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Abstract—This paper addresses the problem of ship motion
estimation using live data from Automatic Identification Systems
(AIS) and extended Kalman filter (EKF) design. AIS data are
transmitted from ships globally and a very-high frequency (VHF)
AIS receiver picks up the signals as coded ASCII characters in a
format specified by the National Marine Electronics Association
(NMEA). Hence, the AIS sentences must be decoded using a
parser to obtain real-time ship position, course and speed mea-
surements. The state estimates are intended for collision detection
and real-time visualization, which are important features of
modern decision-support systems.

The EKF is validated using live AIS data from the Trondheim
harbor in Norway and it is demonstrated that the estimator
can track ships in real time. It is also demonstrated that the
EKF can predict the future motion of ships and different evasive
maneuvers were analyzed in a collision avoidance scenario.

Index Terms—Kalman filter, state estimation, motion predic-
tion, collision detection, unmanned surface vehicles, ships

I. INTRODUCTION

AIS is a global system, which allows ships to view marine
traffic in their area and to be seen by other ships [1]. Vessels
are equipped with a dedicated VHF AIS transceiver, which
can be used for motion prediction, see Fig. 1. Live AIS data
has been used for state estimation by [6] who uses a linear
discrete-time Kalman filter. Our approach differs from this
work in that a nonlinear kinematic model is used to describe
the ship motions [3]. Another difference is how the ship’s
acceleration and yaw rate are estimated. Since the system
model is nonlinear, an EKF is used for state estimation and
prediction [4].

The AIS data is transmitted using the UDP protocol. Hence,
the EKF must handle delayed measurements, asynchronous
communication as well as loss of packets. The EKF runs at
a fixed time step and the output is evenly spaced data. Since,
the AIS data are transmitted at asynchronous time samples,
the EKF is implemented in discrete time using the predictor-
corrector representation [4].
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Game technology is used more and more in decision-
support systems for simulation, 3-D visualization and aug-
mented/virtual reality (AR/VR). The human eye requires 30-
60 frames per second (FPS) to make pictures appear as a
smooth film. This also applies to a pilot who operates an
unmanned surface vehicle (USV) using a 3-D visualization
system. Hence, the position and course of the AIS ships must
be estimated at 30-60 Hz to satisfy human constraints.

In this paper, the following motion prediction and collision
detection scenarios are demonstrated:

• Decoding of live asynchronous AIS data using a parser.
• Implementation of an EKF for generation of position,

velocity and course for visualization of ship motions in
real time at evenly spaced times.

• Motion prediction of AIS ships and online computation
of distances between ships (collision detection).

• Motion prediction of interceptor (USV) when approach-
ing targets (AIS ships) and demonstrating how an evasive
maneuver can prevent collision.

II. AIS DECODER

Live AIS data for visualization and motion prediction can
be obtained by using a VHF antenna. Fig. 1 shows the VHF
antenna and AIS decoder in cascade with the motion prediction
algorithm.

There are 27 AIS messages with different priority that are
transmitted using class A and B transceivers [7]. For ship
tracking and motion prediction the position reports of mes-
sages 1, 2, 3 and 18 are particularly useful. These messages
contain longitude, latitude, speed over ground (SOG), course
over ground (COG), yaw rate, true heading etc.

The AIS data are transmitted using the UDP Internet proto-
col. The coded AIS sentences are ASCII characters as defined
by the National Marine Electronics Association format [8].
The bits can be decoded to live ship motion measurements
by using the [7] specifications. Several open source codes are
available at GitHub (http://www.github.com).
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Fig. 1. Decoding of AIS messages and visualization of USV and ships using the Unity Game Engine [10]. The EKF is used to interpolate the asynchronous
data for visualization at 60 FPS and to handle UDP packet losses. The future motions (T seconds) including evasive maneuvers are computed using the
motion predictor algorithm, which again can be used in a collision detection algorithm.

III. SHIP MODEL

Let the North-East positions and course angle be denoted
(x, y) and χ, respectively. Consequently, a ship moving at
speed U and course χ is given by [3]:

ẋ = U cos(χ)

ẏ = U sin(χ)

U̇ = a

χ̇ = r

(1)
(2)

(3)
(4)

The linear acceleration a and course rate r are ship dependent
and unknown. If the AIS data are received at a frequency
slower than e.g. 0.5 Hz it is recommended to use a = r = 0.
However, for high-speed craft AIS data are transmitted at
a much higher frequency. Hence, it is possible to compute
estimates ac and rc of a and r, respectively from the AIS mea-
surements. The estimates are filtered to avoid rapid changes:

ȧ =
1

Ta
(sat(ac)− a)

ṙ =
1

Tr
(sat(rc)− r)

(5)

(6)

Here Ta and Tr are user defined time constants. The saturation
function sat(x) ensures that |x| ≤ xmax, which adds robustness
to AIS wildpoints.

Let the last three AIS speed and course measurements
at times (tm, tm−1, tm−2) be denoted (UAIS

m , UAIS
m−1, U

AIS
m−2)

and (χAIS
m , χAIS

m−1, χ
AIS
m−2), respectively. Furthermore, let h1 =

tm − tm−1 and h2 = tm−1 − tm−2. Unfortunately, the data is
not evenly spaced, that is h1 �= h2. To deal with asynchronous

measurements, a backward difference approximation of the
first derivative is derived (see the Appendix for details):

ac =
(1− α)UAIS

m + αUAIS
m−1 − UAIS

m−2

(1− α)h1 + h2

rc =
(1− α)χAIS

m + αχAIS
m−1 − χAIS

m−2

(1− α)h1 + h2

(7)

(8)

where α = (h1 + h2)
2/h2

1.

IV. AIS MEASUREMENTS

The following AIS measurements are used by the EKF:

• SOG and COG corresponding to the states U and χ.
• Longitude l and latitude µ.

Longitude and latitude can be mapped to Cartesian coordinates
using the World Geodetic System (WGS-84), which is the
standard coordinate system for the Earth.

For local navigation and visualization it is convenient to use
a flat Earth approximation based on WGS-84. The procedure
is outlined below [2].

A. North-East positions from longitude and latitude (WGS-84)

Assume that the flat Earth coordinate origin is located at
longitude and latitude (l0, µ0) and define:

∆l := l − l0 (9)
∆µ := µ− µ0 (10)



The Earth radius of curvature in the prime vertical RN and
the radius of curvature in the meridian RM are [9]:

RN =
a√

1− e2 sin2(µ0)
(11)

RM = RN
1− e2√

1− e2 sin2(µ0)
(12)

where a = 6 378 137 m is the semi-minor axis (equatorial
radius) and e = 0.0818 is the Earth eccentricity. Small changes
in the North and East positions (x, y) are computed as:

x =
∆µ

atan2(1, RM )
(13)

y =
∆l

atan2(1, RN cos(µ0))
(14)

V. EXTENDED KALMAN FILTER

The nonlinear system model (1)–(6) can be expressed as:

ẋ = f(x) + Bu + w (15)
y = Cx + e (16)

where x = [x, y, U, χ]>, u = [a, r]>, w and e are Gaussian
process and measurement noise, respectively,

f(x) =


x3 cos(x4)
x3 sin(x4)

0
0

 , B =


0 0
0 0
1 0
0 1

 (17)

and C = I4. The EKF makes use of the linearized expression:

A =
∂f(x)

∂x
=

 0 0 cos(x4) −x3 sin(x4)
0 0 sin(x4) x3 cos(x4)
0 0 0 0
0 0 0 0

 (18)

The discrete-time EKF then becomes [4]:

Kalman gain:

K(k) = P̂−(k)C>
(
CP̂−(k)C> + R

)−1
Corrector:

x̂+(k) = x̂−(k) + K(k)
(
y(k)−Cx̂−(k)

)
P̂+(k) = (I4 −K(k)C)P̂−(k) (I4 −K(k)C)

>

+ K(k)RK>(k)

Predictor:
x̂−(k + 1) = x̂+(k) + hf(x̂+(k)) + hBu(k)

P̂−(k + 1) = Φ(k)P̂+(k)Φ>(k) + Q

(19)

(20)

(21)

(22)

(23)

where x̂−(0) = x(0), P̂−(0) = P (0), h is the sampling time,
Q = Q> > 0 and R = R> > 0 are the process covariance
and measurement matrices, respectively,

Φk = I4 + hA +
1

2
h2A2+, ...,+

1

n!
hnAn (24)

Let ε(k) = y(k)−Cx̂−(k) denote the estimation error in
(20). When implementing the corrector, it is necessary to map

the course angle estimation error ε4(k) = χ(k) − χ̂−(k) to
the interval [−π, π). This is referred to as the smallest signed
angle, which can be computed using the function:

ssa(x) = mod(x+ π, 2π)− π (25)

VI. SHIP MOTION PREDICTION

The ship model (1)–(6) can be used to predict the ship
motions from the last AIS measurement at time t0 to t = t0+T
where T is final time, see Fig. 1. Let h be the sampling time.
Hence, the discrete-time predictor for the interceptor (USV)
becomes:

USV:
x(k + 1) = x(k) + hU(k) cos (χ(k))

y(k + 1) = y(k) + hU(k) sin (χ(k))

U(k + 1) = U(k) + ha(k)

χ(k + 1) = χ(k) + hr(k)

a(k + 1) = a(k) +
h

Ta
(sat(ac)− a(k))

r(k + 1) = r(k) +
h

Tr
(sat(rc)− r(k))

(26)
(27)
(28)
(29)

(30)

(31)

where x(0) = x(t0), y(0) = y(t0), U(0) = U(t0), χ(0) =
χ(t0), a(0) = a(t0) and r(0) = r(t0). The target (AIS) ships
motion predictors are (i = 1, 2, ..., N ):

AIS ship #i:
xi(k + 1) = xi(k) + hUi(k) cos (χi(k))

yi(k + 1) = yi(k) + hUi(k) sin (χi(k))

Ui(k + 1) = Ui(k) + hai(k)

χi(k + 1) = χi(k) + hri(k)

ai(k + 1) = ai(k) +
h

Ta
(sat(aci)− ai(k))

ri(k + 1) = ri(k) +
h

Tr
(sat(rci)− ri(k))

(32)
(33)
(34)
(35)

(36)

(37)

where xi(0) = xi(t0), yi(0) = yi(t0), Ui(0) = Ui(t0),
χi(0) = χi(t0), ai(0) = ai(t0) and ri(0) = ri(t0).

A. Collision detection

The motion predictors can be used to identify possible
collisions by computing the instantaneous separation between
the ships. Let the the coordinate origin of the ships be located
midships on the centerline. Furthermore, let (x, y) denote the
interceptor (USV) position and (xi, yi) where i = 1, 2, · · · , N
be the target (AIS) ship positions. The relative position errors
between the USV and AIS ship #i then become:

exi(k) = x(k)− xi(k) (38)
eyi(k) = y(k)− yi(k) (39)

and the minimum separation S(k) between the USV and AIS
ships are:

S(k) = min
i

√
e2xi

(k) + e2yi
(k) (40)



Fig. 2. The MS Trondheimsjord II is high-speed catamaran for passenger
transport. Length 24.5 m, beam 8.0 m and maximum speed 16.5 m/s (32
knots).

B. Predictor for evasive maneuvers

If the minimum separation (40) is to small, the USV speed
and course (28)–(29) can be modified to include the effect
of an evasive USV maneuver. A typical collision avoidance
maneuver can be specified in terms of a speed command Uc

and a course angle command χc, for instance:
• Reduce the intercepter speed U(0) by 50 %:

=⇒ Uc = 0.5 U(0)
• Align the interceptor course χ(0) to the target course:

=⇒ χc = χi(0)

The next step is to replace (28)–(29) with the closed-loop
speed and course dynamics, typically first-order systems, such
that:

x(k + 1) = x(k) + hU(k) cos (χ(k))

y(k + 1) = y(k) + hU(k) sin (χ(k))

U(k + 1) = U(k) +
h

Tspeed
(Uc − U(k))

χ(k + 1) = χ(k) +
h

Tcourse
ssa (χc − χ(k))

(41)
(42)

(43)

(44)

where ssa(·) is the smallest signed angle given by (25),
U(0) = U(t0) and χ(0) = χ(t0). The time needed to perform
the maneuver is specified by the user inputs Tspeed and Tcourse.

VII. EXPERIMENTAL VALIDATION

This section describes two motion prediction scenarios
using live decoded AIS data for a ship operating in the
Trondheim fjord, Norway.

• Case 1 (Ship Motion Prediction): Live asynchronous
AIS data processed by the EKF and used for motion
prediction.

• Case 2 (USV Evasive Maneuver) Ship motion prediction
for a real ship when a simulated USV approaches the
ship and performs an evasive maneuver.

The ship motion prediction algorithm and visualization of
live AIS ships can be used to present decision makers and

pilots with coherent information to make timely and informed
decisions.

As the amount of sensor data increase, it becomes more
and more difficult for human operators to achieve situational
awareness [5]. Consequently, an automated process, which
estimate and project situations using algorithms is of great
advantage. This is refereed to as automated situational as-
sessment and the presented cases below illustrates how this
can be achieved.

Fig. 3. The upper plot shows the path of MS Trondheimfjord II when crossing
the fjord. The lower zoomed plot shows the predicted ship motions at two
different locations (black ships) for a future horizon of 30 seconds (green
arrows).



Fig. 4. Estimated states (red) and AIS measurements (blue circles) as a function of time when crossing the fjord back and forth.

Parameters: The EKF is implemented at 50 Hz with
P̂−(0) = 0.1I4, Q = diag(0.01, 0.01, 0.1, 0.1) and R =
diag(0.001, 0.001, 0.001, 0.01). The initial states were chosen
as x̂−(0) = [x(0), y(0), U(0), χ(0)]�, while the time con-
stants were chosen as Ta = 10 s and Tr = 50 s.

Case 1: Ship Motion Prediction

AIS data for MS Trondheimsfjord II (see Fig. 2) is used
to demonstrate ship motion prediction. The asynchronous AIS
data are processed by the EKF to obtain equally spaced data
at 50 Hz. Fig. 3 shows the path when crossing the Trondheim
fjord and Fig. 4 shows the corresponding state estimates. The
ship motions are predicted at two different locations with a 30
seconds horizon using (26)–(31).

Fig. 7 shows how the predicted path can be visualized in a
situational awareness system using a game engine.

Case 2: USV Evasive Maneuver

The second case study shows an USV that is approaching
the MS Trondheimsfjord II from East. The ship and USV
motions are predicted using a 60 s future horizon. The USV
speed is 10 m/s and the course is −90 deg, see Fig. 6. In
order to increase the minimum separation of the USV and
the ship, an evasive maneuver as described in Section VI-B
is implemented using the motion predictor (41)–(44). Fig. 6

Fig. 5. Minimum separation between an USV approaching MS Trondheimjord
II from the East (blue) and when performing an evasive maneuver (red). The
minimum distance increases from 126.6 m to 201.0 m.

verifies that USV course aligns to the ship course as expected
and that the USV speed is reduced from 10 m/s to 5 m/s during
the turn. Fig. 5 shows that the minimum separation between
the approaching USV and the ship is increased from 126.6 m
to 201.0 m by the evasive maneuver.



Fig. 6. An USV approaches MS Trondheimsfjord II from the East. The ship and USV motions are predicted in 60 s to show the effect of an evasive maneuver.

VIII. CONCLUSIONS

This paper has addressed the problem of ship motion esti-
mation using live data from Automatic Identification Systems
(AIS). The sensor data has been processed by an extended
Kalman filter (EKF) in order to deal with asynchronous
measurements, UDP packet losses and measurement noise.
The AIS sentences were decoded using a parser to obtain
real-time ship position, course and speed measurements. It
has been demonstrated that the state estimates can be used for
motion prediction, collision detection and analyses of evasive
maneuvers, which are important features of ship decision-
support systems.

Finally, the EKF was validated using live AIS data from the
Trondheim harbor in Norway and it was demonstrated that the
estimator can track ships in real time. It was also demonstrated
that the EKF can predict the future motion of ships and an
evasive maneuver was analyzed in order to avoid collision.
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APPENDIX

The backward difference approximation of the first deriva-
tive for non-evenly spaced data at times tk, tk−1 and tk−2 is
derived by using the Taylor-series expansions:

F (k − 1) = F (k)− h1F
′(k) +

1

2
h2
1F

′′(k) +O(h3
1) (45)

F (k − 2) = F (k)− (h1 + h2)F
′(k) +

1

2
(h1 + h2)

2F ′′(k)

+O((h1 + h2)
3) (46)



Fig. 7. 3-Disualization of a catamaran passenger boat in the Trondheim fjord using the Unity game engine [10], and the Hydroform Ocean System and
Terraland plugins from the Unity Asset Store (http://assetstore.unity.com). The green arrow shows the predicted path of the vessel..

where h1 = tk−tk−1 and h2 = tk−1−tk−2. Multiplying (45)
with

α =
(h1 + h2)

2

h2
1

(47)

and subtracting (46) from (45) makes F ′′(k) vanish. Hence,
the error will be of order O((h1 + h2)

3). This gives

αF (k−1)−F (k−2) = (α−1)F (k)+(−(α− 1)h1 + h2)F
′(k)

(48)
Solving for F ′(k), finally gives

F ′(k) =
(1− α)F (k) + αF (k − 1)− F (k − 2)

(1− α)h1 + h2
(49)
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