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TRAJECTORY TRACKING FOR UNDERWATER SWIMMING

MANIPULATORS USING A SUPER TWISTING ALGORITHM
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ABSTRACT

The underwater swimming manipulator (USM) is a snake-like, multi-

articulated, underwater robot that is equipped with thrusters. One of the main

purposes of the USM is to act like an underwater floating base manipulator.

As such, it is essential to achieve good station-keeping and trajectory tracking

performance for the USM by using the thrusters and by using the joints to attain

the desired position and orientation of the head and tail of the USM. In this

paper, we propose a sliding mode control (SMC) law, specifically the super-

twisting algorithm with adaptive gains, for the trajectory tracking of the USM’s

centre of mass. A higher-order sliding mode observer is proposed for state

estimation. Furthermore, we show the ultimate boundedness of the tracking

errors. We demonstrate the applicability of the proposed control law and show

that it leads to better performance than a linear PD-controller.

Key Words: Underwater Swimming Manipulator, Super-Twisting, Siding

Mode Control, Sliding Mode Observer.
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I. Introduction

An underwater swimming manipulator (USM) is

an underwater snake robot (USR) equipped with

This research was funded by the Research Council of Norway
through the Centres of Excellence funding scheme, project
No. 223254 NTNU AMOS, and by VISTA, a basic research
program in collaboration between The Norwegian Academy of
Science and Letters, and Statoil.

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

Prepared using asjcauth.cls [Version: 2008/07/07 v1.00]



2 Asian Journal of Control, Vol. 00, No. 0, pp. 1–20, Month 0000

thrusters [1]. The main purposes of the thrusters

are to provide forward thrust without requiring the

snake robot to follow an undulating gait pattern,

which is of particular importance in narrow, confined

environments, and to provide sideways thrust for

station-keeping and trajectory-tracking. The station-

keeping and trajectory-tracking capabilities enable the

USM to act as an underwater floating base manipulator.

The slender, multi-articulated body provides the USM

with outstanding accessibility and flexibility. As such,

the USM is a crossover between a small autonomous

underwater vehicle (AUV) and an USR. The USM

possesses the high kinematic redundancy of the USR

and the fully energy-efficient hydrodynamic properties

and tether-less operation of the AUV. Moreover, the

USM has the advantages of remotely operated vehicles

(ROVs) regarding full actuation and the capability

of performing intervention tasks. Since the USM

can use the thrusters instead of the joints to create

forward propulsion, the joints can be used to perform

manipulation tasks and, thus, exploit the full potential

of the inherent kinematic redundancy. This has been

addressed in detail in [2], [3].

As a floating base manipulator, the USM can move

to an area of interest, position its tail at the initial

base location, and then begin operating as a robotic

manipulator. When the USM carries out a manipulation

task, the overall motion of the USM and the joint angle

velocities can be determined by the desired velocities

of the end-effector, i.e., the desired motion of the head

of the USM. One approach for this is described in [4],

where the base motion and the joint angle motion of

the USM are assigned using a redundancy resolution

technique based on inverse kinematics. The outputs of

this procedure are time-varying velocity references for

the base and the joints. This inverse kinematics method

is only one of many ways to calculate the velocity

references.

The controller design for underwater robots (URs)

such as the USM and ROVs is a complex problem

[5]. URs are often subject to hydrodynamic and

hydrostatic parameter uncertainties, uncertain thruster

characteristics, unknown disturbances, and unmodeled

dynamic effects, e.g., thruster dynamics and coupling

forces caused by joint motion. As the USM has no

separate vehicle base and a low mass compared to an

ROV, the motion of the joints is more significant for the

overall motion of the USM, which is a rigid body, than

it is for the ROV. The coupling forces are therefore more

prominent for the USM, which increases the complexity

of the motion control of the USM compared to an

ROV. This is also what makes the control of the USM

different from the control of a surface vessel.

The sliding mode control (SMC) is particularly

well suited for situations where unknown non-

linearities affect the system, as in the case of USMs.

In recent years, numerous results have been reported

on the SMC for various complex dynamical systems

(see, e.g., [6]-[21]). For underwater vehicles, in general,

some important contributions are given in [22]-[32].

In [22], a singularity-free SMC approach inspired by

[33] is used for the set-point regulation of an UR
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with uncertainties in the hydrodynamic parameters.

In [23], [24], an SMC is employed to cope with

multiplicative uncertainty in the thruster configuration

matrix. The combination of a sliding mode and

adaptive control is studied in [23], [24], [27]. In

particular, in [27], the sliding mode control is combined

with adaptive PID controller gains and an adaptive

update of the upper bound on the disturbances and

the parameter uncertainties. SMC is also applicable

to handle the linearization errors [25] and coupling

effects between an underwater vehicle and an attached

manipulator arm [26]. In [28], a hybrid control strategy

is developed for the trajectory-tracking control of an

unmanned underwater vehicle (UUV) by combining a

virtual velocity controller and a sliding-mode controller.

The combination of backstepping and sliding mode

control is studied in [29] for the trajectory-tracking of

an under-actuated UUV. In [30], fuzzy sliding-mode

formation control is used to realize formation control

for under-actuated AUVs. In [31], sliding-mode-based

adaptive control is used to control the attitude of

an AUV. A non-linear disturbance observer-based

backstepping finite-time sliding mode control scheme

for the trajectory-tracking of underwater vehicles

subject to unknown system uncertainties and time-

varying external disturbances is presented in [32].

Sliding mode techniques are applied to land-based

snake robots in [34] to achieve robust tracking of a

desired gait pattern and under-actuated straight-line

path following. However, SMCs have, to the authors’

best knowledge, never been applied to underwater snake

robots or, more specifically, to USRs with thrusters.

In this paper, an SMC is applied to the robot model

proposed in [35], for which the robot is equipped with

thrusters, as in [1]. The model in [1] extends the 2D

model proposed in [36] by also modelling additional

effectors and considering the force allocation among

these effectors. In [35], the model from [36], which was

also used in [1], was revised and extended, and we use

the revised model here. In [1] a linear PD-controller was

used for tracking the position and heading along the

reference path. In this paper, we consider the tracking

problem for the position of the centre of mass of

the USM. We propose to replace the PD-controller

with a super-twisting algorithm (STA) accompanied

by a higher-order sliding mode observer in the case

where only the position measurements are available. We

consider the tracking problem for the position of the

centre of mass of the USM.

The first-order relay controller [37] has significant

chattering problems. To eliminate this unwanted

behaviour, we could have used saturated control, but

since the sliding mode does not exist inside the

boundary layer, the effectiveness of the controller is

challenged when parasitic dynamics are considered

[38]. Therefore, the super-twisting algorithm is used.

The STA is one of the most powerful second-order

continuous sliding mode control algorithms. It was first

introduced in [39] and has since been used for multiple

applications. The STA attenuates chattering and will

thus give a smoother control signal. A challenge

with the STA is that it only works with bounded
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perturbations, so a conservative upper bound must be

used when designing the controller to ensure that sliding

is maintained. To circumvent this drawback, we use

an adaptive STA [40]. The gains can then adapt to

a level where they are as small as possible but still

guarantee that sliding is maintained. Since the STA

is only applicable to systems where the control input

appears in the equation for the first derivative of the

sliding variable, both the position and velocity of the

USM must be available for measurement. For the case

when only the position measurements are available, we

use a higher-order sliding mode observer, as proposed

in [41], to estimate the states. Hence, we combine the

results from [40] and [41], as done in [42], but we

replace the regular STA with a STA with adaptive gains.

Then, we apply this control structure to the USM and

show the ultimate boundedness of the tracking errors.

Finally, to illustrate our theoretical findings, we present

some simulations that verify that the proposed approach

is well suited for the control of USMs. We also compare

our results with a standard PD-controller to see how

the proposed solution works compared to the existing

solution.

The contributions of the paper can be summarized

as follows:

1. We solve the trajectory tracking control problem

of a USM by using a STA with adaptive gains and

a higher-order sliding mode observer.

2. We prove that the tracking errors are ultimately

bounded.

3. We present simulations that verify that the

proposed approach is well suited for the control

of USMs.

4. We compare our results with those obtained for

a standard PD-controller and verify that this

approach is better suited for the control of USMs

than the linear PD-controller and provides better

results than our previous solution.

The remainder of this paper is organized as follows.

In Section II, the robot model used is explained in

more detail. The control and observer design are

presented in Section III, and in Section IV, we prove the

boundedness of the tracking errors. In Section V, the

simulation results are presented. The conclusions and

suggestions for future work are given in Section VI.

II. Underwater Swimming Manipulator (USM)

Model

In this section, the equations of motion for the USM

(Fig. 1), and the force allocation matrix are explained.

How the system is set up with the force allocation and

Fig. 1. The Eelume USM (Courtesy: Eelume)
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the motion controller can be seen in Fig. 2. We refer to

[1], [35] and [36] for further details.

2.1. Kinematics

The position of the centre of mass (CM) of the USM,

pCM ∈ R2, expressed in the global frame is

pCM =

px
py

 =

 1
mt

∑n
i=1mixi

1
mt

∑n
i=1miyi

 =
1

mt

eTMX

eTMY


(1)

where (xi, yi) and i = 1, . . . , n are the coordinates of

the CM of link i in the global frame, mi is the mass

of link i, mt =
∑n

i=1mi is the total mass of the USM,

M = diag(
[
m1 . . .mn

]
) ∈ Rn×n and e =

[
1 . . . 1

]T
∈

Rn. Eq. (1) is valid because it is assumed that the

mass of each link is uniformly distributed. The matrix

representation of the force balance for all the links is

MẌ = DThx + fx + fpx, MŸ = DThy + fy + fpy

(2)

where fpx and fpy are the forces from the additional

effectors, hx and hy are the joint constraint forces and

fx and fy are the fluid forces acting on the links.

By differentiating Eq. (1) and inserting Eq. (2), the

joint constraint forces cancel out, and the translational

Fig. 2. System overview USM, [1]

motion of the CM of the USM can be written as

mtp̈x = eT (fx + fpx), mtp̈y = eT (fy + fpy). (3)

2.2. Force Allocation

The force allocation distribution is given by

τCM =


FCM,x

FCM,y

MCM,z



=


eT 01×n

01×n eT

eTSψK −eTCψK


fpx
fpy

 = T (ψ)fp,

(4)

where T (ψ) is the allocation matrix and fp =

[fp,k1 , . . . , fp,kr ] is the vector of scalar effector forces.

The allocation matrix represents the mapping between

the effector forces and the forces and moments acting

on the CM of the USM. It is assumed that the additional

effector forces act through the CM of each link. The

primary objective for the force allocation method is

to distribute the efforts among the additional effectors

to obtain the desired forces and moments. In the next

section, we propose a novel method for calculating the

desired forces and moments, together with a non-linear

observer for position and velocity.

III. Control and observer design

Control problem: Assume that there exists a guidance

system that determines a suitable path for the USM to

follow. The task at hand is to design a motion controller
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that calculates the desired forces for the translational

motion FCM, and the desired moments for the rotational

motion MCM, of the USM.

In the following, we use a super-twisting algorithm

with adaptive gains to calculate the desired forces,

FCM. To calculate the desired moments, MCM, we

use a proportional controller. The desired forces and

moments are represented by

τCM,d =

FCM,d

MCM,d

 =


FCM,dx

FCM,dy

MCM,d

 . (5)

The control input for the translational motion is FCM,d,

which is the desired force imposed on the system. This

force is given as the input to the force allocation matrix

in Eq. (4), which, in turn, distributes the forces on the

effectors such that the combined force in the x- and the

y-directions is equal to the desired forces in the x- and

y-directions, i.e., FCM,dx
and FCM,dy

, respectively. By

assuming that the actuator dynamics are faster than the

system dynamics, the following equation is assumed to

hold:

FCM,d =

FCM,dx

FCM,dy

 = FCM =

FCM,x

FCM,y

 =

eT fpx
eT fpy

 .
(6)

By replacing eT fpx and eT fpy in Eq. (3), with FCM,dy

and FCM,dy
, the translational motion of the CM of the

USM can be rewritten as

mtp̈x = eT fx + FCM,dx , mtp̈y = eT fy + FCM,dy .

(7)

3.1. Sliding surface design

To use the SMC, we must first design a sliding surface.

It should be designed such that when the sliding variable

σ goes to zero, the state variables asymptotically

converge to zero. We start by defining a suitable error

variable that corresponds to the output variable for the

translational motion of the USM, pCM, that is,

p̃ =

p̃x
p̃y

 = pCM − pCM,ref =

px − px,ref
py − py,ref

 , (8)

where pCM,ref is the desired position of the CM of

the USM in the global frame. The sliding surface

should be selected such that the state trajectories of the

controlled system are forced onto the sliding surface

σ = σ̇ = 0, where the system behaviour meets the

design specifications. The controller FCM,d should also

appear in the first derivative of σ such that the relative

degree is equal to 1. The sliding surface σ can then be

chosen as

σ =

σx
σy

 = λp̃+ ˙̃p =

λp̃x
λp̃y

+

 ˙̃px

˙̃py


=

λ(px − px,ref)

λ(py − py,ref)

+

ṗx − ṗx,ref
ṗy − ṗy,ref

 ∈ R2.

(9)

Since only the position, pCM, of the centre of mass is

available for measurement, an observer for the states

is designed. The observer states are used in the sliding

surface; hence, following the structure of Eq. (9), the

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

Prepared using asjcauth.cls



TRAJECTORY TRACKING FOR USM USING A STA 7

revised sliding surface is then

σ̂ =

σ̂x
σ̂y

 =

λ(p̂1,x − px,ref)

λ(p̂1,y − py,ref)

+

p̂2,x − ṗx,ref
p̂2,y − ṗy,ref

.
(10)

3.2. Control input design

In this section, the equations describing the STA with

adaptive gains and the SMO are given in detail. These

will be used to find the desired force FCM,d.

3.2.1. The super-twisting algorithm with adaptive

gains

The STA with adaptive gains proposed in [40] can be

written as

uSTA =

uSTA,x
uSTA,y

 =

−αx|σx|1/2 sgn(σx) + vx

−αy|σy|1/2 sgn(σy) + vy


v̇ =

v̇x
v̇y

 =

−βx sgn(σx)

−βy sgn(σy)


(11)

where the adaptive gains are defined as

α̇ =

α̇x
α̇y

 =




ω1

√
γ1
2 , if σx 6= 0

0, if σx = 0
ω1

√
γ1
2 , if σy 6= 0

0, if σy = 0


(12)

and

β =

βx
βy

 =

2εαx + λ+ 4ε2

2εαy + λ+ 4ε2

 , (13)

where ε, λ, γ1 and ω1 are positive constants. For

implementation purposes, a small boundary is applied

to the sliding surface so the adaptive gains can be

expressed as

α̇ =

α̇x
α̇y

 =




ω1

√
γ1
2 , if |σx| > αm

0, if |σx| ≤ αm
ω1

√
γ1
2 , if |σy| > αm

0, if |σy| ≤ αm


β =

βx
βy

 =

2εαx + λ+ 4ε2

2εαy + λ+ 4ε2


(14)

where the design parameter αm is a small positive

constant that is chosen empirically.

3.2.2. State observer

By designing the observer structure as in [41], the state

observer is chosen as follows:

˙̂p1 =

 ˙̂p1,x

˙̂p1,y

 =

p̂2,x + z1,x

p̂2,y + z1,y


˙̂p2 =

 ˙̂p2,x

˙̂p2,y

 =

p̂3,x + z2,x + 1
mt
FCM,dx

p̂3,y + z2,y + 1
mt
FCM,dy


˙̂p3 =

 ˙̂p3,x

˙̂p3,y

 =

z3,x
z3,y


(15)
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where

z1 =

z1,x
z1,y

 =

k1|e1,x|2/3 sgn(e1,x)

k1|e1,y|2/3 sgn(e1,y)


z2 =

z2,x
z2,y

 =

k2|e1,x|1/3 sgn(e1,x)

k2|e1,y|1/3 sgn(e1,y)


z3 =

z3,x
z3,y

 =

k3 sgn(e1,x)

k3 sgn(e1,y)


(16)

and k1, k2 and k3 are gains to be chosen according

to [43] and [44], e1,x = px − p̂1,x and e1,y = py − p̂1,y.

One choice of parameters that meets the requirements in

[43] and [44], is, according to [42], k1 = 6L1/3, k2 =

11L1/2 and k3 = 6L, where L is a sufficiently large

constant. By defining e2 = ṗ− p̂2 and e3 = −p̂3 +

F (t), the error dynamics of the state observer can be

written as

ė1 = −k1|e1|2/3 sgn(e1) + e2

ė2 = −k2|e1|1/3 sgn(e1) + e3

ė3 = −k3 sgn(e1) + Ḟ (t)

(17)

3.2.3. Control input

To achieve asymptotic convergence of the state

variables, we have to drive the sliding variable σ to zero

in finite time by means of the control, FCM,d. Therefore,

the control input, FCM,d, must be chosen such that the

STA control, uSTA, appears in the equation of the first

derivative of the sliding variable. In particular, we want

to have ˙̂σ = uSTA. Since the STA is finite time stable,

this will make σ, σ̇ reach zero in finite time. Taking the

time derivative of Eq. (10) and substituting ˙̂p1 and ˙̂p2,

defined in Eq. (15), we find

˙̂σ = ( ˙̂p1 − ṗref) + ( ˙̂p2 − p̈ref)

= (p̂2 + z1 − ṗref) + (p̂3 + z2 +
1

mt
FCM,d − p̈ref)

(18)

By choosing FCM,d to be

FCM,d = mt(−p̂2 − z1 + ṗref − p̂3 − z2 + p̈ref + uSTA)

(19)

we obtain

˙̂σ = uSTA. (20)

3.2.4. PD-controller

We want to compare the performance of the SMC

algorithm to that of an existing controller for USMs

with respect to disturbances and modelling errors. We

use the standard PD-controller proposed in [1]. This is

implemented by replacing uSTA in Eq. (19) with

uPD = kCM
d

ṗx,ref − ˙̂px

ṗy,ref − ˙̂py

+ kCMp

px,ref − p̂x
py,ref − p̂y


(21)

where kCMd and kCMp are controller gains.

IV. Stability Analysis

In this section, we perform a stability analysis of the

closed-loop system; it is shown that the tracking error

converges asymptotically to zero.
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4.1. Error dynamics

By defining p =
[
px py

]T
and dividing Eq. (7) by mt

(the total mass of the USM) the equations of motion can

be written as

p̈ =

p̈x
p̈y

 =

 1
mt

(eT fx + FCM,dx)

1
mt

(eT fy + FCM,dy )

 (22)

where eT fx is the sum of all forces acting on the

CM in the x-direction and eT fy is the sum of all

forces acting on the CM in the y-direction. These

forces are difficult to model exactly, so they are instead

interpreted as a time-varying disturbance denoted by

f(t) =
[
fx(t) fy(t)

]T
, where it is assumed that ḟ(t)

is bounded. The equation can then be written as

p̈ =
1

mt
(f(t) + FCM,d) =p̈x

p̈y

 =

 1
mt

(fx(t) + FCM,dx)

1
mt

(fy(t) + FCM,dy )

 . (23)

The error variable was introduced in Eq. (8). By

introducing p̃1 = p̃, p̃2 = ˙̃p and differentiating the error

variables, the error dynamics can be written as follows:

˙̃p1 = ˙̃p = p̃2

˙̃p2 = ¨̃p = p̈− p̈ref(t) =
1

mt
(f(t) + FCM,d)− p̈ref(t),

(24)

where it is assumed that the reference trajectory and

its derivatives are bounded by design. By introducing

a new function F (t) = 1
mt
f(t)− p̈ref(t), the error

dynamics can be written as

˙̃p1 = p̃2

˙̃p2 = F (t) +
1

mt
FCM,d.

(25)

where Ḟ (t) is bounded since it is a function of two

bounded signals.

4.2. Overall closed-loop dynamics

By using the fact that p̂1 = p− e1 and that p̂2 = ṗ− e2,

from Section 3.2.2, Eq. (10) can be written as

σ̂ = p− e1 − pref + ṗ− e2 − ṗref . (26)

Since p̃1 = p− pref and p̃2 = ṗ− ṗref , then Eq. (26) can

be written as

σ̂ = p̃1 − e1 + p̃2 − e2. (27)

Using that p̃2 = ˙̃p1, from Eq. (25), we get

σ̂ = p̃1 − e1 + ˙̃p1 − e2 (28)

and

˙̃p1 = σ̂ − p̃1 + e1 + e2. (29)

The overall closed-loop dynamics with FCM,d given by

Eq. (19), ˙̂σ as in Eq. (20), ˙̃p as in Eq. (29) and the state

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

Prepared using asjcauth.cls



10 Asian Journal of Control, Vol. 00, No. 0, pp. 1–20, Month 0000

observer error as in Eq. (17) is then

∑
1


˙̃p1 = σ̂ − p̃1 + e1 + e2

˙̂σ = −α|σ̂|1/2 sgn(σ̂) + v

v̇ = −β sgn(σ̂)

∑
2


ė1 = −k1|e1|2/3 sgn(e1) + e2

ė2 = −k2|e1|1/3 sgn(e1) + e3

ė3 = −k3 sgn(e1) + Ḟ (t)

(30)

Theorem 1 Assume that the error dynamics are given

by Eq. (25), where |Ḟ (t)| ≤ ∆, mt is known and the

sliding surface is defined by Eq. (10). Assume that the

state observer in Eq. (15) is used to estimate p and ṗ.

Let the control input be given by Eq. (19). Then, the

origin of the cascaded system in Eq. (30) is uniformly

globally asymptotically stable (UGAS), which ensures

the asymptotic convergence of the tracking error.

Proof. Analysis of subsystem 1, with e1 = 0 and e2 =

0: With e1 = 0 and e2 = 0, subsystem 1 can be written

as

∑
1


˙̃p1 = σ̂ − p̃1

˙̂σ = −α|σ̂|1/2 sgn(σ̂) + v

v̇ = −β sgn(σ̂)

(31)

This can then be divided into two subsystems:

∑
11

{
˙̃p1 = σ̂ − p̃1

∑
12


˙̂σ = −α|σ̂|1/2 sgn(σ̂) + v

v̇ = −β sgn(σ̂)

(32)

where [45, Lemma 2.1] can be used. Subsystem
∑

11

with σ̂ = 0 is analysed first. This is clearly a globally

exponentially stable linear system, but since we will

need a Lyapunov function to analyse this system

when σ̂ 6= 0, we use the Lyapunov function candidate

V11(p̃) = 1
2 p̃

2
1 for the analysis. The derivative of V11

yields

V̇11(p̃) = p̃1 ˙̃p1 = p̃1(−p̃1)

= −p̃21 ≤ −||p̃1||2.
(33)

This means that the Lyapunov function satisfies:

k1||x||a ≤ V11(x) ≤ k2||x||a

∂V11
∂x

f11(t, x) ≤ −k3||x||a
(34)

with k1 = k2 = 1
2 , k3 = 1 and a = 2. Hence, by virtue

of [46, Theorem 4.10], the origin for subsystem
∑

11

with σ̂ = 0 is globally exponentially stable.

Subsystem
∑

12 has the structure of the STA with

adaptive gains. In [40], a Lyapunov function is proposed

for systems with this structure. Here, it is proven that

the Lyapunov function proposed is indeed a Lyapunov

function for subsystem
∑

12 and that for any initial

conditions, σ, σ̇ → 0 in finite time by using the STA

with adaptive gains given by Eq. (12) and Eq. (13),

where ε, λ, γ1 and ω1 are arbitrary positive constant.

It is also proven that the sliding surface σ = 0 will

be reached in finite time. Now, since the subsystem is

globally finite time stable and autonomous, it is also

uniformly globally asymptotically stable (UGAS), [47,

Proposition 2 and Proposition 3], which also implies

that ||σ̂(t)|| < β1∀t ≥ 0.
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To verify that the solutions of
∑

1 are uniformly

globally bounded (UGB), subsystem
∑

11 must be

analysed with σ̂ 6= 0. The derivative of the Lyapunov

function V11 is then as follows:

V̇11(p̃) = −||p̃1||2 + σ̂p̃1

≤ −||p̃1||2 + θ||p̃1||2 − θ||p̃1||2 + β1||p̃1||

≤ −(1− θ)||p̃1||2 ∀ ||p̃1|| ≥
β1
θ

(35)

where 0 < θ < 1. The solutions are then UGB because

the conditions of [46, Theorem 4.18] are satisfied.

Consequently, the conditions of [45, Lemma 2.1] are

satisfied, which implies that the origin of subsystem∑
1 is UGAS.

Analysis of subsystem 2: In [48] a Lyapunov function

is proposed for a third-order observer. It is proven

that the Lyapunov function is radially unbounded and

positive definite and that it is a Lyapunov function for

subsystem
∑

2, whose trajectories converge in finite

time to the origin e = 0 for every value of |Ḟ (t)| as

long as Ḟ (t) is bounded. Since Ḟ (t) is bounded by

assumptions, the origin is globally finite time stable for

every value of Ḟ (t), which means that the origin is also

UGAS [47, Proposition 2 and Proposition 3], which in

turn implies ||e(t)|| ≤ β2∀t ≥ 0.

Analysis of the complete system: To analyse the

complete system, [45, Lemma 2.1] is used. To check

if the solutions of the complete system are UGB, the

boundedness of p̃1 must be evaluated when e1 6= 0 and

e2 6= 0, and for this, the Lyapunov function V11 is used.

Note that the boundedness of σ̂ follows from
∑

12 being

UGAS because
∑

12 is not perturbed by
∑

2.

V̇11(p̃) = −||p̃1||2 + (σ̂ + e1 + e2)p̃1

≤ −||p̃1||2 + θ||p̃1||2 − θ||p̃1||2 + (β1 + 2β2)||p̃1||

≤ −(1− θ)||p̃1||2 ∀ ||p̃1|| ≥
β1 + 2β2

θ

(36)

where 0 < θ < 1. The solutions are then UGB because

the conditions of [46, Theorem 4.18] are satisfied.

Consequently, the conditions of [45, Lemma 2.1] are

satisfied, which implies that the complete system is

UGAS.

V. Simulation Results

5.1. Implementation

The complete model with the force allocation matrix

and controller is implemented in MATLAB Simulink.

The USM implemented is almost the same as the one

used in [1]. It has n = 16 links, each of which has a

length of 2li = 0.14 m and a mass of mi = 0.6597 kg.

The hydrodynamic-related parameters ct, cn, µ, Λ1, Λ2

and Λ3 were computed for the elliptical link section

with major and minor diameters of 2a = 2 · 0.03 m

and 2b = 2 · 0.05 m, respectively. The fluid properties

were assumed to be ρ = 1000 kg
m3 and Cf = 0.03, CD =

2, CA = 1, CM = 1 and were used to compute the

parameters by using the equations derived in [36]. The

initial position of the CM was selected as pCM(0) =

[0, 0] m. The thruster configuration used corresponds to
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configuration 2 in [1]. This has one tail thruster attached

to link 1, exerting a force along the x-axis of the link,

and four additional thrusters located at link numbers

3, 6, 11 and 14, exerting forces normal to the links.

We have implemented two different case studies: one is

called torpedo mode and is described in Section 5.1.1,

and the other is called operation mode, as described in

Section 5.1.2.

5.1.1. Case 1 - Torpedo mode

We want the USM to move as a torpedo-shaped AUV

when it is moving from one place to another. To

achieve this type of behaviour, the link angles were

set to zero; i.e., there was no lateral undulation, and

a line-of-sight (LOS) guidance law defined by Ψ̄ref =

− arctan(py/∆), where ∆ is the look-ahead distance

and py is the cross-track error from the path, was used

for the heading control. This was motivated by [49] and

[50], but in [1], the heading of the USM was defined

as the head link angle Ψ̄ = Ψn. This simulation case is

shown in Fig. 3.

5.1.2. Case 2- Operation mode

When the USM is in operation mode, it uses the

thrusters to stay in one place or move around and uses

the end-effector at the head of the USM to perform the

operation. The motion of the joints can be seen as a

disturbance to the CM position control system because

this motion will inflict unwanted motion on the CM of

the USM. This simulation case investigates how well

the proposed STA attenuates the unwanted effects of the

joint motion. The simulated operation is an inspection,

which entails that the head of the USM first moves in

one direction and then the other, while the thrusters

should keep the USM on the reference path. This type

of simulation is shown in Fig. 4, where the USM head

changes direction at 10, 20 and 30 seconds.

Fig. 3. Torpedo mode USM simulation

Fig. 4. Operation mode USM simulation
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5.2. Simulations

As described in Section 3.2.2 the gain parameter L

chosen needs to be sufficiently large, and for the

simulations, L was tuned manually to obtain good

performance. Since the STA has an adaptive gain α, the

choice of parameters is not that important. The choice

of gains can impact how fast the adaptive gain reaches

its optimal value, but it will always reach that value. The

gains for the STA were therefore chosen by tuning them

manually. The PD-controller gains were chosen by the

pole placement and were then tuned slightly to achieve

improved performance. The sliding surface parameter λ

in Eq. (10) was set to 1. For the simulations, a fixed-step

solver, with fixed step size 10−5 was used. In Table 1,

the maximum position error after settling is presented

for both the STA and the PD-controller. MATLAB

Simulink was used to perform the simulations.

5.2.1. The super-twisting algorithm with adaptive

gains:

The gains in the super-twisting algorithm with adaptive

gains were set to ε = 1, λ = 1, γ1 = 1, ω1 = 8, αm =

0.05, and the observer gain was set to L = 55. The

simulation for the torpedo mode can be seen in Fig. 5,

and the simulation for the operation mode can be seen

in Fig. 6. The position error for case 2, operation mode,

can be seen better in Fig. 7.

5.2.2. The PD-controller

The gains for the PD-controller were set to kCMd = 6

and kCMp = 200. The torpedo mode simulation can be

seen in Fig. 8, and the operation mode simulation can be

seen in Fig. 9. The position error for case 2, operation

mode, can be seen better in Fig. 10.

Table 1. Absolute maximum value for position error

Algorithm Error
Torpedo Operation

x y x y
The STA with 3.6134· 2.8766·
adaptive gains 10−4 10−4 0.0126 0.0264
PD-controller 0.0018 0.0095 0.0195 0.0227

5.3. Discussion

From Figs. 5 and 6, we can see that the proposed control

law is indeed applicable because the position error

Fig. 5. Torpedo mode: Simulation of STA with state observer
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converges to zero. From Figs. 5, 6, 8, 9 and Table 1, we

can also see that the STA with adaptive gains is superior

to the PD-controller because it has smaller position

errors in both simulation cases. The improved tracking

performance is important to be able to control the tail or

head of the USM better, to perform high-precision work

and to be able to move around in confined spaces.

It is worth noting that for case 2, operation mode,

the difference in the position error is not very large.

From Fig. 7 and Fig. 10, it can be seen that for the PD-

controller, the absolute position error varies more than it

does for the STA with adaptive gains. The reason for the

larger absolute position error for the STA is the peaks

Fig. 6. Operation mode: Simulation of STA with state observer

that can be seen in Fig. 7. These peaks are from when

the USM shifts position, and the error is therefore only

larger in some small time period while the USM shifts

position. The absolute position error for the STA when

it has settled is equal to 3.6088 · 10−4 in the x-direction

and is equal to 2.8847 · 10−4 in y-direction, while for

the PD-controller it is equal to 0.0032 in the x-direction

and is equal to 0.0073 in the y-direction. This means

that the error is usually less for the STA. From Fig. 10,

it can also be seen that the error is not constant and that

adding the integral effect would not improve the results

noticeably.

From the control input shown in sub-plot 3 of

Figs. 5, 6, 8 and 9, it is possible to see that the increase

in performance when the STA is used does not change

the magnitude of the force needed to control the USM

noticeably. In operation mode, when using the STA,

the control input does have some peaks when the USM

shifts position, but that is to be expected as the position

Fig. 7. Operation mode: Position error for the STA
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Fig. 8. Torpedo mode: Simulation of PD-controller

error is almost not affected at all by the shift. It is

important that the increase in force needed is not too

large, as that will affect the power usage of the USM. It

is also important that the control inputs are not too large

because the thrusters used have the maximum force that

they can provide. This problem has not been explicitly

considered in this paper, but to address such constraints,

the methods from [51], [52] can be used.

From Figs. 5 and 6, we can see that the sliding

surface does indeed converge to zero, as do the observer

errors. From Fig. 8 and Fig. 9, we can see that the

observer errors also converge to zero when the PD-

controller is used.

The PD gains for the linear controller might not be

completely optimal because finding the optimal gains is

a difficult task. This gives the STA with adaptive gains

one more advantage, as finding the optimal gains is no

longer a problem.

VI. Conclusions and Future Research

In this paper, we have discussed the use of the

USM as a floating base manipulator, for which the

trajectory tracking performance is important, and how

the complexity of motion control is larger for USMs

than for ROVs. We have proposed a second-order

sliding mode control law for trajectory tracking and

Fig. 9. Operation mode: Simulation of PD-controller
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used a sliding mode observer for the case when velocity

measurements are not available. Furthermore, we have

proved the asymptotic convergence of the tracking

error and performed a simulation study to verify the

applicability of the proposed control law and have

shown that it gives better tracking performance than a

linear PD-controller.

Future work includes investigating the best choice

of control parameters and extending the results to 3D.

Experiments should also be conducted to see how

well the control algorithm performs in practice. The

constraint problems regarding the thrusters should also

be investigated.
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