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Abstract 
Patterns of future climate and expected extreme conditions are pushing design limits as recognition of climate 

change and its implication for the built environment increases. There are a number of ways of estimating future 

climate projections and creating weather files. Obtaining adequate representation of long-term patterns of 

climate change and extreme conditions is, however, challenging. This work aims at answering two research 

questions: does a method of generating future weather files for building performance simulation bring 

advantages that cannot be provided by other methods? And what type of future weather files enable building 

engineers and designers to more credibly test robustness of their designs against climate change? To answer 

these two questions, the work provides an overview of the major approaches to create future weather data sets 

based on the statistical and dynamical downscaling of climate models. A number of weather data sets for Geneva 

were synthesized and applied to the energy simulation of 16 ASHRAE standard reference buildings, single 

buildings and their combination to create a virtual neighborhood. Representative weather files are synthesized to 

account for extreme conditions together with typical climate conditions and investigate their importance in the 

energy performance of buildings. According to the results, all the methods provide enough information to study 

the long-term impacts of climate change on average. However, the results also revealed that assessing the energy 

robustness of buildings only under typical future conditions is not sufficient. Depending on the type of building, 

the relative change of peak load for cooling demand under near future extreme conditions can still be up to 

28.5% higher compared to typical conditions. It is concluded that only those weather files generated based on 

dynamical downscaling and that take into consideration both typical and extreme conditions are the most reliable 

for providing representative boundary conditions to test the energy robustness of buildings under future climate 

uncertainties. The results for the neighborhood explaining the critical situation that an energy network may face 

due to increased peak load under extreme climatic conditions. Such critical situations remain unforeseeable by 

relying solely on typical and observed extreme conditions, putting the climate resilience of buildings and energy 

systems at risk. 
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1 Introduction 
Building performance simulation (BPS) empowers designers to evaluate a proposed design under the probable 

climate conditions that a building will face during its lifetime. Weather data defines the external boundary 

conditions for a numerical building model. Detailed weather data that, as a minimum, includes daily and hourly 

resolution is required to properly describe the dynamic energy behavior of a building. There have been many 

attempts over the last 40 years by a number of organizations to create standardized weather files for thousands of 

locations on the planet [1]. These files are readily accessible to users and have formats that are suitable to be 

directly used in energy simulation tools [2]. Weather files are usually built upon recordings of actual historical 

weather data. Different weather files may, however, have different baseline observation periods. These 

standardized weather files provide BPS users with a single-year of typical weather data that represent typical 

regional climate conditions, based on a continuous time span of 20 or 30 years of historical observed data. These 

weather data sets are widely used and represent average conditions well enough. They, however, to a large extent 

fail to represent extreme weather conditions and to project future conditions, especially at the hourly temporal 

resolution, as it has been shown by several studies [3], [4], [5], [6]. As a result, a number of methods have been 

developed to create future weather files for BPS. These have been discussed in a review paper by Herrera et al. 

[7]. The future weather files are used to study the impacts of climate change on building performance, numerous 

works on this having been published. Yau and Hasbi [8] reviewed the climate change impacts on commercial 

buildings and arrived at the trivial conclusion that, in general, buildings in regions with a projected increase in 

temperature will, in the future, require more energy for space cooling and less energy for space heating. Other 

studies revealed similar conclusions for case-study buildings in Austria [9], Italy [10], United States [11], China 

[12], and other locations around the globe. de Wilde and Coley [13] discuss the relationship between climate 

change and buildings and conclude that the majority of studies on the impact assessment of climate change on 

buildings look at few performance indicators, such as energy use for space heating and cooling, and the risk of 

overheating. There are, however, studies of the hygrothermal performance of buildings under future climatic 

conditions [14], which investigate performance indicators that highly correlate with air temperature and moisture 

content [15], and that take into account several climate indices such as air temperature, relative humidity, solar 

radiation and cloudiness [16]. 

The Intergovernmental Panel for Climate Change (IPCC) created a number of possible scenarios of future 

anthropogenic greenhouse gas emissions based on given socio-economic storylines, to project future changes in 

climate for impact and adaptation assessment. The first set of scenarios were introduced in the IPCC Special 

Report on Emissions Scenarios (SRES) in 1996 [17], [18]. Later, in 2014, the IPCC adopted a new series of 

emission and concentration scenarios called “Representative Concentration Pathways (RCPs)” [19]. These 

emission scenarios are the input data used to provide initial conditions for the so-called General Circulation 

Models or Global Climate Models (GCMs), which are today’s most complex quantitative models for forecasting 

climate change. GCM outputs represent averages over a region or the entire globe with a spatial resolution in the 

range of 100-300 km2 and a monthly temporal resolution. These data resolutions are not suitable for direct use in 

BPS tools that require local weather data with hourly or sub-hourly resolution. Therefore, GCM data need to be 

downscaled to the appropriate spatial and temporal resolution. Indeed, all future weather information with a 

spatial resolution of less than 100 km2 and temporal resolution less than monthly values has been through a 

downscaling process [20]. There are two main approaches to downscale GCM outputs and generating data with a 
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finer temporal and spatial resolution. These are dynamical and statistical downscaling. After the downscaling 

process, the generated years of weather data need to be formatted according to a precise template to be readable 

by BPS tools. One common approach is the method developed by Hall et al. [21] for creating a typical 

meteorological year (TMY), which is derived from 30 years of weather data recordings. January for the TMY is 

copied directly from the historical January data that has the closest match to the 30-year average condition for 

January. This process is replicated for the other months to produce 12 months of the typical weather year. 

Subsequently, some methods, for example the spline method, are then adopted to smooth and link together the 

twelve monthly weather data series. One of the main disadvantages of this method on climate change impact 

assessment is its averaging nature: the generation of a typical weather year neglects extreme weather conditions. 

We, in the last decade, have experienced some of the warmest years on record [22]. Such conditions highlight 

the importance of considering extreme conditions in the design and adaptation process of buildings and energy 

systems for the future conditions. A probabilistic forecast indicates a warmer than normal period for 2018–2022, 

temporarily reinforcing the long-term global warming trend and increasing the likelihood of intense to extreme 

temperatures, as happened in summer 2018 in Europe [23]. Failure in climate change adaptation can lead to 

costly short- and long-term issues [24], such as blackouts due to energy supply disruption [25]. Power failures 

can leave thousands of buildings without electricity or any means of space cooling, which can be fatal for the 

elderly, very young, or the chronically ill people. The heat wave of the summer of 2003 in Europe caused more 

than 70 000 heat-related deaths [26]. This is becoming increasingly important as the number of elderly people 

continues to rise and the predicted occurrence of heat waves increases [27]. These problems partly are arising 

from the fact that existing buildings are not designed for atypical conditions, and their expected performance is 

based on most-likely conditions. It makes their performance to fluctuate significantly when outdoor climate 

conditions fall out of typical conditions. That is why during a heat wave the electricity demand soars and causes 

the energy systems at risk of failure. Unfortunately, only a minority of scientific works and professional 

practices test their building design under conditions that include extremes. We draw on the literature and selected 

studies that used BPS to assess the impact of climate change on the performance of the buildings (Figure 1). 

 
Figure 1 Analysis of literature that used BPS to assess the impact of climate change on the performance of the buildings (111 articles) 

Figure 1 was developed from the analysis of 111 scientific papers detected after querying the Web of Science 

and Scopus databases. All these papers have been published after 2001 and are listed in Annex A. Albeit 

considering extreme conditions in the design process seems to be obvious due to the increase in their frequency 

of occurrence and magnitude and also the high cost of possible damages, but according to Figure 1, 66% of the 

studies (73 articles) are based on only typical future climate conditions. Furthermore, with regards to the 
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downscaling methods used for preparing weather files, 52% (58 articles) are based on statistically downscaled 

data, 13% (14 studies) used directly data from RCMs and 25% (28 articles) used the hybrid method. These 

methods are described further in this study. Finally, 10% of the studies (11 articles) used recorded data, which 

means they used recorded data of an extreme year such as that of 2003 in Europe to study the impact of extremes 

conditions. It is worth highlighting that 38% of all the 111 studies (42 articles) corresponding to 55% of all the 

studies that consider extremes (21 out of 38 articles) are from the UK where Test reference year (TRY) weather 

files representing future typical conditions and near extreme Design Summer Year (DSY) weather files are 

provided at national level. These files are generated using data from the UK Climate Projections (UKCP) project 

[28]. Therefore, it seems that if reliable future weather data sets are available at a national level, the tendency to 

be used in building studies is very high. 

As mentioned, adequate representation of long-term patterns of climate change and extreme conditions is 

challenging, as there are a number of ways of estimating future climate projections and creating weather files. 

This study provides an overview of the major approaches for creating future weather data sets based on statistical 

and dynamical downscaling of climate models. For the first time, the effects of using major available approaches 

for generating future weather files are studied on the calculation of energy performance of buildings. The 

building models were simulated in isolation and combined to create a virtual neighborhood representing a 

neighborhood in Geneva. The investigation critically analyzes the magnitude of the difference between impact 

assessments carried out using weather data generated by dynamical and statistical downscaling methods. It also 

investigates the possibility and importance of using extreme weather years in BPS at both the building and 

neighborhood scales. This will allow understanding the magnitude of the risk induced at large scale by not taking 

into account possible future climate extremes. The main objective of this study is to provide insight on which is 

the most reliable future weather generation method to use in building energy simulations, enabling engineers and 

designers to test their building designs and achieve designs that are less sensitive and more robust against 

climate changes. 

A total number of 74 future weather data files, which include typical and extreme weather years, were generated 

for the city of Geneva, Switzerland, to be used in the investigation. Geneva was chosen due to the availability of 

the data and the possibility of having cold winters and warm summers. Geneva furthermore reached a 

temperature record of 41.5 °C (+5.4 °C above the average temperature) during the summer heat wave in Europe 

of 2003 [29]. This makes an interesting site to investigate in this work. The generated weather files were used to 

simulate 16 commercial reference buildings proposed by the ASHRAE Standard 90.1. Each of the buildings was 

simulated using the 74 weather files, which resulted in a total of 1184 simulation runs. Afterwards, a virtual 

neighborhood was also created using a combination of the 16 buildings for a total of 85 buildings, to evaluate the 

impact of the weather file typology on estimating the energy demand at the neighborhood scale. 

This paper is divided into five sections. Section 2 provides a short background on downscaling GCM outputs to 

generate future weather files to us in BPS (Section 2.1), and to creating typical and extreme weather data sets 

(Section 2.2). Section 3 explains the methodology used for performing the analysis applied in this study, details 

of the generated weather files, building models, and virtual neighborhood being given in Sections 3.1, 3.2.1 and 

3.2.2 respectively. Results are presented and discussed in Section 4, followed by Conclusions in Section 5.  
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2 Preparing future weather data sets 
2.1 Downscaling global climate models 
Global climate models (GCMs) are numerical models of the physical processes that characterize the global 

climate system, including the atmosphere, oceans, cryosphere and land surface [30]. These models are validated 

against past climate conditions to check if they can simulate the evolution of the climate system by means of 

running re-analyses like ERA-40 for validation. ERA-40 is a re-analysis of meteorological observations from 

September 1957 to August 2002 produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) [31]. Once the model is verified and validated, it will set to run (usually from 1870), picking initial 

conditions and forced by emissions scenarios or Representative Concentration Pathways (RCPs), which are 

based on different greenhouse gas emission scenarios developed by IPCC [20]. Results of GCMs are expressed 

at the global or continental scale, and typically use long temporal resolutions such as monthly, seasonal or annual 

periods. These scales are too coarse for many applications and particularly for the building performance 

assessment. Direct use of the GCM output in impact assessment is therefore not recommended due to recognized 

biases [32]. Buildings are affected by the local climate, and some assessment methods may require 

environmental data even at the sub-hourly resolution [33]. Future weather data sets at finer temporal and spatial 

resolutions than those provided by GCMs are required to meet the needs of building engineers and designers. As 

previously mentioned, there are two main approaches to generating future weather data series. These are 

dynamical downscaling and statistical downscaling. There is a third approach that consists of a combination of 

the two approaches and is referred as hybrid downscaling.  

The flowchart in Figure 2 displays the usual steps of the downscaling process available today. 
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Figure 2. Flowchart of different approaches for preparing climate projection data with fine spatial and 

temporal resolution suitable to generate future weather files for BPS. 

 

The downscaling process of GCMs provides climate data with higher spatial and temporal resolutions. The 

procedure hence requires additional information and assumptions, which typically result in a propagation of 

uncertainties. There are also a number of GCMs developed by different institutes, generating future climate 

projections. The chaotic nature of the climate system limits accurate interannual prediction of global 

temperatures [23]. There are several uncertainties that affect any impact assessment of climate change, such as 

uncertainties in the historical relationship between temperature variability and economic growth, the spatial 

pattern temperature change associated with the level of aggregate emissions, and the future rate and pattern of 

economic development [34]. Therefore, probabilistic approaches are usually taken into account for the impact 

assessment of climate change, considering several climate scenarios and uncertainties. The existence of several 

models and uncertainties in simulating future climatic conditions is an important challenge which should be 

considered in impact assessment in all fields. This has been thoroughly investigated in previous works [14], [16] 

and [35]. There is significant confidence that climate models provide reliable quantitative estimates of future 

climate change. This confidence comes from the fact that models are based on accepted physical principles and 

also from their ability to regenerate observed patterns of current climate and past climate change [36]. 

2.1.1 Dynamical downscaling 
Dynamical downscaling derives local or regional climate information using a Regional Climate Model (RCM). 

RCMs are numerical models that require explicitly specified boundary conditions from a GCM, or an 
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observation-based data set (re-analysis). They simulate “atmospheric and land surface processes, while 

accounting for high-resolution topographical data, land-sea contrasts, surface characteristics, and other 

components of the Earth-system” [37]. RCMs generate climate information at a much finer resolution than 

GCM, down to 2.5 km2 [38]. This method has many advantages. It however also requires a considerable amount 

of computational power and large storage for the creation of the data sets. An RCM is nested into a GCM. The 

overall quality of the outputs is therefore tied to the accuracy of the underlying GCM [39]. Efforts were therefore 

made to quantify these uncertainties by combining different GCM-RCM pairings and performing series of 

simulations called ‘ensembles’. Examples of such efforts are the ENSEMBLES [40] and EURO-CORDEX [41] 

projects. The need to consider several climate scenarios rather than just one scenario in the impact assessment of 

buildings has been highlighted in previous studies [42], [16]. The Rossby Centre Regional Atmospheric Climate 

Model (RCA4) is used in this study. RCA4 has been running for the European CORDEX domain at two 

different horizontal resolutions, 50 km2 and 12.5 km2. Downscaling of the ERA-Interim reanalysis data are used 

to evaluate model performance in the recent past climate [43]. The verification process has been performed for 

the historical period 1961-2005 for which historical forcing was applied [44]. The model is then used to perform 

simulations for different future scenarios in which RCP scenarios have been applied to prescribe future radiative 

forcing. For the purpose of this work, the output data from the combination of four GCMs downscaled by RCA4 

and forced by two different RCPs (4.8 and 8.5) are used. The details are given in Section 3.1.4.  

2.1.2 Statistical downscaling 
Statistical downscaling derives estimation of regional or local climate variables from larger-scale climate data 

using deterministic or stochastic approaches. The difference between the approaches depends on whether an 

additional noise term for random variability is explicitly included [45]. Until now, the complexity of the 

dynamical downscaling method and the high level of expertise that is required to interpret the results of the 

climate simulations have pushed BPS users to favor statistical downscaling. This approach is simpler than 

dynamical downscaling, however, due to the higher availability of hourly data, which can be directly extracted 

from RCMs, it is expected that the number of applications for locations worldwide that use dynamical 

downscaling will increase [46]. The next two sections briefly look into two available approaches (and their 

assumptions) for statistical downscaling of GCMs. 

2.1.2.1 Morphing 

The morphing downscaling method was proposed by Belcher et al. [47] and applies three transformation 

algorithms to the hourly values of given weather variables. The algorithms apply changes based on monthly 

trends and variations of GCM or RCM outputs for a given location. These three algorithms are called Shift, 

Stretch and Combination of shift and stretch. 

1) Shift is an additive formulation and adds a predicted absolute monthly mean change (Δxm) derived from 

a GCM or RCM to the hourly values of a weather variable in the weather file (x0) for the month m: 

 x # = x% + Δx( (1) 

2) Stretch has a multiplicative formulation and scales the hourly values of a variable in the weather file 

(x0) by a predicted relative monthly mean change (αm) for the month m. 

	 x # = α( ∙ x%	 (2)	
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3) The Combination of shifting and stretching is a linear combination of the two previous transforming 

functions. The hourly values of a weather variable in the weather file are both shifted by adding the 

predicted absolute monthly mean change (Δxm) and stretched by a predicted relative monthly mean 

change (αm) for the month m.  

	 x # = x% + Δx( + α( x% − x%,( 	 (3)	

where x0,m is the variable x0 averaged over month m for all the considered averaging years of 

future data provided by climate models. 

x%,( =
1

24×d(×N
	

7	89:;<

x%
(=>?@	(

 

where N is the number of years in the averaging period, dm is the number of days in month m, 

and 24 hours of a day. 

One of the three algorithms is applied, which depending on the weather variable. For example, the first algorithm 

is used for adjusting atmospheric pressure, the second is used for wind speed, and the third for temperature. A 

guideline on using the above algorithms for the variables in a weather file is given in [47]. CCWorldWeatherGen 

and WeatherShift are two available tools. They use the morphing method to create climate change weather files 

starting from EnergyPlus weather files (EPW). Moazami et al. [48] critically compared the output of the two 

tools to identify the possible consequences of applying these to BPS. The two tools have differences in some of 

their calculation assumptions, which are discussed in more detail in Sections 3.1.1 and 3.1.2. 

2.1.2.2 Stochastic	generation	

Stochastic weather models are based on a statistical analysis of recorded climate data. The models can derive all 

other weather variables [49] using the inputs of just a few independent weather variables (e.g. solar radiation). 

For example, Meteonorm software is a weather generator that uses the interpolation of the principal weather 

variables to provide weather data for any site in the world [50]. It provides weather variables such as global 

irradiance on a horizontal plane at the ground level, dry-bulb temperature, dew-point temperature and wind 

speed. Values are delivered as monthly and yearly long-term means and data time series at the hourly and minute 

time resolution are generated stochastically and correspond to typical years. The model can generate hourly 

weather data that can be used as input for BPS. All noteworthy Meteonorm details are given in Section 3.1.3. 

2.1.3 Hybrid downscaling 
A hybrid approach can, in some cases, be used to reduce the computational resources and storage space required 

in dynamical downscaling. It is commonly called hybrid downscaling, the outputs of an RCM being stored at a 

coarse spatial and temporal resolution and further downscaled using the statistical methods. For example, the 

climate projections for the UK (UKCP09) provide future weather data on a monthly basis at a spatial resolution 

of 25 km2. This data is then statistically downscaled to the hourly and/or daily temporal resolution at a 5 km2 

spatial resolution [28]. Another example is the Integrated Multi-scale Environmental Urban Model (IMEUM) in 

which climate variables estimated at the city scale by RCM data at a 25 km2 resolution are statistically 

downscaled first to the spatial resolution of 1 km2 and then to the 100 m2 resolution [51].  

There have been several studies on relative performance of statistical and dynamical or hybrid downscaling 

methods in climate change impact assessments. Fowler et al. [52] provided a comprehensive insight to the choice 

of downscaling method when examining the impacts of climate change on hydrological systems. Wilby et al. 
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[53] compared the relative performance of future rainfall projections generated by the range of available 

downscaling methods. The topic has been also discussed in BPS literature and Table 1 lists and summarizes the 

main advantages and disadvantages of downscaling methods given in the literature. But there is a lack of work 

on the effect of using different downscaling methods for generating future weather files on the energy 

performance of buildings. 

 
Table 1 . Advantages and disadvantages of downscaling methods. 

Downscaling 

method 
Advantages Disadvantages 

Dynamical 
downscaling using 
RCM 

• Physically consistent data sets across 
different weather variables [20] 

• Not constrained by historical data [20] 

• Large data sets [20] 
• Powerful computational resources and expertise 

required [20] 
Statistical 
downscaling using 
morphing 

• Flexible because it can be applied to the large 
number of weather files that are available 
worldwide [54] 

• Captures localized weather conditions [47], 
[54], [7] 

• The method is simple [47] 
• Low amount of computational power is 

required [55] 

• Largely analogous to the present-day with lack of 
details about potential future changes in diurnal 
weather patterns [54] 

• Lack of future extreme weather conditions [54] 
• Potential difference in the reference timeframe of 

the GCM data and a chosen ‘present day’ typical 
weather file causing under- or overestimation of 
climate change impacts [55] 

• Lack of physical consistency between climate 
variables due to the independent ‘morphing’ of 
climate variables. It creates a different relationship 
between the variables to that currently observed at 
the site [56] 

Statistical 
downscaling using 
stochastic methods 

• Is possible to simulate extreme weather 
conditions that have not yet been observed, 
while being statistically representative for the 
location [7] 

• Is possible to simulate a wide range of 
feasible climate conditions [7] 

• Relies on statistics derived from historical 
observations of climate [57] 

• There is an inherent assumption that future 
weather patterns will be the same as those 
observed historically [7] 

• This method has difficulties in modeling with 
accuracy some of the climatic variables [58] 

 

All the above mentioned methods are capable of providing high resolution weather data for several years into the 

future. Weather data in a BPS readable format (e.g., EPW format) is required. Experts achieve this by following 

the principles used for creating Typical Meteorological Year (TMY) [21]. This method selects twelve typical 

meteorological months from the basis years to create TMY. The conventional period for the basis years is 30 

years, as defined by the World Meteorological Organization (WMO) [59]. In the following section, the 

approaches that follow the above methods plus some approaches for generating extreme weather years are 

introduced briefly. All of these approaches are used in this study. 

2.2 Generating future weather files ready to use in BPS 

2.2.1 Typical future weather data sets 
Hall et al. [21] in 1978 developed a method for creating TMY, which is one the most commonly used methods 

for creating typical weather years. The method selects the most representative month from several years of 

observed data for a location, for each of the twelve months of a year, based on Finkelstein–Schafer (FS) 

statistics. It then combines these into one year that is called TMY. It relies on statistical measures of the 

similarity of the distributions of daily indices such as minimum, mean, and maximum for four climate variables: 

dry-bulb temperature, dew-point temperature, wind speed and solar radiation [33]. 
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As mentioned before, it is common to use the TMY method to create future typical weather data sets from many 

years of GCM or RCM generated data. The advantage of using TMY is a decrease in the calculation load (one 

year represents 30 years) whilst the most representative conditions are taken into account. However, the main 

disadvantage is neglecting (or underestimating) extreme weather conditions because of the averaging nature of 

the process [46]. The increasing recognition of climate change, that not only includes changes in average 

conditions, but also weather extremes [60], also means events such as hurricanes, heat waves and cold snaps will 

be more frequent and stronger. This phenomena has been studied at several locations around globe including 

Australia [61], Russia [62], UK [63] and south-east Europe [64]. Existing and new buildings will therefore face 

more extreme conditions more frequently and at higher intensities than those used to inform their design. As a 

result, designers should be equipped with methods that allow them to test their design even under extreme 

conditions.  

2.2.2 Future weather data sets taking account of extreme conditions 
As previously discussed, buildings should be assessed for more frequent and stronger future extreme weather 

conditions [65]. It is therefore important to take into consideration these extremes, even from the early design 

stage. The averaging process in creating TMY files based on 20-30 years of historical data or of future generated 

weather data, results in a mild year that usually excludes extreme values. Several researchers have suggested 

using extreme weather data sets rather than just one typical set in building simulations, to ensure that extremes 

and the probable impacts of climate change are not underestimated. For example, Crawley et al. [3] propose the 

use of more than one weather file in building simulation. They began, in their study, with four combinations of 

extremes to create Extreme Meteorological Year (XMY): daily maximum, daily minimum, hourly maximum, 

hourly minimum for an initial set of variables of dry-bulb temperature, dew-point temperature, solar insolation, 

precipitation, relative humidity, and wind speed. They used two approaches to select the extreme months. Firstly 

they looked at the daily maximum and minimum values for each day of the month and selected the month with 

the highest daily maximum value and the lowest daily minimum. Secondly they looked at the average hourly 

value for the month and selected the months with the highest hourly and lowest hourly average value. Using 

prototype building models, they concluded that XMY based on hourly maximum and minimum dry-bulb 

temperature best captured the range of energy use for the XMY. They suggest that BPS users should use three 

weather files, one TMY and two XMYs based on hourly maximum and minimum dry-bulb temperature to 

induce a range of building energy performance.  

Another method for generating future weather files that can represent typical and extreme weather conditions 

was proposed by Nik [46]. The method is based on synthesizing one typical and two extreme (cold and warm) 

data sets: Typical Downscaled Year (TDY), Extreme Cold Year (ECY) and Extreme Warm Year (EWY). The 

process for creating a TDY starts by following the method for creating a TMY file, except that just one climate 

variable (dry-bulb temperature) is considered in the selection of typical months instead of four. There are 

different reasons for this, which includes the difficulties and uncertainties in weighting the climatic variables, as 

climate change does not equally affect all climate variables (refer to [46] for additional details). A similar 

procedure is used to create ECY and EWY data sets. However, instead of looking for the least absolute 

difference, the years with the maximum (for ECY) and minimum (for EWY) absolute difference are selected as 

the years representing the extreme temperatures for each month. Nik showed that by using the three data sets and 
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considering TDY, ECY and EWY together (which is called Triple), it is possible to achieve a probability 

distribution of future conditions which is very similar to the full set of 30 years RCM data.  

It was mentioned in Section 2.1.1 that it is necessary to consider several climate scenarios instead of just one 

scenario in the impact assessment on buildings, due to significant uncertainties in climate modeling. The method 

developed by Nik [46] was also used to overcome the challenge of climate uncertainties, the method 

synthesizing one set of representative weather files that takes into consideration several climate scenarios (e.g. in 

[46], five climate scenarios were considered – i.e. 5×30 years of data for a 30-year time span – and TDY, ECY 

and EWY were synthesized). This allows an impact assessment to be performed under both typical and extreme 

conditions with a minimum number of required simulation runs and in which climate uncertainty is taken into 

account. 

3 Methodology 
A set of 74 weather files were generated to compare the different approaches used in future climate projection. 

These combine all the available approaches drafted in Figure 2 for three different future time ranges, as 

described in detail in Section 3.1.5. The city of Geneva, Switzerland was used in this study as a reference 

location to generate and compare different future weather data sets using these methods. All data were formatted 

into the EPW weather file format.  

16 reference commercial building models, as proposed by the ASHRAE standard 90.1 [66], were simulated 

using EnergyPlus [67] to assess the impacts of the typology of future weather data sets on building energy 

simulations. The buildings cover a wide range of types, from small office buildings to large energy intensive 

buildings such as hospitals, building models being described in Section 3.2.1. The 16 building models were 

furthermore used to build a virtual neighborhood in the city of Geneva, to observe the impact at the 

neighborhood scale. The neighborhood contains the same building typology split as the canton of Geneva (see 

Section 3.2.2). 

3.1 Future weather data for Geneva 
The weather data sets that are used in this work were generated using three future weather generator tools 

(CCWorldWeatherGen, WeatherShift™, and Meteonorm) and one RCM (RCA4, the 4th generation of the 

Rossby Centre Regional Atmospheric Climate Model [68]). RCA4 data, downscaling four different GCMs, was 

used in this work. 

3.1.1 The CCWorldWeatherGen tool 
Jentsch et al. [55] in 2013 provided a methodology for generating future weather data for different locations 

around the world. They chose the output data of the HadCM3 [69], forced with IPCC A2 emission scenario and 

applied the morphing method to generate EPW files. The HadCM3 A2 data provided by the IPCC data 

distribution center (DDC) [70] simulated monthly values of relative changes in climate between the 1961-1990 

baseline climate and three future time slices, the 2020s, 2050s and 2080s. They developed a Microsoft® Excel 

based tool called the ‘Climate Change World Weather Generator’, commonly referred to as 

CCWorldWeatherGen. This tool superimposes relative change on the weather variables stored in an EPW file 

and is freely available. It allows the user to generate future weather files for worldwide locations within three 

time slices: 2011-2040 (referred as ‘2020s’), 2041-2070 (referred as ‘2050s’) and 2071-2100 (referred as 

‘2080s’). It transforms an original EPW typical weather file into future weather data, formatted in the EPW 
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format and so ready for use in BPS tools. Jentsch describes in detail the potential source of inaccuracy in the 

outputs of the tool due to the possible difference in the reference timeframe between HadCM3 and the EPW data 

[55]. For example, in this study the original TMY file is an IWEC (International Weather for Energy 

Calculations) data file for Geneva, derived from observations collected in the period 1982-1999. As mentioned 

before, the HadCM3 A2 data are relative changes in relation to the 1961-1990 baseline climate. Applying 

CCWorldWeatherGen to the IWEC weather file will superimpose the relative changes from the 1961-1990 

baseline on to the data from 1982-1999. The latter period has higher temperature levels than the 1961-1990 

baseline. An overestimation of results in the morphed data set is therefore expected. More details on the 

generation of climate variables for future weather data are available in [54], [47]. 

3.1.2 WeatherShift™ tool 
Arup and Argos Analytics consulting firms developed a tool named WeatherShift™ [71], [72] based on the 

RCP4.5 and RCP8.5 emission scenarios of the IPCC Fifth Assessment Report (AR5). This applies the morphing 

method on to the outcomes of 14 GCMs (out of approximately 40 models) available under AR5 [19]. The tool 

provides future projection weather data for three time periods: 2026-2045 (referred as ‘2035s’), 2056-2075 

(referred as ‘2065s’), 2081-2100 (referred as ‘2090s’). These are relative to the baseline climate of 1976-2005 

and under the two emission scenarios. WeatherShift™ moreover provides a cumulative distribution function 

(CDF) that is constructed for each variable using linear interpolation between the model values [71]. This 

method was introduced earlier from the UK Climate Impact Programme (UKCIP) for the UK Climate 

Projections [73]. The CDF enables users to assign a probability to the projections, a sort of ‘warming percentile’. 

For the purpose of this study, the 50th percentile and the RCP 8.5 emission scenario were chosen for setting the 

tool to generate future weather data sets base on the IWEC weather file of Geneva for the three available time 

periods. 

3.1.3 Meteonorm 
This tool is a combination of climate database, spatial interpolation tool and a stochastic weather generator. 

Meteonorm can calculate typical years with hourly resolution for any site and can also be used for climate 

change studies. This tool uses the GCMs under the IPCC fourth assessment report (AR4) rather than climate data 

stored in typical weather files. It can generate future weather files in different formats and according to different 

IPCC emission scenarios (B1, A1B and A2) for 10-year bins between 2010 and 2100 [57]. The Meteonorm 

version 7.2 was used in this study to generate a typical weather file and three future weather files for the A2 

emission scenario and for the years 2020, 2050 and 2080 for the city of Geneva. 

3.1.4 TDY, ECY and EWY out of RCA4 
Part of the data from Nik’s work [46] is used in this study and transformed into EPW format. The Rossby Centre 

Regional Atmospheric Climate Model (RCA4) [68] is used to dynamically downscale weather data from four 

GCMs (Table 2) to the spatial resolution of 12.5 km2 and the hourly temporal resolution. 
Table 2. The Global Climate Models (GCMs) used in the downscaling process by the Rossby Centre 

regional atmospheric climate model (RCA4). 

Full name Short name Originating group Model version 

Centre National de Recherches Météorologiques CNRM CNRM/CERFACS, Toulouse, France cnrm-cm5 

Irish Centre for High-End Computing ICHEC EC-Earth Consortium, Europe ec-earth 
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Institut Pierre Simon Laplace IPSLm IPSL, Paris, France ipsl-cm5a-mr 

Max Planck Institute for Meteorology  MPIM MPIM, Hamburg, Germany mpi-esm-lr 
 

The adopted greenhouse gas concentration trajectories are RCP8.5 and RCP4.5 for CNRM and ICHEC, and 

RCP8.5 for IPSLm and MPIM. This gives an ensemble of six GCM-RCM combinations. RCA4 outputs were 

used to synthesize TDY, ECY and EWY for three future time periods, 2010-2039, 2040-2069 and 2070-2099. 

This generated six sets of representative weather data sets (each containing TDY, ECY and EWY) for each time 

period, resulting in a total of 54 weather files. One group of representative weather data (containing typical and 

extreme cold and warm) was, furthermore, synthesized by considering all the six climate scenarios at each time 

period (resulting in a total of nine weather files for three time periods). These files are henceforth called “Multi-

Scenario” weather files (referring to the consideration of multiple climate scenarios). The three representative 

files in this group are named TDYMultiple, ECYMultiple and EWYMultiple. For more details, refer to [46].  

3.1.5 Generated future weather data sets 
Each of the aforementioned methods provide future weather files for slightly different time slices. In the interests 

of harmonization, three future projected periods namely near-term (NT), medium-term (MT) and long-term (LT) 

were adopted. The expressions ‘Near-Term’ and ‘Long-Term’ are used in chapters 11 [74] and 12 [75] of IPCC 

AR5 to refer to the time periods 2016-2035 and 2081-2100 respectively. The term ‘Medium-Term’ is introduced 

in this work and follows the same logic. Table 3 shows the alignment of the original output periods of the files to 

the three identified time slices. 
Table 3. Adopted terms for the variety of time slices used by the different methods or tools. 

Adopted Term CCWorldWeatherGen WeatherShift™ Meteonorm RCA4 

Near-term 2011-2040 2026-2045 2011-2030 2010-2039 

Medium-term 2041-2070 2056-2075 2046-2065 2040-2069 

Long-term 2071-2100 2081-2100 2080-2099 2070-2099 

 

Weather files were grouped into two categories to distinguish between different generated future weather data. 

These were: typical weather data sets and extreme weather data sets. They include weather files from statistical 

and dynamical data groups as shown in Figure 3. 

 
Figure 3. Weather files are grouped into two categories: typical weather data sets and extreme weather 

data sets, which include weather files from statistical and dynamical data groups. 
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The data sets are grouped into three data groups: 

• TMY data group: includes two weather files, the IWEC typical meteorological year (TMY) and a TMY 

generated by Meteonorm, 

• Statistical data group: six weather files generated using the morphing method through 

CCWorldWeatherGen and WeatherShift, and three weather files generated using the stochastic method 

through Meteonorm,  

• Dynamical data group: 21 weather files generated using dynamical downscaling that represent typical 

conditions and 42 weather files generated using dynamical downscaling that represent extreme 

conditions. 

Typical weather data sets refer to the files that are generated through statistical downscaling or dynamical 

downscaling (TDY series). Extreme weather data sets refer to ECY and EWY files that represent extreme cold 

and warm years (using the RCM dynamically downscaled data). All the above methods provide 72 future 

weather files for the city of Geneva as shown in Table 4. A total of 74 files were used in this study, including 

two TMY weather files. 
Table 4. Weather files generated for the city of Geneva and used in this study. 

Method Tool/GCM/RCM Emission scenario 
Number of 
weather 
files 

Adopted term 

Statistical 
CCWorldWeatherGen A2 3* CCW_a2 
WeatherShift RCP 8.5  3 WSH_rcp85 
Meteonorm A2 3 MTN_a2 

Dynamical-typical 

MPIM-RCA4 RCP 8.5 3 MPIM_TDY_rcp85 
IPSLm-RCA4 RCP 8.5 3 IPSLm_TDY_rcp85 

ICHEC-RCA4 RCP 8.5, RCP 4.5 3´2 ICHEC_TDY_rcp85 
ICHEC_TDY_rcp45 

CNRM-RCA4 RCP 8.5, RCP 4.5 3´2 CNRM_TDY_rcp85 
CNRM_TDY_rcp45 

Multi GCMs-RCA4 RCP 8.5+RCP 4.5 3 TDYMultiple 

Dynamical-extreme 

MPIM_RCA4 RCP 8.5 3´2 MPIM_ECY_rcp85 
MPIM_EWY_rcp85 

IPSLm_RCA4 RCP 8.5 3´2 IPSLm_ECY_rcp85 
IPSLm_EWY_rcp85 

CNRM_RCA4 RCP 8.5, RCP 4.5 3´4 

CNRM_ECY_rcp85 
CNRM_EWY_rcp85 
CNRM_ECY_rcp45 
CNRM_EWY_rcp45 

ICHEC_RCA4 RCP 8.5, RCP 4.5 3´4 

ICHEC_ECY_rcp85 
ICHEC_EWY_rcp85 
ICHEC_ECY_rcp45 
ICHEC_EWY_rcp45 

Multi GCMs_RCA4 RCP 8.5+RCP 4.5 3´2 ECYMultiple 
EWYMultiple 

* refers to three time periods; one weather file for each period. 

A2, RCP8.5 and RCP4.5 are the three future emission scenarios present in the above list of weather files. 

According to IPCC fifth assessment synthesis report [76]: RCP8.5 scenario is broadly comparable to A2 scenario 

and both describe very high GHG emissions, and RCP4.5 is an intermediate scenario. The report further 

describes: “Relative to 1850–1900, global surface temperature change for the  end  of  the  21st  century  (2081–

2100)  is  projected  to  likely exceed 1.5°C for RCP4.5 and RCP8.5 (high confidence). Warming  is  likely to  

exceed  2°C  for  RCP8.5  (high confidence), more  likely  than  not  to  exceed  2°C  for  RCP4.5  (medium  

confidence)”. The above weather data sets allow considering the uncertainty of climate projections into energy 

calculations. The span of values resulted from simulations under these weather files, shows the uncertainty of 

buildings energy performances in future following IPCC emission scenarios, and hence offer the opportunity to 

test a building under the wide-expected range of climate uncertainty. 
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3.2 Simulation test bench 

3.2.1 Building models 
The ASHRAE standard 90.1 suite of commercial reference building models was chosen to be used in this study 

[77] to assess the impact of climate change on the energy performance of buildings. The commercial reference 

building models were developed by Pacific Northwest National Laboratory (PNNL), under contract with the 

U.S. Department of Energy (DOE). These building models were originally derived from DOE’s Commercial 

Reference Building Models with modifications from the ASHRAE 90.1 committee, Advanced Energy Design 

Guide series, and other building industry expert input. Detailed descriptions of the reference model development 

and modeling strategies can be found in PNNL’s reports [78], [79]. The building models used in this study are 

complying with ASHRAE 90.1-2013 standard. The suite is a collection of standardized building models with 

realistic building characteristics and includes 16 buildings of different types and dimensions (Figure 4). The suite 

provides a simulation bench test to compare the relative impact of using the generated weather files (in section 

3.1) on energy performance of various building types. Technical descriptions of the selected building envelope 

components, used in building models, are given in Table 5. 

  
Table 5. Technical description of building envelope components of reference building models. 

Building Type 

U-value (W/(m2K))  SHGC 

Roof  External Wall  Glazing  Glazing 

I II III  I II III IV  Windows Skylight  Windows Skylight 

Apartment 
High-rise 0.18 - -  0.36 - - -  0.42 -  0.40 - 

Mid-rise 0.18 - -  0.36 - - -  0.42 -  0.40 - 

Hotel 
Large 0.18 - -  - 0.51 0.59 -  0.42 -  0.40 - 

Small 0.18 - -  0.36 - - -  0.42 -  0.40 - 

Office 

Large 0.18 - -  - - 0.59 -  0.42 -  0.40 - 

Medium 0.18 - -  0.36 - - -  0.42 -  0.40 - 

Small - 0.15 -  0.36 - - -  0.42 -  0.40 - 

Health 
Hospital 0.18 - -  - 0.51 0.59 -  0.42 -  0.40 - 

Outpatient 0.18 - -  0.36 - - -  0.42 -  0.40 - 

Restaurant 
Fast-food - 0.15 -  0.36 - - -  0.42 -  0.40 - 

sit-down - 0.15 -  0.36 - - -  0.42 -  0.40 - 

Retail 
Standalone 0.18 - -  - - 0.59 -  0.42 0.75  0.40 0.6 

Strip Mall 0.18 - -  0.36 - - -  0.42 -  0.40 - 

School 
Primary 0.18 - -  0.36 - - -  0.42 0.75  0.40 0.6 

Secondary 0.18 - -  0.36 - - -  0.42 0.75  0.40 0.6 

Warehouse Warehouse - - 0.20  - - - 0.30  0.42 0.75  0.40 0.6 

 

ASHRAE 90.1 [66] defines U-factor (U-value) as: “heat transmission in unit time through unit area of material 

or construction induced by a unit temperature difference between the environments on each side.” and defines 

solar heat gain coefficient (SHGC) as: “The ratio of the solar heat gain entering the space through the 

fenestration area to the incident solar radiation.”U-value and SHGC of glazing in Table 5 are independent of 

frame material. Roof U-value of the prototype buildings varies between 0.15 to 0.20 W/(m2K) depending on the 



 

 

17 

roof type. Wall U-value varies from 0.30 to 0.59 W/(m2K) depending on the wall type. For more details, please 

refer to PNNL’s technical report [80]. 

 
High-rise Apartment 

Building01 

Mid-rise Apartment 

Building02 
Hospital 

Building03 
Large Hotel 

Building04 

Small Hotel 

Building05 

 
Large Office 

Building06 

Medium Office 

Building07 

Small Office 

Building08 

Outpatient Healthcare 

Building09 

Restaurant Fast-food 

Building10 

Restaurant sit-down 

Building11 
Standalone Retail 

Building12 

Strip Mall Retail 

Building13 
Primary School 

Building14 

Secondary School 

Building15 

Warehouse 

Building16 

Figure 4. Reference building models from the ASHRAE Standard 90.1. The total area of these building 

models and the number of their conditioned zones are presented in Table 6. 

3.2.2 Virtual neighborhood of Geneva 
A combination of the 16 buildings was used to virtually model a neighborhood. We looked at the neighborhood 

of Champel in Geneva to get an idea of the scale of such a neighborhood, which has a total building area of 

328 105 m2 [81]. The distribution of the areas occupied by the buildings in the canton of Geneva was used to 

distribute the 16 buildings based on type. In the canton, 64 % of buildings are residential and 36 % are non-

residential and mixed-use buildings [82]. The above assumptions gave the virtual neighborhood created for this 

study, which had a total energy reference area of 414 341 m2, 64.3 % residential buildings and 35.7 % non-

residential buildings. The composition of the virtual neighborhood is presented in Table 6. This composition was 

used only to assess the magnitude of impacts at the neighborhood scale. The spatial attributes of a neighborhood 

(organization of the buildings and infrastructure between) are not within the scope of this paper.  
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Table 6. Composition of the 16 ASHRAE standard 90.1 reference buildings in the virtual neighborhood 

for city of Geneva. 

Building 

number 
Name 

floor Area 

of 

Thermally 

conditione

d space (1) 

(m2) 

Number 

of floors 

Number 

of thermal 

zones (2) 

Windows-to-

wall ratio (3) 
 

Number of building 

type in the 

neighborhood (4) 

Percentage of floor 

area in the whole 

neighborhood (5) 

Building01 High-rise apartment 7 059.9 10 80 30 %  20 37.8 % 

Building02 Mid-rise apartment 2 824.0 4 32 20 %  35 26.5 % 

Building03 Hospital 22 436.2 5 162 16 %  1 5.4 % 

Building04 Large hotel 10 736.3 6 195 30.2 %  1 2.6 % 

Building05 Small hotel 3 725.1 4 54 10.9 %  2 1.9 % 

Building06 Large office 46 320.4 12 74 37.5 %  1 11.2 % 

Building07 Medium office 4 982.2 3 18 33 %  3 3.6 % 

Building08 Small office 511.0 1 6 20.1 %  5 0.6 % 

Building09 Outpatient healthcare 3 804.0 3 118 20 %  1 0.9 % 

Building10 Restaurant fast-food 232.3 1 2 14 %  8 0.4 % 

Building11 Restaurant sit-down 511.2 1 2 17.1 %  3 0.4 % 

Building12 Standalone retail 2 294.0 1 5 7.1 %  1 0.6 % 

Building13 Strip mall retail 2 090.3 1 10 10.5 %  1 0.5 % 

Building14 Primary school 6 871.0 1 25 35 %  1 1.7 % 

Building15 Secondary school 19 592.0 2 46 33 %  1 4.7 % 

Building16 Warehouse 4 835.1 1 3 0.7 %  1 1.2 % 
(1) Defined by ISO 52000-1:2017 [83] as: heated and/or cooled space. 
(2) Number of thermal zones in the energy model. 
(3) Defined by ASHRAE 90.1 [66] as: The ratio of vertical fenestration areas to the gross above-grade wall area. 
(4) Number of each building type in the virtual neighborhood. 

(5) Percentage of each building type in the total floor area of the neighborhood. 

3.2.3 Simulation workflow 
A simulation workflow was implemented in the multidisciplinary design optimization platform 

modeFRONTIER [84] coupled with MATLAB for post-processing of the output data. This was used to simulate 

the full set of 16 building models under the 74 generated future weather files, giving a total of 1 184 simulation 

runs. modeFRONTIER used the algorithm presented in Figure 5 to perform the simulations. 
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Figure 5. Configuration of simulation runs of 16 reference buildings under the generated future weather 

files. Simulation of building number 07, Medium Office, using weather file ‘IPSL_EWY_rcp45_NT.epw’ 

is highlighted as an example. 

The dynamic energy simulations of the building models were performed using the software EnergyPlus [67] 

version 8.5.0. Each released version of EnergyPlus undergoes two major types of validation tests [85]: analytical 

tests according to ASHRAE Research Projects 865 and 1052, and comparative tests according to 

ANSI/ASHRAE 140 [86] and IEA SHC Task34/Annex43 BESTest method. Heat conduction through the opaque 

envelope was calculated via the conduction transfer functions (CTF) with a 15-minute time step. The natural 

convection heat exchange near internal and external surfaces was calculated using the thermal analysis research 

program (TARP) algorithm [87]. The initialization period of simulation was set to the maximum option, which is 

25 days [88]. 

The output parameters that were obtained from EnergyPlus were delivered energy for space heating and cooling, 

and delivered energy for total electricity including electricity for heating, cooling, lighting, fans, domestic hot 

water and appliances. Delivered energy is defined in the ISO 52000-1:2017 standard [83] as: “energy, expressed 

per energy carrier, supplied to the technical building systems through the system boundary, to satisfy the uses 

taken into account (heating, cooling, ventilation, domestic hot water, lighting, appliances, etc.) or to produce 

electricity” 

In the next step, delivered energy is converted to primary energy which is defined by the standard [83] as: 

“energy that has not been subjected to any conversion or transformation process”. 

Using primary energy allows comparisons of the energy performance of several building types that use different 

technical building systems supplied by different energy carriers. The primary energy conversion factors 

stipulated in Swiss norm SIA 380/1:2009 [89] were used. According to this standard, the factor for converting 

electricity to primary energy is 2.97 kWhPE/kWhel and for converting natural gas to primary energy is 1.15 

kWhPE/kWhgas. 

4 Results and discussion 
The analysis uses graphical comparisons and statistical metrics to characterize the differences between the future 

weather projections generated using statistical and dynamical downscaling methods. For the sake of 
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harmonization, all the graphs in this section use the color black for the TMY data group, green for the statistical 

data group, blue for typical weather files (TDY series) and red for extreme weather files (ECY and EWY series) 

of the dynamical data group. This section firstly presents the distributions of values for hourly dry-bulb 

temperature in all the weather files. Then the impacts of future weather data type on the energy simulation of 

buildings are assessed using just typical weather data sets. The final part of the results focuses on the importance 

of considering extreme conditions in designing buildings and energy systems for buildings. 

4.1 Comparison of generated weather files 
Each EPW weather file contains the hourly values for an entire year for a number of weather variables, e.g. dry-

bulb temperature, dew-point temperature, direct and diffuse solar radiation, wind speed, and wind direction. All 

the generated files that were used in this study contained information on the effect of climate change on at least 

the following climate variables:  

• Dry Bulb Temperature 

• Dew Point Temperature 

• Relative Humidity 

• Direct Normal Radiation  

• Diffuse Horizontal Radiation 

• Global Horizontal Radiation 

• Wind Speed 

All the above items are used directly in the EnergyPlus program, which means that the results reported in this 

study are already affected by changes to all these variables. Boxplots of the outdoor dry-bulb air temperature, 

which are one of the key variables in energy simulation [3], are plotted in Figure 6. The effect of climate change 

on different climate variables and the uncertainty of estimating these variables by climate models are discussed 

in previous works of the authors [14], [32], [46], [90]. See Annex B for boxplots of three other climate variables, 

global horizontal radiation, relative humidity and wind speed. There are boxplots for all the 74 weather files, all 

showing values for near-term (NT), medium-term (MT) and long-term (LT) periods. The distributions of the 

outdoor dry-bulb air temperature are compared with the distribution of maximum and minimum daily values for 

observed data for the period 1955-2017. These are used as a reference or control sample. Observed data are 

based on weather data from the Genève-Cointrin weather station obtained from National Centers for 

Environmental Information (NCEI) [91]. The brown dashed lines project lower and upper whiskers of daily 

minimum and daily maximum distributions of temperature and the brown horizontal dotted line marks the 

average daily temperature for the period of observed data. 
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 .

 
Figure 6. Boxplots of the outdoor dry-bulb air temperature for the weather files generated by three 

software tools–CCWorldWeatherGen, WeatherShiftTM, Meteonorm –and six combinations of GCM-

RCMs with different emission scenarios. The dashed lines show the lower w whiskers for minimum daily 

temperature and the upper whiskers of the maximum daily temperature and the horizontal dotted brown 

lines show the average according to recorded data from 1955 to 2017 of Genève-Cointrin weather station. 

a) Historical observed data and typical weather data sets, b) extreme weather data sets. 

 

Figure 6 shows a pattern of continuous increase in the average dry-bulb temperature from NT to MT and LT, and 

for all future weather files. The slope of increase is greater for weather files with A2 and RCP 8.5 emission 

scenarios than for RCP 4.5, which is in agreement with the GCM projections for these scenarios. An increasing 

trend exists for all generated weather files. However, the maximum values of typical future weather files only get 

close to the historical observed value of maximum temperature under LT. This reveals the weakness of typical 

weather files in representing extreme conditions, as is discussed in section 2.2.2. For extreme weather data sets, 

the distribution of EWY series for the RCP8.5 scenario is close to the observed maximum daily temperatures and 

the ECY series of RCP4.5 is close to the distribution of observed minimum daily temperatures. Using Multi-

Scenario files therefore improves the coverage of both maximum and minimum borders of the distributions for 

dry-bulb temperature. These files approximately cover the distributions of all other dynamical data group files. 

This means that it is possible to reduce the number of simulations by using Multi-Scenario weather files instead 

of several weather files (six in this case) with different climate scenarios, as was shown in [46] and [90]. 
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Climate change affects climate variables and their long-term and short-term variations. Statistical data group 

weather files are only able to capture information on the long-term changes that are provided by the original 

GCM outputs (with monthly time resolution). These types of files are generated under the assumption that short-

term future weather patterns will follow the same pattern and climate variability as historical weather data. They 

therefore cannot represent probable future extreme conditions due to climate change. Conversely, the weather 

files of the dynamical data group are not constrained by historical data. To better illustrate the difference 

between the two types of weather data, the hourly outdoor dry-bulb temperature for one day (1st February as an 

example) is plotted in Figure 7 for statistical data group weather files and one dynamical data group weather file 

under NT, and compared with TMY IWEC.  

 
Figure 7. Hourly outdoor dry-bulb temperature for one day (1st February as an example) are plotted for 

three weather files of statistical group (in green) and one weather file of the dynamical group (in blue) 

under NT and compared to TMY IWEC (in black). 

 

As expected, the hourly temperature profiles of the CCW_a2, WSH_rcp85 and MTN_a2 future weather files in 

Figure 7, the statistically downscaled type, have a very similar pattern to the TMY IWEC file with a higher 

average temperature. The MPIm_rcp85 dynamical group file does not, however, match the other profiles. This 

again points to the fact that weather files generated using statistical methods cannot represent short-term 

variations of climate conditions induced by climate change. 

The annual and seasonal averages for dry-bulb temperature and their monthly variations are compared in Table 7 

for 14 cases to investigate the long-term changes of average values and variations of climate variables. The 14 

cases are: 30 years of observed data (1961-1990), 12 typical weather files (TMY data group, the statistical data 

group and TDY series of the dynamical data group) and “TripleMultiple” which is the average of values for 

TDYMultiple, ECYMultiple and EWYMultiple, all under LT. The meteorological seasons were defined by Palatine 

Meteorological Society (1780) as periods of three months: winter starting on 1st December, spring on 1st March, 

summer 1st June and autumn on 1st September [92]. The absolute difference between weather files and the 

observed data is shown in Table 7 under “Absolute change to the baseline period 1961-1990”, to help us better 

understand the differences between the weather files and the observed data. 
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Table 7. Annual and seasonal averages of outdoor temperature (°C) under LT for typical weather 
data sets and TripleMultiple (the average of values for TDYMultiple, ECYMultiple and 
EWYMultiple) and their absolute difference to the values of baseline observed period (1961-1990). 

  
Mean of monthly values 

(°C)  
Absolute change to the baseline period 1961-1990 

(°C) 

  Annual 
 Seasonal  Annual 

 Seasonal 

Period Type  Spring Summer Autumn Winter  
 Spring Summer Autumn Winter 

1961-1990 Observed data 9.6  9.0 17.9 10.1 1.5  0.0  0.0 0.0 0.0 0.0 

1982-1999 TMY IWEC 10.4  9.8 18.9 10.3 2.4  0.7  0.8 1.1 0.2 0.9 

1961-1990 TMY Meteonorm 9.8  9.1 18.2 10.2 1.8  0.2  0.1 0.4 0.1 0.3 
2071-2100 

(LT)  CCW_a2 14.9  13.3 25.2 15.1 5.8  5.2  4.3 7.4 5.0 4.3 

2081-2100 
(LT)  WSH_rcp85 14.8  14.1 23.5 15.2 6.6  5.2  5.1 5.6 5.1 5.1 

2080-2099 
(LT)  MTN_a2 13.3  11.9 22.7 13.8 4.6  3.6  2.9 4.8 3.7 3.2 

2070-2099 
(LT) 

 MPI _rcp85  13.0  11.0 22.5 13.0 5.5  3.4  2.0 4.6 2.9 4.0 

 IPSL _rcp85  13.6  10.4 23.3 14.6 5.9  3.9  1.4 5.5 4.5 4.4 

 ICHEC _rcp85  12.2  9.8 21.7 12.7 4.5  2.6  0.8 3.9 2.6 3.0 

 CNRM _rcp85  11.6  9.5 20.2 12.1 4.5  1.9  0.4 2.3 2.0 3.0 

 ICHEC _rcp45  10.2  8.5 18.8 10.6 2.8  0.5  -0.5 0.9 0.5 1.4 

 CNRM _rcp45  9.8  7.9 18.3 10.3 3.0  0.2  -1.2 0.4 0.2 1.5 

TDYMultiple 11.6  9.5 20.7 12.0 4.3  2.0  0.5 2.9 1.9 2.8 

TripleMultiple 11.7  9.9 21.7 12.2 3.1  2.1  0.8 3.8 2.1 1.6 

 

The annual average temperature shows an increase for all future weather files under LT of between 0.2 to 5.2 °C 

in relation to the 1960-1991 baseline period. It can be highlighted that values of TMY IWEC also show an 

increase in annual average temperature. This can be the reason for relatively higher values of 

CCWorldWeatherGen and WeatherShift outputs, as discussed in section 3.1.1. The range of values for different 

scenarios highlights the importance of considering several scenarios for climate change impact assessment, as 

emphasized by IPCC [93] and other studies (e.g., [94]). 

It is also interesting to see the seasonal variations in the weather files. Table 7 shows that the highest increase of 

temperature in relation to the baseline for weather files and with A2 and RCP8.5 emission scenarios is in 

summer (except for CNRM_rcp85). Interestingly, the highest increase for weather files with RCP4.5 scenarios 

occurs in winter. Another notable result for RCP4.5 weather files is the decrease in temperature during spring. 

TDYMultiple is generated to represent all the six climate scenarios in the dynamical data group. The values of 

annual and seasonal averages for this file are close to the mean of the other 6 scenarios. Comparing TDYMultiple 

with TripleMultiple shows that considering TDYMultiple, ECYMultiple and EWYMultiple together (Triple Multiple) results in 

higher values of annual and seasonal averages rather when considering TDYMultiple alone. Furthermore, these 

values show that the TripleMultiple is more extreme, with warmer summers and colder winters than the TDYMultiple. 

4.2 Climate change impact assessment using only typical weather files 
In this section, the hourly primary energy for space heating and cooling (defined in section 3.2.3) requirements 

per square meter for the 16 reference buildings are calculated for one year under typical weather data sets. Figure 

8 shows the distribution of calculated values for all the buildings.  
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Figure 8. The boxplots present the distribution of values for the calculated annual primary cooling energy 

(negative values) and primary heating energy (positive values) under typical weather data sets for all 16 

reference buildings. Values of the dynamical data group are presented in blue and the statistical data 

group in green. 

 

The boxplots in Figure 8 for both statistical and dynamical under all NT, MT and LT of each building shows that 

the fast food restaurant has the largest range of primary energy. The range of values for this building is 

approximately 280-610 kWh/m2/a for space heating and 30-160 kWh/m2/a for space cooling. The reason for this 

can be the high ventilation rate of restaurant buildings compared to other buildings. The hospital has a relatively 
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small range for primary energy for space heating (~ 85-130 kWh/m2/a) and space cooling (~ 40-90 kWh/m2/a). 

This is probably due to equipment energy use and other energy end-uses than heating, cooling and ventilation 

predominating in this building. 

Overall, the shifting impact on primary cooling energy and primary heating energy is present for all buildings 

except building number 16 (warehouse). This might show that climate conditions are not the dominant force 

driving the energy performance of this building. A similar conclusion was proved for swimming facilities [95]. 

For some buildings, a heating-load dominated building under NT furthermore becomes a cooling-load dominated 

building under MT or LT. Examples of this are buildings number 14 and 15 (primary and secondary schools) as 

discussed by Pagliano et al. [96]. This reveals that both methods are able to provide enough information to show 

a shift in the energy use of the buildings. 

The cumulative distribution of primary energy for heating and cooling for each building was calculated to show 

the impacts of weather data typology on energy calculations, for both hourly and annual values. As an example, 

Figure 9 presents these values for building number 7 (medium office) under NT, MT and LT periods.  

 
Figure 9. Cumulative distributions of primary cooling energy (on the left) and primary heating energy (on 

the right) for building07 (medium office) under typical weather data sets. Results of the dynamical data 

group are presented in blue color and the statistical data group in green. 
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Figure 9 shows that the overall primary energy for cooling for building07 (medium office) increases over time 

while the primary energy for heating tends to decrease moving from NT to LT. Furthermore, the uncertainty 

associated with calculating the building’s primary energy using different weather files spreads consistently for 

space cooling but remains quite constant for space heating. The shape and variation of hourly values for cooling 

primary energy and heating primary energy are very similar for the statistical data group and the TMY IWEC 

file. This limitation of using the statistically downscaled method for discussing short-term variations has been 

previously discussed in the first part of the results, Figure 7 demonstrating that the hourly outdoor temperature 

profiles of the statistical group have the same pattern as the TMY IWEC file. 

The extent of uncertainty for calculating primary energy presented in Figure 8 and Figure 9 substantiate previous 

proposals in the literature to prefer the probabilistic approaches for predicting building performance in the future 

[97] rather than the deterministic ones. 

Total primary energy for space air conditioning, which is the sum of both the primary energy for cooling and 

heating, was calculated for all buildings under future typical weather data sets. Table 8 provides the mean, 

median, minimum (min), maximum (max), range, and standard deviation (StDev) values for total annual primary 

energy and compares these values for the statistical and the dynamical data group. 
Table 8. Descriptive statistics of the total annual primary energy for heating and cooling of all 16 

reference buildings calculated under typical weather data sets for the statistical data group (9 weather 

files) and the dynamical data group (21 weather files). 

No. Building name Downscaling 
method 

Total annual primary energy for space conditioning (kWh/m2) 
Mean Median Min Max Range=Max-Min StDev 

01 High-rise Apartment 
Statistical 61.2 60.6 57.4 67.0 9.6 3.65 
Dynamical 56.2 55.3 51.2 69.4 18.2 4.477 

02 Mid-rise Apartment 
Statistical 46.0 45.5 43.2 50.5 7.3 2.522 
Dynamical 41.5 41.1 38.7 51.5 12.8 2.943 

03 Hospital 
Statistical 172.5 171.6 169.9 176.8 6.9 2.593 
Dynamical 161.8 160.5 155.2 178.2 23 5.65 

04 Large Hotel 
Statistical 132.1 131.4 125.5 140.6 15.1 5.7 
Dynamical 129.0 125.1 117.3 158.5 41.2 11.09 

05 Small Hotel 
Statistical 76.5 75.6 73.1 81.3 8.2 2.812 
Dynamical 73.4 72.8 70.1 85.7 15.6 3.273 

06 Large Office 
Statistical 102.9 102.2 100.3 106.1 5.8 2.279 
Dynamical 99.2 98.0 88.2 116.2 28 4.87 

07 Medium Office 
Statistical 59.9 59.2 55.1 64.8 9.7 3.26 
Dynamical 48.9 47.1 42.7 75.5 32.8 7.27 

08 Small Office 
Statistical 26.1 26.0 24.2 28.4 4.2 1.641 
Dynamical 25.6 25.3 23.9 31.4 7.5 1.537 

09 Outpatient Healthcare 
Statistical 205.3 199.7 188.7 229.9 41.2 14.47 
Dynamical 174.6 167.3 155.6 220.1 64.5 16.24 

10 Restaurant Fast-food 
Statistical 492.5 499.6 411.4 549.3 137.9 43.4 
Dynamical 563.9 560.1 467.8 645.5 177.7 47.9 

11 Restaurant sit-down 
Statistical 307.7 314.9 266.3 334.4 68.1 21.88 
Dynamical 339.4 334.8 291.4 382.5 91.1 25.57 

12 Standalone Retail 
Statistical 67.2 66.2 64.2 73.5 9.3 3.2 
Dynamical 62.2 61.0 57.0 81.7 24.7 5.3 

13 Strip Mall Retail 
Statistical 72.2 73.3 66.8 76.2 9.4 2.907 
Dynamical 64.5 63.5 57.8 79.8 22 4.88 

14 Primary School 
Statistical 60.4 59.3 56.2 66.6 10.4 3.59 
Dynamical 57.3 55.2 52.5 83.9 31.4 6.82 

15 Secondary School 
Statistical 66.8 66.0 62.2 73.6 11.4 3.91 
Dynamical 61.8 59.8 57.4 85.4 28 6.42 

16 Warehouse 
Statistical 21.1 21.5 16.3 26.4 10.1 2.876 
Dynamical 22.2 22.3 16.2 31.5 15.3 3.327 



 

 

27 

Table 8 shows that the ranges of calculated annual primary energy demand for the dynamical group are 

significantly higher than corresponding values for the statistical data group. This can be due to the use of both 

low emission scenarios RCP4.5 and high emission scenario RCP8.5 in the dynamical data group. Sit-down and 

fast-food restaurants have, according to StDev values of primary energy in Table 8, the highest variation, which 

can and as mentioned before are probably due to the high ventilation rate for these buildings. Small office has 

the lowest variation, which can be due to a constant air volume ventilation system type for this building. 

4.3 Climate change impact assessment using both typical and extreme 

weather files 
It was mentioned in section 2.2.2 that, due to the averaging nature of the process for generating typical years, 

that this method is unable to provide information on extreme weather conditions. This problem can be illustrated 

by referring to the heat wave that hit Europe in the summer of 2003. The heat wave caused the death of 

thousands of elderly and vulnerable people, caused power cuts and many other damage [29]. Several studies 

have shown daily mortality during heat waves is highly correlated to maximum daily temperature and night 

temperature (e.g. in France [98], [99] and in Switzerland [27]). The Swiss Federal Office of Meteorology and 

Climatology (MeteoSwiss) provides climate indicators that characterize the climate, indicators such as hot days, 

frost days and tropical nights. These are also used to communicate how climate is changing. Hot days are 

defined as “days in which the temperature rises above 30 °C”, frost days are defined as “days on which the 

temperature dips below 0 °C”, and tropical nights are defined as “days on which the temperature does not dip 

below 20 °C”. Table 9 shows the numbers of hot days and tropical nights during 92 days of summer in 2003 (1st 

June-31st August) for the city of Geneva. These values were compared to calculated values for the same period 

for two TMY weather files (IWEC and Meteonorm), two typical weather files under NT from statistical and 

dynamical groups (CCW_a2 and TDYMultiple) and one extreme warm weather file (EWYMultiple).  

 

Table 9. Comparison of the number of hot days (Tmax ≥30°C) and tropical nights (Tmin ≥ 20°C) for the 

extremely hot summer of 2003 in Geneva calculated from different weather data sets. 

  
Number of hot days Number of tropical nights 

Observed data Summer 2003* 51 4 

TMY 
IWEC 8 1 

Meteonorm 4 3 

Near-Term (NT) future 

CCW_a2 26 4 

TDYMultiple 10 0 

EWYMultiple 54 13 
* based on meteorological data from Genève-Cointrin weather station provided by National 

Centers for Environmental Information (NCEI) [91]. 

 

It can be highlighted from Table 9 that only the EWYMultiple weather file value is comparable with the number of 

hot days that occurred during the summer of 2003 in Geneva. The TMY file and future typical weather file 

values are far from observed values. The above example reveals how the averaging process can result in missing 

extreme values and therefore shows how systems designed taking into consideration only typical conditions 

could quickly become a costly mistake (due to under-dimensioning). The 16 buildings models were simulated in 

this section under both typical and extreme weather data sets for the dynamical data group, to assess the impact 
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of extreme conditions on the energy performance of buildings. Three sets of weather data were considered for 

the purpose of this analysis; TDYMultiple, ECYMultiple and EWYMultiple. These represent all six climate scenarios in the 

dynamical data group. Figure 10 represents the distribution of hourly energy demands taking into consideration 

(i) only TDYMultiple (8760 values), and (ii) all the three sets together, which is referred to as TripleMultiple (3×8760 

values). Boxplots of hourly energy demand for cooling and heating are presented for the buildings and three time 

periods. This technique allows us to investigate the impact of taking into consideration extreme conditions on the 

distribution of heating and cooling demands for each building. 

 
Figure 10. Boxplot of hourly cooling demand and heating demand for all 16 reference buildings under 

Typical weather year (TDYMultiple) scenario in compare to demand under TDY, ECY and EWY all 

together (TripleMultiple) scenario. Blue is used for TDYMultiple and red color is for TripleMultiple weather file. 

  

The most remarkable result to emerge from Figure 10 is the impact of taking into consideration extreme values 

on the distribution of cooling demand, specifically peak values. Almost all the peak cooling demand values of all 

buildings are considerably higher for the TripleMultiple case than for the TDYMultiple case. This means that designing 

energy systems based on peak values for typical weather conditions is not the most reliable approach for future 

climatic conditions of stronger extreme events. The ‘triple’ approach allows the assessment of building 

performance not only under typical conditions, but also considering extreme weather conditions. Actual energy 

demand in commercial buildings is frequently demonstrated to be much greater than the expected energy 

demand obtained from the energy modeling of the buildings. This difference, often referred to as the energy 
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performance gap, means that actual energy demand can be two to three times the modeled energy demand [100]. 

Much of the focus in reducing the energy performance gap is on post-construction elements such post-occupancy 

evaluation and continuous commissioning. Improvements in the energy simulation, such as the consideration of 

extreme weather conditions, however play a key role for new builds and energy-focused refurbishments. 

Table 10 presents the peak loads of the cooling demand with the date and time of occurrence for each of the 16 

buildings, typical and extreme warm conditions taken into consideration. The magnitude of the peaks and the 

time in which they occur are different for each building. This is obviously due to the variance in the type of 

buildings, their characteristics and their operation schedules. The peak values for EWYMultiple compared to 

TDYMultiple ranges from a 2 % increase for the hospital to a 28.5 % increase for the sit-down restaurant. The 

findings from Figure 10 and Table 10 illustrate the importance of considering extreme conditions and the 

usefulness of the suggested approach in ensuring a robust design of buildings and energy systems for the future. 
Table 10. Value of Peak cooling demand and the date-time of occurrence under NT for all buildings and 

the virtual neighborhood, values for dynamical-typical and dynamical-extreme are presented and 

compared. 

Building name 

Dynamical-typical 
TDYMultiple 

 Dynamical-extreme 
EWYMultiple 

 Peak cooling load 
relative change 
EWYMultiple to 

TDYMultiple 

 (%) 

Peak load for 
cooling (kW) Date-Time  Peak load for cooling 

(kW) Date-Time 
 

High-rise Apartment 59.97 19 Jul-17:00  62.27 24 Jul-19:00 
 

3.8 % 

Mid-rise Apartment 18.76 19 Jul-15:00  21.22 27 Jul-15:00 
 

13.1 % 

Hospital 235.01 20 Jun-15:00  239.67 24 Jul-15:00 
 

2.0 % 

Large Hotel 147.61 28 Jul-19:00  172.21 19 Jul-16:00 
 

16.7 % 

Small Hotel 34.71 19 Jul-16:00  38.06 27 Jul-16:00 
 

9.6 % 

Large Office 430.21 20 Jun-17:00  453.95 24 Jul-15:00 
 

5.5 % 

Medium Office 63.03 19 Jul-15:00  70.55 27 Jul-16:00 
 

11.9 % 

Small Office 5.00 19 Jul-16:00  5.47 27 Jul-16:00 
 

9.5 % 

Outpatient Healthcare 93.32 20 Jun-15:00  100.82 7 Jul-16:00 
 

8.0 % 

Restaurant Fast-food 11.30 19 Jul-13:00  14.16 3 Jul-18:00 
 

25.4 % 

Restaurant sit-down 17.96 19 Jul-12:00  23.08 3 Jul-18:00 
 

28.5 % 

Standalone Retail 34.69 19 Jul-15:00  42.29 27 Jul-15:00 
 

21.9 % 

Strip Mall Retail 30.57 19 Jul-15:00  38.64 27 Jul-15:00 
 

26.4 % 

Primary School 97.27 20 Jun-15:00  109.06 13 Jun-15:00 
 

12.1 % 

Secondary School 316.51 20 Jun-15:00  348.09 13 Jun-15:00 
 

10.0 % 

Warehouse 5.54 19 Jul-16:00  6.78 27 Jul-17:00 
 

22.5 % 

Neighborhood 3457.14 19 Jul-16:00  3753.82 27 Jul-16:00 
 

8.6 % 

 



 

 

30 

In the second part of our analysis on the impact of extreme conditions, we assess the impacts on high peak 

energy demand loads on the virtual neighborhood defined in section 3.2.2. The last row of Table 10 presents the 

peak cooling demand load and the date and time of occurrence for the entire neighborhood. The relative change 

of peak load in extreme conditions compared to typical conditions is an increase of 8.6 %.  

As shown in Table 10, the need for air conditioning increases dramatically during extreme hot conditions. This 

high demand can last for days to weeks. Additionally, as mentioned before, the production capacity of power 

plants can be affected during this period. For example, as described by Ke et al. [101], heat waves are usually 

accompanied by stationary high pressure zones, resulting in light winds at the surface and therefore reduced 

wind generation. Increased air temperature also causes a reduction in capacity and the efficiency of gas-turbines. 

Even electricity transmission line loss is affected by high ambient temperature. These chains of events and high 

demands for a period of time implies high stress on the grid, which can lead to the failure of the system, as in the 

2006 heat wave in New York City [102]. Electrical power demand of the virtual neighborhood under typical and 

extreme conditions was calculated to illustrate such risks at the urban scale. Figure 11 shows the power demand 

for the neighborhood during the week of the peak loads for EWYMultiple compared to TMY and TDYMultiple under 

NT. Electric power demand was calculated by adding up for each hour the delivered energy for total electricity 

(defined in section 3.2.3) for all the buildings in the neighborhood. 

 
Figure 11. The electrical load profile of virtual neighborhood for a peak summer week in Geneva, considering historical 

typical weather year (TMY), future typical weather year (TDYMultiple) and future extreme warm weather year 

(EWYMultiple) under NT. 

The minimum level of electricity demand required over a period of 24 hours is referred as ‘base load’. For the 

virtual neighbourhood based on Figure 11, under TMY IWEC this value is around 4.5 MW. This increased 

throughout the five-day workweek, passing 9 MW and during the weekend remaining below 9 MW at peak. 

Base load is the minimum power generation requirement and is usually covered by dedicated base-load power 

plants [103]. The criticality is during the peak load hours, which are from 2 pm to 6 pm on weekdays and 4 pm 

to 9 pm during the weekend, in the case of the virtual neighborhood. The so-called peak-load power plants are 
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usually used to cater for the demand peaks. They have a relatively high fuel cost compared with base-load power 

plants and they are started up whenever there is a spike in demand and stopped when the demand recedes. For 

the neighborhood, the peak value for TMY occurs on Friday 18 August at 5 pm, the value being 10.23 MW. This 

value for TDYMultiple is slightly higher than TMY and is 10.29 MW on Tuesday 20 June at 4 pm. The peak values 

for the extreme case EWYMultiple is above 10.28 MW for 4 days, the highest value being 10.64 MW on Thursday 

27 July at 4 pm. The hourly electricity demand during the days of extreme conditions furthermore stays above 

values of typical conditions for almost the whole week. The peak electricity demand values for the neighborhood 

for EWYMultiple under MT and LT are 11.01 MW and 11.95 MW respectively. This means that the value of peak 

electricity demand can increase by 4.0 %, 7.6 % and 16.8 % for extreme conditions under NT, MT and LT in 

relation to the TMY IWEC value. Power plants can, as described before, suffer reductions in efficiency during 

extreme conditions (heat waves), with a consequential reduction in the capacity of the energy system to cover 

peaks. Taking into account these issues and looking into the increase in electricity demand for the virtual 

neighborhood under extreme conditions, it might become a challenge for the energy system of this neighborhood 

to cover the margin, especially in the likely event of a reduction in generation capacity. The simulation test 

bench used in this study is developed based on 2013 version of ASHRAE 90.1 standard, which means the 

models are compliant with a recent energy code. Therefore, the above impacts can be magnified considerably if 

considering presence of older buildings with envelopes that have lower thermal performance; hence their energy 

performance is more sensitive to climate conditions. The single most marked observation that emerges from data 

comparison is the importance of considering extreme conditions to assure the robustness of the designed 

buildings or energy systems. 

5 Conclusions 
In this work, the dynamical and statistical methods for downscaling the outputs of GCMs were discussed and 

two approaches for preparing future weather data for building energy simulations were investigated, one based 

on using only typical weather conditions and the other based on using typical and extreme conditions. 74 

weather files for the city of Geneva, Switzerland were generated using the methods and approaches considered. 

These were used to understand and compare the assumptions, limitations and advantages of the methods and 

approaches in predicting the future energy conditions of buildings. According to the results, weather files of the 

statistical data group are able to present the long-term impacts of climate change on averages (e.g. a gradual 

increase in the average dry-bulb temperature for Geneva). However, these files are not suitable for investigating 

the short-term changes that induce extreme weather conditions.  

The ASHRAE standard 90.1 suite for commercial buildings was used to study the impacts of the future weather 

data type on the energy simulation of buildings. This suite of models allows reasonably realistic building 

characteristics for small office buildings to large energy-intensive buildings such as hospitals, and mid to high-

rise residential buildings. According to the results, all the considered types of typical weather data sets provide 

enough information to study the log-term shift in energy use of the buildings and using the weather files 

generated by statistical methods can be sufficient. Moreover, typical weather files generated from dynamically 

downscaled data would also reveal the shifting of energy. 

This worked investigated the importance of considering extreme conditions and the possible consequences of 

neglecting such conditions in designing buildings at building level and neighborhood scale. The approach 
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proposed by Nik [46] was used to generate representative weather files. This approach is based on synthesizing 

three weather data sets for each 30-year period: typical downscaled year (TDY), extreme cold year (ECY) and 

extreme warm year (EWY). Firstly, the number of hot days and tropical nights were calculated for different 

types of weather files according to the definitions of MeteoSwiss. These values were compared to the values 

observed during the extreme heat wave of the summer of 2003. The results showed only the value derived from 

the extreme weather file is comparable with the number of hot days that occurred during the summer of 2003 in 

Geneva. This number is considerably small for the cases where only typical weather data sets (TMY and TDY) 

are considered. Furthermore, a group of representative weather data sets based on multiple climate scenarios 

(TDYMultiple, ECYMultiple and EWYMultiple) were considered to evaluate the impacts of extreme conditions on the 

energy performance of all 16 buildings and a virtual neighborhood. According to the results, for the near-term 

future, the range of relative change of peak load for cooling demand under extreme conditions shows an increase 

of 2 % to 28.5 %, compared to typical conditions depending on the building type. Furthermore, the analysis of 

the virtual neighborhood revealed that the peak electric power demand for the neighborhood can increase by 4.0 

%, 7.6 % and 16.8 % under near-term, medium-term and long-term future for extreme conditions in relation to 

the value calculated using the TMY file. These results underline the importance of considering extreme 

conditions in studying the impacts of climate change on larger spatial scales (e.g. urban and city scales) and 

preparing urban energy systems for future conditions. 

The focus of this paper was on the impacts of long-term patterns of climate change and extreme weather 

conditions on the energy performance of buildings. Future work should be undertaken using different methods of 

generating future weather files to study the thermal stress upon building occupants. It might, furthermore, be 

necessary to consider the effects of urban/micro climate (depending on the case), as the effects of climate change 

might be amplified or diminished at the urban scale, especially for extreme conditions. 

In conclusion, our work provided further evidence that proper weather data sets based on high resolution data 

from climate models and several climate scenarios, including extreme conditions, are required to empower 

building engineers and architects to test their design solutions under future climate uncertainties. As discussed 

before, a large part of literature with focus on the impacts of future climate conditions on the performance of 

buildings are from the UK, where such weather files are readily accessible for several locations. It shows that the 

availability of such files is crucial and requires efforts at national levels. Only this type of approach will involve 

more experts into the discussion of finding solutions that guarantee a more robust and climate resilient built 

environment in the future.  
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7 Annex A 
No. Title Year Country 

1 Climate change impacts on the thermal performance of Portuguese buildings. Results of the SIAM study 2002 Portugal 

2 Climate change impacts on building heating and cooling energy demand in Switzerland 2005 Switzerland 

3 The impact of climate change uncertainties on the performance of energy efficiency measures applied to 

dwellings 

2005 UK 

4 Climate change, thermal comfort and energy: Meeting the design challenges of the 21st century 2007 UK 

5 Creating weather files for climate change and urbanization impacts analysis 2007 US 

6 Embodied and operational carbon dioxide emissions from housing: a case study on the effects of thermal 

mass and climate change 

2008 UK 

7 Estimating the impacts of climate change and urbanization on building performance 2008 US 

8 Beyond TMY: climate data for specific applications. 2008 Australia 

9 Uncertainties in predicting the impact of climate change on thermal performance of domestic buildings 

in the UK 

2008 UK 

10 Climate change future proofing of buildings-Generation and assessment of building simulation weather 

files 

2008 UK 

11 Evaluating the potential impact of global warming on the UAE residential buildings - A contribution to 

reduce the CO2 emissions 

2009 United Arab 

Emirates 

12 Will future low-carbon schools in the UK have an overheating problem? 2009 UK 

13 Resilience of naturally ventilated buildings to climate change: advanced natural ventilation and hospital 

wards 

2009 UK 

14 Identification of key factors for uncertainty in the prediction of the thermal performance of an office 

building under climate change 

2009 UK 

15 Assessment of climate change impact on residential building heating and cooling energy requirement in 

Australia 

2010 Australia 

16 The effects of future climate change on heating and cooling demands in office buildings in the UK 2010 UK 

17 Predicting the performance of an office under climate change: a study of metrics, sensitivity and zonal 

resolution 

2010 UK 

18 Comparison of multi-year and reference year building simulations 2010 UK 

19 Predicted changes in energy demands for heating and cooling of passive house due to climate change in 

Slovenia 

2010 Slovenia 

20 The role of adaptive thermal comfort in the prediction of the thermal performance of a modern mixed-

mode office building in the UK under climate change 

2010 UK 

21 Translating probabilistic climate predictions for use in building simulation 2010 UK 

22 Climate change adaptation pathways for Australian residential buildings 2011 Australia 

23 Developing future hourly weather files for studying the impact of climate change on building energy 

performance in Hong Kong. 

2011 Hong Kong 

24 A probabilistic analysis of the future potential of evaporative cooling systems in a temperate climate 2011 UK 

25 The impact of the projected changes in temperature on heating and cooling requirements in Dhaka, 

Bangladesh 

2011 Bangladesh 

26 Longitudinal prediction of the operational energy use of buildings 2011 UK 

27 Climate change, building design, and thermal performance 2011 Austria 

28 Assessing the risk of climate change for buildings: A comparison between multi-year and probabilistic 

reference year simulations 

2011 UK 

29 Designing net-zero energy buildings for the future climate, not for the past 2012 Canada 

30 Future energy demand for buildings in the context of climate change for Burkina Faso 2012 Burkina Faso 

31 Generating design reference years from the UKCP09 projections and their application to future air-

conditioning loads 

2012 UK 

32 The natural ventilation performance of buildings under alternative future weather projections 2012 UK 
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33 Thermal mass in new build UK housing: a comparison of structural systems in a future weather scenario 2012 UK 

34 Ranking of interventions to reduce dwelling overheating during heat waves. 2012 UK 

35 Climate change influence on building lifecycle greenhouse gas emissions: case study of UK mixed-use 

development 

2012 UK 

36 Energy use, indoor temperature and possible adaptation strategies for air-conditioned office buildings in 

face of global warming 

2012 Australia 

37 Using UK climate change projections to adapt existing English homes for a warming climate 2012 UK 

38 A proposed method to assess the damage risk of future climate change to museum objects in historic 

buildings 

2012 Netherlands and 

Belgium 

39 Thermal comfort standards, measured internal temperatures and thermal resilience to climate change of 

free-running buildings: a case-study of hospital wards 

2012 UK 

40 Assessment of hygrothermal performance and mould growth risk in ventilated attics in respect to 

possible climate changes in Sweden 

2012 Sweden 

41 Building characteristics as determinants of propensity to high indoor summer temperatures in London 

dwellings 

2012 UK 

42 A comparison of structural and behavioural adaptations to future proofing buildings against higher 

temperatures 

2012 UK 

43 Management of thermal performance risks in buildings subject to climate change 2012 UK 

44 Simulating urban heat island effects with climate change on a Manchester house 2012 UK 

45 Impact of climate change on thermal comfort and energy performance in offices - A parametric study 2012 Greece 

46 Impact of climate change on comfort and energy performance in offices 2012 Greece 

47 A comparative analysis of current and newly proposed overheating criteria for UK schools: A climate 

change aspect 

2012 UK 

48 Simulation of the impact of climate change on the current building's residential envelope thermal transfer 

value (ETTV) regulation in Singapore 

2012 Singapore 

49 Summertime impact of climate change on multi-occupancy British dwellings 2012 UK 

50 Climate data and climate change - Analysis of the influence on energy demand, performance 

requirement and thermal comfort of buildings [Klimadaten und Klimawandel - Untersuchungen zum 

Einfluss auf den Energiebedarf, den Leistungsbedarf und den thermischen Komfort von Gebäuden] 

2012 Germany 

51 Comparison of untypical meteorological years (UMY) and their influence on building energy 

performance simulations 

2013 Poland 

52 Energy simulation of sustainable air-cooled chiller system for commercial buildings under climate 

change 

2013 Honk Kong 

53 The effectiveness of retrofitting existing public buildings in face of future climate change in the hot 

summer cold winter region of China 

2013 China 

54 Modelling to predict future energy performance of solar thermal cooling systems for building 

applications in the North East of England 

2013 UK 

55 An investigation into future performance and overheating risks in Passivhaus dwellings 2013 UK 

56 Transforming existing weather data for worldwide locations to enable energy and building performance 

simulation under future climates 

2013 UK 

57 Building envelope design for climate change mitigation: a case study of hotels in Greece 2014 Greece 

58 Impacts of urban location and climate change upon energy demand of office buildings in Vienna, Austria 2014 Austria 

59 Impact of climate change heating and cooling energy use in buildings in the United States 2014 US 

60 An outdoor-indoor coupled simulation framework for Climate Change-conscious Urban Neighborhood 

Design 

2014 Egypt 

61 Risks of summertime extreme thermal conditions in buildings as a result of climate change and 

exacerbation of urban heat islands 

2014 US 

62 Effects of future climate change scenarios on overheating risk and primary energy use for Swedish 

residential buildings 

2014 Sweden 

63 Climate change simulation for intelligent green building adaptation design 2014 UK 
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64 Microclimate change outdoor and indoor coupled simulation for passive building adaptation design 2014 UK 

65 Sampling-based sensitivity analysis of thermal performance in domestic buildings under climate change 2014 UK 

66 Environmental benefits of sustainable chiller system under climate change 2014 Hong Kong 

67 Double-skin façades in the context of climate change [Doppelfassaden im Zeichen des Klimawandels] 2014 Germany 

68 Impacts of climate change upon cooling and heating energy demand of office buildings in Vienna, 

Austria 

2014 Austria 

69 Analysis of performance of night ventilation for residential buildings in hot-humid climates [Sicak-nemli 

iklimlerdeki konut binalarinda gece havalandirmasi performansinin analizi] 

2014 Turkey 

70 Impact of building design and occupancy on office comfort and energy performance in different climates 2014 Creece, 

Germany, 

Australia 

71 Developing a probabilistic tool for assessing the risk of overheating in buildings for future climates 2014 UK 

72 Near Future Weather Data for Building Energy Simulation in Summer/Winter Seasons in Tokyo 

Developed by Dynamical Downscaling Method 

2014 Japan 

73 Generating near-extreme Summer Reference Years for building performance simulation. 2015 UK 

74 Climate for Culture: assessing the impact of climate change on the future indoor climate in historic 

buildings using simulations 

2015 Whole Europe 

75 Energy demand for the heating and cooling of residential houses in Finland in a changing climate 2015 Finland 

76 Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional 

approach 

2015 US 

77 Preparing for climate change with computation and resiliency 2015 US 

78 Study on the future weather data considering the global and local climate change for building energy 

simulation 

2015 Japan 

79 The potential of phase change materials to reduce domestic cooling energy loads for current and future 

UK climates 

2015 UK 

80 Future moisture loads for building facades in Sweden: Climate change and wind-driven rain 2015 Sweden 

81 Vulnerability to climate change impacts of present renewable energy systems designed for achieving net-

zero energy buildings 

2016 US 

82 Effect of climate change on building cooling loads in Tokyo in the summers of the 2030s using 

dynamically downscaled GCM data 

2016 Japan 

83 Future trends of residential building cooling energy and passive adaptation measures to counteract 

climate change: The case of Taiwan. 

2016 Taiwan 

84 Integrating climate change and energy mix scenarios in LCA of buildings and districts 2016 France 

85 Modeling the long-term effect of climate change on building heat demand: Case study on a district level 2016 Portugal 

86 Climate change future proofing of buildings—Generation and assessment of building simulation weather 

files. 

2016 Italy 

87 Future probabilistic hot summer years for overheating risk assessments. 2016 UK 

88 Optimization of annual energy demand in office buildings under the influence of climate change in Chile 2016 Chile 

89 Impact of climate change on heating and cooling energy demand in houses in Brazil 2016 Brazil 

90 Residential buildings' thermal performance and comfort for the elderly under climate changes context in 

the city of Sao Paulo, Brazil 

2016 Brazil 

91 Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling 

and heating in a residential building 

2016 Netherlands 

92 The impact of regulations on overheating risk in dwellings 2016 UK 

93 Impact of future climates on the durability of typical residential wall assemblies retrofitted to the 

PassiveHaus for the Eastern Canada region 

2016 Canada 

94 Impacts of climate change on U.S. building energy use by using downscaled hourly future weather data 2017 US 

95 Prediction of the impacts of climate change on energy consumption for a medium-size office building 

with two climate models. Energy and Buildings 

2017 US 

96 Climate Change Adaptation Pathways for Residential Buildings in Southern China. 2017 China 
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97 Influence of climate change on summer cooling costs and heat stress in urban office buildings 2017 Belgium 

98 Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets 

out of regional climate models (RCMs) 

2017 Sweden 

99 Application of adaptive comfort behaviors in Chilean social housing standards under the influence of 

climate change 

2017 Chile 

100 Cooling Energy Implications of Occupant Factor in Buildings under Climate Change 2017 South korea and 

Hong kong 

101 Assessment of climate change impact on the required cooling load of the hospital buildings 2017 Malaysia 

102 Adapting the design of a new care home development for a changing climate 2017 UK 

103 The impact of climate change on the overheating risk in dwellings—A Dutch case study 2017 Netherlands 

104 Energy Consumption Performance Considering Climate Change in Office Building 2017 China 

105 Performance evaluation of well-insulated versions of contemporary wall systems-a case study of London 

for a warmer climate 

2017 UK 

106 Robustness of residential houses in Ecuador in the face of global warming: Prototyping and simulation 

studies in the Amazon, coastal and Andes macroclimatic regions 

2017 Ecuador 

107 Effectiveness of passive measures against climate change: Case studies in Central Italy 2017 Italy 

108 Energy efficiency and resilience against increasing temperatures in summer: The use of PCM and cool 

materials in buildings 

2017 Italy 

109 Should we consider climate change for Brazilian social housing? Assessment of energy efficiency 

adaptation measures 

2018 Brazil 

110 A dynamic modelling approach for simulating climate change impact on energy and hygrothermal 

performances of wood buildings 

2018 Finland 

111 Cooling and heating energy performance of a building with a variety of roof designs; the effects of future 

weather data in a cold climate 

2018 Canada 

 

8 Annex B 
Boxplots of the global horizontal radiation, relative humidity and wind speed as some of the key variables for 

energy simulation, are plotted in Figure A.1, Figure A.2 and Figure A.3 respectively. 

 



 

 

37 

 
Figure B.1. Boxplots of global horizontal radiation for the weather files generated by three software 

tools–CCWorldWeatherGen, WeatherShiftTM, Meteonorm –and six combinations of GCM-RCMs with 

different emission scenarios. 
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Figure B.2. Boxplots of relative humidity for the weather files generated by three software tools–

CCWorldWeatherGen, WeatherShiftTM, Meteonorm –and six combinations of GCM-RCMs with 

different emission scenarios. 
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Figure B.3. Boxplots of wind speed for the weather files generated by three software tools–

CCWorldWeatherGen, WeatherShiftTM, Meteonorm –and six combinations of GCM-RCMs with 

different emission scenarios. 
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