NTNU - Trondheim
Norwegian University of
Science and Technology

The strong no loop conjecture

Michael Kyei

Master of Science in Mathematics
Submission date: May 2014
Supervisor: Steffen Oppermann, MATH

Abstract

The strong no loop conjecture states that a simple module of finite projective dimension over an artin algebra has no non-zero self extension. In this work I looked at the proof of the following result due to Kiyoshi Igusa, Shiping Liu and charles Paquette which confirms the strong no loop conjecture for finite dimensional algebras over an algebraically closed field. The point is to understand the background leading to the proof.

Acknowledgements

This thesis represents the work of my final year as master student in mathematics at Norges teknisk-naturvitenskapelige universitet (NTNU).
First of all, I would like to thank my advisor Steffen Oppermann, who suggested the topic of my thesis, gave me very useful feedback on my work and guided me in the structure and precise details of my work, that gave me a very sound footing to begin and moreover challenged me to work harder.

Secondly, my thanks go to all my NTNU-lecturers both algebra and analysis group their teachings has also serve to prepare me.
Finally, to Fredrik Hildrum, who not only suggested to me, easy usage of share latex, i used in typing my thesis, but also set the preamble codes which gave me a speed start as a novice.

Contents

Abstract iii
Acknowledgements v
Introduction vii
1 Preliminaries 1
1.1 Basic facts from algebra and module theory 1
1.2 Quivers, path algebras and their quotient form 20
1.3 Representations of bound quivers 28
1.4 Existence of an expression of the quiver of Λ in terms of the extensions between simple modules 33
2 Algebras of finite global dimension:acyclic quivers 37
2.1 Definitions and comments 37
2.2 Some useful results 38
3 Hattori-Stallings trace and Lenzing's results 41
3.1 The relative K-theory group $K_{1}(\Lambda)$ 42
3.2 Lenzing's theorem 45
4 Localised trace function 49
4.1 Lenzing's trace function 49
4.2 The e-trace function 50
4.3 The (e, n) - trace function 51
4.4 Main result 53
5 Proof of the strong no loop conjecture 55
5.1 Establishing the result for artin algebras 55
5.2 Some generalisations 56
Bibliography 59

InTRODUCTION

It has been known for a long time; see [11] and [13] that the quiver of a finite dimensional algebra Λ of finite global dimension does not contain any loop, or equivalently $\operatorname{Ext}_{\Lambda}^{1}(S, S)=0$ for simple Λ-modules, S : that is the "no loop conjecture". This conjecture is known for finite dimensional elementary K-algebras, (where K is a field) see [13], this can be derived from an earlier result of Lenzing on Hochschild homology, see [11]. Furthermore, this result has been recently, strengthen due to Zacharia; see [13] and [14], to state that a vertex in the extension quiver admits no loop if it has finite projective dimension: that is "the strong no loop conjecture". The strong no loop conjecture is known for

- algebras with atmost two simples and radical cube zero (by Jensen [3]),
- mild algabras,"hence representation finite algebras" (by Skorodumov [6]),
- bound quiver algebras KQ / I such that for each loop $\alpha \in Q$ there exist an $n \in \mathbb{N}$ with $\alpha^{n} \in I /(I J+J I)$ where J denotes the ideal generated by the arrows (by Green, Solberg and Zacharia [8]),
- special biserial algebras (by Liu and Morin [16]),
- truncated extensions of semisimple rings (by Marmaridis and Papistas [15]).

Following earlier work done by Lenzing, who used K-theoretic methods to obtain information on nilpotent elements in rings of finite global dimension. Skorodumov generalised and localised Lenzing's filtration to indecomposable projective modules. Enabling him to prove this conjecture for finite dimensional elementary algebra of finite representation type; see [6].
K.Igusa, S.Liu and C.Paquette localised Lenzing's trace function to endomorphisms of modules in $\bmod \Lambda$ with e-bounded projective resolution, where e is an idempotent in Λ. Enabling them to obtain a local version of Lenzing's result which consequently provided the needed tool to solve the strong no loop conjecture for a large class of artin algebras including finite dimensional elementary algebras over any field and specially for finite dimensional algebras over an algebraically closed field.
The contents of the work, chapter by chapter are as follows.
Chapter 1, cover our preliminaries. Here we introduce some needed and basic concepts, such as radicals, semisimple modules, path algebras, then we show that any basic connected algebra
is the quotient of a path algebra by an admissible ideal. A very important observation is that representation of a quiver are the same as modules over the underlying path algebra. Finally we end every thing with an important result (in propositon 1.4.5) for this work, that if $\Lambda=K Q / I$, a bound quiver algebra and $x, y \in Q_{0}$. There exists an isomorphism of K-vector spaces

$$
\operatorname{Ext}_{\Lambda}^{1}(S(x), S(y)) \cong e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y} .
$$

In chapter 2, we basically look at some interesting result that leads us to the conjectures relating to the structure of the quiver Q_{Λ}. Which conjectures are the no loop and strong no loop conjecture.
In chapter 3, we present some results due to Hattori, Stallings and Lenzing giving us a tool in hand, which, combine together with chapter 4 will enable us to handle the strong no loop conjecture for the finite dimensional algebras over an algebraically closed field in chapter 5. Also the nice thing about these tools, we will use, is that we don't need to calculate any projective resolutions in order to make claims about the projective dimensions of the simple modules in view.
In chapter 4, here we go little step further. We recall Lenzing's extension of the Hattori-Stallings trace of endomorphism of projective modules to endomorphism of modules of finite projective dimension as before in chapter 3. Then localise this Lenzing's trace function to endomorphism of modules in $\bmod \Lambda$ with e-bound projective resolution. This helps us to obtain a local version of the Lenzing's result. Finally, we will prove that the zeroth Hochschild homology group of Λ, $\mathrm{HH}_{0}(\Lambda)$ is radical trivial.
In chapter 5 , here as consequence of chapter 4 we have the main result of the whole work: a proof of the strong no loop conjecture for large class of artin algebras includind finite dimensional elementary algebras over any field, and in particular for finite dimensional algebras over an algebraically closed field.

Chapter 1

Preliminaries

1.1 BASIC FACTS FROM ALGEBRA AND MODULE THEORY

We will assume K to be an algebraically closed field, except otherwise stated. We recall that a K-algebra is a ring Λ with identity element such that Λ has a K-vector space structure compatible with the multiplication of the ring, that is, such that

$$
\lambda(a b)=(a \lambda) b=a(\lambda b)=(a b) \lambda
$$

for all $\lambda \in K$ and all $a, b \in \Lambda$. The algebra is called commutative if it is a commutative ring. We say that Λ is finite dimensional K-algebra if the dimension $\operatorname{dim}_{K} \Lambda$ of the K-vector space is finite. A morphism of K-algebras is a ring homomorphism which is linear over K.
Unless otherwise stated, all algebras will be assumed to be finite dimensional.
A right ideal of a K-algebra Λ is a K-vector subspace I such that $x a \in I$ for all $x \in I$ and $a \in \Lambda$. A left ideal is defined dually and a two-sided ideal or simply an ideal, is a K-vector subspace which is both a left and right ideal. A (right or left) I ideal is maximal if it is not equal to Λ and if $I \subset I^{\prime}$ for an ideal I^{\prime}, then $I=I^{\prime}$. It is straight to see that the K-vector space Λ / I is a K-algebra if I is an ideal and the quotient map is a morphism of K-algebras. Given an ideal I and $n \geq 1$, the ideal I^{n} consist of finite sums of elements of the form x_{1}, \ldots, x_{n} with $x_{i} \in I$ and I is called nilpotent if for some n we have $I^{n}=0$. This also make sense for right (or left) ideals

Definition. The (Jacobson) radical $\operatorname{rad} \Lambda$ of a K-algebra Λ is the intersection of all the maximal right ideals in λ.

Next we describe elements in the radical in the following.
Lemma 1.1.1. Let Λ be a K-algebra and let $a \in \Lambda$. The following are equivalent
a) $a \in \operatorname{rad} \Lambda$;
b) $a \in$ to the intersection of all maximal left ideals of Λ;
c) for any $b \in \Lambda$, the element $1-a b$ has a two sided inverse;
d) for any $b \in \Lambda$, the element $1-a b$ has a right inverse;
e) for any $b \in \Lambda$, the element $1-b a$ has a two-sided inverse;
f) for any $b \in \Lambda$, the element $1-b a$ has a left inverse.

Proof. (a) implies (d). Let $b \in \Lambda$ and assume to the contrary that $1-a b$ has no right inverse. Then there exists a maximal right ideal of Λ such that $1-a b \in I$. Because $a \in \operatorname{rad} \Lambda \subseteq I, a b \in I$ and $1 \in I$; this is a contradiction. This shows that $1-a b$ has a right inverse.
(d) implies (a). Suppose to the contrary that $a \notin \operatorname{rad} \Lambda$ and let I be a maximal right ideal of Λ such that $a \notin I$. Then $\Lambda=I+a \Lambda$ and therefore there exist $x \in I$ and $b \in \Lambda$ such that $1=x+a b$. It follows that $x=1-a b \in I$ has no right inverse, contrary to our assumption. The equivalence of (b) and (f) can be proof in a similar way.
The equivalence of (c) and (e) is a consequence of the following two implications:

- if $(1-c d) x=1$, then $(1-d c)(1+d x c)=1$.
- If $y(1-c d)=1$, then $(1+d y c)(1-d c)=1$.
(d) implies (c). Fix an element $b \in \Lambda$. By (d), there exist an element $c \in \Lambda$ such that $(1-a b) c=1$. Hence $c=1-a(-b c)$ and, according to (d), there exist $d \in \Lambda$ such that $1=c d=d+a b c d=d+a b$. It follows that $d=1-a b, c$ is the left inverse of $1-a b$ and (c) follows. That (f) implies (e) follows in a similar way. Because (c) implies (d) and (e) implies (f) obviously the lemma is proved.

Corollary 1.1.2. Let $\operatorname{rad} \Lambda$ be the radical of an algebra Λ.
a) $\operatorname{rad} \Lambda$ is the intersection of all the maximal left ideals of Λ.
b) $\operatorname{rad} \Lambda$ is a two-sided ideal and $\operatorname{rad}(\Lambda / \operatorname{rad} \Lambda)=0$.
c) If I is a two-sided nilpotent ideal of Λ, then $I \subseteq \operatorname{rad} \lambda$. If, inaddition, the algebra Λ / I is isomorphic to a product $K \times \ldots \times K$ of copies of K, then $I=\operatorname{rad} \Lambda$.

Proof. The statement (a) easily follow from (1.1.1). To see that (b) holds, assume $a^{\prime} \in \operatorname{rad}$ $(\Lambda / \operatorname{rad} \Lambda)$. From (1.1.1) we see that for a representative a of a^{\prime} and any $b \in \Lambda$ there exist $c \in \Lambda$ such that $(1-a b) c=1-x$ for some $x \in \operatorname{rad} \Lambda$. Applying (1.1.1) to $1-x$, we get an element $d \in \Lambda$ such that $(1-x) d=1$, hence $a \in \operatorname{rad} \Lambda$ and so $a^{\prime}=0 \in \Lambda / \operatorname{rad} \Lambda$.
To see (c) hold, Suppose that $I^{n}=0$ for some $n>0$. Let $x \in I$ and let a be an element of Λ. Then $a x \in I$ and therefore $(a s)^{r}=0$ for some $r>0$. It follows that the equality $\left(1+a x+(a x)^{2}+\ldots+(a x)^{r-1}\right)(1-a x)=1$ holds for any element $a \in \Lambda$, and, according to (1.1.1), the element x belongs to $\operatorname{rad} \Lambda$. Consequently, $I \subseteq \operatorname{rad} \Lambda$. To prove the reverse inclusion, assume that the algebra Λ / I is isomorphic to a product of copies of K. It follows that $\operatorname{rad}(\Lambda / I)=0$. Next the natural surjective algebra homomorphism $\pi: \Lambda \rightarrow \Lambda / I$ carries $\operatorname{rad} \Lambda$ to $\operatorname{rad}(\Lambda / I)=0$. Indeed, if $a \in \operatorname{rad} \Lambda$ and $\pi(b)=b+I$, with $b \in \Lambda$, is any element of Λ / I then, by (1.1.1), $1-b a$ is invertible in Λ and therefore the element $\pi(1-b a)=1-\pi(b) \pi(a)$ is invertible in Λ / I; thus $\pi(a) \in \operatorname{rad} \Lambda / I=0$, by (1.1.1). This yields $\operatorname{rad} \Lambda \subseteq \operatorname{ker} \pi=I$.

Definition. Let Λ be a K-algebra. A right module over Λ is a pair ($M,$.$) , where M$ is a K-vector space and $M \times \Lambda \rightarrow M,(m, a) \mapsto m a$, is a binary operation satisfying the following :

- $(x+y) a=x a+y a ;$
- $x(a+b)=x a+x b$;
- $x(a b)=(x a) b ;$
- $x 1=x$;
- $(x \lambda) a=x(a \lambda)=(x a) \lambda$
for all $x, y \in M, a, b \in \Lambda$ and $\lambda \in K$.

A left module over Λ is defined dually. Except otherwise stated, we will usually consider right modules from here on.
A module M is said to be finite dimensional if the dimension $\operatorname{dim}_{K} M$ of the underlying K-vector space of M is finite. A right Λ-module M is said to be generated by the elements m_{1}, \ldots, m_{s} of M if any element $m \in M$ has the form $m=m_{1} a_{1}+\ldots+m_{s} a_{s}$ for some $a_{1}, \ldots, a_{s} \in \Lambda$. In this case we write $M=m_{1} \Lambda+\ldots+m_{s} \Lambda$. A module M is said to be finitely generated if it is generated by a finite subset of elements of M. Also all well known notions such as submodules, module homomorphisms, etc., are the same as for modules over commutative rings. In particular, the category $\operatorname{Mod} \Lambda$ of all right modules is an abelian category. Given an algebra Λ, the opposite algebra is defined by reversing the order of the multiplication. It follows that $\operatorname{Mod} \Lambda^{o p}$ is equivalent to the category of left modules over Λ and vice versa. The subcategory $\bmod \Lambda \operatorname{of} \operatorname{Mod} \Lambda$ has as objects the finite dimensional modules.

Lemma (Nakayama's lemma). Let Λ be a K-algebra, M be finitely generated right Λ-module, and $I \subseteq \operatorname{rad} \Lambda$ be a two-sided ideal of Λ. If $M I=M$, then $M=0$.

Proof. Suppose that $M=M I$ and $M=m_{1} \Lambda+\ldots+m_{s} \Lambda$, that is, M is generated by the elements m_{1}, \ldots, m_{s}. We proceed by induction on s. If $s=1$, then the equality $m_{1} \Lambda=m_{1} I$ implies that $m_{1}=m_{1} x_{1}$ for some $x_{1} \in I$. Hence $m_{1}\left(1-x_{1}\right)=0$ and therefore $m_{1}=0$, because $1-x_{1}$ is invertible. Consequently $M=0$, as required.
Assume that $s \geq 2$. The equality $M=M I$ implies that there are elements $x_{1}, \ldots, x_{s} \in I$ such that $m_{1}=m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{s} x_{s}$. Hence $m_{1}\left(1-x_{1}\right)=m_{2} x_{2}+\ldots+m_{s} x_{s}$ and therefore $m_{1} \in m_{2} \Lambda+\ldots+m_{s} \Lambda$ because $1-x_{1}$ is invertible. This shows that $M=m_{2} \Lambda+\ldots+m_{s} \Lambda$ and the inductive hypothesis yields $M=0$.

Corollary 1.1.3. If Λ is a finite dimensional K-algebra, then $\operatorname{rad} \Lambda$ is nilpotent.

Proof. Because $\operatorname{dim}_{K} \Lambda<\infty$, the chain

$$
\Lambda \supseteq \operatorname{rad} \Lambda \supseteq(\operatorname{rad} \Lambda)^{2} \supseteq \ldots(\operatorname{rad} \Lambda)^{n} \supseteq(\operatorname{rad} \Lambda)^{n+1} \supseteq \ldots
$$

becomes stationary. It follows that $(\operatorname{rad} \Lambda)^{n}=(\operatorname{rad} \Lambda)^{n} \operatorname{rad} \Lambda$ for some n, and Nakayama's lemma yields $(\operatorname{rad} \Lambda)^{n}=0$.

If Λ is a finite dimensional K algebra and $M \in \bmod \Lambda$, consider the dual space $M^{*}=$ $\operatorname{Hom}_{K}(M, K)$ endowed with the left Λ-module structure given by the formula $(a \phi)(m)=\phi(m a)$ for $\phi \in M^{*}, a \in \Lambda$ and $m \in M$, and to each Λ module homomorphism $h: M \rightarrow N$ the dual K-homomorphism $D(h)=\operatorname{Hom}_{K}(h, K): D(N) \rightarrow D(M), \phi \mapsto \phi h$, of left Λ-modules. One shows that D is a duality of categories, called the standard K-duality. The quasi-inverse to the duality is denoted by

$$
D: \bmod \Lambda^{o p} \rightarrow \bmod \Lambda
$$

and is defined by attaching to each left Λ-module Y the K -vector space $D(Y)=Y^{*}=\operatorname{Hom}_{K}(Y, K)$ endowed with the right Λ-module structure given by the formula $(\phi a)(y)=\phi(a y)$ for $\phi \in$ $\operatorname{Hom}_{K}(Y, K), a \in \Lambda$ and $y \in Y$. A straight forward calculation shows that the evaluation K-linear map $e v: M \rightarrow M^{* *}$ given by the formula $e v(m)(f)=f(m)$, where $m \in M$ and $f \in D(M)$, defines natural equivalences of functors $1_{\bmod \Lambda} \cong D \circ D$ and $1_{\bmod \Lambda^{o p}} \cong D \circ D$.

Definition. Let Λ and Γ be two K-algebras. An $\Lambda-\Gamma$ bimodule is a triple ${ }_{\Lambda} M_{\Gamma}=(M, *,$.$) such$ that ${ }_{\Lambda} M=(M, *)$ is a left Λ-module, $M_{\Gamma}=(M,$.$) is a right \Gamma$-module, and $(a * m) . b=a *(m . b)$ for all $m \in M, a \in \Lambda$ and $b \in \Gamma$. Throughout, we write simply $a m$ and $m b$ instead of $a * m$ and $m . b$, respectively.

Example. Any right module M can be considered as an (End M) Λ-bimodule by noting that the left End M-module structure is defined by $\phi m:=\phi(m)$.

Note that if $\Lambda_{\Lambda} M_{\Gamma}$ is an $\Lambda-\Gamma$-bimodule and N_{Γ} is a right Γ-module, the vector space $\operatorname{Hom}_{\Gamma}\left({ }_{\Lambda} M_{\Gamma}, N_{\Gamma}\right)$ is a right Λ-module by setting $f a(m):=f(a m)$ for all $a \in \Lambda, m \in M$ and $f \in \operatorname{Hom}_{\Gamma}\left({ }_{\Lambda} M_{\Gamma}, N_{\Gamma}\right)$. Using this observation, we have covariant functor

$$
\operatorname{Hom}_{\Gamma}\left({ }_{\Lambda} M_{\Gamma},-\right): \operatorname{Mod} \Gamma \rightarrow \operatorname{Mod} \Lambda
$$

Similarly, we have a contravariant functor

$$
\operatorname{Hom}_{\Gamma}\left(-,_{\Lambda} M_{\Gamma}\right): \operatorname{Mod} \Gamma \rightarrow \operatorname{Mod} \Lambda^{o p}
$$

Furthermore, given ${ }_{\Lambda} M_{\Gamma}$ as above there are the tensor product functors

$$
\begin{aligned}
& -\otimes_{\Lambda} M_{\Gamma}: \operatorname{Mod} \Lambda \rightarrow \operatorname{Mod} \Gamma \\
& \Lambda_{\Lambda} M \otimes_{\Gamma}-: \operatorname{Mod} \Gamma^{o p} \rightarrow \operatorname{Mod} \Lambda^{o p}
\end{aligned}
$$

and an adjunction isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{\Gamma}\left(X \otimes_{\Lambda} M_{\Gamma}, Z_{\Gamma}\right) \cong \operatorname{Hom}_{\Lambda}\left(X_{\Lambda}, \operatorname{Hom}_{\Gamma}\left({ }_{\Lambda} M_{\Gamma}, Z_{\Gamma}\right)\right) \tag{1.1}
\end{equation*}
$$

defined for a ϕ in the left hand space by by sending it to the map ψ given by $\psi(x)(m)=\phi(x \otimes m)$. The inverse map sends ψ in the right hand space to the map $\phi: x \otimes m \rightarrow \psi(x)(m)$. Formula (1.1) shows that the functor $-\otimes_{\Lambda} M_{\Gamma}$ is left adjoint to $\operatorname{Hom}_{\Gamma}\left(-{ }_{\Lambda} M_{\Gamma}\right)$ and $\operatorname{Hom}_{\Gamma}\left(-,_{\Lambda} M_{\Gamma}\right)$ is right adjoint to $-\otimes_{\Lambda} M_{\Gamma}$.

Definition. A right Λ-module S is simple if any submodule of S is either S or 0 module. A module M is semisimple if it is a direct sum of simple modules. A module is called indecomposable if in a decomposition $M=M_{1} \oplus M_{2}$ either $M_{1}=0$ or $M_{2}=0$.

Lemma (Schur's lemma). Any nonzero homomorphism between simple modules is an isomorphism.

Proof. Let $f: S \rightarrow S^{\prime}$ be a homomorphism from a simple module S to a simple module S^{\prime}. Since ker f and $\operatorname{Im} f$ are submodules of S and S^{\prime}, respectively, $f \neq 0$ implies ker $f \neq S$ and $\operatorname{Im} f \neq 0$. Since S and S^{\prime} are simple modules, ker $f=0$ and $\operatorname{Im} f=S^{\prime}$, thus f is both a monomorphism and an epimorphism, hence f is an issomorphism.

Corollary 1.1.4. If S is a simple Λ-module, then $\operatorname{End}(S) \cong K$.

Proof. By Schur's lemma, $\operatorname{End}(S)$ is a skew field. Since Λ is simple, any map $\Lambda \rightarrow S$ is an epimorphism, hence $\operatorname{dim}_{K}(S)<\infty$. Thus, also $\operatorname{dim}_{K} \operatorname{End}(S)<\infty$. Hence, for any $0 \neq$ $\phi \in \operatorname{End}(S)$ there exist an irreducible polynomial $f \in K[t]$ such that $f(\phi)=0$. Since K is algebraically closed, f is of degree 1 , hence ϕ corresponds to a scalar $\lambda_{\phi} \in K^{*}$, which give the desired isomorphism.

Proposition (A.S.M). The endomorphism ring of an artinian semisimple module is semisimple.

Proof. We see first that if $M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{r}$ then the End M is isomorphic to the $r \times r$ matrix ring where (i, j)-th component of the matix is an element from $\operatorname{Hom}\left(M_{i}, M_{j}\right)$. (To see this, note that $\operatorname{Hom}\left(M_{i}, M_{j}\right) \cong \pi_{i}$ End $M \pi_{j}$, where π_{l} is the corresponding projection of M onto M_{l}. That is the required isomorphism is given by the standard Peirce-decomposition of the ring Λ : if e is an idempotent in Λ and $f=1-e$ then $\Lambda \cong\left(\begin{array}{cc}e \Lambda e & e \Lambda f \\ f \Lambda e & f \Lambda f\end{array}\right)$.) In our case. if M is semisimple artinian then $M=S_{1}^{n_{1}} \oplus S^{n_{2}} \oplus \ldots \oplus S^{n_{s}}$ where the modules S_{i} are pairwise nonisomorphic simple modules. Here $\operatorname{Hom}\left(S_{i}, S_{j}\right)=0$ for $i \neq j$, and $\operatorname{Hom}\left(S_{i}, S_{j}\right)=D_{i}$ is a division ring for each i by Schur's lemma. Thus End $\Lambda \cong M_{n_{1}}\left(D_{1}\right) \oplus M_{n_{2}}\left(D_{2}\right) \oplus \ldots \oplus M_{n_{s}}\left(D_{s}\right)$. This ring is semisimple because each of the matrix rings $M_{n_{i}}\left(D_{i}\right)$ is generated by the columns (as left ideals) which are simple modules.

Theorem (Wedderburn-Artin). A ring Λ is semisimple if and only if Λ is a direct sum of finitely many ideals, each of which is full matrix ring over a division ring.

Proof. If Λ is semisimple then $\Lambda \cong \operatorname{End}\left({ }_{\Lambda} \Lambda\right)$ and the argument of Prop[A.S.M] showed that Λ is a direct sum of full matrix rings over division rings. Conversely, $M_{n}(D)$ is clearly generated by its columns as left ideals and it is easy to see these are simple modules. So the direct sum of full matrix rings is also semisimple.

Lemma 1.1.5. A finite dimensional module M is semisimple if and only if for any submodule N of M there exists a submodule L of M such that $L \oplus N \cong M$. In particular, a submodule of a semisimple module is semisimple

Proof. Suppose that $M=S_{1} \oplus \ldots \oplus S_{n}$ where the S_{i} are simple modules. Let $0 \neq N \subseteq M$ be a submodule and consider the maximal family $\left\{S_{i_{1}}, \ldots, S_{i_{k}}\right\}$ of the S_{i} such that $N \cap L=0$, where $L=S_{i_{1}} \oplus \ldots \oplus S_{i_{k}}$. Then $N \cap\left(L+S_{t}\right) \neq 0$, for any $t \notin\left\{i_{1}, \ldots, i_{k}\right\}$. From this it follows that $(L+N) \cap S_{t} \neq 0$ for all $t \notin\left\{i_{1}, \ldots, i_{k}\right\}$. Therefore, $M=L+N$ and hence $M=L \oplus N$. The reverse implication follows by induction on $\operatorname{dim}_{K}(M)$.

Definition. Let M be a right Λ-module the Jacobson radical of M is the intersection of all the maximal submodule.

We recollect the following main properties.
Proposition 1.1.6. Let L, M and $N \in \Lambda$.
a) $m \in M$ belongs to $\operatorname{rad} M$ if and only if $f(m)=0$ for any $f \in \operatorname{Hom}_{\Lambda}(M, S)$ and any simple right Λ-modules.
b) $\operatorname{rad}(M \oplus N)=\operatorname{rad} M \oplus \operatorname{rad} N$.
c) If $f \in \operatorname{Hom}_{\Lambda}(M, N)$, then $f(\operatorname{rad} M) \subseteq \operatorname{rad} N$.
d) $M \operatorname{rad} \Lambda=\operatorname{rad} M$.
e) If L and M are Λ-submodules of N. If $L \subseteq \operatorname{rad} N$ and $L+M=N$ then $M=N$.

Proof. a) claim holds from the definition as $L \subseteq M$ is a maximal submodule if and only if M / L is semisimple.
b) This statement follows immediately from (a).
c) To prove (c), follows immediately from (a), by considering any map $g \in \operatorname{Hom}_{\Lambda}(N, S)$ and using fact that $g f(m)=0$.
d) Let $m \in M$ and $f_{m}: \Lambda \rightarrow M$ be a homomorphism of right modules with $f_{m}(a)=m a$ for $a \in \Lambda$. From (c) we see that as $a \in \operatorname{rad} \Lambda$, we have $m a=f_{m}(a) \in f_{m}(\Lambda) \subseteq \operatorname{rad} M$. So then $M \operatorname{rad} \Lambda \subseteq \operatorname{rad} M$. To prove that $\operatorname{rad} M \subseteq M \operatorname{rad} \Lambda$ we know that $(M / M \operatorname{rad} \Lambda) \operatorname{rad} \Lambda=0$ and so the $M / M \operatorname{rad} \Lambda$ is a module over the algebra $\Lambda / \operatorname{rad} \Lambda$ with respect to the action $(m+M \operatorname{rad} \Lambda)$. Thus $a+\operatorname{rad} \Lambda=m a+M \operatorname{rad} \Lambda$. The Wedderburn-Artin theorem tells us that an algebra $\Lambda / \operatorname{rad} \Lambda$ is semisimple and the finite dimensional $\Lambda / \operatorname{rad} \Lambda$-module $M / M \operatorname{rad} \Lambda$ is a direct sum of simple modules. Since the radical of any simple module is zero. (b) yields $\operatorname{rad}(M / M \operatorname{rad} \Lambda)=0$.So by (c) the natural Λ-module epimorphism $\pi: M \rightarrow M / M \operatorname{rad} \Lambda$ annihilates $\operatorname{rad} M$ thus $\operatorname{rad} \subseteq \operatorname{ker} \pi=M \operatorname{rad} \Lambda$.
e) Let $L \subseteq \operatorname{rad} N$ and $L+M=N$ and suppose otherwise that $M \neq N$.Since N is finite dimensional, M is a submodule of a maximal submodule $X \neq N$ of N. So that $L \subseteq$ $\operatorname{rad} N \subseteq X$ and yield $N=L+M \subseteq X+M=X$ contrary to our claim.

Corollary 1.1.7. Let $M \in \bmod \Lambda$
a) The Λ-module $M / \operatorname{rad} M$ is semisimple and it is a module over the K-algebra $\Lambda / \operatorname{rad} \Lambda$.
b) If L is a submodule of M such that M / L is semisimple, then $\operatorname{rad} M \subseteq L$.

Proof. a) By (1.1.6d) $\operatorname{rad} M=M \operatorname{rad} \Lambda$. This yield $(M / \operatorname{rad} M) \operatorname{rad} \Lambda=0$ and so the Λ-module $M / \operatorname{rad} M$ is a module over $\Lambda / \operatorname{rad} \Lambda$ with respect to the action $(m+M \operatorname{rad} \Lambda)(a+\operatorname{rad} \Lambda)=$ $m a+M \operatorname{rad} \Lambda$. And by Wedderburn-Artin theorem, the algebra $\Lambda / \operatorname{rad} \Lambda$ is semisimple and the module $M / \operatorname{rad} M$ is semisimple.
b) Let L be a submodule of M such that M / L is semisimple. We have this natural epimorphism $\pi: M \rightarrow M / L$. Since (1.1.6c) gives $\pi(\operatorname{rad} M) \subseteq \operatorname{rad}(M / L)=0, \operatorname{rad} M \subseteq \operatorname{ker} \pi=L$ and b) holds. Also by (1.1.6d) we have $(M / \operatorname{rad} M) \operatorname{rad} \Lambda=0$ and so the module top $M=M / \operatorname{rad} M$ called top of M is a right $\Lambda / \operatorname{rad} \Lambda$ module with respect to the action of $\Lambda / \operatorname{rad} \Lambda$ defined by the formula $(m+\operatorname{rad} M)(a+\operatorname{rad} N)=m a+\operatorname{rad} M$.

Corollary 1.1.8. a) A homomorphism $f: M \rightarrow N$ in $\bmod \Lambda$ is surjective if and only if the homomorphism top $f: \operatorname{top} M \rightarrow \operatorname{top} N$ is surjective.
b) If S is a simple Λ module, then $S \operatorname{rad} \Lambda=0$ and S is a simple $\Lambda / \operatorname{rad} \Lambda$-module.
c) $A \Lambda$ module M is semisimple if and only if $\operatorname{rad} M=0$.

Proof. a) Assume the top f is surjective. Then $\operatorname{Im} f+\operatorname{rad} N=N$ and therefore f is surjective, because (1.1.6e) yields $\operatorname{Im} f=N$. Since the converse implication is clear, (a) follows.
b) Statement (b) is clear, by Nakayama's lemma and since $S \operatorname{rad} \Lambda$ is a submodule of the simple module S.
c) If M is semisimple, then (b) yields $\operatorname{rad} M=0$. The converse implication is a consequence of (1.1.6d) and (1.1.7a).

Let M be a module satisfying ascending and descending chain conditons (ACC and DCC). In other words every increasing sequence of submodules $M_{1} \subset M_{2} \subset \ldots$ and any decreasing sequence $M_{1} \supset M_{2} \supset \ldots$ are finite. Then it is easy to see that there exist a finite sequence

$$
M=M_{0} \supset M_{1} \supset M_{2} \supset \ldots \supset M_{r}=0
$$

such that M_{i} / M_{i+1} is a simple module. Such a sequence is called a composition series. We say the two composition series

$$
\begin{aligned}
& M=M_{0} \supset M_{1} \supset M_{2} \supset \ldots \supset M_{r}=0 \\
& M=N_{0} \supset N_{1} \supset N_{2} \supset \ldots \supset N_{s}=0
\end{aligned}
$$

are equivalent if $r=s$ and for some permutation $\sigma M_{i} / M_{i+1} \cong N_{\sigma_{i}} / N_{\sigma(i+1)}$.
Theorem (Jordan-Hölder). Any two composition series are equivalent.

Proof. We will prove that if the statement is true for any submodule of M then it is true for M. (If M is simple, the statement is trivial.) If $M_{1}=N_{1}$, then the statement is obvious. Otherwise, $M_{1}+N_{1}=M$, hence $M / M_{1} \cong N_{1} /\left(M_{1} \cap N_{1}\right)$ and $M / N_{1} \cong M_{1} /\left(M_{1} \cap N_{1}\right)$. Consider the series

$$
\begin{aligned}
& M=M_{0} \supset M_{1} \supset M_{1} \cap N_{1} \supset K_{1} \supset \ldots \supset K_{\sigma}=0 \\
& M=N_{0} \supset N_{1} \supset N_{1} \cap M_{1} \supset K_{1} \supset \ldots \supset K_{\sigma}=0
\end{aligned}
$$

They are obviously equivalent, and by induction assumption the first series is equivalent to $M=M_{0} \supset M_{1} \supset M_{2} \supset \ldots \supset M_{r}=0$, and the second one is equivalent to $M=M_{0} \supset M_{1} \supset$ $M_{2} \supset \ldots \supset M_{r}=0$. Hence they equivalent.

Thus we can define a length $l(M)$ of a module M satisfying ACC and DCC, and if M is a proper submodule of N, then $l(M)<l(N)$.

Definition (Idempotents and direct decompositions). An $e \in \Lambda$ is called an idempotent if $e^{2}=e$. An idempotent e is said to be central if $\Lambda e=e \Lambda$ for all $\lambda \in \Lambda$. The idempotents $e_{1}, e_{2} \in \Lambda$ are called orthogonal if $e_{1} e_{2}=e_{2} e_{1}=0$. An idempotent e is said to be primitive if e cannot be written as a sum $e=e_{1}+e_{2}$ where e_{1} and e_{2} are non zero orthogonal idempotents of Λ. Every algebra Λ has two trivial idempotents 0 and 1 . If the idempotent e of Λ is non-trivial, then $1-e$ is also a nontrivial idempotent, the idempotents e and $1-e$ are orthogonal and there is a non trivial right Λ-module decomposition $\Lambda_{\Lambda}=e \Lambda \oplus(1-e) \Lambda$. Conversely, if $\Lambda_{\Lambda}=M_{1} \oplus M_{2}$ is a non trivial Λ-module decomposition then $m_{i} \in M_{i}$ with $1=m_{1}+m_{2}$ are orthogonal idempotents and $M_{i}=e_{i} \Lambda$ is indecomposable module if and only if e_{i} is primitive.
If e is a central idempotent, then so is $1-e$, and $e \Lambda$ and $(1-e) \Lambda$ are two-sided ideals and they are easily shown to be $K-$ algebra with identity elements $e \in e \Lambda$ and $1-e \in(1-e) \Lambda$, respectively. In this case the decomposition $\Lambda_{\Lambda}=e \Lambda \oplus(1-e) \Lambda$ is a direct product decomposition of the algebra Λ. Since the algebra Λ is finite dimensional, the module Λ_{Λ} admits a direct sum decomposition $\Lambda_{\Lambda}=P_{1} \oplus \ldots \oplus P_{s}$, where $P_{1} \ldots P_{s}$ are indecomposable right ideals of Λ. So that $P_{1}=e_{1} \Lambda, \ldots, P_{s}=e_{s} \Lambda$, with e_{1}, \ldots, e_{s} as primitive pairwise orthogonal idempotents of Λ such that $1=e_{1}+\ldots+e_{s}$. Conversely every set of idempotents with the previous properties induces a decomposition $\Lambda_{\Lambda}=P_{1} \oplus \ldots \oplus P_{s}$ with indecomposable right ideals $P_{1}=e_{1} \Lambda, \ldots, P_{s}=e_{s} \Lambda$. Such a decomposition is called an indecomposable decomposition of Λ and such a set $\left\{e_{1}, \ldots, e_{s}\right\}$ is called a complete set of primitive orthogonal idempotens of Λ. So we say that an algebra Λ is connected(or indecomposable) if Λ is not a direct product of two algebras or equivalently if 0 and 1 are the only central idempotent.

Consider a right Λ-module M and an idempotent $e \in \Lambda$. Note that the K-vector subspace $e \Lambda e$ of Λ is a K-algebra with identity e. Also note it is subalgebra of Λ if and only if $e=1$. We can define an $e \Lambda e$-module structure on the subspace $M e$ of M by setting me (eae) := meae for all $m \in M$ and $a \in \Lambda$. In particular, Λe is a right $e \Lambda e$-module and $e \Lambda$ is a left $e \Lambda e$-module. This implies that $\operatorname{Hom}_{\Lambda}(e \Lambda, M)$ is a right $e \Lambda e$-module with respect to the action $(\phi . e a e)(x)=\phi(e a e x)$ for $x \in e \Lambda, a \in \Lambda$ and $\phi \in \operatorname{Hom}_{\Lambda}(e \Lambda, M)$.
The following lemmas will be very useful.

Lemma 1.1.9. Let Λ be a K-algebra, $e \in \Lambda$ be an idempotent, and M be a right Λ-module.
a) The K-linear map

$$
\begin{equation*}
\omega_{M}: \operatorname{Hom}_{\Lambda}(e \Lambda, M) \rightarrow M e \tag{1.2}
\end{equation*}
$$

defined by the formula $\psi \mapsto \psi(e)=\psi(e) e$ for $\psi \in \operatorname{Hom}_{\Lambda}(e \Lambda, M)$, is an isomorphism of right eΛe-modules, and it is functorial in M.
b) The isomorphism $\omega_{e \Lambda}$: End $e \Lambda \xrightarrow{\sim} e \Lambda e$ of right $e \Lambda e$-modules induces an isomorphism of K-algebras.

Proof. It is easy to see that the map ω_{M} is a homomorphism of right $e \Lambda e$-modules and it is functorial at at the variable M. We define a K-linear map $\omega_{M}^{\prime}: M e \rightarrow \operatorname{Hom}_{\Lambda}(e M, M)$ by the formula $\omega_{M}^{\prime}(m e)(e a)=m e a$ for $a \in \Lambda$ and $m \in M$. A straightforward calculation shows that, given $m \in M$, the $\operatorname{map} \omega_{M}^{\prime}(m e): e \Lambda \rightarrow M$ is well defined (does not depend on the choice of a in the presentation $e a$), it is a homomorphism of Λ-modules, moreover ω_{M}^{\prime} is a homomorphism of $e \Lambda e$-modules and ω_{M}^{\prime} is an inverse of ω_{M}. This proves (a). The statement (b) easily follows from (a)

Lemma 1.1.10. For any K-algebra Λ the idempotents of the algebra $B=\Lambda / \operatorname{rad} \Lambda$ can be lifted modulo $\operatorname{rad} \Lambda$, that is, for any idempotent $f=g+\operatorname{rad} \Lambda \in B, g \in \Lambda$, there exist an idempotent e of Λ such that $g-e \in \operatorname{rad} \Lambda$.

Proof. It follows from (1.1.3) that the $(\operatorname{rad} \Lambda)^{n}=0$ for some $n>1$. Because $f^{2}=f, g-g^{2} \in \operatorname{rad} \Lambda$ and therefore $\left(g-g^{2}\right)^{n}=0$. Hence, by Newtons binomial formula, we get $0=\left(g-g^{2}\right)^{n}=$ $g^{n}-g^{n+1} t$, where $t=\sum_{i=1}^{n}(-1)^{i-1}\binom{n}{i} g^{i-1}$. It follows that
a) $g^{n}=g^{n+1} t$;
b) $g t=t g$.

We claim that the element $e=(g t)^{n}$ is the idempotent lifting f. First, we note that $e=g^{n} t^{n}=g^{n+1} t^{n+1}=\ldots=g^{2 n} t^{2 n}=\left((g t)^{m}\right)^{2}=e^{2}$ and therefore e is an idempotent. Next, we note that
c) $g-g^{n} \in \operatorname{rad} \Lambda$,
because the relation $g-g^{2} \in \operatorname{rad} \Lambda$ yields the inequalities $g-g^{n}=g\left(1-g^{n-1}\right)=$ $g(1-g)\left(1+g+\ldots+g^{n-2}\right)=\left(g-g^{2}\right)\left(1+g+\ldots+g^{n-2}\right) \in \operatorname{rad} \Lambda$. Moreover, we have
d) $g-g t \in \operatorname{rad} \Lambda$,
because equalities (a)-(c) yield
$g+\operatorname{rad} \Lambda=g^{n}+\operatorname{rad} \Lambda=g^{n+1} t+\operatorname{rad} \Lambda=\left(g^{n+1}+\operatorname{rad} \Lambda\right)(t+\operatorname{rad} \Lambda)=\left(g^{n}+\operatorname{rad} \Lambda\right)(g+$ $\operatorname{rad} \Lambda)(t+\operatorname{rad} \Lambda)=(g+\operatorname{rad} \Lambda)(g+\operatorname{rad} \Lambda)(t+\operatorname{rad} \Lambda)=\left(g^{2}+\operatorname{rad} \Lambda\right)(t+\operatorname{rad} \Lambda)=(g+$ $\operatorname{rad} \Lambda)(t+\operatorname{rad} \Lambda)=g t+\operatorname{rad} \Lambda . \quad$ Consequently, we get $e+\operatorname{rad} \Lambda=(g t)^{n}+\operatorname{rad} \Lambda=$ $(g t+\operatorname{rad} \Lambda)^{n}=(g+\operatorname{rad} \Lambda)^{n}=g^{n}+\operatorname{rad} \Lambda=g+\operatorname{rad} \Lambda$ and our claim follows.

Proposition 1.1.11. Let $B=\Lambda / \operatorname{rad} \Lambda$. The following statements hold.
a) Every right ideal ideal I of B is a direct sum of simple right ideals of the form $e B$, where e is a primitive idempotent of B. In particular, the right ideals B-module B_{B} is semisimple.
b) Any module N in $\bmod B$ is isomorphic to a direct sum of simple right ideals of the form $e B$, where e is a primitive idempotent of B.
c) If $e \in \Lambda$ is a primitive idempotent of Λ, then the B-module top $e \Lambda$ is simple and $\operatorname{rad} e \Lambda=$ $e \operatorname{rad} \Lambda \subset e \Lambda$ is the unique maximal proper submodule of $e \Lambda$.

Proof. a) Let S be a nonzero right ideal of B contained in I that is of minimal dimension. Then S is a simple B-module and $S^{2} \neq 0$, because otherwise, in view of (1.1.2c), $0 \neq S \subseteq$ $\operatorname{rad} B=0$ and we get a contradiction. Hence $S^{2}=S$ and there exists $x \in S$ such that $x S \neq 0, S=x S$ and $x=x e$ for nonzero $e \in S$. Then, according to Schur's lemma, the B-homomorphism $\psi: S \rightarrow S$ given by the formula $\psi(y)=x y$ is bijective. Because $\psi\left(e^{2}-e\right)=x\left(e^{2}-e\right)=x e e-x e=x e-x e=0, e^{2}-e=0$, the element $e \in S$ is a nonzero idempotent, and $S=e B$. It follows that $B=e B \oplus(1-e) B$ and $I=S \oplus(1-e) I$. Because $\operatorname{dim}_{K}(1-e) I<\operatorname{dim}_{K} I$, we can assume by induction that $($ a) is satisfied for $(1-e) I$ and therefore (a) follows.
b) Let N be a B-module generated by the elements n_{1}, \ldots, n_{s} and consider the B-module epimorphism $h: B^{s} \rightarrow N$ defined by the formula $h\left(\delta_{i}\right)=n_{i}$, where $\delta_{1}, \ldots, \delta_{s}$ is the standard basis of the B-modules B^{s}. If N is simple, then $s=1$ and (a) together with (1.1.5a) yields $N \cong e B$, where e is a primitive idempotent of B. Now suppose N is arbitrary. Then, by (a), B^{s} is a direct sum of simple right ideals of the form $e B$, where e is a primitive idempotent of B, and it follows from (1.1.5a) that $B^{s}=\operatorname{ker} h \oplus L$ for some B submodule L of B^{s}. Then h induces an isomorphism $L \cong N$ and (b) follows from (1.1.5b).
c) The element $\bar{e}=e+\operatorname{rad} \Lambda$ is an idempotent of b and top $e \Lambda \cong \bar{e} B$. Assume to the contrary that $\bar{e} B$ is not simple. It follows from (a) that $\bar{e} B=\overline{e_{1}} B \oplus \overline{e_{2}} B$, where $\overline{e_{1}}, \overline{e_{2}}$ are nonzero idempotents of B such that $\bar{e}=\overline{e_{1}}+\overline{e_{2}}$ and $\overline{e_{1}} \overline{e_{2}}=\overline{e_{2}} \overline{e_{1}}=0$. Because $\overline{e_{1}}={\overline{e_{1}}}^{2}=\left(\bar{e}-{\overline{e_{2}}}^{2}\right) \overline{e_{1}}=e \bar{e}_{1}, \overline{e_{1}}=g_{1}+\operatorname{rad} \Lambda$ for some $g_{1} \in e \Lambda$. By (1.1.10), there exist $t \in \Lambda$ and $n \in \mathbb{N}$ such that the element $e_{1}=\left(g_{1} t\right)^{n}$ is an idempotent of $\Lambda a n d \overline{e_{1}}=e_{1}+\operatorname{rad} \Lambda$. It follows that top $e \Lambda=\bar{e} B=\overline{e_{1}} B \oplus \overline{e_{2}} B$. Because $g_{1} \in e \Lambda, e_{1} \in e \Lambda$ and $e_{1} \Lambda \subseteq e \Lambda$. Then the decomposition $\Lambda_{\Lambda}=e_{1} \Lambda \oplus\left(1-e_{1}\right) \Lambda$ induces the decomposition $e \Lambda=e_{1} \Lambda \oplus\left\{\left(1-e_{1}\right) \Lambda \cap e \Lambda\right\}$. It follows that $e \Lambda=e_{1} \Lambda$, because the primitivity of e implies that $e \Lambda$ is indecomposable. Hence $\bar{e} B=\operatorname{top} e \Lambda=\operatorname{top} e_{1} \Lambda=\overline{e_{1}} B$ and therefore $\overline{e_{2}} B=0$, contrary to our assumption. Consequently, the module top $e \Lambda$ is simple and therefore $\operatorname{rad} e \Lambda=(e \Lambda) \operatorname{rad} \Lambda$ is a maximal proper Λ-submodule of $e \Lambda$, then $L+\operatorname{rad} e \Lambda=e \Lambda$ and (1.1.6e) yields $L=e \Lambda$, a contradicton. This shows that $\operatorname{rad} e \Lambda$ contains all proper submodules of $e \Lambda$. Hence proof.

Definition. An algebra is called local if it has a unique maximal right ideal.

Next we give characterisations of a local algebra.
Lemma 1.1.12. Let Λ be a K-algebra. The following are equivalent:
a) Λ is local.
b) Λ has a unique maximal left ideal.
c) The set of all noninvertible elements of Λ is a two-sided ideal.
d) For any $a \in \Lambda$, either a or $1-a$ is invertible.
e) Λ has only two idempotents, namely 0 and 1.
f) The algebra $\Lambda / \operatorname{rad} \Lambda$ is isomorphic to K.

Proof. (a) implies (b). If Λ is local, then $\operatorname{rad} \Lambda$ is the unique maximal right ideal of Λ. Hence, $x \in \operatorname{rad} \Lambda$ if and only if x has no right inverse. Now, if x is right invertible, so $x y=1$ for some y, then $(1-y x) y=0$. The element y has to have a right inverse, because otherwise $y \in \operatorname{rad} \Lambda$, so view of lemma (1.1.1) $1-y x$ is invertible and we get $y=0$, a contradiction. But if y has a right inverse, $1-y x=0$, so x is invertible. Summarising, $x \in \operatorname{rad} \Lambda$ if and only if x has no right inverse or equivalently, if and only if x is not invertible. Similar arguments show that (b) implies (c).It is obvious that (c) implies (d). Next, if e is an idempotent, so is $1-e$ and $e(1-e)=0$, so if (d) holds, then so does (e). If (e) holds, then the algebra $B=\Lambda / \operatorname{rad} \Lambda$ has only two idempotents. By (1.1.12), the module B_{B} is simple and by (1.1.4), $\operatorname{End}\left(B_{B}\right)=K$. Therefore, $B \cong \operatorname{End}\left(B_{B}\right) \cong K$, hence (e) implies (f). Finally, if (f) holds, then clearly so does (a).

Remark. Note that the algebra $K[t]$ has only two idempotents 0 and 1 but is not local. Hence the lemma does not hold for infinite dimensional algebras.

Corollary 1.1.13. An idempotent $e \in \Lambda$ is primitive if and only if the algebra $e \Lambda e \cong$ End $e \Lambda$ has only two idempotents 0 and e, that is, the algebra is local.

Corollary 1.1.14. Let Λ be an arbitrary K-algebra and M a right module
a) If the algebra End M is local, then M is indecomposable.
b) If M is finite dimensional and indecomposable, then the algebra End M is local and any Λ-module endomorphism of M is nilpotent or is an isomorphism.

Proof. a) If M decomposes as $M=X_{1} \oplus X_{2}$ with both X_{1} and X_{2} nonzero, then there exist projections $p_{i}: M \rightarrow X_{i}$ and injections $u_{i}: X_{i} \rightarrow M$ (for $i=1,2$) such that $u_{1} p_{1}+u_{2} p_{2}=1_{M}$. Because $u_{1} p_{1}$ and $u_{2} p_{2}$ are nonzero idempotents in End M, the algebra End M is not local.
b) Suppose that M is finite dimensional and indecomposable. If End M is not local then, by (1.1.12), the algebra End M has a pair of nonzero idempotents $e_{1}, e_{2}=1-e_{1}$ and therefore $M \cong \operatorname{Im} e_{1} \oplus \operatorname{Im} e_{2}$ is a nontrivial direct sum decomposition. Consequently, the algebra End M is local. By (1.1.12) every noninvertible Λ-module endomorphism $f: M \rightarrow M$ belongs to the radical of End M and therefore f is nilpotent, because End M is finite dimensional, and it follows from (1.1.3).

Theorem 1.1.15. Every finite dimensional module M over Λ has a decomposition $M \cong M_{1} \oplus$ $\ldots \oplus M_{r}$, where the M_{i} are indecomposable modules, and hence have local endomorphism algebras. Furthermore, if $M \cong M_{1} \oplus \ldots \oplus M_{r}$ and $M \cong N_{1} \oplus \ldots \oplus N_{s}$ with M_{i} and N_{j} indecomposable, then $m=n$ and there exist a permutation $\sigma o f\{1, \ldots, r\}$ such that $M_{i} \cong N_{\sigma(i)}$ for all i.

Proof. The first statment is clear, because $\operatorname{dim}_{K} M$ is finite. To see the second, we proceed by induction. If $n=1$, then there is nothing to show. So suppose that $n>1$ and consider $M^{\prime}:=\bigoplus_{i>1} M_{i}$. We have the decomposition $M=M_{1} \oplus M^{\prime}$ with the corresponding projections and injections p, p^{\prime} and u, u^{\prime} respectively. Denote the projections and injections corresponding to $M=\bigoplus N_{j}$ by p_{j} and u_{j}. We know that $1_{M_{1}}=p u=p\left(\sum_{j} u_{j} p_{j}\right) u=\sum_{j} p u_{j} p_{j} u$. Since End M_{1} is local, by (1.1.12d), there exist an index j for an invertible $v=p u_{j} p_{j} u$ say. Without lost of generality can be assumed to be 1 , such that $v:=p u_{1} p_{1} u$ is invertible. Now set $w:=v^{-1} p u_{1}: N_{1} \rightarrow M_{1}$ and note that $w p_{1} u=1_{M_{1}}$. Hence, $p_{1} u w$ is an idempotent in End N_{1}. The latter is a local algebra, so $p_{1} u w$ is 0 or 1 . It cannot be equal to zero, because then $p_{1} u=0$, since w is an epimorphism, but $v:=p u_{1} p_{1} u$ is invertible. Therefore, $p_{1} u w=1_{N_{1}}$ and hence $p_{1} u$ gives $M_{1} \cong N_{1}$. Writing $M \cong M_{1} \oplus M^{\prime}=N_{1} \oplus N^{\prime}$, where $N^{\prime}:=\bigoplus_{j>1} N_{j}$, we are done by induction if we can show that $M^{\prime} \cong N^{\prime}$. But this is clear, since N^{\prime} is the kernel of $p_{1}: M \rightarrow N_{1}$ and M^{\prime} is the kernel of $p: M \rightarrow M_{1}$ and it is obvious that they coincide via the above isomorphism $p_{1} u: M_{1} \cong N_{1}$.

Definition. a) A right Λ-module F is free if is isomorphic to a direct sum of copies of the module Λ_{Λ}.
b) A right Λ-module P is projective if for any epimorphism $h: M \rightarrow N$ and a homomorphism $g: P \rightarrow N$ there is an homomorphism $g^{\prime}: P \rightarrow M$ such that the following diagram commute.

c) A right Λ-module E is injective if for any monomorphism $u: L \rightarrow M$ and any homomorphism $f: L \rightarrow E$ there is a homomorphism $f^{\prime}: M \rightarrow E$ such that the following diagram commute.

Lemma 1.1.16. a) A right Λ module P is projective if and only if there exist a free Λ-module F and Λ-module P^{\prime} such that $P \oplus P^{\prime} \cong F$.
b) Suppose that $\Lambda_{\Lambda}=e_{1} \Lambda \oplus \ldots \oplus e_{s} \Lambda$ is a decomposition of Λ_{Λ} into indecomposable submodules.If a right Λ-module P is projective, then $P=P_{1} \oplus \ldots \oplus P_{r}$ where every summand P_{i} is indecomposable and isomorphic to some $e_{z} \Lambda$.
c) Let M be an arbituary right Λ-module. Then there exist an exact sequence

$$
\begin{equation*}
\ldots \longrightarrow P_{r} \xrightarrow{h_{r}} P_{r-1} \xrightarrow{h_{r-1}} \ldots \longrightarrow P_{1} \xrightarrow{h_{1}} P_{0} \xrightarrow{h_{0}} M \longrightarrow 0 \tag{1.3}
\end{equation*}
$$

in $\operatorname{Mod} \Lambda$, with P_{i} projective Λ-modules for $i \geq 0$.If also M in $\bmod \Lambda$, then there exist an exact sequence 1.3) with P_{i} projective module in $\bmod \Lambda$ for $i \geq 0$.

Proof. a) It is easy to check that any free module is projective and a direct summand of a free module is projective. Conversely suppose that P is a projective module generated by elements $\left\{m_{i} \mid i \in I\right\}$. If $F=\bigoplus_{i \in I} x_{i} \Lambda$ is a free module with the set $\left\{x_{i} \mid i \in I\right\}$ of free generators and $f: F \rightarrow P$ is the epimorphism defined by $f\left(x_{i}\right)=m_{i}$ then since P is projective there exist a split epi $s: P \rightarrow F$ of f and hence $F \cong P \oplus \operatorname{ker} f$.
b) Let P be projective then from a) there exist a free Λ-module F and a right Λ-module P^{\prime} such that $P \oplus P^{\prime} \cong F$. From our assumption F is a direct sum of copies of the indecomposable modules $e_{1} \Lambda, \ldots, e_{s} \Lambda$.
c) It was shown in a) for any $M \in \bmod \Lambda$ there is an epimorphism $f: F \rightarrow M$, where F is a free module in $\operatorname{Mod} \Lambda(\operatorname{or}$ in $\bmod \Lambda)$ respectively. We set $P_{0}=F$ and $h_{0}=f$.Let $f_{1}: F_{1} \rightarrow \operatorname{ker} h_{0}$ be an epimorphism with a free module F_{1} in $\operatorname{Mod} \Lambda$. We set $P_{1}=F_{1}$ and we take for h_{1} the composition of f_{1} with the embedding $\operatorname{ker} h_{0} \subseteq P_{0}$. If $M \in \bmod \Lambda$, then the free module F_{1} can be chosen in $\bmod \Lambda$, since Λ is finite dimensional, hence $\operatorname{dim}_{K} M$ and $\operatorname{dim}_{K} F_{0}$ are finite and so $\operatorname{ker} h_{0}$ is in $\bmod \Lambda$. Continuing this procedure, we construct by induction the required exact sequence (1.3).

Definition (Projective resolution:). We define a projective resolution of a right Λ-module M to be the complex

$$
P .: \ldots \longrightarrow P_{r} \xrightarrow{h_{r}} P_{r-1} \xrightarrow{h_{r-1}} \ldots \longrightarrow P_{1} \xrightarrow{h_{1}} P_{0} \longrightarrow 0
$$

of projective Λ-modules together with an epimorphism $h_{0}: P_{0} \rightarrow M$ of right Λ-modules such that the sequence (1.3) is exact. For the sake of simplicity, we call the sequence (1.3) a projective resolution of the Λ-module M . By the lemma any $\operatorname{module} M \operatorname{in} \bmod \Lambda \operatorname{admit}$ a projective resolution in $\bmod \Lambda$.

Definition (Injective resolution:). We define an injective resolution of M to be a complex

$$
I .: 0 \longrightarrow I_{0} \xrightarrow{d_{1}} I_{1} \xrightarrow{d_{2}} \ldots \longrightarrow I_{r} \xrightarrow{d_{r+1}} I_{r+1} \longrightarrow
$$

of injective Λ modules together with a monomorphism $d_{0}: M \rightarrow I_{0}$ of right Λ-modules such that the sequence

$$
0 \longrightarrow M \xrightarrow{d_{0}} I_{0} \xrightarrow{d_{1}} I_{1} \xrightarrow{d_{2}} \ldots \longrightarrow I_{r} \xrightarrow{d_{r+1}} I_{r+1} \longrightarrow
$$

is exact. For the sake of simplicity, we call this sequence an injective resolution.

Next we show that if Λ is a finite dimensional algebra over K, then any module $M \in \bmod \Lambda$ admit an exact sequence (1.3) in $\bmod \Lambda$, where the epimorphisms $h_{i}: P_{i} \rightarrow \operatorname{Im} h_{i}$ are minimal for all $i \geq 0$ in the following sense.

Definition. - A Λ-submodule L of M is small if for every submodule X of M the equality $L+M=M$ implies $X=M$.

- A Λ-epimorphism $h: M \rightarrow N$ in $\bmod \Lambda$ is minimal if ker h is small in M. An epimorphism $h: P \rightarrow M$ in $\bmod \Lambda$ is called a projective cover of M if P is a projective module and h is a minimal epimorphism.

Lemma (characterisation of projective covers). An epimorphism $h: P \rightarrow M$ is a projective cover of a Λ-module M, if and only if P is projective, and for any Λ-homomorphism $g: N \rightarrow P$, the surjectivity of $h g$, implies the surjectivity of g.

Proof. Suppose that $h: P \rightarrow M$ is a projective cover of M, and let $g: N \rightarrow P$ be a homomorphism such that $h g$ is surjective. It follows that $\operatorname{Im} g+\operatorname{ker} h=P$, and thus g is surjective, since by assumption ker h is small in P. Conversely assume that $h: P \rightarrow M$ has the stated property. Let N be a submodule of P such that $N+\operatorname{ker} h=P$. If $g: N \hookrightarrow P$ is the natural inclusion, then $h g: N \rightarrow M$ is surjective. So by the claim g is surjective. Thus ker h is small and finishes the proof.

Definition. a) An exact sequence

$$
P_{1} \xrightarrow{h_{1}^{\prime}} P_{0} \xrightarrow{h_{0}^{\prime}} M \longrightarrow 0
$$

in $\bmod \Lambda$ is called a minimal projective presentation of a Λ-module M if the Λ-module homomorphisms $h_{0}^{\prime}: P_{0} \rightarrow M$ and $h_{1}^{\prime}: P_{1} \rightarrow$ ker P_{0} are projective covers.
b) An exact sequence (1.3) in $\bmod \Lambda$ is called a minimal projective resolution of M if h_{i} : $P_{i} \rightarrow \operatorname{Im} h_{i}$ is a projective cover for all $i \geq 1$ and $h_{0}: P_{0} \rightarrow M$ is a projective cover.

From (1.1.16) and a consequence of (1.1.15) we recall that a module P is projective if and only if it is a direct summand of a free module.

Corollary 1.1.17. Assume $\Lambda_{\Lambda}=e_{1} \Lambda \oplus \ldots \oplus e_{s} \Lambda$ is a decomposition with respect to a complete set of primitive orthogonal idempotents. Then the indecomposable projective modules are precisely the modules $P(i)=e_{i} \Lambda$.

Theorem 1.1.18. Let Λ be a finite dimensional K-algebra and let $\Lambda_{\Lambda}=e_{1} \Lambda \oplus \ldots \oplus e_{s} \Lambda$, where $\left\{e_{1}, \ldots, e_{s}\right\}$ is a complete set of primitive orthogonal idempotents of Λ. For any Λ-module M in $\bmod \Lambda$ there exist a projective cover,

$$
P(M) \xrightarrow{h} M \longrightarrow 0
$$

where $P(M) \cong\left(e_{1} \Lambda\right)^{n_{1}} \oplus \ldots \oplus\left(e_{s} \Lambda\right)^{n_{s}}$ and $n_{1} \geq 0, \ldots, n_{s} \geq 0$. The homomorphism h induces an isomorphism $P(M) / \operatorname{rad} P(M) \cong M / \operatorname{rad} M$.

Proof. We set $B=\Lambda / \operatorname{rad} \Lambda, \bar{e}_{i}=e_{i}+\operatorname{rad} \Lambda \in B$ and let $\pi: \Lambda \rightarrow B$ be the residual class K-algebra epimomorphism. Because $\left\{e_{1}, \ldots, e_{s}\right\}$ is a complete set of primitive orthogonal idempotents of Λ, $\left\{\bar{e}_{1}, \ldots, \bar{e}_{s}\right\}$ is a complete set of primitive orthogonal idempotents of B and $B_{B}=\overline{e_{1}} B \oplus \ldots \oplus \bar{e}_{s} B$ is an indecomposable decomposition. Then we have by (1.1.11c) that $\operatorname{rad} e_{i} \Lambda \subset e_{i} \Lambda$ is the unique maximal Λ-submodule of $e_{i} \Lambda$, and top $e_{i} \Lambda \cong \bar{e}_{i} B$ is a simple B module and the epimorphism $\pi_{i}: e_{i} \Lambda \rightarrow \operatorname{top} e_{i} \Lambda$ induced by π is a projective cover of $\operatorname{top} e_{i} \Lambda$. Let M be a module in $\bmod \Lambda$. Then $\operatorname{top} M=M / \operatorname{rad} M$ is a module in $\bmod B$ and by (1.1.5) and (1.1.11) there exist B-module isomorphisms.

$$
\operatorname{top} M \cong\left(\overline{e_{1}} B\right)^{n_{1}} \oplus \ldots \oplus\left(\overline{e_{s}} B\right)^{n_{s}} \cong\left(\operatorname{top} e_{1} \Lambda\right)^{n_{1}} \oplus \ldots \oplus\left(\operatorname{top} e_{s} \Lambda\right)^{n_{s}},
$$

for some $n_{1} \geq 0, \ldots, n_{s} \geq 0$. We set $P(M)=\left(e_{1} \Lambda\right)^{n_{1}} \oplus \ldots \oplus\left(e_{s} \Lambda\right)^{n_{s}}$. By the projectivity of the module $P(M)$, there exist a Λ-module homomorphism $h: P(M) \rightarrow M$ making the following diagram commute

Where t and t^{\prime} are canonical epimorphisms. It follows that top h is an isomorphism and from (1.1.8c) we infer that h is an epimorphism. Furthermore, the commutativity of the diagram yields ker $h \subseteq \operatorname{ker} t=\left(\operatorname{rad} e_{1} \Lambda\right)^{n_{1}} \oplus \ldots \oplus\left(\operatorname{rad} e_{s} \Lambda\right)^{n_{s}}=\operatorname{rad} P(M)$. Because according (1.1.6e), the module $\operatorname{rad} P(M)$ is small in $P(M)$, ker h is also small in $P(M)$. Therefore the epimorphism h is a projective cover of M. Summarising, for any module M in $\bmod \Lambda$ there exists a projective cover $P(M)$ and $P(M) / \operatorname{rad} P(M) \cong M / \operatorname{rad} M$.
Tne next step is to show that the projective cover is unique, thus if $P^{\prime} \xrightarrow{h^{\prime}} M \longrightarrow 0$ is a projective cover, then $P^{\prime} \cong P(M)$. The projectivity of P^{\prime} gives us a morphism $g: P^{\prime} \rightarrow P(M)$ such that $h g=h^{\prime}$. Since h^{\prime} is surjective, $\operatorname{Im} g+\operatorname{ker} h=P(M)$. Since $\operatorname{ker} h=\operatorname{rad} M$, this implies the surgectivity of g. Therefore, $l\left(P^{\prime}\right) \geq l(P(M))$. Reversing the situation, we get $l(P(M)) \geq l\left(P^{\prime}\right)$, hence an equality. Thus, $P^{\prime} \cong P(M)$.

Summarising:
Proposition 1.1.19. Any module M in $\bmod \Lambda$ has a unique projective cover $P(M)$ satisfying $P(M) / \operatorname{rad} P(M) \cong M / \operatorname{rad} M$.

Corollary 1.1.20. If P is a projective module in $\bmod \Lambda$, then $P \rightarrow \operatorname{top} P$ is a projective cover. In particular, $e_{i} \Lambda \rightarrow \operatorname{top} e_{i} \Lambda$ is a projective cover for any primitive idempotent e_{i} of Λ. By the uniqueness of projective covers, $e_{i} \Lambda \cong e_{j} \lambda$ if and only if $\operatorname{top} e_{i} \Lambda \cong \operatorname{top} e_{j} \Lambda$.

Corollary 1.1.21. The simple modules in $\bmod \Lambda$ are precisely the modules $S(i)=\operatorname{top} e_{i} \Lambda=$ $\operatorname{top}(P(i))$.

Proof. Given a simple module S. It has a projective cover $P(S)$ which is a direct sum of copies of the $P(i)$. Since $P(S) / \operatorname{rad} P(S) \cong S$, the left hand side is a direct sum of the $S(i)$. But S is simple so the claim follows.

Definition. Let Λ be an algebra with a complete set of primitive idempotents $\left\{e_{1}, \ldots, e_{s}\right\}$. The algebra is called basic if $e_{i} \Lambda$ is not isomorphic to $e_{j} \Lambda$ for all $i \neq j$.

Clearly, a local algebra is basic. Basicness of an algebra Λ can be detected by the algebra $\Lambda / \operatorname{rad} \Lambda$:

Proposition 1.1.22. A finite dimensional K algebra Λ is basic if and only if $B=\Lambda / \operatorname{rad} \Lambda \cong$ $K \times \ldots \times K$.

Proof. Let $\Lambda_{\Lambda}=\bigoplus_{i=1}^{s} e_{i} \Lambda$ for a complete set of primitive orthogonal idempotents and $B_{B}=$ $\bigoplus_{i=1}^{s} \pi\left(e_{i}\right) B$ the correspondng decomposition. Since $e_{i} \Lambda \cong e_{j} \Lambda$ if and only if $\pi\left(e_{i}\right) B \cong$ top $e_{i} \Lambda \cong \operatorname{top} e_{j} \Lambda \cong \pi\left(e_{j}\right) B$, we conclude that B is basic if Λ is. Schur's lemma gives that $\operatorname{Hom}\left(\pi\left(e_{i}\right) B, \pi\left(e_{j}\right) B\right)=0$ for $i \neq j$ and, since these modules are simple, $\operatorname{End}\left(\pi\left(e_{i}\right) B\right) \cong K$ for all i. Using this, we get

$$
B \cong \operatorname{End}_{B}\left(B_{B}\right) \cong \bigoplus_{i=1}^{s} \operatorname{End}\left(\pi\left(e_{i}\right) B\right) \cong K \times \ldots \times K
$$

For the converse, assume that B is isomorphic to a product of s copies of K. Then B is a commutative algebra and admit s central primitive pairwise orthogonal idempotents \bar{e}_{i}. Hence, $e_{i} B$ is $\not \approx e_{j} \Lambda$ and therefore $P\left(e_{i} B\right) \cong e_{i} \Lambda \not \approx P\left(e_{j} B\right) \cong e_{j} \Lambda$ for $i \neq j$.

Corollary 1.1.23. Any simple module S over a basic algebra is one dimensional.
Proof. First note that a simple module S^{\prime} over any algebra Λ satisfies $S^{\prime} \operatorname{rad} \Lambda=0$ by (1.1.8), and consequently, S^{\prime} is a simple module $\Lambda / \operatorname{rad} \Lambda$. Indeed, Nakayama's lemma gives that $S^{\prime} \neq S^{\prime} \operatorname{rad} \Lambda$, hence latter has to be zero, since S^{\prime} is simple. Using this and (1.1.24), we see that S is a simple module over the algebra $\Lambda / \operatorname{rad} \Lambda \cong K \times \ldots \times K$ and the corollary follows.

Definition. Let Λ be an algebra with a complete set of primitive idempotents $\left\{e_{1}, \ldots, e_{s}\right\}$. A basic algebra associated to Λ is the algebra $\Lambda^{b}=e_{\Lambda} \Lambda e_{\Lambda}$, where $e_{\Lambda}=e_{j_{1}}+\ldots+e_{j_{a}}$ are chosen such that $e_{j_{i}} \neq e_{j_{t}}$ for $i \neq t$ and each module $e_{r} \Lambda$ is isomorphic to one of the modules $e_{j_{1}} \Lambda \ldots e_{j_{a}} \Lambda$.

In other words, we consider all modules $e_{k} \Lambda$ and if $e_{k} \cong e_{l} \Lambda$, only e_{k} or e_{l} will be part of e_{Λ}. Hence prior, Λ^{b} is not unique, since it depends on which idempotents we keep.

Lemma 1.1.24. Let Λ^{b} be a basic algebra associated to Λ. The element $e_{\Lambda} \in \Lambda^{b}$ is the identity of Λ^{b} and $\Lambda^{b} \cong \operatorname{End}\left(e_{j_{1}} \Lambda+\ldots+e_{j_{a}} \Lambda\right)$. Furthermore, the algebra Λ^{b} does not depend on the choice of the sets $\left(e_{i}\right) i$ and $e_{j_{1}}, \ldots, e_{j_{a}}$.

Proof. To prove the first part, we apply (1.1.9) to the Λ-module $M=e_{\Lambda} \Lambda$, there is a K algebra isomorphism End $e_{\Lambda} \Lambda \cong e_{\Lambda} \lambda e_{\lambda}$. Because there exists a Λ module isomorphism $e_{\Lambda} \Lambda \cong$ $e_{j_{1}} \Lambda+\ldots+e_{j_{a}} \Lambda$, we derive K-algebra isomorphisms,

$$
\Lambda^{b}=e_{\Lambda} \Lambda e_{\Lambda} \cong \operatorname{Hom}_{\Lambda}\left(e_{\Lambda} \Lambda, e_{\Lambda} \Lambda\right) \cong \operatorname{End}\left(e_{j_{1}} \Lambda+\ldots+e_{j_{a}} \Lambda\right) .
$$

To see the second apply (1.1.9) to $e_{\Lambda} \Lambda$ and use that $e_{\Lambda} \Lambda \cong\left(e_{j_{1}} \Lambda+\ldots+e_{j_{a}} \Lambda\right.$. then (1.1.15) tells as that $e_{\Lambda} \Lambda$ does not depend on the choice of the set $\left\{e_{1}, \ldots, e_{s}\right\}$ and $\left\{\left(e_{j_{1}}, \ldots, e_{j_{a}}\right\}\right.$ up to isomorphism of Λ-modules. Then the second statement is a consequence of the K-algebra isomorphisms $\Lambda^{b} \cong e_{\Lambda} \Lambda e_{\Lambda} \cong \operatorname{End}\left(e_{j_{1}} \Lambda+\ldots+e_{j_{a}} \Lambda\right)$.

For an idempotent $e \in \Lambda$. Consider the algebra $B:=e \Lambda e \cong \operatorname{End} e \Lambda$ with identity e. Given a Λ-module M, note that $M e$ is a B-module. If $f: M \rightarrow M^{\prime}$ is a homomorphism of Λ-modules, we get a homomorphism between the B-modules $M e$ and $M^{\prime} e$ by setting $m e \mapsto f(m) e$. This defines a restriction functor

$$
\operatorname{res}_{e}: \bmod \Lambda \rightarrow \bmod B
$$

We now define two functors from $\bmod B$ to $\bmod \Lambda$ as follows. We have seen before that $e \Lambda$ is a left $B=e \Lambda e$-module. It is, of course, also a right Λ-module. Therefore, we have the functor $T_{e}(-):=-\otimes_{B} e \Lambda$. On the other hand, Λe is a left Λ-module and a right $e \Lambda e$-module, hence we have the functor $L_{e}(-):=\operatorname{Hom}_{B}(\Lambda e,-)$.
Next we collect some properties of these functors.
Proposition 1.1.25. Let Λ be an algebra, let e be an idempotent of Λ and $B=e \Lambda e$. Then the following holds:
a) T_{e} and L_{e} are fully faithful K-linear functors such that $\operatorname{res}_{e} T_{e} \cong i d_{\bmod B} \cong \operatorname{res}_{e} L_{e}$, the functor L_{e} is right adjoint to res $_{e}$ and T_{e} is left adjoint to res e_{e}.
b) T_{e} is right exact, L_{e} is left exact and res_{e} is exact.
c) T_{e} and L_{e} preserve indecomposability, T_{e} respect projectives and and L_{e} respect injectives.
d) A right Λ-module M is in the image of T_{e} if and only if there exist an exact sequence $P_{1} \xrightarrow{h} P_{0} \longrightarrow M \longrightarrow 0$, where P_{1} and P_{0} are direct sums of summands of e Λ.

Proof. a) We recall from (1.1.9), that we have a functorial B-module isomorphism,

$$
\operatorname{Hom}_{\Lambda}(e \Lambda, M) \cong M e
$$

for any right Λ-module M. Using the adjointness properties of tensor and Hom functors we have, for a B-module N,

$$
\begin{aligned}
\operatorname{Hom}_{\Lambda}\left(T_{e}(N), M\right) & \cong \operatorname{Hom}_{\Lambda}\left(N \otimes_{B} e \Lambda, M\right) \\
& \cong \operatorname{Hom}_{B}\left(N, \operatorname{Hom}_{\Lambda}(e \Lambda, M)\right. \\
& \cong \operatorname{Hom}_{B}(N, M e) \cong \operatorname{Hom}_{B}\left(N, \operatorname{res}_{e}(M)\right) .
\end{aligned}
$$

Hence, T_{e} is left adjoint to res ${ }_{e}$. We note also

$$
\operatorname{res}_{e} T_{e}(N)=\left(N \otimes_{B} e \Lambda\right) e \cong N \otimes_{B} B \cong N,
$$

and $\operatorname{res}_{e} L_{e}(N) \cong N$. consequently,

$$
\begin{aligned}
\operatorname{Hom}_{B}\left(N, N^{\prime}\right) & \cong \operatorname{Hom}_{B}\left(N, \operatorname{res}_{e} T_{e}\left(N^{\prime}\right)\right) \\
& \cong \operatorname{Hom}_{\Lambda}\left(T_{e}(N), T_{e}\left(N^{\prime}\right)\right) .
\end{aligned}
$$

and $\operatorname{Hom}_{B}\left(N, N^{\prime}\right) \cong \operatorname{Hom}_{\Lambda}\left(L_{e}(N), L_{e}\left(N^{\prime}\right)\right)$
Hence T_{e} and L_{e} is fully faithful.
b) The exactness of the functor res e_{e} is obvious. The functor T_{e} is right exact, because the tensor product functor is right exact. Since the functor $\operatorname{Hom}_{\Lambda}(M,-)$ is left exact, the functor L_{e} is left exact and (b) hold.
c) Since T_{e} and L_{e} are fully faithful, $\operatorname{End}(N) \cong \operatorname{End}\left(T_{e}(N)\right) \cong \operatorname{End}\left(L_{e}(N)\right)$. So if N is indecomposable, then its endomorphism algebra is local, hence the same holds for $T_{e}(N)$ and $L_{e}(N)$ and these modules are indecomposable by (1.1.14).
Now consider a projective B-module P and an epimorphism $h: M \rightarrow M^{\prime}$ in $\bmod \Lambda$. We have the following commutative diagram

Since P is projective, the lower map is an epimorphism, hence so is the upper map. Therefore, $T_{e}(P)$ is a projective Λ-module if P is a projective B-module. Dually, we can show the statement for L_{e}.
d) Assume that $e=\left(e_{j_{1}}+\ldots+e_{j_{s}}\right.$ and $e_{j_{1}}, \ldots, e_{j_{s}}$ are primitive idempotents. This implies $B=e_{j_{1}} B \oplus \ldots \oplus e_{j_{s}} B$ and the modules $e_{j_{1}} B, \ldots, e_{j_{s}} B$ are indecomposable.
Consider the map

$$
m_{j_{i}}: e_{j_{i}} B \otimes_{B} e \Lambda \rightarrow e_{j_{i}} \Lambda, e_{j_{i}} x \otimes e a \mapsto e_{j_{i}} x e a .
$$

Note that this map is the restriction of the Λ-module isomorphism $B \otimes_{B} e \Lambda \rightarrow e \Lambda$ to the direct summand $e_{j_{i}} B \otimes_{B} e \Lambda$, hence it is well defined homomorphism of Λ-modules and
injective and $e_{j_{i}} \Lambda$ is the image of the restriction. Therefore $m_{j_{i}}$ is an isomorphism. Now assume that $Q_{1} \longrightarrow Q_{0} \longrightarrow N \longrightarrow 0$ is an exact sequence in $\bmod B, Q_{1}, Q_{0}$ are projective. Applying the right exact functor T_{e} to this sequence, we have:

$$
T_{e}\left(Q_{1}\right) \longrightarrow T_{e}\left(Q_{0}\right) \longrightarrow T_{e}(N)
$$

in $\bmod B$ is exact and the modules $T_{e}\left(Q_{i}\right)$ are projectives satisfy the properties required in(d) because by (1.1.16), the modules Q_{1} and Q_{0} are direct sums of indecomposable modules isomorphic to some of the modules $e_{j_{1}} B, \ldots, e_{j_{s}} B$.
Conversely, assume a sequence as in (d) is given. Observe that $P_{1} e$ and $P_{0} e$ are projective B-modules, since res ${ }_{e}$ is exact. Applying T_{e} gives back P_{1} and P_{0}. Denote by N the cokernel of the restriction he : $P_{1} e \rightarrow P_{0} e$ of h to $\operatorname{res}_{e}\left(P_{1}\right)=P_{1} e$, then we derive a commutative diagram

Hence, $M \cong T_{e}(N)$.

Theorem 1.1.26. Let $\Lambda^{b}=e_{\Lambda} \Lambda e_{\Lambda}$ be a basic algebra associated with Λ. The algebra Λ^{b} is basic and the functor $T_{e_{\Lambda}}$ gives an equivalence $\bmod \Lambda^{b} \cong \bmod \Lambda$, with quasi-inverse res ${ }_{e}$.

Proof. We know that $\Lambda^{b}=e_{\Lambda} \Lambda^{b}=e_{j_{1}} \Lambda^{b} \oplus \ldots \oplus e_{j_{a}} \Lambda^{b}$ and $e_{j_{t}} \Lambda^{b} e_{j_{t}}=e_{j_{t}} \Lambda e_{j_{t}}$ for all t. It follows from (1.1.13) that the algebra $\operatorname{End}\left(e_{j_{t}} \Lambda^{b}\right) \cong e_{j_{t}} \Lambda^{b} e_{j_{t}}$ is local because $e_{j_{t}} \Lambda$ is indecomposable in $\bmod \Lambda$. Hence $e_{j_{t}}$ is a primitive idempotent of Λ^{b}. Now assume that $e_{j_{t}} \Lambda^{b} \cong e_{j_{r}} \Lambda^{b}$. Using the isomorphisms $m_{j_{i}}$ from (1.1.25), we have that

$$
e_{j_{t}} \Lambda \cong e_{j_{t}} \Lambda^{b} \otimes_{\Lambda^{b}} e_{\Lambda} \Lambda \cong e_{j_{r}} \Lambda^{b} \otimes_{\Lambda^{b}} e_{\Lambda} \Lambda \cong e_{j_{r}} \Lambda,
$$

therefore $t=r$ by the choice of $e_{j_{1}}, \ldots, e_{j_{a}}$. We know already that T_{e} is fully faithful. Now any module $M \in \bmod \Lambda$ admit an exact sequence $P^{\prime} \longrightarrow P \longrightarrow M \longrightarrow 0$, where P^{\prime}, P are projective. It remain to note that P^{\prime} and P are direct sums of summands of $e_{\Lambda} \Lambda$. So it follows from (1.1.25d), T_{e} is essentially surjective and hence an equivalence.

Remark. The theorem tells us that if we are interested in finite dimensional modules, then we can restrict our attention to basic algebras.

1.2 QUIVERS, PATH ALGEBRAS AND THEIR QUOTIENT FORM

Definition. A quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$ is a quadruple consisting of two sets: Q_{0} called the vertex set and Q_{1} called the arrow set, and two maps $s, t: Q_{1} \rightarrow Q_{0}$ which associate to each arrow $\alpha \in Q_{1}$ its source $s(\alpha) \in Q_{0}$ and its target $t(\alpha) \in Q_{0}$, respectively. A quiver is called finite if Q_{0} and Q_{1} are finite sets.
A subquiver of a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$ is a quiver $Q^{\prime}=\left(Q_{0}^{\prime}, Q_{1}^{\prime}, s^{\prime}, t^{\prime}\right)$ such that $Q_{0}^{\prime} \subseteq Q_{0}$, $Q_{1}^{\prime} \subseteq Q_{1}$ and s^{\prime}, t^{\prime} are the restrictions of s, t to Q_{1}^{\prime}. A subquiver is called full if if Q_{1}^{\prime} equals the set of all those arrows in Q_{1} whose source and target both belong to Q_{0}^{\prime}.
If x and y are elements in Q_{0}, a path from x to y of length l is a sequence of arrows $\alpha_{1}, \ldots, \alpha_{l}$ such that $s\left(\alpha_{1}\right)=x, t\left(\alpha_{k}\right)=s\left(\alpha_{k+1}\right)$ for all $1 \leq k<l$ and $t\left(\alpha_{l}\right)=y$. We will write this as $\alpha_{1} \ldots \alpha_{l}$.
A cycle is a path such that source and target coincide. A cycle is a loop if it is of length 1. A quiver is called acyclic if it contains no cycles.
For any vertex x we have the stationary path ϵ_{x} of length 0 .
Definition. Let Q be a quiver. The path algebra $K Q$ of Q is the K-algebra whose underlying K-vector space has its basis the set of all paths $\left(x\left|\alpha_{1}, \ldots, \alpha_{l}\right| y\right)$ of length $l \geq 0$ in Q and such that the product of two basis vectors $\left(x\left|\alpha_{1}, \ldots, \alpha_{l}\right| y\right)$ and $\left(u\left|\beta_{1}, \ldots, \beta_{k}\right| v\right)$ is defined by

$$
\left(x\left|\alpha_{1}, \ldots, \alpha_{l}\right| y\right)\left(u\left|\beta_{1}, \ldots, \beta_{k}\right| v\right)=\delta_{y u}\left(x\left|\alpha_{1}, \ldots, \alpha_{l}, \beta_{1}, \ldots, \beta_{k}\right| v\right),
$$

where $\delta_{y u}$ denotes the Kronecker delta. That is the product of two paths $\alpha_{1} \ldots \alpha_{l} a n d \beta_{1} \ldots \beta_{k}$ is zero if $t\left(\alpha_{l}\right) \neq s\left(\beta_{1}\right)$ and is equal to the composed path $\alpha_{1} \ldots \alpha_{l} \beta_{1} \ldots \beta_{k}$ if $t\left(\alpha_{l}\right)=s\left(\beta_{1}\right)$.
Note the product of basis elements can be extended to arbitrary elements of $K Q$ by distributivity. Thus, there is a direct sum decomposition

$$
K Q=K Q_{0} \oplus K Q_{1} \oplus K Q_{2} \oplus \ldots \oplus Q_{l} \oplus \ldots
$$

of the K-vector space $K Q$, where, for each $l \geq 0, K Q_{l}$ is the subspace generated by all paths of length l. So then, we can see that $\left(K Q_{n}\right) \cdot\left(K Q_{m}\right) \subseteq K Q_{n+m}$ for all $n, m \geq 0$, since the product in $K Q$ of path of length n by a path of length m is either zero or a path of length $n+m$. By this, is sometimes expressed by saying that $K Q$ is an associative graded algebra.

Lemma 1.2.1. Let Q be a quiver and $K Q$ its path algebra.
a) The algebra $K Q$ has an identity element if and only if Q_{0} is finite and
b) $K Q$ is finite dimensional if and only if Q is finite and acyclic.

Proof. a) If Q_{0} is finite, say $Q_{0}=\{1, \ldots, n\}$, then it is easily checked that $\sum_{i=1}^{n} \epsilon_{i}$ is the identity of $K Q$. To see the converse, assume that Q_{0} is infinite and let $1=\sum_{i=1} \lambda_{i} w_{i}$, where $\lambda_{i} \in K$ and w_{i} are paths, be the identity element. The paths w_{i} have only finitely many sources, so let x be a vertex not in this set. Then $\epsilon_{x} 1=0$, a contradiction.
b) If Q is finite and acyclic, there are only finitely many paths, hence $K Q$ is finite dimensional. To see the converse, if Q_{0} is infinite, then so is $K Q$. If Q is not acyclic, then take a cycle w in Q. Considering all its powers gives that $K Q$ is infinite dimensional.

Proposition 1.2.2. Let Q ba a finite quiver. The set of all stationary paths $\epsilon_{x}, x \in Q_{0}$, is a complete set of primitive orthogonal idempotents of $K Q$.

Proof. It is clear that the ϵ_{x} are orthogonal idempotents. To see that they are primitive, it is enough to show that the algebra $B=\epsilon_{x} K Q \epsilon_{x}$ is local, see (1.1.13). We note that this algebra is clearly K if Q has no cycles. In any case, an idempotent ϵ of B can be written as $\epsilon=\lambda \epsilon_{x}+w$, where $\lambda \in K$ and w is a linear combination of cycles through x of length at least 1 . then we have:

$$
0=\epsilon^{2}-\epsilon=\left(\lambda^{2}-\lambda\right) \epsilon_{x}+(2 \lambda-1) w+w^{2}
$$

which holds if $\lambda^{2}=\lambda$ and $w=0$, so $\lambda=1$ or $\lambda=0$. Hence $\epsilon=\epsilon_{x}$ or $\epsilon=0$

Lemma 1.2.3. Let Λ be an algebra and assume that that $\left\{e_{1}, \ldots, e_{n}\right\}$ is a complete set of primitive orthogonal idempotents. Then Λ is connected if and only if there does not exist a nontrivial partition $I \amalg J$ of the set $\{1, . ., n\}$ such that for any $i \in I$ and $j \in J e_{i} \Lambda e_{j}=0=e_{j} \Lambda e_{i}$.

Proof. Suppose that such a partition does not exist and let $z=\sum_{j=J} \epsilon_{j}$. By the assumption z is nontrivial. Moreover, it is an idempotent, $z e_{i}=e_{i} z=0$ for each $i \in I$ and $z e_{j}=e_{j} z=e_{j}$ for $j \in J$. By our hypothesis, $e_{i} x e_{j}=0=e_{j} x e_{i}$ for any $a \in \Lambda$. Thus,

$$
\begin{aligned}
z x & =\sum_{j=J} \epsilon_{j} x=\left(\sum_{j=J} \epsilon_{j} x\right) .1 \\
& =\left(\sum_{j=J} \epsilon_{j} x\right)\left(\sum_{i=I} \epsilon_{i}+\sum_{k=J} \epsilon_{k}\right)=\sum_{j, k} \epsilon_{j} x e_{k} \\
& =\left(\sum_{j} \epsilon_{j}+\sum_{i} \epsilon_{i}\right) x\left(\sum_{k=J} \epsilon_{k}\right)=x z
\end{aligned}
$$

Hence, z is a nontrivial central idempotent and so Λ is not connected. To see the converse, if Λ is not connected, there exist a central nontrivial idempotent z. Because z is central, we have $z=\sum_{i=I}^{n} \epsilon_{j} z \epsilon_{i}$. Let $c_{i}=e_{i} z e_{i}$. Then $z_{i}^{2}=z_{i}$, so $z_{i} \in e_{i} \Lambda e_{i}$ is an idempotent. Because e_{i} is primitive, $z_{i}=0$ or $z_{i}=e_{i}$. We set $I=\left\{i \mid z_{i}=0\right\}$ and $J=\left\{j \mid z_{i}=e_{i}\right\}$. This obviously is a partition of $\{1, \ldots, n\}$ and because $z e_{j}=e_{j}=e_{j} z$ and $z e_{i}=0=e_{i} z$, gives us $e_{i} \Lambda e_{j}=0=e_{j} \Lambda e_{i}$.

By this lemma we can now prove (1.2.4)
Lemma 1.2.4. Let Q be a finite quiver. The path algebra $K Q$ is connected if and only if Q is a connected quiver, which, by definition, means that the graph obtained by forgetting the orientation of the arrows is connected.

Proof. If Q is not connected, let Q^{\prime} be a connected component and let $Q^{\prime \prime}$ be the full subquiver of Q having as vertices $Q_{0} \backslash Q_{0}^{\prime}$. Let $x \in Q_{0}^{\prime}$ and $y \in Q_{0}^{\prime \prime}$. Any path in Q is either contained in
Q_{0}^{\prime} or $Q_{0}^{\prime \prime}$. Hence, either, $w_{\epsilon_{y}}=0$ or $e_{\epsilon_{x}} w=0$. In any case, $\epsilon_{x} w \epsilon_{y}=0$. By (1.2.3) $K Q$ is not connected. To see the converse, let Q be connected, but not in $K Q$. That is we have a partition $Q_{0}=Q_{0}^{\prime} \amalg Q_{0}^{\prime \prime}$ as in (1.2.3). Because Q is connected, there exist $x \in Q_{0}^{\prime}$ and $y \in Q_{0}^{\prime \prime}$ with an arrow α from x to y. Then $\alpha=\epsilon_{x} \alpha \epsilon_{y}=0$, a contradiction.

Next we record the following obvious properties.
Proposition 1.2.5. Let Q be a finite connected quiver and Λ an associative algebra with identity. For any pair of maps $g_{0}: Q_{0} \rightarrow \Lambda$ and $g_{1}: Q_{1} \rightarrow \Lambda$ satifying (a) $\sum_{x \in Q_{0}} g_{0}(x)=1$,(b) $g_{0}(x)^{2}=$ $g_{0}(x)$, (c) $g_{0}(x) \neq g_{0}(y)$ for $x \neq y$ and (d) if $\alpha: x \rightarrow y$, then $g_{1}(x)=g_{0}(x) g_{1}(\alpha) g_{0}(y)$, there exist a unique K-algebra homomorphism $g: K Q \rightarrow \Lambda$ such that $g\left(\epsilon_{x}\right)=g_{0}(x)$ for any $x \in Q_{0}$ and $g(\alpha)=g_{1}(\alpha)$ for any $\alpha \in Q_{1}$.

Definition. Let Q be a finite and connected quiver. The two-sided ideal of $K Q$ generated by the arrows of Q is called the arrow ideal and denote by R_{Q}.

Clearly, $R_{Q}=K Q_{1} \oplus K Q_{2} \oplus \ldots$ as a K-vector space. This implies that $R_{Q}^{l}=\otimes_{m \geq l} K Q_{m}$.
Proposition 1.2.6. Let Q be a finite connected quiver, R_{Q} the arrow ideal of $K Q$ and ϵ_{x} the stationary paths associated to the vertices of Q. Consider the canonical algebra homomorphism $\pi: K Q \rightarrow K Q / R_{Q}$ and the set of the images $\epsilon_{x}:=\pi\left(\epsilon_{x}\right)$. Then this is a complete set of primitive orthogonal idempotents for $K Q / R_{Q}$ and the latter algebra is isomorphic to $K \times \ldots \times K$. If Q is acyclic, then $\operatorname{rad} K Q=R_{Q}$ and $K Q$ is a finite dimensional basic algebra.

Proof. As a K-vector space we have

$$
K Q / R_{Q}=\bigoplus_{x, y \in Q_{0}} e_{x}\left(K Q / R_{Q}\right) e_{y}=\bigoplus_{x \in Q_{0}} e_{x}\left(K Q / R_{Q}\right) e_{x},
$$

where the second equality stems from the fact that R_{Q} contains all paths of length at least 1. Hence, $K Q / R_{Q}$ is a Q_{0}-dimensional vector space. The elements e_{x} give a complete set of primitive orthogonal dempotents of $K Q / R_{Q}$ and every piece $e_{x}\left(K Q / R_{Q}\right) e_{x}$ is isomorphic to K. Thus, the first statement holds.
Assume Q is acyclic, then $K Q$ is finite dimensional and the length of paths in Q is bounded by some integer l. Hence, $R_{Q}^{l+1}=0$, so by (1.1.2) $R_{Q} \subseteq \operatorname{rad} K Q$. Because $K Q / R_{Q} \cong K \times \ldots \times K$, (1.1.2) gives that $R_{Q}=\operatorname{rad} K Q$ and it follows from (1.1.22) that $K Q$ is basic.

Remark. Assume Q is not acyclic, then $\operatorname{rad} K Q$ need not be equal to R_{Q}. For example consider the quiver with one vertex and one loop. Then the radical is trivial, but R_{Q} is not.

Definition 1.2.7. Let Q be a finite quiver and R_{Q} be the arrow ideal of the path algebra $K Q$. A two-sided ideal I of $K Q$ is called admissible if there exist an $m \geq 2$ such that $R_{Q}^{m} \subseteq I \subseteq R_{Q}^{2}$. If I is an admissible ideal of $K Q$, we call the pair $(K Q, I)$ a bound quiver. The quotient algebra $K Q / I$ is said to be a bound quiver algebra.

It is clear from the definition that an I ideal $I \subseteq R_{Q}^{2}$ is admissible if and only if it contains all paths whose length is large enough. Infact. this is the case if and only if for each cycle σ there exists an $s \geq 1$ such that $\sigma^{s} \in I$. In particular, assuming Q is acyclic, any ideal $I \subseteq R_{Q}^{2}$ is admissible.

Definition. Let Q be a quiver. A relation ρ in Q with coefficients in K is a K-linear combination of paths w_{i} of length at least two having the same source and target. We write, $\rho \sum_{i=1}^{n} \lambda_{i} w_{i}$. If $\left(\rho_{j}\right)_{j \in J}$ is a set of relations such that the ideal they generate is admissible, then we say the quiver Q is bound by the relations $\rho_{j}=0$ for all $j \in J$.

Example. Let Q be the quiver

and I an ideal of $K Q$ generated by $\alpha \beta$. Then I is an admissible ideal of $K Q$ containing R_{Q}^{4}, and the associated bound quiver algebra $K Q / I$ is a 9 -dimensional K-algebra. Thus $K Q / I$ has K basis $\left\{e_{1}+I, e_{2}+I, e_{3}+I, \alpha+I, \beta+I, \gamma+I, \beta \alpha+I, \gamma \alpha+I, \beta \gamma \alpha+I\right\}$.

Lemma 1.2.8. Let Q be a finite quiver and I be an admissible ideal of $K Q$. The set $e_{x}=\pi\left(\epsilon_{x}\right)$, where $\pi: K Q \rightarrow K Q / I$, is a complete set of primitive orthogonal idempotents of $K Q / I$.

Proof. It is clear that the given set is a complete set of orthogonal idempotents under the canonical map, π. It therefore remains to check that each e_{x} is primitive, or equivalently, that the algebra $e_{x}(K Q / I) e_{x}$ has only the trivial idempotents 0 and 1 for any $x \in Q_{0}$. Note any idempotent e in the algebra $e_{x}(K Q / I) e_{x}$ can be written in the form $e=\lambda \epsilon_{x}+w+I$, where w is a linear combination of cycles through x of length ≥ 1 and $\lambda \in K$. Because $e^{2}=e$, we get

$$
\left(\lambda^{2}-\lambda\right) \epsilon_{x}+(2 \lambda-1) w+w^{2} \in I
$$

Because $I \subseteq R_{Q}^{2}, \lambda^{2}-\lambda=0$, hence $\lambda=1$ or $\lambda=0$. Let consider, $\lambda=0$, then $e=w+I$, so w is idempotent modulo I. Since $R_{Q}^{m} \subseteq I$ for some $m \geq 2, w^{m} \in I$, so $w \in I$ and hence $e=0$. If $\lambda=1$, then $e_{x}-e=-w+I$ is an idempotent in $e_{x}(K Q / I) e_{x}$, so w is idempotent modulo I, that is nilpotent as before, so is an element in I. Thus $e_{x}=e$.

Lemma 1.2.9. Let Q be a finite quiver and I be an admissible ideal of $K Q$. The bound quiver algebra $K Q / I$ is connected if and only if Q is connected quiver.

Proof. Let assume Q is not connected, then neither is $K Q$, so there exists a central nontrivial idempotent γ which is a sum of paths of length 0 . Then its image is central nontrivial idempotent in $K Q / I$, since if $\pi(\gamma)=1$, then $1-a \in I$, which is impossible, since $I \supseteq R_{Q}^{2}$.
The reverse implication is proved in (1.2.4)
Proposition 1.2.10. Let Q be a finite quiver and I an admissible ideal. Then $K Q / I$ is a finite dimensional algebra

Proof. We have a surjective homomorphism $K Q / R_{Q}^{m} \rightarrow K Q / I$. The former algebra is finite dimensional, because the finitely many paths of length at most m form a basis of $K Q / R_{Q}^{m}$ as a K-vector space

Lemma 1.2.11. Let Q be a finite quiver. Every admissible ideal I of $K Q$ is finitely generated.
Proof. Let consider the short exact sequence of $K Q$-modules

$$
0 \longrightarrow R_{Q}^{m} \longrightarrow I \longrightarrow I / R_{Q}^{m} \longrightarrow 0
$$

Clearly, R_{Q}^{m} is the $K Q$-module generated by the paths of length m, and since there are only finitely many such paths, R_{Q}^{m} is finitely generated. On the other hand, I / R_{Q}^{m} is an ideal of the finite dimensional algebra $K Q / R_{Q}^{m}$ (see(1.2.9)). Therefore I / R_{Q}^{m} is a finite dimensional K-vector space, hence a finitely generated $K Q$-module.

Corollary 1.2.12. If I is an admissible ideal of a finite quiver Q, then it is generated by a finite set of relations.

Proof. We know that I has a finite generating set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ by (1.2.10), but the σ_{i} need not have the same source and target. Also for any i such that $1 \leq i \leq n x, y \in Q_{0}$, the term $\epsilon_{x} \sigma_{i} \epsilon_{y}$ is either zero or a relation. Since $\sigma_{i}=\sum_{x, y \in Q_{0}} \epsilon_{x} \sigma_{i} \epsilon_{y}$, for $i \leq n$, the nonzero elements among the set $\left\{\epsilon_{x} \sigma_{i} \epsilon_{y} \mid 1 \leq i \leq n ; x, y \in Q_{0}\right\}$ gives a finite set of relations generating I.

Lemma 1.2.13. Let Q be a finite quiver and I an admissible ideal of $K Q$. Then $R_{Q} / I=$ $\operatorname{rad}(K Q / I)$. Moreover, the algebra $K Q / I$ is basic.

Proof. We know that $R_{Q}^{m} \subseteq I$ for some $m \geq 2$. Consequently, $\left(R_{Q} / I\right)^{m}=0$ and $R_{Q} / I \subseteq$ $\operatorname{rad}(K Q / I)$. Because $(K Q / I) /\left(R_{Q} / I\right) \cong K Q / R_{Q} \cong K \times \ldots \times K$, the claim follow by (1.1.2) and (1.1.22).

Remark 1.2.14. For each $l \geq 1$ we have $\operatorname{rad}^{l}(K Q / I)=\left(R_{Q} / I\right)^{l}$. So by this and (1.2.12) we have,

$$
\operatorname{rad}(K Q / I) / \operatorname{rad}^{2}(K Q / I)=\left(R_{Q} / I\right) /\left(R_{Q} / I\right)^{2}=R_{Q} / R_{Q}^{2}
$$

Next we show that any basic and connected finite dimensional algebra can be described as the bound quiver algebra of a finite connected quiver.

Definition. Let Λ be a basic and connected finite dimensional algebra and $\left\{e_{1}, \ldots, e_{n}\right\}$ be a complete set of primitive orthogonal idempotents. The (ordinary) quiver of Λ, denoted by Q_{Λ}, is defined as follows:

- The vertices of Q_{Λ} are the numbers $\{1, \ldots, n\}$.
- Given two points $x, y \in\left(Q_{\Lambda}\right)_{0}$ the arrows $\alpha: x \rightarrow y$ are in bijective correspondence with the vectors in a basis of $e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y}$.

Note the Q_{Λ} is finite, because Λ is finite dimensional and therefore the vector spaces $e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y}$ are also finite dimensional.

Lemma 1.2.15. Let Λ be as in the definition. Then
a) The quiver Q_{Λ} does not depend on the choice of a complete set of primitive orthogonal idempotents of Λ.
b) For any pair e_{x}, e_{y} of primitive orthogonal idempotents of Λ the K-linear map

$$
\psi: e_{x}(\operatorname{rad} \Lambda) e_{y} / e_{x}\left(\operatorname{rad}^{2} \Lambda\right) e_{y} \rightarrow e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y}
$$

defined by

$$
e_{x} a e_{y}+e_{x} \operatorname{rad}^{2} \Lambda e_{y} \mapsto e_{x}\left(a+\operatorname{rad}^{2} \Lambda\right) e_{y}
$$

is an isomorphism for all $a \in \mathrm{rad}$.

Proof. a) By (1.1.15), the number of points of Q_{Λ} is uniquely determined, since it equals the number of indecomposable direct summands of Λ_{Λ}. The same (1.1.15) also gives that for distinct complete sets of primitive orthogonal idempotents, say e_{x} and e_{x}^{\prime}, there is a bijection $e_{x} \Lambda \cong e_{x}^{\prime} \Lambda$ for all x. Define a Λ-module homomorphism $\phi: e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right)$ by $e_{x} a \mapsto e_{x}\left(a+\operatorname{rad}^{2} \Lambda\right)$ admit $e_{x}\left(\operatorname{rad}^{2} \Lambda\right)$ as a kernel. Hence

$$
e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) \cong e_{x}(\operatorname{rad} \Lambda) / e_{x}\left(\operatorname{rad}^{2} \Lambda\right) \cong \operatorname{rad}\left(e_{x} \Lambda\right) / \operatorname{rad}^{2}\left(e_{x} \Lambda\right) .
$$

Thus we have sequence of K-vector isomorphisms

$$
\begin{aligned}
e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y} & \cong\left(\operatorname{rad}\left(e_{x} \Lambda\right) / \operatorname{rad}^{2}\left(e_{x} \Lambda\right)\right) e_{y} \\
& \cong \operatorname{Hom}_{\Lambda}\left(e_{y} \Lambda, \operatorname{rad}\left(e_{x} \Lambda\right) / \operatorname{rad}^{2}\left(e_{x} \Lambda\right)\right) \\
& \cong \operatorname{Hom}_{\Lambda}\left(e_{y}^{\prime} \Lambda, \operatorname{rad}\left(e_{x}^{\prime} \Lambda\right) / \operatorname{rad}^{2}\left(e_{x}^{\prime} \Lambda\right)\right) \\
& \cong\left(\operatorname{rad}\left(e_{x}^{\prime} \Lambda\right) / \operatorname{rad}^{2}\left(e_{x}^{\prime} \Lambda\right)\right) e_{y}^{\prime} \\
& \cong e_{x}^{\prime}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y}^{\prime} .
\end{aligned}
$$

b) It is clear that the K-linear map $e_{x}(\operatorname{rad} \Lambda) e_{y} \rightarrow e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y}$ defined by $e_{x} a e_{y} \mapsto$ $e_{x}\left(a+\operatorname{rad}^{2} \Lambda\right) e_{y}$ admits $e_{x}\left(\operatorname{rad}^{2} \Lambda\right) e_{y}$ as a kernel. Therefore we conclude that the ψ defined in the second statement is an isomorphism.

Lemma 1.2.16. For each arrow $\alpha: i \rightarrow j \in\left(Q_{\Lambda}\right)_{1}$, let $a_{\alpha} \in(\operatorname{rad} \Lambda) e_{j}$ be such that the set $\left\{a_{\alpha}+\operatorname{rad}^{2} \Lambda \mid \alpha: i \rightarrow j\right\}$ is a basis of $e_{i}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{j}$. Then
a) for any two points $x, y \in\left(Q_{\Lambda}\right)_{0}$, every element $a \in e_{x}(\operatorname{rad} \Lambda) e_{y}$ can be written in the the form $a=\sum a_{\alpha_{1}} a_{\alpha_{2}} \ldots a_{\alpha_{l}} \lambda_{\alpha_{1} \ldots \alpha_{l}} \in K$ and the sum is taken over all the paths $\alpha_{1} \alpha_{2} \ldots \alpha_{l} \in Q_{\Lambda}$ from x to y.
b) for each arrow $\alpha: i \rightarrow j$, the element a_{α} uniquely determines a nonzero nonisomorphism $\tilde{a_{\alpha}} \in \operatorname{Hom}_{\Lambda}\left(e_{j} \Lambda, e_{i} \Lambda\right)$ such that $\tilde{a_{\alpha}}\left(e_{j}\right)=a_{\alpha}, \operatorname{Im} \tilde{a_{\alpha}} \subseteq e_{i}(\operatorname{rad} \Lambda)$ and $\operatorname{Im} \tilde{a_{\alpha}} \nsubseteq e_{i}\left(\operatorname{rad}^{2} \Lambda\right)$.

Proof. We recall that $\operatorname{rad} \Lambda$ is nilpotent and, as a K-vector space, $\operatorname{rad} \Lambda \cong\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) \oplus \operatorname{rad}^{2} \Lambda$, we have $e_{x}(\operatorname{rad} \Lambda) e_{y} \cong e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y} \oplus e_{x}\left(\operatorname{rad}^{2} \Lambda\right) e_{y}$. Thus we can be write

$$
a^{\prime}=a-\sum_{\alpha: x \rightarrow y} a_{\alpha} \lambda_{\alpha} \in e_{x}\left(\operatorname{rad}^{2} \Lambda\right) e_{y},
$$

for $\lambda_{\alpha} \in K$. By the decomposition of $\operatorname{rad} \Lambda=\otimes_{i, j} e_{i}(\operatorname{rad} \Lambda) e_{j}$ we have

$$
e_{x}\left(\operatorname{rad}^{2} \Lambda\right) e_{y}=\sum_{z \in\left(Q_{\Lambda}\right)_{0}}\left(e_{x}(\operatorname{rad} \Lambda) e_{z}\right)\left(e_{z}(\operatorname{rad} \Lambda) e_{y}\right),
$$

so that $a^{\prime}=\sum_{z \in\left(Q_{\Lambda}\right)_{0}} a_{z}^{\prime} b_{z}^{\prime}$, where $a_{z}^{\prime} \in e_{x}(\operatorname{rad} \Lambda) e_{z}$ and $b_{z}^{\prime} \in e_{z}(\operatorname{rad} \Lambda) e_{y}$. We now apply the previous consideration to a_{z}^{\prime} and b_{z}^{\prime} and get

$$
a=\sum_{\alpha: x \rightarrow y} a_{\alpha} \lambda_{\alpha}+\sum_{\beta: x \rightarrow z} \sum_{\alpha: z \rightarrow y} a_{\beta} a_{\alpha} \lambda_{\beta} \lambda_{\alpha}
$$

modulo $e_{x}\left(\operatorname{rad}^{3} \Lambda\right) e_{y}$. We complete the proof by an obvious induction using the nilpotency of $\operatorname{rad} \Lambda$.

By our assumption, the element $a_{\alpha} \in e_{i}(\operatorname{rad} \Lambda) e_{j}$ is nonzero and maps to a nonzero element $\tilde{a_{\alpha}}$ by the K-linear isomorphism $e_{i}(\operatorname{rad} \Lambda) e_{j} \cong \operatorname{Hom}_{\Lambda}\left(e_{j} \Lambda, e_{i}(\operatorname{rad} \Lambda)\right)$ (see equation 1.2). It follows that $\tilde{a_{\alpha}}\left(e_{j}\right)=a_{\alpha}, \operatorname{Im} \tilde{a_{\alpha}} \subseteq e_{i}(\operatorname{rad} \Lambda)$, and $\operatorname{Im} \tilde{a_{\alpha}} \nsubseteq e_{i}\left(\operatorname{rad}^{2} \Lambda\right)$. Hence proof!

Corollary 1.2.17. If Λ is a basic connected algebra, then Q_{Λ} is connected

Proof. Assume that this is not the case, then the set $\left(Q_{\Lambda}\right)_{0}$ of points of Q_{Λ} can be written as the disjoint union of two nonempty sets Q_{0}^{\prime} and $Q_{0}^{\prime \prime}$ such that the points of Q_{0}^{\prime} are not connected to those of $Q_{0}^{\prime \prime}$. We will show that for $i \in Q_{0}^{\prime}$ and $j \in Q_{0}^{\prime \prime}$ we have $e_{i} \Lambda e_{j}=0=e_{j} \Lambda e_{i}$, which means that Λ is not connected, a contradiction. We have already that $M \operatorname{rad} \Lambda=\operatorname{rad} M$ for any right module, so the $\operatorname{rad}\left(e_{i} \Lambda\right)=e_{i} \operatorname{rad} \Lambda$. Moreover, $e_{i} \Lambda e_{j} \cong \operatorname{Hom}\left(e_{j} \Lambda, e_{i} \Lambda\right)$ and $\operatorname{Hom}\left(e_{j} \Lambda, \operatorname{rad} e_{i} \Lambda\right) \cong e_{i}(\operatorname{rad} \Lambda) e_{j}$. The latter space is zero by our assumption and by (1.2.14). Hence, we are done if we can show that $\operatorname{Hom}\left(e_{j} \Lambda, e_{i} \Lambda\right) \cong \operatorname{Hom}\left(e_{j} \Lambda, \operatorname{rad} e_{i} \Lambda\right)$.
We racall that, given an idempotent $e \in \Lambda, \operatorname{rad}(e \Lambda)$ is the unique maximal submodule of $e \Lambda$ by (1.1.11). This implies that $e \Lambda / \operatorname{rad}(e \Lambda) \cong e \Lambda / e \operatorname{rad} \Lambda$ is simple. Let now take a map $\psi: e_{j} \rightarrow e_{i} \Lambda$. If it is not surjective, we are done, because the image has to be $\operatorname{rad} e_{i} \Lambda$. If ψ is surjective, then $e_{j} \Lambda / \operatorname{ker} \psi \cong e_{i} \Lambda$. Since $\operatorname{ker} \psi \subset \operatorname{rad}\left(e_{j} \Lambda\right)$, this gives a map $e_{j} \Lambda \rightarrow S(i)=e_{i} \Lambda / \operatorname{rad}\left(e_{i} \Lambda\right)$ which is surjective. factoring out its kernel, we get a nontrivial map $S(j) \rightarrow S(i)$, a contradiction by Schur's lemma, because $S(j)$ cannot be to $S(i)$ by the assumption that Λ is basic and (1.1.20).

Lemma 1.2.18. Let Q be a finite connected quiver, I be an admissible ideal and $\Lambda=K Q / I$. Then $Q_{\Lambda}=Q$.

Proof. By (1.2.7), the set $\left\{e_{x}=\epsilon_{x}+I\right\}$ is a complete set of primitive orthogonal idempotents of $\Lambda=K Q / I$. So the points of Q_{Λ} are in bijective correspondence with those of Q. On the other hand, by (1.2.13), the arrows from x to y in Q are in bijective correspondence with the vectors in a basis of $e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y}$, that is, with the arrows from x to y in Q_{Λ}.

Theorem 1.2.19. Let Λ be basic and connected finite dimensional K-algebra. There exist an admissible ideal I of $K Q_{\Lambda}$ such that $\Lambda \cong K Q_{\Lambda} / I$.

Proof. First we construct an algebra homomorphism $\phi: K Q_{\Lambda} \rightarrow \Lambda$, and show that ϕ is surjective and its kernel $I=\operatorname{ker} \phi$ is an admissible ideal of $K Q_{\Lambda}$
Let $\alpha: i \rightarrow j \in\left(Q_{\Lambda}\right)_{1}$, and choose $a_{\alpha} \in \operatorname{rad}$ such that $\left\{a_{\alpha}+\operatorname{rad}^{2} \Lambda \mid \alpha: i \rightarrow j\right\}$ forms basis in $e_{i}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{j}$. Consider the following maps:

$$
\begin{aligned}
& \phi_{0}:\left(Q_{\Lambda}\right)_{0} \rightarrow A ; x \mapsto e_{x} \\
& \phi_{1}:\left(Q_{\Lambda}\right)_{1} \rightarrow \Lambda ; \alpha \mapsto a_{\alpha}
\end{aligned}
$$

By (1.2.5) we get an algebra homomorphism $\phi: K Q_{\Lambda} \rightarrow \Lambda$. It remains to check that ϕ is surjective ant it kernel is an admissible ideal of $K Q_{\Lambda}$. The Wedderburn-Malcev theorem tells us that $\Lambda \cong \Lambda / \operatorname{rad} \Lambda \oplus \operatorname{rad} \Lambda$. The former space is generated by the e_{x}, while any element of rad is in the image by (1.2.15). So, ϕ is surjective. By definition, $\phi\left(R_{Q}\right) \subseteq \operatorname{rad} \Lambda$, hence $\phi\left(R_{Q}^{l}\right) \subseteq \operatorname{rad}^{l} \Lambda$ for any $l \geq 1$. Because $\operatorname{rad} \Lambda$ is nilpotent, there exists an $n \geq 1$ such that $R_{Q}^{n} \subseteq \operatorname{ker} \phi=I$. It remains to check that $I \subseteq R_{Q}^{2}$. Any $a \in I$ can be written as

$$
a=\sum_{x \in\left(Q_{\Lambda}\right)_{0}} \epsilon_{x} \lambda_{x}+\sum_{\alpha \in\left(Q_{\Lambda}\right)_{1}} \alpha \mu+b
$$

Where $\lambda_{x}, \mu_{\alpha} \in K$ and $b \in R_{Q}^{2}$. If $\phi(a)=0$, we have

$$
\sum_{x \in\left(Q_{\Lambda}\right)_{0}} \epsilon_{x} \lambda_{x}=-\sum_{\alpha \in\left(Q_{\Lambda}\right)_{1}} x_{\alpha} \mu_{\alpha}-\phi(b) \in \operatorname{rad} \Lambda
$$

Because $\operatorname{rad} \Lambda$ is nilpotent, and e_{x} are orthogonal idempotents, we infer that $\lambda_{x}=0$, for any $x \in$ $\left(Q_{\Lambda}\right)_{0}$. Similarly $\sum_{\alpha \in\left(Q_{\Lambda}\right)_{1}} a_{\alpha} \mu_{\alpha}=-\phi(b) \in \operatorname{rad}^{2} \Lambda$, so the equality $\sum_{\alpha \in\left(Q_{\Lambda}\right)_{1}}\left(a_{\alpha}+\operatorname{rad}^{2} \Lambda\right) \mu_{\alpha}=0$ holds in $\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda$. But the set $\left\{a_{\alpha}+\operatorname{rad}^{2} \Lambda \mid \alpha \in\left(Q_{\Lambda}\right)_{1}\right\}$ is, by construction, a basis of $\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda$. So all the μ_{α} have to be zero, hence $a=b \in R_{Q}^{2}$.

Remark 1.2.20. We say two algebras Λ and Λ^{\prime} are Morita equivalent if $\bmod \Lambda \cong \bmod \Lambda^{\prime}$. Since any algebra Λ is Morita equivalent to a basic algebra by (1.1.26). And (1.2.18) implies, in particular, that any connected algebra is Morita equivalent to a bound quiver algebra.

1.3 Representations of bound quivers

Definition. Let Q be a finite quiver. A K-linear representation M of Q comprises the following data. For each point $x \in Q_{0}$ a vector space M_{x} and for every arrow $\alpha: x \rightarrow y$ in Q_{1} a K-linear map $\phi_{\alpha}: M_{x} \rightarrow M_{y}$. A representaion is called finite dimensional if every M_{x} is a finite dimensional vector space.
A morphism between representations M and M^{\prime} comprises linear maps $f_{x}: M_{x} \rightarrow M_{x}^{\prime}$ for every $x \in Q_{0}$ such that the following diagram commute

for all x, y and α.

It is clear that maps of representations can be composed and that there exist identity maps, thus there is a category $\operatorname{Rep}(Q)$ of representations of Q. We can define direct sums, kernels and images componentwise and it is easily checked that this makes $\operatorname{Rep}(Q)$ into an abelian category. The full abelian subcategory of finite dimensional representations will be denoted by $\operatorname{rep}(Q)$.

Example. Let Q be the quiver $1 \longrightarrow 2 \longrightarrow 3$. A representation of Q is, for example $N=[$ $K \xrightarrow{i d} K \xrightarrow{0} K$.$] and another one is N^{\prime}=[0 \xrightarrow{0} K \xrightarrow{0} 0$.]. It is easily checked that $\operatorname{Hom}\left(N, N^{\prime}\right)=0$, and $\operatorname{Hom}\left(N^{\prime}, N\right) \cong K$.

Definition. If $w=\alpha_{1} \alpha_{2} \ldots \alpha_{l}$ is a nontrivial path from x to y in a finite quiver Q, the evaluation of w is the K-linear map from M_{x} to M_{y} defined by

$$
\phi_{w}=\phi_{\alpha_{l}} \phi_{\alpha_{l-1}} \ldots \phi_{\alpha_{2}} \phi_{\alpha_{1}} .
$$

This extends to K-linear combinations of paths with the same source and target. If I is an admissible of $K Q$, a representation M of Q is said to satisfy the relations in I or to be bounded by I if $\phi_{\rho}=\sum_{i=1}^{n} \lambda_{i} \phi_{w_{i}}=0$ for all relations $\rho=\sum_{i=1}^{n} \lambda_{i} w_{i}$ in I.

The full subcategory of $\operatorname{Rep}(Q)$ comprises representations satisfying the relations in I will be denoted by $\operatorname{Rep}(Q, I)$, and similarly for $\operatorname{rep}(Q)$.

Theorem 1.3.1. Let Q be a finite connected quiver, I be an admissible ideal of $K Q$ and $\Lambda=K Q / I$. There exist a K-linear equivalence

$$
F: \operatorname{Mod} \Lambda \cong \operatorname{Rep}(Q, I)
$$

that restricts to an equivalence of categories $F: \bmod \Lambda \cong \operatorname{rep}(Q, I)$.

Proof. We start with the construction of a functor $F: \operatorname{Mod} \Lambda \rightarrow \operatorname{rep}(Q, I)$. Let $M \in \operatorname{Mod} \Lambda$ and $x \in Q_{0}$. Set M_{x} to be $M e_{x}$, where e_{x} is the image of the stationary path ϵ_{x} under the canonical projection $K Q \rightarrow K Q / I$. Next, if $\alpha: x \rightarrow y$ is an arrow and $a \in M_{x}=M e_{x}$, let $\phi_{\alpha}(a)=a \bar{\alpha}$, where $\bar{\alpha}$ is the residual class of α modulo I. $\rho=\sum_{i=1} \lambda_{i} w_{i}$ is a relation in I, then $\phi_{\rho}(a)=\sum_{i=1} \lambda_{i} \phi_{w_{i}}(a)=a \bar{\rho}=0$. Hence, $F(M)$ is indeed a representation bound by I. Let $f: M \rightarrow M^{\prime}$ be a homomorphism of Λ-modules. For any $x \in Q_{0}$ and $a=a e_{x} \in M_{x}$. Then

$$
f\left(a e_{x}\right)=f\left(a e_{x}^{2}\right)=f\left(a e_{x}\right) e_{x} \in M^{\prime} e_{x}=M_{x}^{\prime}
$$

That is, we get a K-linear map $f_{x}: M_{x} \rightarrow M_{x}^{\prime}$ for any $x \in Q_{0}$ which just a restriction of f. Given an arrow $\alpha: x \rightarrow y$ and $a \in M_{x}$, we now calculate

$$
f_{y} \phi_{\alpha}(a)=f(a \bar{\alpha})=f(a) \bar{\alpha}=\phi_{\alpha}^{\prime} f_{x}(a) .
$$

It is obvious that F is a K-linear functor. Moreover, it restricts to a functor $\bmod \Lambda \rightarrow$ $\operatorname{rep}(Q, I)$.
We now define a functor $G: \operatorname{Rep}(Q, I) \rightarrow \operatorname{Mod} \Lambda$. Let M be a representation bound by I. We set $G(M)=\bigoplus_{x \in Q_{0}} M_{x}$ and define a Λ-module structure on $G(M)$ in two steps, first by specyfying a $K Q$-module structure and then show that it is annihilated by I. To define a $K Q$-module structure on $G(M)$, it suffices to define the product of the form $a w$, where w is a path in Q. If $w=\epsilon_{x}$ is the stationary path in x, we set $a w=x \epsilon_{x}=a_{x}$. If w is a nontrivial path from x to y, we define $a w$ to be the component of $\phi_{w}(a)$ in M_{y}. This endows $G(M)$ with a $K Q$-module structure. If $\rho \in I$, by definition $a \rho=0$, hence $G(M)$ is a Λ-module.
Next, given a morphism $\left(f_{x}\right)_{x \in Q_{0}}$ from $M=\left(M_{x}, f_{x}\right)$ to $M^{\prime}=\left(M_{x}^{\prime}, f_{x}^{\prime}\right)$, there exists a K-linear map

$$
f=\bigoplus_{x \in Q_{0}} f_{x}: G(M)=\bigoplus_{x \in Q_{0}} M_{x} \rightarrow G\left(M^{\prime}\right)=\bigoplus_{x \in Q_{0}} M_{x}^{\prime}
$$

We claim that this map is Λ-homomorphism. It suffices to show that the statement for $a=a_{x} \in M_{x} \subset G(M)$ and $\bar{w} \in K Q / I$, where w is a path from x to y in Q. Then

$$
f\left(a_{x} \bar{w}\right)=f_{y} \phi_{w}\left(a_{x}\right)=\phi_{w}^{\prime} f_{x}\left(a_{x}\right)=f(a) \bar{w} .
$$

The functor G is obviously K-linear and restricts to a functor $\operatorname{rep}(Q, I) \rightarrow \bmod \Lambda$. If is easy to check that $F G \cong 1_{\operatorname{Rep}(Q, I)}$ and $G F \cong 1_{\operatorname{Mod} \Lambda}$. Finally, we note that a representation M of a finite quiver is finite dimensional if and only if M_{x} is finite dimensional for all $x \in Q_{0}$, which proves that F and G restrict to equivalences of smaller categories.

Next we recall from (1.1.18) and (1.1.21) classify the indecomposable projective and simple modules in $\bmod \Lambda$, where Λ is any finite dimensional algebra.
We now consider the following situation. Let Q be a finite connected quiver with n vertices, be an admissible ideal of $K Q$ and let $K Q / I$ be the associated path algebra, which we know is basic and connected, to have R_{Q} / I as radical and $\pi\left(\epsilon_{x}\right)=e_{x}$, for $x \in Q_{0}$ as a complete set of primitive orthogonal idempotents. Here we want to understand the indecomposable projective/injective
and simple modules in $\bmod \Lambda \rightarrow \operatorname{rep}(Q, I)$.
We also deduce some interesting results of the following description.
Let $x \in Q_{0}$, we denote by $S(x)$ the representation $S(x)_{y}$, defined by $S(x)_{y}=\delta_{x y} K$, where $\delta_{x y}$ is the Kronecker delta and $y \in Q_{0}$. In other words, $S(x)$ only has the vector space K over the vertex x. Hence, all the linear maps in $S(x)$ are zero.

Let
Lemma 1.3.2. Let $\Lambda=K Q / I$ be the bound qiver algebra of (Q, I). The Λ-modules $S(x)$ is isomorphic to top $e_{x} \Lambda$. In particular, the set $\left\{S(x) \mid x \in Q_{0}\right\}$ contains precisely the simple Λ-modules

Proof. The K-vector space $S(x)$ is one dimensional for all $x \in Q_{0}$ and defines a simple Λ module. We also have $\operatorname{Hom}_{\Lambda}\left(e_{x} \Lambda, S(x)\right) \cong S(x) e_{x} \cong S(x)_{x} \neq 0$, then there exist a nonzero map $e_{x} \Lambda \rightarrow S(x)$. The map is surjective by Schurs's lemma and its kernel is a maximal submodule of $e_{x} \Lambda$, hence isomorphic to $\operatorname{rad} e_{x} \Lambda$. This proves the first statement. To prove the second statement: we see clearly that $\operatorname{Hom}(S(x), S(y))=0$ for $x \neq y$, so the $S(x)$ are pairwise nonisomorphic.

Remark. Warning!, in contrast to the description of the simple modules of (finite dimensional) bound quiver algebra $K Q / I$ given in the secaond statement of (1.3.2), any path algebra $\Lambda=K Q$ of a finite quiver Q with an oriented cycle has infinitely many pairwise nonisomorphic simple modules of finite dimension, distinct from the modules $S(x)$, with $x \in Q_{0}$. For example, take Q to be

$$
1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2
$$

We have the simple modules $S(1)=[K \underset{0}{\stackrel{0}{\rightleftarrows}} 0]$ and $S(2)=[0 \underset{0}{\stackrel{0}{\rightleftarrows}} K]$. But also $S_{\lambda}=[K \underset{\lambda}{\stackrel{i d}{\rightleftarrows}} K]$ for $\lambda \in K$ are simple nonisomorphic modules.

Before we state the next result, We define the socle of a module M, denoted by $\operatorname{soc} M$, to be the submodule of M generated by all simple submodules of M. Moreover, we say that a vertex of a quiver is sink if no arrow starts in this vertex.

Lemma 1.3.3. Let $M=\left(M_{x}, \phi_{\alpha}\right)$ be a bound representation of (Q, I). Then
a) M is semisimple if and only if $\phi_{\alpha}=0$ for all $\alpha \in Q_{1}$.
b) $\operatorname{soc} M=N$ where $N=\left(N_{x}, \psi_{\alpha}\right)$ is the representation where $N_{x}=M_{x}$ if x is a sink, whereas

$$
N_{x}=\bigcap_{\alpha: x \rightarrow y} \operatorname{ker}\left(\phi_{\alpha}: M_{x} \rightarrow M_{y}\right)
$$

if x is not a sink, and $\psi_{\alpha}=0$ for every arrow α.
c) $\operatorname{rad} M=J$, where $J=\left(J_{x}, \gamma_{\alpha}\right)$ with

$$
J_{x}=\sum_{\alpha: y \rightarrow x} \operatorname{Im}\left(\phi_{\alpha}: M_{y} \rightarrow M_{x}\right)
$$

and $\gamma_{\alpha}=\left.\phi_{\alpha}\right|_{J_{x}}$ for every arrow α of source x.
d) top $M=L$, where $L=\left(L_{x}, \psi_{\alpha}\right)$ with $L_{x}=M_{x}$ if x is a source, while

$$
L_{x}=\sum_{\alpha: y \rightarrow x} \operatorname{coker}\left(\phi_{\alpha}: M_{y} \rightarrow M_{x}\right)
$$

if x is not a source, and $\psi_{\alpha}=0$ for any arrow α.

Proof. a) The first part follows easily from fact that $\phi_{\alpha}=0$ for every $\alpha \in Q_{1}$ if and only if M is a direct sum of sopies of $S(x)$.
b) Obviously, N is a semisimple submodule of M. Let S be a simple submodule of M, which has to be isomorphic to some $S(x)$. We thus have, for each arrow $\alpha: x \rightarrow y$, the following commutative diagram

It follows that $S(x)_{x} \subseteq \operatorname{ker} \phi_{\alpha}$ for all arrows $\alpha: x \rightarrow y$, so $S(x)_{x} \subseteq N_{x}$. This shows that $S(x) \subseteq N$, hence $N=\operatorname{soc} M$.
c) Since $\operatorname{rad} \Lambda=R_{Q} / I$ is generated as a two-sided ideal by the residual class modulo I of the arrows $\alpha \in Q_{1}$, it follows from (1.3.1) that

$$
J=\operatorname{rad} M=M \cdot \operatorname{rad} \Lambda=M \cdot\left(R_{Q} / I\right)=\sum_{\alpha \in Q_{1}} M \bar{\alpha}
$$

where the sum is taken over all arrows of target x . For such an arrow $\alpha: y \rightarrow x$, we have $M \bar{\alpha}=M e_{y} \bar{\alpha}=M_{y} \bar{\alpha}=\phi_{\alpha}\left(M_{y}\right)=\operatorname{Im} \phi_{\alpha}$, since the action of ϕ_{α} corresponds to the right multiplication by $\bar{\alpha}$. Therefore J_{x} is as claimed and since J is a submodule of M, we have $\gamma_{\alpha}=\left.\phi_{\alpha}\right|_{J_{x}}$.
d) Follows from (c), since $L=M /(M \operatorname{rad} \Lambda)=$ top M

Lemma 1.3.4. Let (Q, I) be a bound quiver, $\Lambda=K Q / I$ and $P(x)=e_{x} \Lambda$, where $e_{x}=\epsilon_{x}+I$ and $x \in Q_{0}$. We have the decomposition $\Lambda_{\Lambda}=\bigoplus_{x \in Q_{0}} e_{x} \Lambda$ corresponding to the complete set of primitive orthogonal idempotents $\left\{e_{x} \mid x \in Q_{0}\right\}$.
a) If $P(x)=\left(P(x)_{y}, \phi_{\beta}\right)$, then $P(x)_{y}$ is the vector space with basis the set of all $\bar{w}=w+I$ with w a path from x to y, and for an arrow $\beta: y \rightarrow z$, the $\operatorname{map} \phi_{\beta}: P(x)_{y} \rightarrow P(x)_{z}$ is given by the right multiplication with $\bar{\beta}=\beta+I$.
b) Let $\operatorname{rad} P(x)=\left(P^{\prime}(x)_{y}, \phi_{\beta}^{\prime}\right)$. Then $P^{\prime}(x)_{y}=P(x)_{y}$ for $y \neq x, P^{\prime}(x)_{x}$ is the vector space with basis set of all $\bar{w}=w+I$ with w a nontrivial path from x to $x, \phi_{\beta}^{\prime}=\phi_{\beta}$ for any arrow of source $y \neq x$ and ϕ_{α}^{\prime} is the restriction of ϕ_{α} to $P^{\prime}(x)_{x}$ for any arrow α with source x.

Proof. It suffices to prove (a), because (b) follows from it and (1.3.3c). We have

$$
P(x)_{y}=P(x) e_{y}=e_{x} \Lambda e_{y}=e_{x}(K Q / I) e_{y}=\left(\epsilon_{x} K Q \epsilon_{y}\right) /\left(\epsilon_{x} I \epsilon_{y}\right)
$$

This proves the (a). It follows immediately from the construction of the functor F, that for an arrow $\beta: y \rightarrow z$, the K-linear map ϕ_{β} is given by the right multiplication with $\bar{\beta}$, proving (b).

Remark. If $I=0$ and Q is acyclic, the space $P(x)_{y}$ has basis the set of all paths from x to y.

Example 1.3.5. Let Q be the quiver

The indecomposable projective KQ-modules are given by:

and $P(3)=$

Proposition 1.3.6. Every indecomposable injective module in $\bmod \Lambda$ is isomorphic to $I(j)=$ $D\left(\Lambda e_{j}\right)$ for some j. Dually to the case of projective modules, the modules $I(j)$ is the injective envelope of the simple module $S(j)$ for all j.

Again looking at our quiver. Note that, since $\operatorname{Hom}(e \Lambda, M) \cong M e$ for any idempotent e in an algebra Λ, we have $\operatorname{Hom}\left(\Lambda e_{x}, \Lambda\right)=D\left(\Lambda e_{x}\right)=I(x)$, since the Λe_{x} are the projective modules in $\Lambda^{o p}$. Hence,

Proposition 1.3.7. If $\Lambda=K Q$ is a bound quiver algebra, the indecomposable injective modules are precisely $I(x)=D\left(\Lambda e_{x}\right)$ for $x \in Q_{0}$.

Lemma 1.3.8. a) Given $x \in Q_{0}$, the simple module $S(x)$ is isomorphic to the simple socle of $I(x)$.
b) If $I(x)=\left(I(x)_{y}, \phi_{\beta}\right)$, then $I(x)_{y}$ is the dual of the K-vector space with basis the set of all $\bar{w}=w+I$ with w a path from y to x, and for an arrow $\beta: y \rightarrow z$ the map $\phi_{\beta}: I(x)_{y} \rightarrow I(x)_{z}$ is given by the dual of the left multiplication by $\bar{\beta}$.
c) Let $I(x) / S(x)=\left(L_{y}, \psi_{\beta}\right)$. Then L_{y} is the quotient space of $I(x)_{y}$ spanned by the residual classes of paths from y to x of length at least one, and ψ_{β} is the induced map.

Proof. a) Since $S(x) \cong$ top $e_{x} \Lambda$, and this is isomorphic to the socle of $I(x)$ by duality. Alternatively we can apply (1.3.3b).
b) We have $I(x)_{y}=I(x) e_{y}=D\left(\Lambda e_{x}\right) e_{y} \cong D\left(e_{y} \Lambda e_{x}\right) \cong D\left(\epsilon_{y}(K Q) \epsilon_{x} / \epsilon_{y} I \epsilon_{x}\right)$, the first statement follows from (1.3.4). similarly, if $\beta: y \rightarrow z$ is an arrow, the K-linear map $\phi_{\beta}: D\left(\epsilon_{y}(K Q) \epsilon_{x} / \epsilon_{y} I \epsilon_{x}\right) \rightarrow D\left(\epsilon_{z}(K Q) \epsilon_{x} / \epsilon_{z} I \epsilon_{x}\right)$ is defined as follows: Let μ_{β} : $D\left(\epsilon_{z}(K Q) \epsilon_{x} / \epsilon_{z} I \epsilon_{x}\right)$ be the left multiplication $\bar{w} \mapsto \bar{\beta} \bar{w}$, then $\phi_{\beta}=D\left(\mu_{\beta}\right)$ is given by $\phi_{\beta}(f)=f \mu_{\beta}$ for $f \in D\left(\epsilon_{y}(K Q) \epsilon_{x} / \epsilon_{y} I \epsilon_{x}\right)$, that is $\phi_{\beta}(f)(\bar{w})=f(\bar{\beta} \bar{w})$.
c) Statement (c) is a consequence of (b).

Example. Let Q be the quiver as in Example (1.3.5). Then $I(2)=S(2), I(3)=S(3)$ and the indecomposable injective $I(1)$ is

Thus $I(2) / S(2)=0, I(3) / S(3)=0$, while $I(1) / S(1) \cong S(2) \oplus S(3)$.

1.4 EXISTENCE OF AN EXPRESSION OF THE QUIVER OF Λ IN TERMS OF THE EXTENSIONS BETWEEN SIMPLE MODULES

The previous results show that for each $x \in Q_{0}$ correspond to an idecomposable projective Λ-module $P(x)$ and an indecomposable injective module $I(x)$. The connection between them can be expressed by means of an endofunctor of the module category.

Definition 1.4.1. Let Λ be an algebra. The Nakayama functor of $\bmod \Lambda$ is defined to be the endofunctor $\nu=D \operatorname{Hom}_{\Lambda}(-, \Lambda): \bmod \rightarrow \bmod \Lambda$

Lemma 1.4.2. The Nakayama functor is right exact and isomorphic to the functor $-\otimes_{\Lambda} D \Lambda$.

Proof. First we note that ν is the composition of two contravariant left exact functors, so it is right exact. We define a functorial morphism $\varphi:-\otimes_{\Lambda} D \Lambda \rightarrow \nu=D \operatorname{Hom}_{\Lambda}(-, \Lambda)$ for Λ-module M by

$$
\varphi_{M}: M \otimes_{\Lambda} D \Lambda \rightarrow D \operatorname{Hom}_{\Lambda}(M, \Lambda), a \otimes f \mapsto(\phi \mapsto f(\phi(a)),
$$

for $a \in M, f \in D \Lambda$, and $\phi \in \operatorname{Hom}_{\Lambda}(M, \Lambda)$. If $M_{\Lambda}=\Lambda_{\Lambda}$, then φ_{M} is an isomorphism. φ_{M} an isomorphism if M_{Λ} is a projective Λ-module since both functors are K-linear. Now let M be arbitrary, and

$$
P_{1} \xrightarrow{p_{1}} P_{0} \xrightarrow{p_{0}} M \longrightarrow 0
$$

be a projective presentation for M. Since $-\otimes_{\Lambda} D \Lambda$ and ν are both right exact we apply both functors to a projective presentation of M to get the following commutative diagram with exact rows:

Since $\varphi_{P_{1}}$ and $\varphi_{P_{0}}$ are isomorphism, so is φ_{M}

Proposition 1.4.3. The Nakayama functor establishes an equivelence between the full subcategory of projective modules and the full subcategory of injective modules. The quasi-inverse is given by $\operatorname{Hom}_{\Lambda}\left(D\left({ }_{\Lambda} \Lambda\right),-\right)$.

Proof. For $x \in Q_{0}$, we have $\nu P(x)=D \operatorname{Hom}\left(e_{x} \Lambda, \Lambda\right) \cong D\left(\Lambda e_{x}\right)=I(x)$. On the other hand,

$$
\begin{aligned}
\operatorname{Hom}_{\Lambda}\left(D\left({ }_{\Lambda} \Lambda\right), I(x)\right) & =\operatorname{Hom}_{\Lambda}\left(D\left({ }_{\Lambda} \Lambda\right), D\left(\Lambda e_{x}\right)\right) \\
& \cong \operatorname{Hom}_{\Lambda^{o p}}\left(\Lambda e_{x}, \Lambda\right) \cong e_{x} \Lambda=P(x) .
\end{aligned}
$$

Lemma 1.4.4. Let $\Lambda=K Q / I$ be a bound quiver algebra. For every Λ-module and $x \in Q_{0}$. There are functorial isomorphisms of K-vector spaces $\operatorname{Hom}_{\Lambda}(P(x), M) \cong M e_{x} \cong D \operatorname{Hom}_{\Lambda}(M, I(x))$.

Proof. Since $P(x)=e_{x} \Lambda$, the first isomorphism is obvious. The second isomorphism is the composition

$$
\begin{aligned}
D \operatorname{Hom}_{\Lambda}(M, I(x)) & \cong D \operatorname{Hom}_{\Lambda}\left(M, D\left(\Lambda e_{x}\right)\right) \cong \operatorname{Hom}_{\Lambda^{o p}}\left(\Lambda e_{x}, D M\right) \\
& \cong D\left(e_{x} D M\right) \cong D(D M) e_{x} \cong M e_{x}
\end{aligned}
$$

As a consequence, we obtain an expression of the quiver of Λ interms of the extensions between simple modules as a main result in this section.

Proposition 1.4.5. Let $\Lambda=K Q / I$ and $x, y \in Q_{0}$. There exists an isomorphism of K-vector spaces

$$
\operatorname{Ext}_{\Lambda}^{1}(S(x), S(y)) \cong e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y} .
$$

Proof. Let
$\ldots \longrightarrow P_{2} \xrightarrow{p_{2}} P_{1} \xrightarrow{p_{1}} P_{0} \xrightarrow{p_{0}} S \longrightarrow 0$
be a minimal projective resolution of the simple module S. Let take S^{\prime} to be another simple module. By definiton to compute Ext ${ }^{1}$, we have to apply the functor $\operatorname{Hom}\left(-, S^{\prime}\right)$ to the complex
$\ldots \longrightarrow P_{2} \xrightarrow{p_{2}} P_{1} \xrightarrow{p_{1}} P_{0} \longrightarrow 0$
and compute the homology of the resulting complex, thus we have

$$
0 \rightarrow \operatorname{Hom}_{\Lambda}\left(P_{0}, S^{\prime}\right) \xrightarrow{\operatorname{Hom}_{\Lambda}\left(p_{1}, S^{\prime}\right)} \operatorname{Hom}_{\Lambda}\left(P_{1}, S^{\prime}\right) \xrightarrow{\operatorname{Hom}_{\Lambda}\left(p_{2}, S^{\prime}\right)} \operatorname{Hom}_{\Lambda}\left(P_{2}, S^{\prime}\right) \rightarrow \ldots
$$

We Show that $\operatorname{Hom}_{\Lambda}\left(p_{j+1}, S^{\prime}\right)=0$ for every $j \geq 0$. Let $f \in \operatorname{Hom}_{\Lambda}\left(P_{j}, S^{\prime}\right)$ be a nonzero homomorphism. Since S^{\prime} is simple, f is surjective so there exist an indecomposable summand P^{\prime} of P_{j} such that f is the composition $P_{j} \rightarrow P^{\prime} \rightarrow P^{\prime} / \operatorname{rad} P^{\prime} \cong S^{\prime}$. Since we assumed the resolution to be minimal, we have $P_{j} / \operatorname{rad} P_{j} \cong \operatorname{Im} p_{j} / \operatorname{rad}\left(\operatorname{Im} p_{j}\right)$, so there exist a surjection from $\operatorname{Im} p_{j}=P_{j} / \operatorname{ker} p_{j}$ to $P_{j} / \operatorname{rad} P_{j}$, hence $\operatorname{Im} p_{j+1}=\operatorname{ker} p_{j} \subseteq \operatorname{rad} P_{j}$. Since the map $\operatorname{Hom}_{\Lambda}\left(p_{j+1}, S^{\prime}\right):$ $\operatorname{Hom}_{\Lambda}\left(p_{j}, S^{\prime}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(p_{j+1}, S^{\prime}\right)$ is given by precomposing with p_{j+1}, we obtain for any $j \geq 0$ and any $a \in P_{j}$,

$$
\operatorname{Hom}_{\Lambda}\left(p_{j+1}, S^{\prime}\right)(f)(a)=f p_{j+1}(a) \in f\left(\operatorname{Im} p_{j+1}\right) \subseteq f\left(\operatorname{rad} P_{j}\right)=0 .
$$

Hence $\operatorname{Hom}_{\Lambda}\left(p_{j+1}, S^{\prime}\right)(f)(a)=0$ as desired. In particular, we have $\operatorname{Ext}_{\Lambda}^{1}\left(S, S^{\prime}\right) \cong$ ker $\operatorname{Hom}_{\Lambda}\left(p_{2}, S^{\prime}\right) / \operatorname{Im~}_{\operatorname{Hom}_{\Lambda}}\left(p_{1}, S^{\prime}\right) \cong \operatorname{Hom}_{\Lambda}\left(P_{1}, S^{\prime}\right)$. If $S=S(x)$. The semisimple module $\operatorname{rad} P(x) / \operatorname{rad}^{2} P(x)$ is a direct sum of simple modules, thus

$$
\operatorname{rad} P(x) / \operatorname{rad}^{2} P(x)=\bigoplus_{z \in Q_{0}} S(z)^{n_{z}}
$$

for some integers n_{z}. Now in the construction of a minimal projective resolution of $S(x)$. First, we take the projective cover of $S(x)=$ top $P(x)$ which is just $P(x)$ and the map $P(x) \rightarrow S(x)$ is the natural projection. Next, we consider the ker of this map, namely $\operatorname{rad} P(x)=M_{1}$ and take it projective cover. The approach was to consider the semisimple $\Lambda / \operatorname{rad} \Lambda=B$ - $\operatorname{module} M_{1} / \operatorname{rad} M_{1}$, take its decomposition and then "lift" to Λ. Hence, in our case this gives that the next term in the resolution is precisely $\bigoplus_{z \in Q_{0}} S(z)^{n_{z}}$. Hence, $\operatorname{Ext}_{\Lambda}^{1}(S(x), S(y))=\operatorname{Hom}_{\Lambda}\left(\bigoplus_{z \in Q_{0}} S(z)^{n_{z}}, S(y)\right)$. Note that for a simple module S and any module M we have $\operatorname{Hom}_{\Lambda}(M, S) \cong \operatorname{Hom}_{\Lambda}(M / \operatorname{rad} M, S)$, because any nontrivial map from M to S sends rad M to 0 . Applying this to $M=\bigoplus_{z \in Q_{0}} S(z)^{n_{z}}$, we obtain $\operatorname{Ext}_{\Lambda}^{1}(S(x), S(y))=\operatorname{Hom}_{\Lambda}\left(\operatorname{rad} P(x) / \operatorname{rad}^{2} P(x), S(y)\right)$. Because $\operatorname{rad} P(x) / \operatorname{rad}^{2} P(x)$ is semisimple it is equal to its socle. On the other hand, $S(y)$ is the socle of $I(y)$. Since any map between modules maps the socle into socle, we have that, $\operatorname{Hom}_{\Lambda}\left(\operatorname{rad} P(x) / \operatorname{rad}^{2} P(x), S(y)\right) \cong$ $\operatorname{Hom}_{\Lambda}\left(\operatorname{rad} P(x) / \operatorname{rad}^{2} P(x), I(y)\right)$. So that

$$
\begin{aligned}
\operatorname{Ext}_{\Lambda}^{1}(S(x), S(y)) & \cong \operatorname{Hom}_{\Lambda}\left(\bigoplus_{z \in Q_{0}} S(z)^{n_{z}}, S(y)\right) \cong \operatorname{Hom}_{\Lambda}\left(\operatorname{rad} P(x) / \operatorname{rad}^{2} P(x), S(y)\right) \\
& \cong \operatorname{Hom}_{\Lambda}\left(\operatorname{rad} P(x) / \operatorname{rad}^{2} P(x), I(y)\right) \cong D \operatorname{Hom}_{\Lambda}\left(P(y), \operatorname{rad} P(x) / \operatorname{rad}^{2} P(x)\right) \\
& \cong D \operatorname{Hom}_{\Lambda}\left(e_{y} \Lambda, e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right)\right) \cong D\left(e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y}\right) \\
& \cong e_{x}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right) e_{y} .
\end{aligned}
$$

Where the fourth isomorphism is from (1.4.3), the fifth isomorphism applies the equality $M \operatorname{rad} \Lambda=\operatorname{rad} M$ to $M e_{x} \Lambda$ and the sixth is from (1.1.9).

Chapter 2

Algebras of finite global DIMENSION:ACYCLIC QUIVERS

The motivating thing in this chapter is to lead us to the following conjectures relating to the structure of the quiver Q_{Λ}.

- No loop conjecture :If gldim $\Lambda<\infty$, then Λ has no loop in the quiver or equivalently $\operatorname{Ext}_{\Lambda}(S, S)=0$ for all simple Λ-modules.
- Strong no loop conjecture :If S is a simple Λ-module of finite projective dimension then Q_{Λ} does not have a loop at the vertex corresponding to S or equivalently $\operatorname{Ext}_{\Lambda}^{1}(S, S)=0$.

2.1 DEFINITIONS AND COMMENTS

To start with, we recall some needed terminology. Let Λ be an artinian ring and mod- Λ to be the category of finitely generated left Λ modules. Let $M \in \bmod \Lambda$ then M is both artinian and noetherian and hence has finite length $l(M)$. Let $S(\Lambda)$ be the set of isomorphism classes of simple Λ-modules. By definition, the Gabriel quiver Q_{Λ} has $S(\Lambda)$ as it set of vertices. There is an arrow $S \rightarrow S^{\prime}$ if $\operatorname{Ext}_{\Lambda}^{1}\left(S, S^{\prime}\right) \neq 0$. An acyclic quiver Q_{Λ} is one without oriented cycles. Let for $n \geq 0 P_{n}$ be the minimal projective resolution of $M \in \bmod \Lambda$. We set $P_{-1}=M$ and for $n \geq 1$, we write

$$
\Omega^{n}(M)=\operatorname{ker}\left(P_{n-1} \rightarrow P_{n-2}\right)
$$

which is unique up to an isomorphism in $\bmod \Lambda$.
Definition 2.1.1. If M is a non-zero Λ-module. We say the projective dimension of M, denoted by $\operatorname{pd}(M)$ is as follows:

$$
\operatorname{pd}(M)=\sup \left\{n \geq 0 \mid \Omega^{n}(M) \neq 0\right\} \in \mathbb{N}_{0} \cup\{\infty\}
$$

Remark. We observe that projective dimension of 0 module is 0 . Also we note that modules of projective dimension zero are the projectives. That is the projective dimension of M measures the degree of departure from projectivity. We also recall, for every simple Λ-module S,

$$
\begin{equation*}
\operatorname{Ext}_{\Lambda}^{n}(M, S) \cong \operatorname{Hom}_{\Lambda}\left(\Omega^{n}(M), S\right) . \tag{2.1}
\end{equation*}
$$

As a result we have the following,

$$
\operatorname{pd}(M)=\sup \left\{n \geq 0 \mid \operatorname{Ext}_{\Lambda}^{n}(M,-) \neq 0\right\} .
$$

Let $M \in \bmod \Lambda$ and S a simple Λ-module, we set $[M: S]$ to be the multiplicity of S in a composition series of M. Then the long exact cohomology sequence now shows that

$$
\operatorname{pd}(M) \leq \max \{\operatorname{pd}(S) \mid[M: S] \neq 0\} .
$$

Definition 2.1.2. The global dimension of Λ, denoted by gldim Λ, is define as follows,

$$
\operatorname{gldim} \Lambda=\max \{\operatorname{pd}(S) \mid S, \text { simple }\} \in \mathbb{N}_{0} \cup\{\infty\} .
$$

2.2 SOME USEFUL RESULTS

Let J be the Jacobson radical of Λ and $P(S)$ the projective cover of a simple Λ-module S. Then for $n=1$ and every simple Λ module S^{\prime}, formula 2.1 specialises to

$$
\begin{equation*}
\operatorname{Ext}_{\Lambda}^{1}\left(S, S^{\prime}\right) \cong \operatorname{Hom}_{\Lambda}\left(J P(S) / J^{2} P(S), S^{\prime}\right) \tag{2.2}
\end{equation*}
$$

Lemma 2.2.1. Given S and S^{\prime} to be simple Λ - modules. If $\left[J P(S): S^{\prime}\right] \neq 0$, then there exists a path in Q_{Λ} of length ≥ 1 that starts at S and ends in S^{\prime}.

Proof. Let B be a factor module of $P(S)$ of maximal length, subject to all composition factors of $J B$ being endpoints of paths of lengths ≥ 1 that has originate in S. Let assume $P(S)$ is not simple, otherwise there is nothing to be shown. Alternatively formula 2.2 .2 , implies that $l(B) \geq 2$. Which yields a short exact sequence,

$$
0 \longrightarrow A \longrightarrow P(S) \longrightarrow B \longrightarrow 0 .
$$

Suppose $B \neq P(S)$, we choose a maximal submodule $C \subset A$ and consider the induced exact sequence

$$
0 \longrightarrow A / C \longrightarrow P(S) / C \longrightarrow B \longrightarrow 0 .
$$

As $P(S) / J P(S) \cong S$ is simple, the middle term is indecomposable, so the sequence does not split. Set $A^{\prime \prime}=A / C$, then we have $\operatorname{Ext}_{\Lambda}^{1}\left(B, A^{\prime \prime}\right) \neq 0$, and standard homological algebra provide a composition factor A^{\prime} of B with $\operatorname{Ext}_{\Lambda}^{1}\left(A^{\prime}, A^{\prime \prime}\right)=\neq 0$. If $A^{\prime} \cong S$, then there is a path from S to $A^{\prime \prime}$ of length 1. Alternatively, $\left[J B: A^{\prime}\right] \neq 0$, then there is a path from S to A^{\prime}, and also from S to $A^{\prime \prime}$. As a result, all composition factors of $J(P(S) / C)$ are endpoints of paths originating in S. Since, $l(P / C)=l(B)+1$, this contradict the maximality of $l(B)$. Hence $B=P(S)$

Lemma 2.2.2. Let S be a simple Λ-module and for $n \geq 0 P_{n}$ be a minimal projective resolution of S. If $P\left(S^{\prime}\right)$ is a direct summand of P_{n}, then there exist a path of length $\geq n$ originating in S and terminating in S^{\prime}.

Proof. We apply induction on n, the case $n=0$ is trivial. Let $n \geq 1$ and note that P_{n} is the projective cover of $\Omega^{n}(S)=\operatorname{ker}\left(P_{n-1} \rightarrow P_{n-2}\right) \subseteq J P_{n-1}$ (Here we set $P_{-1}=S$). As a result, $P_{n} / J P_{n} \cong \Omega^{n}(S) / J \Omega^{n}(S)$, thus $P\left(S^{\prime}\right)$ being a summand of P_{n} implies $\left[J P_{n-1}: S^{\prime}\right] \neq 0$. So there exists a summand $P\left(S^{\prime \prime}\right)$ of P_{n-1} with $\left[J P\left(S^{\prime \prime}\right): S^{\prime}\right] \neq 0$. Lemma 2.2.1 provides a path $S^{\prime \prime} \rightarrow S^{\prime}$ of length ≥ 1. By inductive hypothesis, there is a path $S \rightarrow S^{\prime \prime}$ of length $\geq n-1$ and concatenation yields the desired path from S to S^{\prime}.

Theorem 2.2.3. Given Q_{Λ} is acyclic, then $\operatorname{gldim} \Lambda \leq|S(\Lambda)|-1$.

Proof. Let S be a simple Λ-module with minimal projective resolution P_{n} for $n \geq 0$. As Q_{Λ} is acyclic, a path $\in Q_{\Lambda}$ has length $\leq|S(\Lambda)|-1=n$. From lemma 2.2.2 we get, $P_{n+1}=0$, whiles $\Omega^{n+1}(S) \cong \operatorname{Im}\left(P_{n+1} \rightarrow P_{n}\right)=0$. Hence $\operatorname{pd}(S) \leq n$, so that gldim $\Lambda \leq n$.

Remark. The proof shows that the projective dimension $\operatorname{pd}(S)$ of the simple Λ module S is bounded by the maximum length of all paths originating in S. The following examples shows that algebras of finite global dimension also occur for quivers that admit oriented cycles.

Example. Let k be a field and consider $\Lambda=k Q / I$, where Q is the quiver

and I is the ideal in $k Q$ generated by $\alpha \beta$. There are two simple modules S_{1} and S_{2}. And we have $\Omega\left(S_{1}\right)=P\left(S_{1}\right)$ and $\Omega^{2}\left(S_{2}\right)=P\left(S_{1}\right)$, thus $\operatorname{pd}\left(S_{1}\right)=1$ and $\operatorname{pd}\left(S_{2}\right)=2$ whiles the $\operatorname{gldim} \Lambda=2$.

Remark 2.2.4. Our formula 2.2 readily yields $Q_{\Lambda}=Q_{\Lambda} / J^{2}$. Thus we can hope to get more information for algebras satisfying $J^{2}=0$. Next we record the following observation:

Corollary 2.2.5. If $J^{2}=0$. Then the following statements hold:
a) If $\operatorname{gldim} \Lambda<\infty$, then Q_{Λ} has no oriented cycles.
b) If Λ has only one simple module, then Λ is simple.

Proof. a) Let S be a simple Λ-module. As $J^{2}=0$, the module $\Omega(S)=J P(S)=\bigoplus_{n S^{\prime \prime}} S^{\prime \prime}$ is semisimple and formula 2.2 implies

$$
n S^{\prime} \operatorname{Hom}_{\Lambda}\left(S^{\prime}, S^{\prime}\right) \cong \operatorname{Hom}_{\Lambda}\left(J P(S), S^{\prime}\right) \cong \operatorname{Ext}_{\Lambda}^{1}\left(S, S^{\prime}\right)
$$

Thus $n s^{\prime} \neq 0$ whenever there is an arrow $S \rightarrow S^{\prime}$, and in that case our Ext-criterion yields

$$
\operatorname{pd}\left(S^{\prime}\right) \leq \max \left\{\left.\operatorname{pd}\left(S^{\prime \prime}\right)\right|_{n S^{\prime \prime}} \neq 0\right\}=\operatorname{pd}(J P(S))<\operatorname{pd}(S)
$$

As a result Q_{Λ} has no oriented cycles.
b) Part (a) implies that Q_{Λ} has no arrows. So Λ is semi-simple and has only one simple module. By Artin-Wedderburn Theorem, Λ is simple.

Remark. We recall that an arrow starting and terminating at the same vertex is called a loop. There are two conjectures relating the structure of the quiver Q_{Λ} to the various dimensions introduced before.

- No loop conjecture:If gldim $\Lambda<\infty$, then Q_{Λ} has no loop.
- Strong no loop conjecture:If S is a simple Λ-module of finite projective dimension then Q_{Λ} does not have a loop at the vertex corresponding to S or equivalently $\operatorname{Ext}_{\Lambda}^{1}(S, S)=0$ for all simple Λ modules.

The subsequent chapters, provide the tools to prove the latter conjecture which is the reason for this work.

Chapter 3

Hattori-Stallings trace and Lenzing's RESULTS

Let Λ stands for a (basic) finite-dimensional algebra over an algebraically closed field. All modules are finitely generated right Λ-modules. We denote $\mathrm{HH}_{0}(\Lambda)$ to be the zeroth Hochschild homology group of Λ. It is well known that $\operatorname{HH}_{0}(\Lambda)=\Lambda /[\Lambda, \Lambda]$ is the quotient of Λ by the additive subgroup $[\Lambda, \Lambda]$ generated by all elements of the form $\lambda_{1} \lambda_{2}-\lambda_{2} \lambda_{1}$ where $\lambda_{1}, \lambda_{2} \in \Lambda$.
Firstly, as a main result of this section, we recall the notion of the trace of an endomorphism f of a projective module P in $\bmod \Lambda$, as defined by Hattori and Stallings; see [1],[12],[14] and [15]. Thus if $f \in \operatorname{End}(P)$. Write, $P \cong e_{1} \Lambda \oplus \ldots \oplus e_{n} \Lambda$, where the e_{i} are primitive idempotents in Λ. Then $f=\left(a_{i j}\right)_{n \times n}$, where $a_{i j} \in e_{i} \Lambda e_{j}$. We define the trace of f as:

$$
\begin{aligned}
& \operatorname{tr}: \operatorname{End}(P) \rightarrow \Lambda /[\Lambda, \Lambda] \\
& \qquad f \mapsto \operatorname{tr}(f)=\sum_{i=1}^{n} a_{i i}+[\Lambda, \Lambda] .
\end{aligned}
$$

We will later see in section 3.2 that this definition does not depend on the decomposition of P. This function enjoys the usual properties of a trace which we recall in the following:

Proposition (HATTORI-STALLINGS). Let P, P^{\prime} be projective modules in $\bmod \Lambda$
(HS1) if $f, g \in \operatorname{End}_{\Lambda}(P)$ then $\operatorname{tr}(f+g)=\operatorname{tr}(f)+\operatorname{tr}(g)$
(HS2) if $f: P \rightarrow P^{\prime}$ and $g: P^{\prime} \rightarrow P$ are Λ - linear then $\operatorname{tr}(f g)=\operatorname{tr}(g f)$
(HS3) if $f=\left(\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right) \in \operatorname{End}_{\Lambda}\left(P \oplus P^{\prime}\right)$ then $\operatorname{tr}(f)=\operatorname{tr}\left(f_{11}\right)+\operatorname{tr}\left(f_{22}\right)$
(HS4) if $g \in \operatorname{Hom}_{\Lambda}\left(P, P^{\prime}\right)$ is an isomorphism and $f \in \operatorname{End}_{\Lambda}(P)$ then $\operatorname{tr}\left(g f g^{-1}\right)=\operatorname{tr}(f)$
(HS5) if $f \in \operatorname{End}_{\Lambda}(\Lambda)$ is the left multiplication by $a \in \Lambda$ then $\operatorname{tr}(f)=a+[\Lambda, \Lambda]$.

Secondly, since this will be the main result, we aim to prove these properties in section 3.1. Here, we will start by developing some background statements of traces of endomorphisms of projective modules Λ-modules.

Thirdly, in section 3.2, we aim to achieve the following results, about an alternating sum definition for our trace, and consequently, the following composition:

$$
K_{1}^{\prime} \underset{\leftarrow}{\leftarrow} K_{1} \xrightarrow{\sim} \Lambda /[\Lambda, \Lambda],
$$

of trace maps that are isomorphic (see 3.1.3 and 3.2.1). Where K_{1} and K_{1}^{\prime} will denote the additive group given by generators and relations given in section 3.1.

Then finally, by combining results from 3.1 and 3.2 to a particular kind of filtration for the Λ-module M to obtain information on nilpotent elements (see, Theorem 3.2.4).

3.1 THE RELATIVE K-THEORY GROUP $K_{1}(\Lambda)$

Let Λ be a ring with 1_{Λ} and $\bmod \Lambda$ the category of all finitely generated right Λ-modules. Let $P(\Lambda)$ be the full subcategory of projective Λ-modules and denote by $P_{0}(\Lambda)$ the full subcategory in $\bmod \Lambda$ consisting of modules of finite projective dimension.

Definition 3.1.1. Let $K_{1}(\Lambda)$ respectively $K_{1}^{\prime}(\Lambda)$ be additive group generated by pairs (M, f) with $M \in P(\Lambda)$ respectively $M \in P_{0}(\Lambda)$ and $f \in \operatorname{End}_{\Lambda}(M)$ that satisfy the following relations
a) $(M, f+g)=(M, f)+(M, g)$
b) $(M, f)+(N, g)=(L, h)$ for every commutative diagram

with exact rows.
c) $(M, f g)=(N, g f)$ if $f: M \rightarrow N$ and $g: N \rightarrow M$.

It will later turn out that this additive group $K_{1}(\Lambda)$ respectively $K_{1}^{\prime}(\Lambda)$ are both isomorphic to the zeroth Hochshild group.

Lemma 3.1.2.

$$
\text { a) }\left(M \oplus N,\left(\begin{array}{ll}
0 & f \\
g & 0
\end{array}\right)\right)=0 \in K_{1}(\Lambda) \text {. }
$$

b) $(P, f)+(Q, g)=\left(P \oplus Q,\left(\begin{array}{ll}f & 0 \\ 0 & g\end{array}\right)\right) \in K_{1}(\Lambda)$ resp. $K_{1}^{\prime}(\Lambda)$
c) if $(P, f) \in K_{1}(\Lambda)$ there exist $a_{f} \in \Lambda$ such that $(P, f)=\left(\Lambda, \lambda_{a_{f}}\right)$. Here $\lambda_{a}: \Lambda \rightarrow \Lambda$ is the left multiplication with a.
d) $\left(\Lambda, \lambda_{a} \lambda_{a^{\prime}}\right)=\left(\Lambda, \lambda_{a^{\prime}} \lambda_{a}\right)$ for all $a, a^{\prime} \in \Lambda$. Furthermore $\left(\Lambda, \lambda_{\left(a a^{\prime}-a^{\prime} a\right)}\right)=0$ in $K_{1}(\Lambda)$

Proof.
a) Because

$$
\left(\begin{array}{ll}
0 & f \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & I_{N}
\end{array}\right)=\left(\begin{array}{ll}
0 & f \\
0 & 0
\end{array}\right)
$$

with I_{N} being the identity on N and

$$
\left(\begin{array}{cc}
0 & 0 \\
0 & I_{N}
\end{array}\right)\left(\begin{array}{ll}
0 & f \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

It then follows from 3.1.1 c that

$$
\left(M \oplus N,\left(\begin{array}{ll}
0 & f \\
0 & 0
\end{array}\right)\right)=0
$$

therefore

$$
\left(M \oplus N,\left(\begin{array}{ll}
0 & f \\
g & 0
\end{array}\right)\right)=\left(M \oplus N,\left(\begin{array}{ll}
0 & f \\
0 & 0
\end{array}\right)\right)+\left(M \oplus N,\left(\begin{array}{ll}
0 & 0 \\
g & 0
\end{array}\right)\right)=0
$$

b) The claim holds by definition 3.1.1 b).
c) As P is a projective Λ-module, there is a complement we will call Q and an isomorphism. $w: P \oplus Q \rightarrow \Lambda^{n}$. Now we set

$$
f \oplus 0_{Q}:=\left(\begin{array}{ll}
f & \\
& 0_{Q}
\end{array}\right): P \oplus Q \rightarrow P \oplus Q
$$

Hence $w^{-1}\left(f \oplus 0_{Q}\right) w: \Lambda^{n} \rightarrow \Lambda^{n}$ is represented by a left multiplication by an $n \times n$ matrix $\left(a_{i j}\right)_{i, j}$ with entries in Λ. Applying 3.1.1a,b for the first equality, 3.1.1c for the second equality, 3.1.1a,b for the third equaliity and 3.1.2a for last equality, we have

$$
\begin{aligned}
(P, f) & =\left(P \oplus Q, f \oplus 0_{Q}\right) \\
& =\left(\Lambda^{n}, w^{-1}\left(f \oplus 0_{Q}\right) w\right) \\
& =\left(\Lambda^{n},\left(\left(a_{i j}\right)_{i . j}\right)=\left(\Lambda, \sum_{i=1}^{n} \lambda a_{i i}\right)\right.
\end{aligned}
$$

Hence, $a_{f}=\sum_{i=1}^{n} a_{i i}$.
d) The claim is trivial.

Definition 3.1.3. Let the trace map $\operatorname{Tr}: K_{1}(\Lambda) \rightarrow \Lambda /[\Lambda, \Lambda]$ be defined as follows :
a) For $f \in \operatorname{End}_{\Lambda}\left(\Lambda^{n}\right)$, with $f=\left(f_{i j}\right)$, we define, $\operatorname{tr}(f)=\sum_{i=1}^{n} f_{i i}\left(1_{\Lambda}\right)$. We denote $\operatorname{Tr}\left(\Lambda^{n}, f\right)=$ $\overline{\operatorname{tr}(f)}$ as the residual class of $\operatorname{tr}(f)$ in $\Lambda /[\Lambda, \Lambda]$.
b) For $f \in \operatorname{End}(F)$ with $w: F \xrightarrow{\sim} \Lambda^{n}$. Define $\operatorname{Tr}(F, f)=\operatorname{Tr}\left(\Lambda^{n}, w^{-1} f w\right)$
c) For $f \in \operatorname{End}_{\Lambda}(P), P \oplus Q \simeq \Lambda^{n}$. Define $\operatorname{Tr}(P, f)=\operatorname{Tr}\left(P \oplus Q, f \oplus 0_{Q}\right)$.

Next we show that, Tr is a well-defined homomorphism:
Let $\operatorname{Tr}: K_{1}(\Lambda) \rightarrow \Lambda /[\Lambda, \Lambda]$ as in (3.1.3)
Proof. Let $\phi: P \oplus Q \rightarrow \Lambda^{n}$ and $\psi: P \oplus Q^{\prime} \rightarrow \Lambda^{m}$ be isomorphisms. Without loss of generality let us assume that $m=n$ and $Q^{\prime}=Q$, since

$$
\begin{aligned}
\operatorname{Tr}\left(\Lambda^{n}, \phi^{-1}\left(f \oplus 0_{Q}\right) \phi\right)=\operatorname{tr}\left(\phi^{-1}\left(f \oplus 0_{Q}\right) \phi\right)+[\Lambda, \Lambda] & =\operatorname{tr}\left(\phi^{-1}\left(f \oplus 0_{Q}\right) \phi \oplus 0_{\Lambda^{k}}\right)+[\Lambda, \Lambda] \\
& =\operatorname{tr}\left(\left(\phi^{-1} \oplus I_{\Lambda^{k}}\right)\left(f \oplus 0_{Q} \oplus 0_{\Lambda^{k}}\right)\left(\phi \oplus I_{\Lambda^{k}}\right)\right)+[\Lambda, \Lambda] .
\end{aligned}
$$

It is well known that for matrices $A, B \in \Lambda^{n \times n}$ one has $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ modulo $[\Lambda, \Lambda]$.
Hence

$$
\begin{aligned}
\operatorname{Tr}\left(\Lambda^{m}, \psi^{-1}\left(f \oplus 0_{Q}\right) \psi\right)=\operatorname{tr}\left(\psi^{-1}\left(f \oplus 0_{Q}\right) \psi\right)+[\Lambda, \Lambda] & =\operatorname{tr}\left(\left(\phi^{-1} \psi\right)\left(\psi^{-1}\left(f \oplus 0_{Q}\right) \psi\right)\left(\psi^{-1} \phi\right)\right)+[\Lambda, \Lambda] \\
& =\operatorname{tr}\left(\phi^{-1}\left(f \oplus 0_{Q}\right) \phi\right)+[\Lambda, \Lambda] \\
& =\operatorname{Tr}\left(\Lambda^{n}, \phi^{-1}\left(f \oplus 0_{Q}\right) \phi\right)
\end{aligned}
$$

Lemma 3.1.4. Given the trace map $\operatorname{Tr}: K_{1}(\Lambda) \rightarrow \Lambda /[\Lambda, \Lambda]$.
a) $\operatorname{Tr}(P, f)+\operatorname{Tr}(P, g)=\operatorname{Tr}(P, f+g)$,
b) $\operatorname{Tr}(P, f)+\operatorname{Tr}(Q, g)=\operatorname{Tr}(T, h)$, for every commutative diagram with exact rows:

c) $\operatorname{Tr}(P, f g)=\operatorname{Tr}(Q, g f)$ for every sequence $P \xrightarrow{f} Q \xrightarrow{g} P \xrightarrow{f} Q$.

Proof. a) $\operatorname{Tr}(P, f)+\operatorname{Tr}(P, g)=\operatorname{Tr}(P, f+g)$ holds since tr is additive.
b) If we have a commutative diagram with exact rows:

then $T=P \oplus Q$ and for some $\gamma: Q \rightarrow P$ choose $h=\left(\begin{array}{ll}f & 0 \\ \gamma & g\end{array}\right)$. Furthermore there are complements P^{\prime} and Q^{\prime} with $\phi: P \oplus P^{\prime} \oplus Q \oplus Q^{\prime} \xrightarrow{\sim} \Lambda^{n}$. For

$$
\psi=\left(\begin{array}{cccc}
I_{P} & & & \\
& 0 & I_{P^{\prime}} & \\
& I_{Q} & 0 & \\
& & & I_{Q^{\prime}}
\end{array}\right): P \oplus Q \oplus P^{\prime} \oplus Q^{\prime} \xrightarrow{\sim} P \oplus P^{\prime} \oplus Q \oplus Q^{\prime}
$$

then $\psi^{-1}\left(f \oplus g \oplus 0_{P^{\prime}} \oplus 0_{Q^{\prime}}\right) \psi=\left(f \oplus 0_{P^{\prime}} \oplus g \oplus 0_{Q^{\prime}}\right)$.Now we derive

$$
\begin{aligned}
\phi^{-1}\left(f \oplus 0_{P^{\prime}} \oplus 0_{Q} \oplus 0_{Q^{\prime}}\right) \phi & +\phi^{-1}\left(0_{P} \oplus 0_{P^{\prime}} \oplus g \oplus 0_{Q^{\prime}}\right) \phi \\
& =\phi\left(f \oplus 0_{P^{\prime}} \oplus g \oplus 0_{Q^{\prime}}\right) \phi \\
& =\phi^{-1} \psi^{-1}\left(f \oplus g \oplus 0_{P^{\prime}} \oplus 0_{Q^{\prime}}\right) \psi \phi \\
& =(\psi \phi)^{-1}\left(h \oplus 0_{P^{\prime} \oplus Q^{\prime}}\right)(\psi \phi)
\end{aligned}
$$

Thus $\operatorname{Tr}(P, f)+\operatorname{Tr}(Q, g)=\operatorname{Tr}(T, h)$.
c) let $f: P \rightarrow Q, g: Q \rightarrow P, \phi: P \oplus P^{\prime} \xrightarrow{\sim} \Lambda^{n}$ and $\psi: Q \oplus Q^{\prime} \xrightarrow{\sim} \Lambda^{m}$ be homomorphisms. Then using as before well-defineness we have:

$$
\begin{aligned}
\operatorname{tr}\left(\phi^{-1}\left(f g \oplus 0_{P^{\prime}}\right) \phi\right) & =\operatorname{tr}\left(\phi^{-1}(f \oplus 0) \psi \psi^{-1}(g \oplus 0) \phi\right) \\
& =\operatorname{tr}\left(\psi^{-1}(g \oplus 0) \phi \phi^{-1}(f \oplus 0) \psi\right) \\
& =\operatorname{tr}\left(\psi^{-1}\left(g f \oplus 0_{Q^{\prime}}\right) \psi\right)
\end{aligned}
$$

Thus $\operatorname{Tr}(P, f g)=\operatorname{Tr}(Q, g f)$.

Observation. By 3.1.3 and 3.1.4 it follows that the trace properties HS1,HS2,...,HS5 recalled in the beginning of chapter 3 hold.

Theorem 3.1.5. For any ring Λ the map $\operatorname{Tr}: K_{1}(\Lambda) \rightarrow \Lambda /[\Lambda, \Lambda] ;[(P, f)] \mapsto \operatorname{tr}(f)$ is an isomorphism.

Proof. First Tr is surjective since $\operatorname{Tr}\left(\Lambda, \lambda_{a}\right)=\bar{a} \in \operatorname{HH}_{0}(\Lambda)$ for all $a \in \Lambda$. And to prove Tr is injective, it suffices to show that the ker Tr is 0 . So let (P, f) satisfy $\operatorname{Tr}(P, f)=0$. Then it follows from lemma 3.1.2c) that $(P, f)=\left(\Lambda, \lambda_{a_{f}}\right)$, hence $\operatorname{tr}\left(\lambda_{a_{f}}\right)=a_{f} \in[\Lambda, \Lambda]$. Thus $(P, f)=0$ in $K_{1}(\Lambda)$ by 3.1 .2 d)

3.2 LENZING'S THEOREM

Theorem 3.2.1. For any ring Λ the inclusion functor $P(\Lambda) \rightarrow P_{0}(\Lambda)$ induces an isomorphism $K_{1}(\Lambda) \rightarrow K_{1}^{\prime}(\Lambda)$.

Proof. Let $\alpha: K_{1}(\Lambda) \rightarrow K_{1}^{\prime}(\Lambda)$ be the homomorphism induced by the inclusion $P(\Lambda) \rightarrow P_{0}(\Lambda)$. We construct the inverse $\operatorname{map} \beta: K_{1}^{\prime}(\Lambda) \rightarrow K_{1}(\Lambda)$. First of all, we define β as a map from the free additive group given by the generators (M, f) such that the projective dimension of M is finite to $K_{1}(\Lambda)$. Let

$$
P_{\bullet}: 0 \longrightarrow P_{n} \xrightarrow{d_{n}} P_{n-1} \longrightarrow \ldots \longrightarrow P_{1} \xrightarrow{d_{1}} P_{0} \longrightarrow 0
$$

(with $M=\operatorname{cok} d_{1}$) be a projective resolution of M. Given a map $f: M \rightarrow M$ we choose a chain map $f .: P_{\bullet} \rightarrow P_{\bullet}$ a lifting of f. Let define $\beta(M, f):=\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, f_{i}\right)$. First we show that β is well defined.

- If $g_{\bullet}: P_{\bullet} \rightarrow P_{\bullet}$ is another lifting of f, then there are some maps $h_{i}: P_{i} \rightarrow P_{i+1}$ such that,

$$
g_{i}-f_{i}=h_{i} d_{i+1}+d_{i} h_{i-1}
$$

That is,

$$
\begin{aligned}
\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, g_{i}\right) & =\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, f_{i}+h_{i} d_{i+1}+d_{i} h_{i-1}\right) \\
& =\sum_{i=0}^{n}(-1)^{i}\left(\left(P_{i}, f_{i}\right)+\left(P_{i}, h_{i} d_{i+1}\right)+\left(P_{i}, d_{i} h_{i-1}\right)\right) \\
& =\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, f_{i}\right)+\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, h_{i} d_{i+1}\right)-\sum_{i=-1}^{n-1}(-1)^{i}\left(P_{i+1}, d_{i+1} h_{i}\right) \\
& =\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, f_{i}\right)+\sum_{i=0}^{n-1}(-1)^{i}\left(\left(P_{i}, h_{i} d_{i+1}\right)-\left(P_{i+1}, d_{i+1} h_{i}\right)\right) \\
& +(-1)^{n}\left(P_{n}, h_{n} d_{n+1}\right)+\left(P_{0}, d_{0} h_{-1}\right) \\
& =\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, f_{i}\right)
\end{aligned}
$$

- If Q_{\bullet} is another projective resolution of M let $\phi_{\bullet}: P_{\bullet} \rightarrow Q_{\bullet}$ be a lifting of I_{M} and $f_{\bullet}: Q_{\bullet} \rightarrow P_{\bullet}$ a lifting of f_{\bullet}. Then $\phi_{\bullet} f_{\bullet}$ and $f_{\bullet} \phi_{\bullet}$ are liftings of f. So we have this set up $P_{i} \xrightarrow{\phi} Q_{i} \xrightarrow{f_{i}} P_{i} \xrightarrow{\phi} Q_{i}$ thus $\left(P_{i}, \phi_{i} f_{i}\right)=\left(Q_{i}, f_{i} \phi_{i}\right)$ for $i \geq 0$ and

$$
\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, \phi_{i} f_{i}\right)=\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, f_{i} \phi_{i}\right)
$$

Also we see this alternating sum definition does not depend the choice of the liftings $\left\{f_{i}\right\}$ or P_{\bullet}. Moroeover, β defines a surjective homomorphism. Next we check that β is injective, but prior to that we make the following observations relating to the relations defined in (3.1.1):
a) Obviously $f_{\bullet}+g_{\bullet}$ is a lifting of $f+g$ if $f_{\bullet}, g_{\bullet}: P_{\bullet} \rightarrow P_{\bullet}$ are liftings of f, g.
b) For a commutative diagram with exact rows :

Let $f_{\bullet}: P_{\bullet} \rightarrow P_{\bullet}$ and $g_{\bullet}: Q_{\bullet} \rightarrow Q_{\bullet}$ be lifting of f and g respectively. It is a well known see [5,p. 46] that there exist $\eta_{i}: Q_{i} \rightarrow P_{i}$ such that $h_{\bullet}=\left(\begin{array}{cc}f_{\bullet} & 0 \\ \eta_{\bullet} & g_{\bullet}\end{array}\right): P_{\bullet} \oplus Q_{\bullet} \rightarrow P_{\bullet} \oplus Q_{\bullet}$ is a lifting of h. Thus $\beta(L, h)=\beta(M, f)+\beta(N, g)$ by lemma 3.1.2.
c) Since a lifting of a composition $f g: M \rightarrow M$ is the composition $f_{\bullet} g_{\bullet}$ of lifting $f_{\bullet}: P_{\bullet} \rightarrow P_{\bullet}$, $g_{\bullet}: Q_{\bullet} \rightarrow Q_{\bullet}$ the equality

$$
\beta(M, f g)=\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, f_{i} g_{i}\right)=\sum_{i=0}^{n}(-1)^{i}\left(Q_{i}, g_{i} f_{i}\right)=\beta(N, g f)
$$

holds.

Therefore β induces a map $\beta: K_{1}^{\prime}(\Lambda) \rightarrow K_{1}(\Lambda)$. Now we proof that β is injective. Thus, it suffices to verify that $\alpha \circ \beta=1_{K_{1}^{\prime}(\Lambda)}$. So let,

$$
0 \longrightarrow P_{n} \xrightarrow{d_{n}} P_{n-1} \longrightarrow \ldots \longrightarrow P_{1} \xrightarrow{d_{1}} P_{0} \longrightarrow 0
$$

(with $M=$ coker d_{1}) be a projective resolution of M. Then

$$
\alpha \circ \beta(M, f)=\alpha\left(\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, f_{i}\right)\right)=\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, f_{i}\right)
$$

To see this holds, we apply induction on n. For $n=0$ the claim is trivial. Let π be the projective cover $P_{0} \rightarrow M$ then

$$
0 \longrightarrow P_{n} \xrightarrow{d_{n}} P_{n-1} \longrightarrow \ldots \longrightarrow P_{1} \xrightarrow{d_{1}} \operatorname{ker} \pi \longrightarrow 0
$$

is projective resolution of $\operatorname{ker} \pi$ and there is a commutative diagram

By the induction hypothesis we have $\left(\operatorname{ker} \pi, f^{\prime}\right)=\sum_{i=1}^{n}(-1)^{i}\left(P_{i}, f_{i}\right)$ and $\left(P_{0}, f_{0}\right)=\left(\operatorname{ker} \pi, f^{\prime}\right)+$ (M, f) by def 3.1.1 b. Thus

$$
(M, f)=\sum_{i=0}^{n}(-1)^{i}\left(P_{i}, f_{i}\right)=(\alpha \circ \beta)(M, f)
$$

So α is an isomorphism.

Definition 3.2.2. Let M be in $\bmod \Lambda, f: M \rightarrow M$. An f - filtration of M is a finite filtration

$$
M=M_{0} \supset M_{1} \supset \ldots \supset M_{n}=0
$$

by submodules with

$$
f\left(M_{i}\right) \subset M_{i+1} \quad \forall i=0, \ldots, n-1
$$

The f-filtration has finite projective dimension if $\operatorname{pdim}_{\Lambda} M_{i}<\infty$ holds for all $i=0, \ldots, n-1$.
Proposition 3.2.3. Suppose that $M \in P_{0}(\Lambda)$ has a filtration of finite projective dimension.Then $(M, f)=0$ in $K_{1}^{\prime}(\Lambda)$.

Proof. We proceed by induction on n. If $n=0$ the claim is trivial. Let $n \geq 1$ and consider the map $f_{1}: M_{1} \rightarrow M_{1}$ induced by the restriction of f, then $\left(M_{1}, f_{1}\right)=0$ in $K_{1}^{\prime}(\Lambda)$ by induction hypothesis. Since $f(M) \subset M_{1}$ then we have the following commutative diagram with exact rows

So $(M, f)=\left(M_{1}, f_{1}\right)+\left(M / M_{1}, 0\right)=0$.
Finally we state a very important result-theorem 3.2.4, which will later turn to be a useful guide for us in sec 4.4 of chapter 4.

Theorem 3.2.4. Let Λ be a ring with 1_{Λ} and $e \in \Lambda$ a primitive idempotent. Let $a \in e \Lambda e$ be a nilpotent element and denote by $\lambda_{a}: e \Lambda \rightarrow e \Lambda$ the left multiplication with a. If e Λ has a λ_{a}-filtration of finite projective dimension, then $a \in[\Lambda, \Lambda]$.

Proof. By Prop 3.2.3 $\left(e \Lambda, \lambda_{a}\right)=0$ in $K_{1}^{\prime}(\Lambda)$; hence by Theorem 3.2.1 $\left(e \Lambda, \lambda_{a}\right)=0$ in $K_{1}(\Lambda)$ and $0=\operatorname{Tr}\left(e \Lambda, \lambda_{a}\right)=a+[\Lambda, \Lambda] \in \operatorname{HH}_{0}(\Lambda)$. That means $a \in[\Lambda, \Lambda]$.

Chapter 4

LOCALISED TRACE FUNCTION

4.1 LENZING'S TRACE FUNCTION

Throughout Λ stands for a (basic) finite-dimensional algebra over an algebraically closed field. Let J stands for the Jacobson radical of Λ. All modules are finitely generated right Λ-modules. We denote the zeroth Hochschild homology group of $\Lambda, \operatorname{HH}_{0}(\Lambda)=\Lambda /[\Lambda, \Lambda]$, thus, the quotient of Λ by the additive subgroup $[\Lambda, \Lambda]$ generated by all elements of the form $\lambda_{1} \lambda_{2}-\lambda_{2} \lambda_{1}$ where $\lambda_{1}, \lambda_{2} \in \Lambda$.
As a main result of this chapter we will prove that $\mathrm{HH}_{0}(\Lambda)$ is radical trivial, thus $J \subseteq[\Lambda, \Lambda]$. Firstly, we recall the trace of f defined to be

$$
\operatorname{tr}(f)=\sum_{i=1}^{n} a_{i i}+[\Lambda, \Lambda] \in \Lambda /[\Lambda, \Lambda]
$$

by Hattori and Stallings in beginning of chapter 3.
Secondly, from chapter 3, we have an alternating sum definition of our trace (see, 3.2), and consequently, the following composition:

$$
K_{1}^{\prime} \underset{\leftarrow}{\sim} K_{1} \xrightarrow{\sim} \Lambda /[\Lambda, \Lambda],
$$

of trace maps that are isomorphic (see 3.1.3 and 3.2.1). Where K_{1} and K_{1}^{\prime} as before denote the additive group given by generators and relations (see definition 3.1.1).
By these, we recall Lenzing's extension of this function to endomorphism of modules of finite projective dimension. Let M be a Λ module of finite projective dimension and $f: M \rightarrow M$. Then we have a finite projective resolution :

$$
\ldots \longrightarrow P_{i} \xrightarrow{d_{i}} P_{i-1} \longrightarrow \ldots \longrightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \longrightarrow 0
$$

For each $f: M \rightarrow M$, we have the following commutative diagram

Where f_{i} for $i \geq 0$ is a lifting of f to P_{M} (where P_{M} denote the projective resolution of $M \in \bmod \Lambda)$ Let M be of finite projective dimension and assuming that P_{M} is bounded We define the trace of f, as

$$
\operatorname{tr}(f)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(-1)^{i} \operatorname{tr}\left(f_{i}\right) \in \Lambda /[\Lambda, \Lambda]
$$

Which is independent of the choice of P_{M} and $\left\{f_{i}\right\}$ see section 3.2. Thirdly, the plan is to localise Lenzing's trace function to endomorphisms of Λ modules with an e - bounded projective resolution, where e is an idempotent in Λ. In our next section we localise this construction.

4.2 The e-TRACE FUNCTION

Here we maintain as before the same settings. Also, let e denote an idempotent in Λ. We set $\Lambda_{e}=\Lambda / \Lambda(1-e) \Lambda$. The canonical algebra projection $\Lambda \rightarrow \Lambda_{e}$ induces a group homomorphism

$$
h: \Lambda /[\Lambda, \Lambda] \rightarrow \Lambda_{e} /\left[\Lambda_{e}, \Lambda_{e}\right]
$$

If $f: P \rightarrow P$ is an endomorphism of a projective Λ - module, then we define the e-trace by

$$
\operatorname{tr}(f) \mapsto h\left(\operatorname{tr}(f) \in \Lambda_{e} /\left[\Lambda_{e}, \Lambda_{e}\right]\right.
$$

We denote $\operatorname{tr}_{e}(f)=h(\operatorname{tr}(f))$.
Clearly the e-trace function has the properties HS1,HS2,HS3 and HS4 stated in the beginning of chapter 3. That is, we have the following:

- $\operatorname{tr}_{e}(f+g)=\operatorname{tr}_{e}(f)+\operatorname{tr}_{e}(g)$
- $\operatorname{tr}_{e}(f g)=\operatorname{tr}_{e}(g f)$
- $\operatorname{tr}_{e}(f)=\operatorname{tr}_{e}\left(f_{11}\right)+\operatorname{tr}_{e}\left(f_{22}\right)$
- $\operatorname{tr}_{e}\left(g f g^{-1}\right)=\operatorname{tr}_{e}(f)$
- $\operatorname{tr}_{e}(f)=\bar{a}+\left[\Lambda_{e}, \Lambda_{e}\right]$, where $\bar{a}=a+\Lambda(1-e) \Lambda$

Lemma 4.2.1. Let e be idempotent $\in \Lambda$, and let P be a projective Λ module whose top is annihilated by e. If $f: P \rightarrow P$, then $\operatorname{tr}_{e}(f)=0$.

Proof. Let Suppose $P \neq 0$. We have $1-e=e_{1}+\ldots+e_{n}$. Where the e_{i} are pairwise orthogaonal primitive idempotents in Λ. Let $f: P \rightarrow P$. Let suppose, P is indecomposable by HS3, then, for some m such that $1 \leq m \leq n$, we have, $P \cong e_{m} \Lambda$. By HS4, we may assume that $P=e_{m} \Lambda$. Then, f is a left multiplication by some $a \in e_{m} \Lambda e_{m}$. It follows from HS5 that,

$$
\operatorname{tr}_{e}(f)=h\left(a+[\Lambda, \Lambda]=\bar{a}+\left[\Lambda_{e}, \Lambda_{e}\right] .\right.
$$

Where $\bar{a}=a+\Lambda(1-e) \Lambda$. Write, $a=e_{m} a e_{m}=(1-e) a(1-e)$, then a is in $\Lambda(1-e) \Lambda$. Hence $\operatorname{tr}(f)=0$.

Next we extend e-trace function and define a projective resolution P_{M} of $M \Lambda$-modules to be e-bounded if all but finitely many tops of the terms in P_{M} are annihilated by e

4.3 The (e, n)- TRACE FUNCTION

Maintaining the same settings as before.

Definition 4.3.1. - Let M be a module and

$$
P_{M}=\ldots \longrightarrow P_{i} \xrightarrow{d_{i}} P_{i-1} \longrightarrow \ldots \longrightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \longrightarrow 0
$$

a projective resolution of M. We say that P_{M} is (e, n)-bounded if $\operatorname{top}\left(P_{n}\right) \cdot e=0$.

- Let $f: M \rightarrow M$ with a lifting $\left(f_{i}\right)_{i \geq 0}$ to P_{M}, (with $\operatorname{tr}_{e}\left(f_{i}\right)=0$ for all but finitely many i lemma 4.2.1) We define the (e, n) trace of f by

$$
\operatorname{tr}_{e}(f)=\sum_{i=1}^{\infty}(-1)^{i} \operatorname{tr}_{e}\left(f_{i}\right) \in \Lambda_{e} /\left[\Lambda_{e}, \Lambda_{e}\right]
$$

Lemma 4.3.2. Let e be an idempotent $\in \Lambda$. Then the e-trace is well defined for endomorphisms of modules $\in \bmod \Lambda$ with an e-bounded projective resolution.

Proof. Let M be a module $\in \bmod \Lambda$ with following projective resolution that is e-bounded.

$$
P_{M}=\ldots \longrightarrow P_{i} \xrightarrow{d_{i}} P_{i-1} \longrightarrow \ldots \longrightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \longrightarrow 0
$$

Let $f \in \operatorname{End}_{\Lambda}(M)$.

- First we show that $\operatorname{tr}_{e}(f)$ does not depend on the choice of $\left(f_{i}\right)$ the lifting of f . It will be enough to show that $\sum_{i=1}^{\infty}(-1)^{i} \operatorname{tr}_{e}\left(f_{i}\right)=0$ (by HS1) for any lifting $\left(f_{i}\right)$ of the zero endomorphism of M. So let $h_{i}: P_{i} \rightarrow P_{i+1}$ be some maps, such that $f_{0}=d_{1} h_{0}$ and $f_{i}=d_{i+1} h_{i}+h_{i-1} d_{i}$. By HS1 and HS2 $\operatorname{tr}_{e}\left(f_{i}\right)=\operatorname{tr}_{e}\left(d_{i+1} h_{i}\right)+\operatorname{tr}_{e}\left(h_{i-1} d_{i}\right)$
$=\operatorname{tr}_{e}\left(d_{i+1} h_{i}\right)+\operatorname{tr}_{e}\left(d_{i} h_{i-1}\right) \forall i \geq 1$. Also on the other hand by assumumption, \exists some $s \geq 0$ such that top $\left(P_{i}\right) . e=0$, for $i \geq s$. Then by lemma $4.2 .1 \operatorname{tr}_{e}\left(d_{s+1} h_{s}\right)=0$ and
$\operatorname{tr}_{e}\left(f_{i}\right)=0 \quad \forall i \geq s$. And we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}(-1)^{i} \operatorname{tr}_{e}\left(f_{i}\right) & =\operatorname{tr}\left(f_{0}\right)+\sum_{i=1}^{s}(-1)^{i} \operatorname{tr}_{e}\left(f_{i}\right) \\
& =\operatorname{tr}_{e}\left(d_{1} h_{0}\right)+\sum_{i=1}^{s}(-1)^{i}\left(\operatorname{tr}_{e}\left(d_{i+1} h_{i}\right)+\operatorname{tr}_{e}\left(d_{i} h_{i-1}\right)\right) \\
& =(-1)^{s} \operatorname{tr}\left(d_{s+1} h_{s}\right) \\
& =0
\end{aligned}
$$

- Next if M has another e - bounded projective resolution,

$$
P_{M}^{\prime}=\ldots \longrightarrow P_{i}^{\prime} \xrightarrow{d_{i}^{\prime}} P_{i-1}^{\prime} \longrightarrow \ldots \longrightarrow P_{1}^{\prime} \xrightarrow{d_{1}^{\prime}} P_{0}^{\prime} \xrightarrow{d_{0}^{\prime}} M \longrightarrow 0 .
$$

Let $\alpha_{i}: P_{i} \rightarrow P_{i}^{\prime}($ for $i \geq 0)$ be a lifting of I_{M} and $\beta_{i}: P_{i}^{\prime} \rightarrow P_{i}($ for $i \geq 0)$ be a lifting of f. Then $\left(\alpha_{i} \beta_{i}\right)$ and ($\beta_{i} \alpha_{i}$) are liftings of f. Actually, we have,

$$
P_{i} \xrightarrow{\alpha_{i}} P_{i}^{\prime} \xrightarrow{\beta_{i}} P_{i} \xrightarrow{\alpha_{i}} P_{i}^{\prime}
$$

and by HS2

$$
\sum_{i=1}^{\infty}(-1)^{i} \operatorname{tr}_{e}\left(\alpha_{i} \beta_{i}\right)=\sum_{i=1}^{\infty}(-1)^{i} \operatorname{tr}_{e}\left(\beta_{i} \alpha_{i}\right)
$$

done!

Next we look at a results which says that e-trace has this property that it is additive.
Proposition 4.3.3. Let e be an idempotent $\in \Lambda$. If we have the following commutative diagram

with exact rows. If M, N have an e-bounded projective resolution then so does L and $\operatorname{tr}_{e}(h)=\operatorname{tr}_{e}(f)+\operatorname{tr}_{e}(g)$.

Proof. Let P_{M} and P_{N} be e-bounded projective resolutions of M and N respectively as follows:

$$
P_{M}=\ldots \longrightarrow P_{i} \xrightarrow{d_{i}} P_{i-1} \longrightarrow \ldots \longrightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \longrightarrow 0
$$

and

$$
P_{N}=\ldots \longrightarrow P_{i}^{\prime} \xrightarrow{d_{i}^{\prime}} P_{i-1}^{\prime} \longrightarrow \ldots \longrightarrow P_{1}^{\prime} \xrightarrow{d_{1}^{\prime}} P_{0}^{\prime} \xrightarrow{d_{0}^{\prime}} N \longrightarrow 0
$$

Then by the horseshoe lemma there exist following set up with exact row where the squares commute

where $u_{i}=\binom{1}{0}$ and $v_{i}=(0,1) \quad \forall i \geq 0$. We have that the middle sequence is an e-bounded projective resolution of L denoted by P_{L}. Therefore choosing $\left(f_{i}\right)$ and $\left(g_{i}\right)$ liftings of f and g respectively.it is a well known see [5, p. 46] that there exist a lifting $\left(h_{i}\right)$ of h
such that following diagram commute

for every $i \geq 0$. As $h_{i} u_{i}=u_{i} f_{i}$ and $g_{i} v_{i}=v_{i} h_{i}$, we may choose to write h_{i} as a (2×2) matrix whose diagonal entries are f_{i} and g_{i}. So by HS3 $\operatorname{tr}_{e}\left(h_{i}\right)=\operatorname{tr}_{e}\left(f_{i}\right)+\operatorname{tr}_{e}\left(g_{i}\right)$. Hence $\operatorname{tr}_{e}(h)=\operatorname{tr}_{e}(f)+\operatorname{tr}_{e}(g)$.

4.4 Main Result

Through out we let $S_{e}=e \Lambda / e J$
Lemma 4.4.1. Let e be an idempotent $\in \Lambda$, with S_{e} of finite injective dimension. Then the e-trace is defined for every endomorphism in $\bmod \Lambda$.

Proof. Let m be the injective dimension of S_{e}. Let M be a Λ-module. Where the following sequence

$$
P_{M}=\ldots \longrightarrow P_{i} \longrightarrow P_{i-1} \longrightarrow \ldots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

is the minimal projective resolution of M. Then it follows from our result in [chapter 1,2] that $\operatorname{Hom}_{\Lambda}\left(P_{i}, S_{e}\right)=\operatorname{Ext}_{\Lambda}^{i}\left(M, S_{e}\right)$ and for each $i \geq m, \operatorname{Ext}_{\Lambda}^{i}\left(M, S_{e}\right)=0$. So, $\operatorname{top}\left(P_{i}\right) \cdot e=0$. Thus P_{M} is e-bounded. Hence $\operatorname{tr}_{e}(f)$ is defined for every $f \in \operatorname{End}(M)$.

Next we state as main result of this chapter-theorem 4.4.2 which is needful in our main work in chapter 5.

Theorem 4.4.2. Let Λ be an artin algebra, and let e be an idempotent $\in \Lambda$. If S_{e} is of finite injective dimension, then $\mathrm{HH}_{0}\left(\Lambda_{e}\right)$ is radical-trivial.

Proof. Let S_{e} be of finite injective dimension. Then it follows from lemma 4.4.1, that the e-trace is defined for every endomorphism $\in \bmod \Lambda$. Consider $z \in \Lambda$ such that \bar{z} lies in the radical of Λ_{e}, which is $(e J e+\Lambda(1-e) \Lambda) / \Lambda(1-e) \Lambda$. Hence, $\bar{z}=\bar{a}$ for some $a \in e J e$. Let $n \geq 0$ be such that $a^{n}=0$ in Λ. Consider the following chain of submodules of Λ :

$$
0=a^{n} \Lambda \subseteq a^{n-1} \Lambda \subseteq \ldots \subseteq a^{1} \Lambda \subseteq a^{0} \Lambda=\Lambda
$$

Let $f_{0}: \Lambda \rightarrow \Lambda$ be the left multitplication by a. Because $f_{0}\left(a^{i} \Lambda\right) \subseteq a^{i+1} \Lambda$, we have that, f_{0} induces morphisms $f_{i}: a^{i} \Lambda \rightarrow a^{i} \Lambda$, for $i=0, \ldots, n$. Thus, we have the following commutative diagram

Then by proposition 4.3.3, $\operatorname{tr}_{e}\left(f_{i}\right)=\operatorname{tr}_{e}\left(f_{i+1}\right)$ for $i=0,1, \ldots, n-1$. Applying HS5, we have,

$$
0=\operatorname{tr}_{e}\left(f_{n}\right)=\ldots=\operatorname{tr}_{e}\left(f_{0}\right)=\bar{a}+\left[\Lambda_{e}, \Lambda_{e}\right]
$$

Hence $\bar{z}=\bar{a} \in\left[\Lambda_{e}, \Lambda_{e}\right]$.

Chapter 5

Proof of The strong no Loop conjecture

5.1 Establishing the result for artin algebras

The main task is to apply the previously gathered results to solve the strong no loop conjecture for finite dimesional algebras over an algebraically closed field. We start with some needed terminology. Let Λ be an artin algebra and e a primitive idempotent in Λ. We say Λ is locally commutative at e if $e \Lambda e$ is commutative. Also Λ is locally commutative if it is locally commutative at every primitive idempotent. We also say e is basic if $e \Lambda$ is not isomorphic to any direct summand of $(1-e) \Lambda$.

Proposition 5.1.1. Let Λ be an artin algebra, and let e be a basic primitive idempotent in Λ such that Λ / J^{2} is locally commutative at $e+J^{2}$. Suppose S_{e} is of finite projective or injective dimension, then $\operatorname{Ext}_{\Lambda}^{1}\left(S_{e}, S_{e}\right)=0$.

Proof. - Let first suppose S_{e} is of finite injective dimension. To prove $\operatorname{Ext}_{\Lambda}^{1}\left(S_{e}, S_{e}\right)=0$, it suffice to show that $e J e / e J^{2} e=0$. Let z be in $e J e$. Then it follows from Theorem 4.4.2 that $z+\Lambda(1-e) \in\left[\Lambda_{e}, \Lambda_{e}\right]$. By assumption e is basic so $e \Lambda(1-e) \Lambda e \subseteq e J^{2} e$. Then we have the following algebra homomorphism

$$
\begin{aligned}
\phi: \Lambda_{e} & \rightarrow e \Lambda e / e J^{2} e \\
y+\Lambda(1-e) \Lambda & \mapsto e y e+e J^{2} e .
\end{aligned}
$$

So that $\phi(z+\Lambda(1-e) \Lambda)=e z e+\Lambda(1-e) \Lambda$. And we have that $e z e+\Lambda(1-e) \Lambda=z+\Lambda(1-e) \Lambda$ lies in the commutator group of $e \Lambda e / e J^{2}$. As by assumption $\left(e+J^{2}\right)\left(\Lambda / J^{2}\right)\left(e+J^{2}\right)$ is commutative. It follows that $e \Lambda e / e J^{2} e \cong\left(e+J^{2}\right)\left(\Lambda / J^{2}\right)\left(e+J^{2}\right)$ is commutative. So $z+e J^{2} e=0$, and we have $z \in e J^{2} e$. Hence the result follows.

- Next, suppose S_{e} is of finite projective dimension. Let D be the standard duality between $\bmod \Lambda$ and $\bmod \Lambda^{o p}$. Then we have that $D\left(S_{e}\right)$ is a simple module in $\Lambda^{o p}$ of finite injective dimension with support from e^{o}, the primitive idempotent that correspond to e. Since e^{o} is basic, such that the quotient of $\Lambda^{o p}$ modulo the square of its radical is locally commutative at the class of e^{o}, we have $\operatorname{Ext}_{\Lambda^{\circ p}}^{1}\left(D\left(S_{e}\right), D\left(S_{e}\right)\right)=0 . \operatorname{Hence}^{\operatorname{Ext}}{ }_{\Lambda}^{1}\left(S_{e}, S_{e}\right)=0$.

In our next theorem 5.1.2 we specialise the result to finite dimensional algebras over a field.

Theorem 5.1.2. Let Λ be a finite dimensional algebra over a field K, and let S be a simple Λ module of K-dimension one. If S is of finite projective or injective dimension, then $\operatorname{Ext}_{\Lambda}^{1}(S, S)=$ 0 .

Proof. Let e be a primitive idempotent in Λ such that $S . e \neq 0$. Then Λ admits a complete set $\left\{e_{1}, \ldots, e_{n}\right\}$ of orthogonal primitive idempotents where $e=e_{1}$. If $e_{1} \Lambda, \ldots, e_{s} \Lambda$ for $1 \leq s \leq n$ are the non- isomorphic indecomposable projective $\operatorname{modules} \in \bmod \Lambda$. Then we have,

$$
\Lambda / J \cong M_{n_{1}}\left(D_{1}\right) \times \ldots \times M_{n_{s}}\left(D_{s}\right)
$$

Where $D_{i}=\operatorname{End}_{\Lambda}\left(e_{i} \Lambda / e_{i} J\right)$ and n_{i} is the number of indices j for $1 \leq j \leq n$ such that $e_{i} \Lambda \cong e_{j} \Lambda$, with $i=1, \ldots, s$. We observe that S is a simple $M_{n_{1}}\left(D_{1}\right)$-module, and thus $S \cong D_{1}^{n_{1}}$. As S is one dimensional over K, it is one dimensional over D_{1}. In particular, $n_{1}=1$. Thus e is a basic primitive dempotent. Furthermore, $e \Lambda e / e J e \cong S_{e} \cong K$. That is, for $y_{1}, y_{2} \in e \Lambda e$ we write $y_{i}=\lambda_{i} e+z_{i}$, with $\lambda_{i} \in K$ and $z_{i} \in e J e$, for $i=1,2$. Consequently, $y_{1} y_{2}-y_{2} y_{1}=z_{1} z_{2}-z_{2} z_{1} \in e J^{2} e$. Hence $e \Lambda e / e J^{2} e$ is commutative and so is $\left(e+J^{2}\right)\left(\Lambda / J^{2}\right)\left(e+J^{2}\right)$. Therefore by proposition 5.1.1 it follows that $\operatorname{Ext}_{\Lambda}^{1}(S, S)=0$.

Remark. We say a finite dimensional algebra over a field is elementary if its simple modules are all one dimensional over the base field, or equivalently, it is isomorphic to an algebra given by a quiver with relations; see[16]. It is a well known result that finite dimensional algebras over an algebraically closed field is Morita equivalent to an elementary algebra. In this regard theorem 5.2.1 in our next section confirms the stong no loop conjecture for finite dimensional elementary algebra over any field and in particular for finite dimensional algebras over an algebraically closed field.

5.2 Some generalisations

Before we extend our results further. We start with some terminology required.

- From now on, we let Λ stands for a finite dimensional elementary algebra over a field K which is isomorphic to an algebra given by a quiver with relations.
- Let Q be a finite quiver and I an admissible ideal in $k Q$.
- An element $\rho=\lambda_{1} p_{1}+\ldots+\lambda_{s} p_{s}$ in I. where the p_{i} are distinct paths in Q from one fixed vertex to another and λ_{i} are nonzero scalars in K. We say ρ is a minimal relation for Λ if no proper summand of ρ is in I or equivalently if $\sum_{i \in \omega} \lambda_{i} p_{i} \notin I$ for any $\omega \subset\{1, \ldots, s\}$.
- Given an oriented cycle $\sigma=\alpha_{1} \alpha_{2} \ldots \alpha_{s}$ in Q where the α_{i} are arrows. We denote $\operatorname{supp}(\sigma)$ the set of vertices occuring as starting points of $\alpha_{1} \alpha_{2} \ldots \alpha_{s}$ and define the idempotent supporting
σ to be the sum of all primitive idempotents $\in \Lambda$ associated to the vertices in $\operatorname{supp}(\sigma)$. Also we set $\sigma_{1}=\sigma$, and for $2 \leq i \leq s$, we have $\sigma_{i}=\alpha_{i} \alpha_{i+1} \ldots \alpha_{i-1}$ as the cyclic permutations of σ.
- The idempotent supporting σ is the "smallest" idempotent e such that $e \sigma_{i}=\sigma_{i}$ for all i.
- We say that σ is cyclically non-zero (respectively, cyclically free) in Λ if none of the σ_{i} for $1 \leq i \leq s$ is a summand of a minimal relation. For example a loop in Q is always cyclically free in λ.

Theorem 5.2.1. Let $\Lambda=k Q / I$ with Q a finite quiver and I an admissible ideal in $k Q$, and let σ be an oriented cycle in Q with supporting idempotent $e \in \Lambda$. If σ is cyclically free in Λ, then S_{e} is of infinite projective and injective dimensions.

Proof. Let assume that σ be cyclically free in Λ. If σ is a power of a shorter oriented cycle δ, then we see that δ is also cyclically free in Λ and $\operatorname{supp}(\sigma)=\operatorname{supp}(\delta)$. Hence let suppose that σ is not a power of any shorter oriented cycle. It is a well known that the cyclic permutations $\sigma_{1}, \ldots, \sigma_{s}$ of σ, where $\sigma_{1}=\sigma$, are pairwise distinct.
For any $y \in K Q$, we denote by \bar{y} its class in Λ and by \tilde{y} the class of \bar{y} in Λ_{e}. Let V be the subspace of Λ_{e} spanned by the classes \tilde{p}, where p ranges over the paths in Q different from $\sigma_{1}, \ldots . \sigma_{s}$. Then, \exists paths p_{1}, \ldots, p_{t} in Q different from $\sigma_{1}, \ldots \sigma_{s}$ such that $\left\{\tilde{p_{1}}, \ldots, \tilde{p_{t}}\right\}$ is a K-basis of V. The claim is that $\left\{\tilde{\sigma_{1}}, \ldots, \tilde{\sigma_{s}}, \tilde{p_{1}}, \ldots, \tilde{p_{t}}\right\}$ is a K-basis of Λ_{e}. To see that this spans Λ_{e}. Suppose that

$$
\sum_{i=1}^{s} \lambda_{i} \tilde{\sigma}_{i}+\sum_{j=1}^{t} \mu_{i} \tilde{p}_{j}=\tilde{0}, \lambda_{i}, \quad \mu_{j} \in K
$$

Thus $\sum_{i=1}^{s} \lambda_{i} \bar{\sigma}_{i}+\sum_{j=1}^{t} \mu_{i} \overline{p_{j}} \in \Lambda(1-e) \Lambda$. Then we can write

$$
\sum_{i=1}^{s} \lambda_{i} \bar{\sigma}_{i}+\sum_{j=1}^{t} \mu_{i} \bar{p}_{j}=\sum_{l=1}^{r} \beta_{l} \bar{q}_{l}, \quad \beta_{l} \in K
$$

where q_{1}, \ldots, q_{r} are some distinct paths in Q passing through a vertex $\in \operatorname{supp}(\sigma)$. Put some m where $1 \leq m \leq s$ and let ϵ_{m} be the stationary path in Q associated to the starting point x_{m} of σ_{m}, then we have

$$
\rho=\sum_{i=1}^{s} \lambda_{i}\left(\epsilon_{m} \sigma_{i} \epsilon_{m}\right)+\sum_{j=1}^{t} \mu_{i}\left(\epsilon_{m} p_{j} \epsilon_{m}\right)-\sum_{l=1}^{r} \beta_{l}\left(\epsilon_{m} q_{l} \epsilon_{m}\right) \in I
$$

Also the non-zero elements of the $\epsilon_{m} \sigma_{i} \epsilon_{m}, \epsilon_{m} p_{j} \epsilon_{m}, \epsilon_{m} q_{l} \epsilon_{m} \in K Q$ are distinct oriented cycles from x_{m} to x_{m}. If $\lambda_{m} \neq 0$, then $\lambda\left(\epsilon_{m} \sigma_{m} \epsilon_{m}\right)$ would be a summand of a minimal non-zero summand ρ^{\prime} of ρ where ρ^{\prime} is in I. By definition ρ^{\prime} is a minimal relation for Λ, but that will contradict the assumption that σ is cyclically free in Λ. So then λ_{m} must be zero. So we get $\lambda_{1}, \ldots, \lambda_{s}$ and
consequently μ_{1}, \ldots, μ_{t} to be all zero confirming our claim. Now let suppose that $\tilde{\sigma} \in\left[\Lambda_{e}, \Lambda_{e}\right]$. Then,

$$
\begin{equation*}
\tilde{\sigma}=\sum_{i=1}^{n} \nu_{i}\left(\tilde{a}_{i} \tilde{b}_{i}-\tilde{b}_{i} \tilde{a}_{i}\right) \tag{5.1}
\end{equation*}
$$

with $\nu_{i} \in k$ and $a_{i}, b_{i} \in\left\{\sigma_{1}, \ldots, \sigma_{s}, p_{1}, \ldots, p_{t}\right\}$. For each $1 \leq i \leq n, a_{i} b_{i} \notin\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$ if and only if $b_{i} a_{i} \notin\left\{p_{1}, \ldots, p_{t}\right\}$, and in this case, $\tilde{a_{i}} \tilde{b}_{i}-\tilde{b}_{i} \tilde{a}_{i} \in V$. Then Equation 5.1 becomes

$$
\begin{equation*}
\tilde{\sigma}=\sum_{i=1}^{n} \nu_{i j}\left(\tilde{\sigma}_{i}-\tilde{\sigma_{j}}\right)+v, \tag{5.2}
\end{equation*}
$$

with $\nu_{i j} \in K$ and $v \in V$. Set T to be the linear form on Λ_{e}, which map each of $\tilde{\sigma_{1}}, \ldots, \tilde{\sigma_{s}}$ to 1 and vanishes on V . As $\sigma=\sigma_{1}$, and applying T to Equation 5.2 on the LHS $T(\tilde{\sigma})=1$ whiles on the RHS $T\left(\sum_{i=1}^{n} \nu_{i j}\left(\tilde{\sigma}_{i}-\tilde{\sigma_{j}}\right)+v\right)$ yields 0 , but $1=0$, is a contradiction. Thus the class of $\tilde{\sigma}$ in the commutator group of Λ_{e} is non zero. As $\tilde{\sigma}$ lies in the radical of Λ_{e}, it then follows from Theorem 4.4.2 that S_{e} is of infinite projective and injective dimensions. Done!

Example 5.2.2. Consider $\Lambda=k Q / I$, where Q is the quiver

and I is the ideal in $k Q$ generated by $\alpha \beta \alpha$. The oriented cycle $\beta \alpha$ is cyclically free in Λ. By theorem 5.2.1 one of the simple modules S_{1}, S_{2} has infinite projective dimension and one has infinite injective dimension. Precisely $\operatorname{pdim}\left(S_{1}\right)=\infty$ and $\operatorname{Injdim}\left(S_{2}\right)=\infty$.

Example 5.2.3. Let $\Lambda=k Q / I$, where Q is the following quiver

and I is an ideal in $k Q$ generated by $\alpha \beta-\gamma \delta, \beta \nu, \nu \mu \nu$. The oriented cycle $\mu \nu$ is cyclically free in Λ. By theorem 5.2.1 one of the simple modules S_{1}, S_{4} has infinite projective dimension and one has infinite injective dimension. Precisely $\operatorname{pdim}\left(S_{1}\right)=\infty$ and $\operatorname{Injdim}\left(S_{4}\right)=\infty$.

Bibliography

[1] A.Hattori, Rank element of a projective module, Nagoya Math.J 25 (1965), 113-120.
[2] Ibrahim Assem, Daniel simson, and Audrzej Skowronski, Elements of the representation theory of assosiative algebras. techniques of representation theory, London mathematical Society student Text 65, vol. 1, Cambridge University Press, 2006.
[3] B.T.Jensen, Strong no-loop conjecture for algebras with two simples and radical cube zero, Colloq.Math. (1) 102 (2005), 1-7.
[4] C.Paquette, Strictly stratified algebras revisited, Comm.Algebra (8) 37 (2009), 2591-2600.
[5] C.Weibel, An introduction to homological algebra, Cambridge Studies In Advanced Mathematics-38, Cambridge University Press,Cambridge, 1994.
[6] Yurij A. Drozd and Vladimir V. Kirichenko, Finite dimensional algebras, vol. 1, Springer, 1994.
[7] D.Skorodumov, The strong no loop conjecture is true for mild algebras, arXiv:1011.1143v2.
[8] D.Zacharia, Special monomial algebras of finite global dimension, NATO Adv.Sci.Inst (Kluwer,Dordrecht) 233 (1988), 375-378.
[9] E.L.Green, O.Solberg, and D.Zacharia, Minimal projective resolutions, Trans.Amer.Math.Soc. (7) 353 (2001), 2915-2939.
[10] Rolf Farnsteiner, Algebras of finite global dimension:acyclic quivers and the no loops conjecture, October 2007, www.math.uni-bielefeld.de.
[11] H.Cartan and S.Eilenberg, Homological algebra, Princeton Mathematical Series-19, New Jersey:Princeton University Press XV, 1956.
[12] H.Lenzing, Nilpotente elemente in ringen von endlicher globaler dimension, Math.Z 108.
[13] Kiyoshi Igusa, Shiping Liu, and Charles Paquette, A proof of the strong no loop conjecture, March 2011, http://arxiv.org/abs/1103.5361.
[14] J.Stallings, Centerless groups-an algebraic formulation of gottlieb's theorem, Topology 4 (1965), 129-134.
[15] K.Igusa, Notes on the no loops conjecture, J.Pure Appl.Algebra(2) 69 (1990), 161-176.
[16] M.Auslander, I.Reiten, and S.O.Smalø, Representation theory of artin algebras, Cambridge Studies In Advanced Mathematics-36, cambridge University Press,Cambridge, 1995.
[17] N.Marmaridis and A.Papistas, Extensions of abelian categories and the strong no loops conjecture, J.Algebra (1) 178 (1995), 1-20.
[18] Vera Serganova, Representation theory, November 2005, www.math.berkeley.edu.
[19] S.Liu and J.P.Morin, The strong no loop conjecture for special biserial algebras, Proc.Amer.Math.Soc (12) 132 (2004), 3513-3523.
[20] Pawel Sosna, Some topics in the representaion theory of finite-dimensional algebras, 2013, Fachbereich Mathematik Der Universität Hamburg.

