promising. A large number of questions needs to be answered. We are currently

working on some that we list below. The most interesting and the most important
issue is the one of the network formation. It is yet to be studied what topology
of the payment network is the most feasible and which one is the most efficient.
It will be interesting to see if the optimal topology depends on the amounts
invested in the network.

Fees will be a powerful instrument to dictate a certain behavior in the net-
work. We are set to determine if a particular fee strategy can potentially im-
prove the network properties, such as channel balancing and liquidity. For exam-
ple, smart fee strategy could keep the network constantly balanced, resulting in
shorter paths. Finally, path selection algorithm may not change the liquidity of
the network, but they may well change the path lengths, which in turn can have
other implications. For example, longer paths typically mean greater collateral
risk of locking funds.

Game theory of node behaviors is another question to look at. Routing nodes
will try to make the most out of their investments. Such behaviors should be
predicted and analyzed how they would affect the global network properties.
Last, but not least, various implementations of the payment networks have to
be studied to test if there any crucial difference that affect their routing perfor-
mance.

10 Conclusions

We have introduced the area of research focusing on payment networks and
money flows. We have investigated an improvement in the design of the pay-
ment network, based on the split payment model. The new strategy has been
experimentally demonstrated to substantially increase the liquidity of payment
network. We have tested the path indifference theorem and showed it to be
true for split payments. We have investigated what payment network topologi-
cal characteristics tend to yield better liquidity. Another important contribution
is the Lightning network simulator, named Blyskavka, that has been designed to
be general-purpose and we expect it to be used in the future research work on
payment networks.

References

1. Andrew Poelstra. Mimblewimble. 2016-10-06.

2. Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,
Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling
blockchain innovations with pegged sidechains. URL: http://www. opensciencere-
view. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains,
2014.

3. Christian Decker and Roger Wattenhofer. A fast and scalable payment network
with bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing
Systems, pages 3–18. Springer, 2015.

4. Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments. Draft, version 0.5.9.2, 2016-01-14.

5. Arpita Ghosh, Mohammad Mahdian, Daniel M. Reeves, David M. Pennock, and
Ryan Fugger. Mechanism design on trust networks. In Xiaotie Deng and Fan Chung
Graham, editors, Internet and Network Economics, pages 257–268, Berlin, Heidel-
berg, 2007. Springer Berlin Heidelberg.

6. Dean Karlan, Markus Mobius, Tanya Rosenblat, and Adam Szeidl. Trust and
social collateral*. The Quarterly Journal of Economics, 124(3):1307–1361, 2009.

7. Paul Resnick and Rahul Sami. Sybilproof transitive trust protocols. In Proceedings
of the 10th ACM Conference on Electronic Commerce, EC ’09, pages 345–354, New
York, NY, USA, 2009. ACM.

8. Pranav Dandekar, Ashish Goel, Ramesh Govindan, and Ian Post. Liquidity in
credit networks: A little trust goes a long way. In Proceedings of the 12th ACM
Conference on Electronic Commerce, EC ’11, pages 147–156, New York, NY, USA,
2011. ACM.

9. Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling
payments fast and private: Efficient decentralized routing for path-based transac-
tions. CoRR, abs/1709.05748, 2017.

10. Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivat-
san Ravi. Concurrency and privacy with payment-channel networks. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, pages 455–471, New York, NY, USA, 2017. ACM.

11. Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa
Osuntokun. Flare: An approach to routing in lightning network, 2016.

12. C. Grunspan and R. Pérez-Marco. Ant routing algorithm for the Lightning Net-
work. ArXiv e-prints, June 2018.

13. Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. eltoo: A Simple Layer2
Protocol for Bitcoin. https://blockstream.com/eltoo.pdf, 2018.

14. Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and
Matteo Maffei. Multi-hop locks for secure, privacy-preserving and interoperable
payment-channel networks. IACR Cryptology ePrint Archive, 2018:472, 2018.

15. Dmytro Piatkivskyi, Stefan Axelsson, and Mariusz Nowostawski. A Collusion At-
tack on the Lightning Network — Implications for Forensics. 2017.

16. Jordi Herrera-Joancomart́ı and Cristina Pérez-Solà. Privacy in Bitcoin Transac-
tions: New Challenges from Blockchain Scalability Solutions, pages 26–44. Springer
International Publishing, Cham, 2016.

17. Olaoluwa Osuntokun. AMP: Atomic Multi-Path Payments over Lightning. 2018-
02-06.

18. Chris Pacia. Lightning Network Skepticism. https://goo.gl/obxpQm, Dec 2015.

19. reducing the number of blockchain transactions used by the LN, and the fees paid
to confirm them. 2017-12-21.

20. Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan.
Mason: A multiagent simulation environment. Simulation, 81(7):517–527, July
2005.

21. Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain payment
networks. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, pages 439–453, New York, NY, USA, 2017.
ACM.

22. Payment channel congestion via spam-attack. 2017-03-24.

A An example of the configuration file

EXPERIMENT NAME=TTL200
TTL=200
IS SPLIT=FALSE
K=2
NETWORK SIZE=1000
MIN CAPACITY=1
MAX CAPACITY=10
MIN COST=1
MAX COST=10
ALGO=PERIPHERAL
PAYMENT FREQUENCY=25
DELIBERATE AMOUNT SPLITTING=TRUE

SET VALUES FOR THE CORE NETWORK
CORE NETWORK SIZE=20
CORE ALGO= UNIFORM
CORE K=2
CORE MAX CAPACITY=5
CORE MIN CAPACITY=5
MIN COST=1
MAX COST=10

MISCELLANEOUS
LOGGER LEVEL=TRACE
GRAPH FILE=graph1 . s e r

B An example of the simulation output

20180607EXPERIMENT−same−graph . j a r −Xms4096m −f o r 300 −
repeat 5 −f i l ename TTL50 . c o n f i g

2018/06/08 1 3 : 5 8 : 00
1528455480728
{CORE MIN CAPACITY=5, PAYMENT FREQUENCY=25, NETWORK SIZE

=1000 , DELIBERATE AMOUNT SPLITTING=TRUE, IS SPLIT=
FALSE, GRAPH FILE=graph1 . ser , CORE MAX CAPACITY=5,
ALGO=PERIPHERAL, LOGGER LEVEL=DEBUG, MIN CAPACITY=1,
CORE ALGO=UNIFORM, CORE NETWORK SIZE=20, TTL=50, K=2,
MAX CAPACITY=10, CORE K=2, EXPERIMENT NAME=TTL50}

InvestedInNetwork : 21766.0
InvestedInCoreNetwork : 210 .0
TotalTx : 3356
Success fu lTx : 1805
FailedTx : 1551

PendingTx : 0
SuccessRate : 0 .54
Fai lureRate : 0 .46
EstimatedSuccessRate : 0 .54
Est imatedFai lureRate : 0 .46

