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Problem description
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Abstract

Censoring is a common issue in experiments and survival analysis. One does not know the
exact value of a censored data, the value of a censored data is only partially known. For
example one can know if the censored data is greater than or smaller than a predetermined
value, or within two certain values. Statistical analysis methods assume complete data.
Therefore, in order to be able to use statistical methods, the censored data needs to be
estimated to some value. One wishes to obtain a data set where the estimated value of
the missing data is as close to the original data as possible. Several methods have been
developed for this purpose, four of them are considered and tested in this report; the
quick and dirty method, maximum likelihood estimation, single imputation and multiple
imputation. The performances of the methods are tested for different types of censoring
and censoring limits, and are evaluated by the gross variance, which is the expected mean
square error. A low value of the gross variance indicates an accurate method.

Weibull distribution is the most commonly used distribution in survival analysis.
Therefore, the four methods are tested for Weibull distributed data. The performances of
the methods are evaluated through two different examples and two different experiments.
Numerical results are obtained through implementations in the programming language R.

The numerical results show that all methods manage censored data, but the quality of
the performances are varying. The quick and dirty method appears to be the most unstable
method, while the imputation methods are the most reliable and precise methods. The
results indicate that multiple imputation using the maximum likelihood estimator is the
most accurate and safe method.
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Sammendrag

Sensurering er et vanlig problem i eksperimenter og levetidsanalyse. Den eksakte verdien
av en sensurert data er ukjent, men noe informasjon har en likevel om den sensurerte
verdien. For eksempel er det mulig å vite om en sensurert data er større eller mindre
enn en forutbestemt verdi, eller om den ligger mellom to bestemte verdier. Statistiske
analysemetoder forutsetter fullstendige datasett. For å kunne benytte seg av statistiske
metoder, m̊a derfor sensurert data bli estimert til en verdi. Det er ønskelig at den estimerte
verdien av en manglende data er s̊a lik den originale verdien som overhodet mulig. Flere
metoder har blitt utviklet for dette form̊alet, fire av dem blir vurdert og testet i denne
masteroppgaven; ”the quick and dirty method”, ”maximum likelihood estimation”, ”single
imputation” og ”multiple imputation”. Prestasjonene til metodene blir testet for ulike
typer sensurering og flere forskjellige sensureringsgrenser, og deretter blir de vurdert ut i
fra verdien av bruttovariansen. Bruttovarians er forventet gjennomsnittlig kvadratfeil. En
lav bruttovarians indikerer at metoden er presis.

Weibull fordeling er den mest brukte fordelingen i levetidsanalyse. Derfor blir de
fire metodene testet for Weibull fordelte data. Prestasjonene til metodene blir vurdert
gjennom to ulike eksempler og to ulike eksperimenter. Numeriske resultater oppn̊as via
implementeringer i programmeringsspr̊aket R.

De numeriske resultatene viser at alle metodene kan h̊andtere sensurerte data, men
kvaliteten p̊a prestasjonene er varierende. ”The quick and dirty method” fremst̊ar som
den mest ustabile metodene, mens imputeringsmetodene er de mest p̊alitelige og presise
metodene. Resultatene indikerer at ”multiple imputation” som benytter ”maximum like-
lihood estimation” til å sette startverdier er den mest presise and tryggeste metoden.
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Chapter 1

Introdution

Censored data is a relevant issue in many different contexts, such as in reliability and
survival analysis. Censored data is a special case of missing data problems, but whilst the
data is completely unknown in missing data problems, the data is only partially unknown
in censored data problems. When a data is censored, one does not know the exact value
of the data, but one does have some information about the data. For instance one can
know whether a data is greater or lower than a certain value or if it lies within a specified
interval. These prespecified limits are called censoring limits. If a value lies above a
censoring limit, below a censoring limit or within two censoring limits, we say that the
value is censored. A value can be either right censored, left censored or interval censored.

Censoring is commonly used in experiments, such as in investigating the survival time
of a patient or the lifetime of a component. Experimental design helps us make the
most of an experiment, by allowing us to design the experiment such that it assures that
we achieve the desired information. When performing experiments, one does not have
unlimited amount of money nor time, such that shortening the project’s total lifetime by
deciding a censoring limit might be practical. And in cases were censoring is present, it is
necessary to know how to handle the censored data. Many techniques and methods have
been developed in order to able to manage censored data. In this report, four of these
methods; the quick and dirty method, maximum likelihood estimation, single imputation
and multiple imputation will be tested. The method’s ability to manage experimental
design with censored data will be investigated.

As mentioned, censoring is a common factor in survival analysis, and in survival analy-
sis, the data is often Weibull distributed. Weibull distribution is frequently applied in such
analysis, because of its properties, among others that the domain of a Weibull distributed
variable is ranging from 0 to ∞. For a Weibull distributed variable, Y , the linear model
can be expressed as

Y = lnT = xTβ + σε,

where ε is standard extreme value distributed.

The first chapters of this thesis contain theory. In chapter 2, censoring is explained, the
two probability distributions applied in the thesis, the Weibull distribution and the gen-
eralized extreme value distribution, are presented and the maximum likelihood estimates
for the parameters of a Weibull distribution are derived. Chapter 3 introduces linear
regression; linear regression models, experimental design and truncation are described.
Truncation is applied in the method of multiple imputation.

Chapter 4 presents the four methods to be investigated; the quick and dirty method,
maximum likelihood estimation, single imputation and multiple imputation. In addition,

1



2 CHAPTER 1. INTRODUTION

the R functions applied in the implementation of the methods are described. The mod-
els considered in this thesis include an error term, which needs to be simulated. This
simulation is also described in chapter 4. To evaluate the performances of the four meth-
ods, the gross variances of the regression coefficients are computed. The gross variance is
introduced in chapter 4.

In chapter 5, the two models considered and the two different experiments are pre-
sented. Both models are linear models, but the complexity is different.

The results of the first experiment are given and discussed in chapter 6. In chapter 7,
the results of the second experiment are presented and discussed.

The performance of the four methods are discussed in chapter 8, based on the results
presented in chapter 6 and 7. Concluding remarks are given in chapter 9.

In appendix A, the implementation of the four methods for example 1 and experiment
1 are presented. All implementation is performed in R.



Chapter 2

Theory

2.1 Censoring

Missing data is a problem in many different contexts, such as in surverys, measurements
and studies. In the problem of missing data, some observed values of a variable are
unknown. Censoring is a type of missing data problem, where the observations are only
partially unknown. Different reasons may cause censoring, such as an object withdrawing
from a study, an object being lost to follow up, or a study being ended earlier than
intended. When dealing with censoring, one does not know exactly when an event occurs.
However, one may have some information about the time of occurrence, either by knowing
a specific time at which the event has not yet occurred, a time the event has occurred
within or a time interval the event has occurred within. Whether an item i is censored or
observed can be denoted by an event indicator, δi. If an item is observed, we have δi = 1,
while if the item is censored we use δi = 0. Different types of censoring are presented
below.

2.1.1 Types of censoring

Type I censoring

Under Type I censoring, a sample of n units are tested, for which the experiment starts
at a fixed time zero, t = 0, and ends at a time tend. That is, one can only know the exact
failure time of units which fail within tend. Units that fail after the time tend, are not
observed. For Type I censoring, the total duration of the study is fixed, while the number
of censored units is random.

Type II censoring

Under Type II censoring, a sample of n units are testet, for which the experiment starts
at a fixed time zero, t = 0, and terminates when a fixed number of units, r(r < n), have
failed. Failure times are only observed for the r units, that is units failing after the rth
unit has failed, are not observed. The total number of censored units is fixed, while the
experimental time is random.

Random censoring

In random censoring, the total period of the experiment is fixed, but the units to be studied
enter the study at different times. Each item is assumed to have its own failure time and
censoring time, and the failure time and the censoring time are independent of each other.
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As a result of the independence, the censoring time gives no information about the failure
time, which is why random censoring also is referred to as non-informative censoring.

Right censoring

Right censoring occurs if some units still function at the termination time. The censored
time will therefore be smaller than the actual failure time. Right censoring is the most
common type of censoring in survival analysis. A study of divorces can illustrate right
censoring. Couples who are still married when the study ends or drop out of the study
for some reasons other than divorce, are right censored. The unit A in figure 2.1 is right
censored, because the only knowledge we have of observation A is that it occurred after
the end of study, time 4.

Left censoring

If the failure time is only known to be lower than a certain value, the unit is left censored.
The item has failed before we start observing, hence the censored time will be greater
than the actual failure time. As an example of left censoring, the time children learn to
swim can be used. If a study observes the time a child first learns to swim, and the study
starts at a fixed time, some children may have learned to swim already. The children who
know how to swim before the first observation time, are left censored. In figure 2.1, the
observation C is left censored, as we only know that the observation has occured before
time 1.

Interval censoring

When dealing with interval censoring, one only knows that the failure times lie within a
time interval of two fixed times. Interval censoring is typical for items that need to be
tested. Testing ones sight can be used as an example of interval censoring. It is not pos-
sible to know exactly when the sight became poorer, but one can know that it happened
between the previous testing time and the current testing time. The observation B in
figure 2.1 is interval censored, because we don’t know the exact time of occurence, but we
do know that it happend somewhere between time 2 and time 3.

In this report, only Type I censoring, right censoring and left censoring will be considered.

More theory on missing data problems can be found in Little & Robin [5] and more
theory on censoring can be found in Wu & Hamada [10]

Figure 2.1: Types of censoring.
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2.2 Distributions

2.2.1 Weibull distribution

The Weibull distribution is a continuous probability distribution widely applicable in prob-
ability theory and statistics. The Weibull distribution was first identified by Fréchet in
1927, and first applied by Rosin & Rammler in 1933, but Waloddi Weibull was the first
to study and describe the distribution in detail in 1951, which is where the name of the
distribution originates from. While the original purpose of the distribution was to model
physical fatigue, the Weibull distribution has many more applications because of its flex-
ibility, and is widely used in problems of reliability and survival analysis.

The probability density function of a Weibull random variable, X, is defined as

f(x; θ, α) =

{
α
θ

(
x
θ

)α−1
e−(x/θ)α , x ≥ 0,

0, x < 0,
(2.1)

where α > 0 is the shape parameter and θ > 0 is the scale parameter of the distribution,
as defined in Wu & Hamada [10]. The Weibull distribution is related to other probability
distributions, such as the exponential distribution for α = 1 and the Rayleigh distribution
when α = 2. If the quantity, X, is ”time to failure”, the Weibull distribution gives a
distribution for which the failure rate is proportional to a power of time, interpreted as
follows;

• α < 1 : The failure rate decreases over time,

• α = 1 : The failure rate is constant over time,

• α > 1 : The failure rate increases over time.

The cumulative distribution function for the Weibull distribution is

F (x; θ, α) =

{
1− e−(x/θ)α , x ≥ 0,

0, x < 0.
(2.2)

The mean and variance of the Weibull distribution are expressed as

E(X) = θΓ
(

1 +
1

α

)
and

var(X) = θ2

[
Γ

(
1 +

2

α

)
−
(

Γ

(
1 +

1

α

))2]
,

where Γ(·) is the gamma function 1.

2.2.2 Generalized extreme value distribution

In probability theory and statistics, the generalized extreme value (GEV) distribution is
a family of continuous probability distributions developed within extreme value theory
to combine the Gumbel, Fréchet and Weibull families, respectively referred to as type I,
type II and type III extreme value distributions. The GEV distribution originates from
the extreme value theorem (Fisher-Tippett, 1928 and Gnedenko, 1943) and is the limit

1The gamma function is defined as Γ(n) = (n− 1)! if n is a positive integer.
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distribution of properly normalized maxima of a sequence of independent and identically
distributed random variables. Because of this, the GEV distribution is used as an approx-
imation to model the maxima of long (finite) sequences of random variables.

The probability density function of a GEV(µ, σ, ξ) distribution is

f(x;µ, σ, ξ) =
1

σ

[
1 + ξ

(
x− µ
σ

)](−1/ξ)−1

exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}
,

for 1 + ξ(x − µ)/σ > 0, where µ ∈ R is the location parameter, σ > 0 is the scale
parameter and ξ ∈ R is the shape parameter, as defined on Wikipedia [11]. The cumulative
distribution function is defined as

F (x;µ, σ, ξ) = exp

{
− 1

[
1 + ξ

(
x− µ
σ

)]−1/ξ
}
.

The shape parameter, ξ, controls the tail behaviour of the distribution. Different
values of ξ refers to the three extreme value distributions, whose cumulative distribution
functions are defined as follows

• Gumbel (type I extreme value distribution), ξ = 0

F (x;µ, σ, 0) = e−e
−(x−µ)/σ

for x ∈ R.

• Fréchet (type II extreme value distribution), ξ = α−1 > 0

F (x;µ, σ, ξ) =

{
0, x ≤ µ,
e−((x−µ)/σ)α , x > µ.

• Reversed Weibull (type III extreme value distribution),
ξ = −α−1 < 0

F (x;µ, σ, ξ) =

{
e−(−(x−µ)/σ)α , x < µ,

1, x ≥ µ.

Type I is the most commonly referred to in discussions of extreme values, and is also
the one being considered in this report, when the extreme value distribution is used. The
cumulative distribution function and the probability density function of extreme value
distribution can be expressed in several ways. The way of representing the probability
density function in this report is presented in section 12.2 in Wu & Hamada [10];

f(x) =
1

σ
exp
[x− µ

σ
− exp

(x− µ
σ

)]
. (2.3)

The corresponding cumulative distribution function is

F (x) =

∫ x

−∞
f(t)dt = 1− exp

[
− exp

(x− µ
σ

)]
. (2.4)

The mean and the variance of the Gumbel distribution is given as

E(−X) = −(−µ+ γσ) = µ− γσ,

var(−X) =
π2

6
σ2, (2.5)
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from Wikipedia [12], where γ is the Euler-Mascheroni constant, γ ≈ 0.5772.

The reason for using −X in the expressions of the mean and the variance lies in the
definition of the probability distribution. On Wikipedia [12], the random variable X and
the location parameter µ are used in the cumulative distribution function for Gumbel
distribution 2. which is rewritten in this report to (2.4) such that the random variable is
defined as −X and the location parameter is defined as −µ.

In the method of multiple imputation, the quantile function of the Gumbel distribu-
tion is used when computating the imputed values. The quantile function, Q(p), of a
probability distribution is the inverse of its cumulative distribution function, F (x). For a
given probability in the probability distribution of a random variable, the quantile func-
tion specifies the value at which the probability of the random variable will be less than or
equal to that probability. Hence, the quantile function for the extreme value distribution,
Q(p) = x = F−1(p) is derived as

F (x) = 1− exp
[
− exp

(x− µ
σ

)]
= p

ln(1− p) = −exp
(x− µ

σ

)
ln
(
ln(1− p)

)
=

x− µ
σ

⇒ Q(p) = x = µ+ σln
(
− ln(1− p)

)
.

2.3 The maximum likelihood estimator

Maximum likelihood estimation is a method of estimating unknown parameters of a sta-
tistical model, and these parameters are obtained by maximizing the likelihood function of
that model. The likelihood function is the probability density function of the joint distri-
bution of the data of a sample or a continuous/ discrete random variable. The likelihood
function contains the parameters of a statistical model and is sometimes just referred to
as the likelihood. The likelihood of a set of parameter values, θ, given some observed
outcomes, t, is equal to the probability of those observed outcomes given the parameter
values;

L(θ|t) = (t|θ) =
n∏
i=1

f(ti, θ).

The logarithm is taken of the likelihood function, which is a practical and valid pro-
cedure as the logarithm is a monotonically increasing function. To obtain expressions for
the parameters, the partial derivatives of the log likelihood with respect to the parameters
are set equal to zero.

More information about the method of maximum likelihood can be found in Warpole,
Myers, Myers & Ye [9].

2.3.1 Maximum likelihood estimation for Weibull distribution

The derivation of the maximum likelihood estimates for the Weibull distribution is based
on the derivation in Joseph [4].

The density function for the Weibull distribution, as presented in section 2.2.1, is

2 F (x;µ, σ) = exp(−exp(−(x− µ)/σ)).
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f(t; θ, α) =
(α
θ

)( t
θ

)α−1
e(−t/θ)α .

The likelihood function of a Weibull distribution is

L(θ, α) =
n∏
i=1

(α
θ

)( ti
θ

)α−1
e(−ti/θ)α

=
( α
θα

)n n∏
i=1

tα−1
i e(−1/θ)α

n∑
i=1

tαi .

Applying the natural logarithm we obtain

lnL(θ, α) = l(θ, α) = nlnα− αnlnθ + (α− 1)
n∑
i=1

lnti −
1

θα

n∑
i=1

tαi .

Calculating the partial derivatives of α and θ and setting them equal to 0, gives us

∂l(θ, α)

∂θ
= −αn

θ
+

α

θα+1

n∑
i=1

tαi = 0 (2.6)

and

∂l(θ, α)

∂α
=

n

α
− nlnθ +

n∑
i=1

lnti −
∂

∂α

n∑
i=1

( ti
θ

)α
=

n

α
− nlnθ +

n∑
i=1

lnti −
n∑
i=1

( ti
θ

)α
ln
( ti
θ

)
. (2.7)

Equation (2.6) can be expressed as

θ̂ =

(
1

n

n∑
i=1

tα̂i

)1/α̂

,

and equation (2.7) can then be solved numerically with θ̂ inserted.

Maximum likelihood estimation for right censored observations

Let the density function be f(ti; θ, α), the distribution function be F (ti; θ, α) and the
survival function be S(ti; θ, α). The probability of an item surviving a specific time, ti, is
defined by

S(ti; θ, α) = P (T > ti) =

∫ ∞
ti

f(u; θ, α)du = F (∞; θ, α)− F (ti; θ, α)

= 1− F (ti; θ, α).

Suppose n items are put to the test, where r units fail and n − r units do not fail
within a time limit, Cr. The lifetime and censoring can be defined as (Yi, δi), where

Yi =

{
Ti, δi = 1, for uncensored data,

min(Ti, Cr), δi = 0, for right censored data,



2.3 The maximum likelihood estimator 9

where Cr is the time limit, the right censored time. The contribution to the likelihood
with right censored observations is the product of the units that failed and the units that
did not fail. The contribution of a unit failing at yi is the density of that time interval;
Li = f(yi; θ, α). For a unit still functioning at yi, meaning the lifetime of the unit exceeds
yi, the contribution to the likelihood is Li = S(yi). Thus, the likelihood can be expressed
as

L(θ, α) =

n∏
i=1

Li(θ, α) =
∏
δi=1

f(yi; θ, α)
∏
δi=0

S(yi; θ, α)

=

r∏
i=1

f(ti; θ, α)

n∏
i=r+1

S(ti; θ, α). (2.8)

For Weibull distribution, the survival function is defined as S(ti) = e−(ti/θ)
α

and the
density function is defined in (2.1). Thus, the expression in (2.8) becomes

L(θ, α) =
r∏
i=1

α

θ

( ti
θ

)α−1
e−(ti/θ)

α
n∏

i=r+1

e−(ti/θ)
α

=
( α
θα

)r r∏
i=1

tα−1
i exp

(
− 1

θα

n∑
i=1

tαi

)
.

Applying the natural logarithm, we obtain

lnL(θ, α) = l(θ, α) = rlnα− αrlnθ + (α− 1)

r∑
i=1

lnti −
1

θα

n∑
i=1

tαi .

Then, we calculate the partial derivatives of the log likelihood with respect to θ and
α, and set them equal to 0, as follows

∂l(θ, α)

∂θ
= −αr

θ
+

α

θα+1

n∑
i=1

tαi = 0

and

∂l(θ, α)

∂α
=
r

α
− rlnθ +

r∑
i=1

lnti −
n∑
i=1

( ti
θ

)α
ln
( ti
θ

)
.

The partial derivative with respect to θ can be rearranged to express θ̂ as

θ̂ =

(
1

r

n∑
i=1

tα̂i

)1/α̂

,

while the partial derivate with respect to α is to be solved numerically with θ̂ inserted.

Maximum likelihood estimation for left censored observations

The probability for a left censored observation is given as

P (T < ti) = T (ti; θ, α)− F (−∞; θ, α) = F (ti; θ, α),

where the cumulative distribution function is
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F (ti; θ, α) = 1− S(ti; θ, α).

When n items are considered, and among them r items are functioning at the censoring
limit Cl, while n− r units are not functioning at Cl. The lifetime and censoring can then
be expressed as

Yi =

{
Ti, δi = 1, for uncensored data,

max(Ti, Cl), δi = 0, for left censored data,

where Cl is the left censoring limit. As for the right censored case, the contribution to
the maximum likelihood with left censored data is the product of the units that failed and
the units that did not fail. If a unit fails at yi, the contribution to the likelihood function
is the cumulative distribution of that time interval, Li = F (yi; θ, α). If the lifetime of a
unit do not reach yi, meaning that the unit is not functioning at yi, the contribution is
the density of that time interval, Li = f(yi). The likelihood can then be written as

L(θ, α) =

n∏
i=1

Li(θ, α) =
∏
δi=1

f(yi; θ, α)
∏
δi=0

F (yi; θ, α)

=
r∏
i=1

f(ti; θ, α)
n∏

i=r+1

F (ti; θ, α). (2.9)

The likelihood for Weibull distributed data containing left censored observations given
in (2.9), for which the density function is defined in (2.1) and the cumulative distribution
function in (2.2), is

L(θ, α) =
r∏
i=1

(α
θ

)( ti
θ

)α−1
e−(ti/θ)

α
n∏

i=r+1

(
1− e−(ti/θ)

α
)
.



Chapter 3

Regression

3.1 Linear regression model

A regression model is a statistical technique for modelling the relationship between a
response variable and one or more explanatory variables. The outcome of the response
variable depends on the explanatory variables, but not the other way around. Therefore,
the response variable is also called the dependent variable, while the regression variable
is also known as the independent variable. An important element of regression analysis
is the estimation of the regression function, a function that describes how the response
variable is related to the explanatory variables.

The regression of a random variable Y on a variable x, is the expectation of Y given
the value of x, written as E(Y |x). A linear regression model is given by

E[Y |x] = β0 + β1x1 + β2x2 + ..+ βkxk + ε,

where

- Y is the response variable,

- x1, x2, ..., xk are the explanatory variables,

- β0, β1, β2, ..., βk are the regression coefficients,

- ε is the random error. The errors are normally assumed uncorrelated with equal
variance and expectation equal to zero.

βi determines to what extent each explanatory variable xi contributes to the response
variable Y , given that the others are kept constant.

”The least square method” is the most commonly used method for estimating the
unknown β’s.

3.2 Experimental design

Experimentation allows an investigator to figure out how the response, also known as the
output, responds when the settings of the input variables in a system are intentionally
changed. This can be used to understand how the input variables affect the performance
of a system, thus provide a basis for choosing the optimal input settings. In addition, the
motivation for performing an experiment could be to identify the significant factors.

The principles of experimental design was introduced by R. A. Fisher in the 1930s and
have been widely used in various disciplines such as medicine, psychology, business and
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science ever since. Experimental design is described in Wu & Hamada [10] as ”a body
of knowledge and techniques that enables an investigator to conduct better experiments,
analyse data efficiently, and make the connections between the conclusions from the anal-
ysis and the original objectives of the investigation”. Planning an experiment properly is
very important in order to be able to answer the research questions of interest as effectively
and clearly as possible. One should carefully consider the objective of the experiment when
choosing responses, factors, levels and the experimental plan to be conducted.

When performing an experiment the factors are the input and can be considered as the
explanatory variables of a regression model, where an appropriate response is also chosen.
If one wishes to investigate how the selling price of a house is affected by several factors,
the selling price is the chosen response. Factors could be the size of the house, number
of bed rooms, year of construction, location etc. The levels describe the extent to which
each factor impacts the response and could be denoted as ”high” or ”low”. A factorial
experiment considering k factors and p levels is expressed as a pk factorial design.

Fractional factorial design is preferable when the number of factors to be investigated
is large. If for example one considers an experiment of 10 factors, each with two levels, the
number of possible single experiments is 210 = 1024. It is nearly impossible to perform
1024 experiments under the exact same circumstances, and a change in the experimental
conditions may lead to wrong estimates of the effects. In addition, it would be time
consuming and require a large number of resources to perform that many experiments.
Experimental design allows us to decrease the amount of experimental work considerably
in relation to the complete factorial experiment by applying blocking or fractional factorial
design, which is explained later. Blocking is the arranging of experimental units in groups
(blocks) that are similar to one another, hence the variability between units is reduced
and more accurate estimates are achieved.

In this report, only 23 factorial design will be applied and blocking will not be consid-
ered.

3.2.1 Two-level factorial designs

Full factorial two-level experiments are referred to as 2k designs where k denotes the
number of factors to be investigated in the experiment, with two levels. If the two levels
are chosen to be ”high” and ”low”, it would be simple and convenient to present ”low” by
a negative (-) sign or -1, and let a positive (+) sign or 1 denote ”high”. Then we obtain
orthogonal factor columns and the coefficients can easily be computed. The design of a 23

factorial experiment is shown in table 3.1.

Table 3.1: A 23 level design.

Run no. Factor A Factor B Factor C Levelcode Yields (yi)

1 - - - (1) y1

2 + - - a y2

3 - + - b y3

4 + + - ab y4

5 - - + c y5

6 + - + ac y6

7 - + + bc y7

8 + + + abc y8

To determine how significant the factors are, several effects are computed. The main
effect is the difference between the mean response at the high level and the mean response
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at the low level of a factor. When performing an experiment with more than one factor,
interactions between two or more factors may be present. Interaction means that the effect
of one factor may depend on the level of the other factors. The interaction effect between
two factors is defined as the difference between the main effect of one factor when the
other factor is at its high level and the main effect of the first factor when the other is at
its low level.

The main effect of a factor, using factor A in table 3.1 as an example, is computed as

A =
y2 + y4 + y6 + y8

4
− y1 + y3 + y5 + y7

4
.

The estimation of the interaction effects for the two-factor interactions and three-factor
interactions are presented below, with A and B, and A, B and C as examples.

AB =
y1 + y4 + y5 + y8

4
− y2 + y3 + y6 + y7

4
,

ABC =
y2 + y3 + y5 + y8

4
− y1 + y4 + y6 + y7

4
.

3.2.2 Two-level fractional factorial designs

When the number of factors increases, the number of single experiments will consequently
increase too, and actions that reduce the number of required experiments should be con-
sidered. One way to decrease the number of required runs, is to choose a fraction of the
total runs, to be used in the estimation. The selection of runs is preferably chosen such
that the main effects and the lower order interactions can be estimated, as the higher
order interactions often are assumed to be negligible. Guo and Mettas [1] refers to it as
the sparsity of effects principle. Such a selection procedure is called a fractional factorial
design. A two-level fractional factorial design is expressed as 2k−p, where k is the number
of factors, p represents the number of generators and 2−p = 1

2p denotes the fraction. If
the signs of one factor are equal to the sign products of some other factors, it is said to
be a generator of the design.

For example, a 23−1 design can be generated by constructing a full two-level factorial
experiment involving two factors, A and B, and then assign the factor C to the interaction
AB. The design is displayed in table 3.2. If the effect of ABC can be ignored due to
the sparsity of effects principle, the number of required runs can be reduced by only
considering the one half of the full factorial experiment where ABC has the same level
(+). A 1

2 fraction of the 23 design expanded with interaction columns is shown in table
3.3. As AB and C have identical signs, a generator for the design is C=AB. Since the
signs of the column AB and the column C are exactly the same, there is no possibility
of separating these effects from such an experiment. Such effects are called confounded
effects or aliased effects, meaning they have the same signs in the factor columns. The
aliasing relation is denoted by C=AB, which indicates that the defining relation is I=ABC
(if the turns where ABC had level - were chosen, the defining relation would be I=-ABC).
In order to identify which effects that are aliased, the effects must be multiplied by the
defining relation. The defining relation, I, is just a unity and if multiplied with the effects
of this example, the confounding pattern will be

A = A(I) = A(ABC) = BC,

B = B(I) = B(ABC) = AC,

C = C(I) = C(ABC) = AB.



14 Regression

Table 3.2: A 23−1 factorial design.

Run no. Factor A Factor B Factor C

1 - - +
2 + - -
3 - + -
4 + + +

Table 3.3: A 1
2 fraction of a 23 design expanded with interaction columns.

Run no. A B C AB AC BC ABC

1 - - + + - - +
2 + - - - - + +
3 - + - - + - +
4 + + + + + + +

3.2.3 Resolution

The resolution of a design is defined as the ability to separate main effects from lower
order interactions or as the number of factors in the lowest order effect in the defining
relation (the shortest word in the defining relation). In a 2k−p fraction design, resolution
R is obtained if no p factor effect is aliased with an effect containing less than R−p factors.
In other words, for a resolution R design, the main effects are aliased with R − 1 factor
interactions. The three most important fractional designs are those of resoultion III, IV
and V:

Resolution III

The main effects are aliased with two-factor interactions. For a 23−1 design, the defining
relation is I=ABC. In other words, the length of the shortest word in the defining relation
is three.

Resolution IV

The main effects are aliased with three-factor interactions and two-factor interactions are
aliased with other two-factor interactions. For a 24−1 design, the length of the shortest
word in the defining relation is four, I=ABCD.

Resolution V

For a resolution of V, the main effects are aliased with four-factor interactions, while two-
factor interactions are aliased with three-factor interactions. In a 25−1 design, the defining
relation is I=ABCDE. The length of the shortest word in the defining relation is five.

3.3 Truncation

Truncation is described in Sue-Chu [8]. In mathematics, truncation refers to the process
of limiting the amount of digits in a number by discarding the least significant ones.
Statistical truncation is the term of measurements that have been ended abruptly at some
specific value. The knowledge of items that fall outside the specified time interval, is what
distinguish truncation from censoring. When values lie ouside the censoring limit, the
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values are recorded as censored values, while when values lie outside the truncated limit,
the values are not recorded at all. That is, there exists no information about a truncated
value.

A truncated distribution is a conditional distribution that results from restricting the
domain of a probability distribution. By restricting the domain, the result is a trun-
cated sample, which can be arranged to include the most important data of an analysis.
That is, truncation can be applied to any probability distribution, and will lead to a new
distribution.

Assume a random variable, T̃ , which is distributed with cumulative distribution func-
tion, FT̃ (t). To obtain a new random variable T , T is set to have the distribution of T̃
truncated to the restricted domain (a, b]. The truncation distribution, FT (t) of T is then

FT (t) =


0, for t < a,
FT̃ (t)−FT̃ (a)

FT̃ (b)−FT̃ (a) , for a ≤ t ≤ b,
1, for t > b.

The corresponding probability density of T , for the domain (a, b] is

f(t|a < T ≤) =
g(t)

FT̃ (b)− FT̃ (a)
,

where

g(t) =

{
fT̃ (t), for all a < t ≤ b,
0, otherwise.

Then, a truncated distribution with right censoring, which means that the bottom of
the distribution has been removed, is defined as

f(t|T > Cr) =
g(t)

1− FT̃ (Cr)
,

where g(t) = fT̃ (t) for Cr < t and 0 otherwise. When left censored, the top of the
distribution has been removed and the truncated distribution is given as

f(t|T ≤ Cl) =
g(t)

FT̃ (Cl)
,

where g(t) = fT̃ (t) for Cl ≥ t and 0 otherwise.
It is possible to generate random variables from a truncated distribution. Consider

a non-negative random variable T̃ with the probability distribution function FT̃ (t) =∫ t
t′=0 fT̃ (t′)dt′, where fT̃ (t) is the density function for 0 ≤ t ≤ ∞. Scaled truncation can

be used to generate random variables from the truncated distribution fT (t), for a ≤ t ≤ b.
The psuedo code for generating a random variable T, where T represents the quantile
function of the extreme value distribution of V, is given as

• Generate U ∼ U [0, 1].

• Let V = FT̃ (a) + [FT̃ (b)− FT̃ (a)]× U .

• Return T = F−1
T̃

(V ).

Scaled truncation is being used later in multiple imputation, to generate random vari-
ables from the GEV distribution.
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Chapter 4

The methods

4.1 R functions

R is a software programming language and software environment for statistical computing
and graphics. R is an implementation of the S programming language, which was created
by John Chambers. Ross Ihaka and Robert Gentleman created R in 1993[3] and released
the R source code as ”free software” in 1995.

The R language is widely used among statisticans and other scientists for developing
statistical software and data analysis. R provides a wide variety of statistical and graphical
techniques, such as linear and nonlinear modelling, classical statistical tests, time series
analysis, classification and so on. In addition, R is highly extensible; users can improve
the code of the software or write variations for specific tasks.

In R, a large number of packages and built-in mechanisms are available. Two embedded
functions that are commonly used in this report are the lm function of the stats package
and the survreg function from the survival package. The R code for the four methods
can be found in Appendix A.

4.1.1 The lm function

The lm function is used to fit linear models. The function can be used to perform re-
gression, single stratum analysis of variance and analysis of covariance. The user needs to
specify the form of the model to be analysed, typically the form response ∼ terms, where
response is the response vector and terms is a series of terms which specifies a linear
predictor for the response. The lm function returns among other the coefficients of the
specified model. The simple model, y = β0 +β1x, can be estimated by the lm function as

fitlm <- lm(y ~ x)

Estimated values of β0 and β1 will be returned.

4.1.2 The survreg function

The survreg function is used to fit parametric survival regression models. The basic
input of the survreg function is a formula expression, where the response usually is a
survival object as returned of the Surv function, and the assumed distribution for the
response variable. The Surv function creates a survival object, which is usually used as a
response variable in a model formula, for example in the survreg function, as mentioned.
The inputs of the Surv function are the event times and the types of events (status
indicator). The distributions that can be fitted are ”weibull”, ”exponential”, ”gaussian”,
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”logistic”, ”lognormal” and ”loglogistic”. If one wishes to fit a Weibull model; y = logT =
β0 +β1x1 +β2x2 +β3x3, based on an example found on page 473 in Warpole, Myers, Myers
& Ye [9], the following code can be applied

x1 <- c(-1,1,-1,-1,1,1,-1,1)

x2 <- c(-1,-1,1,-1,1,-1,1,1)

x3 <- c(-1,-1,-1,1,-1,1,1,1)

y <- c(7.6,8.4,9.2,10.3,9.8,11.1,10.2,12.6)

status <- c(1,1,1,1,1,0,1,0)

fitsurvreg <- survreg(formula=Surv(y,status)~x1+x2+x3,dist="weibull")

summary(fitsurvreg)

The survreg function uses the Newton’s method (also known as the Newton-Raphson
method), and returns among other estimated coefficients (β0, β1, β2 and β3 in this case)
and parameter values (the shape parameter α and the scale parameter θ in this case).

The survreg function will be used to estimate Weibull distributed data, and in the case
of Weibull distribution it is important to be aware of how survreg returns the parameters.
The output of the previous fitted model is

Call:

survreg(formula = Surv(y, status) ~ x1 + x2 + x3, dist = "weibull")

Value Std. Error z p

(Intercept) 2.3110 0.0141 164.41 0.00e+00

x1 0.0500 0.0142 3.52 4.34e-04

x2 0.0767 0.0149 5.16 2.50e-07

x3 0.1414 0.0155 9.10 9.24e-20

Log(scale) -3.5060 0.3816 -9.19 4.00e-20

Scale= 0.03

Weibull distribution

Loglik(model)= -4 Loglik(intercept only)= -14.8

Chisq= 21.61 on 3 degrees of freedom, p= 7.9e-05

Number of Newton-Raphson Iterations: 15

n= 8

The probability density function of the Weibull distribution is defined to be f(t) =
α
θ

(
x
θ

)α−1
e−(x/θ)α . Then, the shape parameter α and the scale parameter θ are defined by

the output of R as

α = 1/scale output = 1/0.03,

θ = exp(Intercept) = exp(2.3110).

The column ”Value” in the R output shows the regression coefficients. These regression
coefficients are half the size of estimated main effects. Main effects were introduced in
section 3.2. This is because a main effect measures the change in the expected response
when we move from the low level, -1, to the high level, +1, of the factor, while a regression
coefficient measures the change in the expected response when the factor changes from 0
to 1. Regression coefficients are used in the numerical experiments in this report.
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For some reason, the survreg function does not handle left censoring as well as it
handles right censoring. The maximum likelihood estimator converges significantly less
times for left censoring than for right censoring and in addition the estimated regression
coefficients are less precise.

As mentioned earlier, the implementations are performed in R, but at one point, com-
putations are performed in MATLAB through the code in R. In the implementation of
single imputation, MATLAB is used to compute the exponential integral, which appears
in the computation of the conditional expected value. The two software languages are
combined in that R sends the needed input to MATLAB, MATLAB computes the expo-
nential integral and then returns the output of the computation back to R. This operation
requires some time, but this is to my knowledge the easiest way to solve the problem.

4.2 Simulation of the error term and Weibull regression

The cumulative distribution function for Weibull distribution is defined in section 2.2.1 as

FT (t) = P (T ≤ t) = 1− e(−t/θ)α .

A standard linear regression modelling of t is not appropriate for the models considered
in this thesis (to be introduced in chapter 5), because Weibull distribution only considers
non-negative values of t. Hence, it should be transformed to take values from −∞ to ∞.
Using the transformation Y = lnT we get

FY (y) = P (Y ≤ y) = 1− e(−y/θ)α = P (lnT ≤ y) = P (T ≤ ey)

= 1− e−(ey/θ)α = 1− e−(eyα/elnθ
α

) = 1− e−e(yα−αlnθ)

= 1− e−eα(y−lnθ)
= 1− e−e((y−µ)/σ) ,

where µ = lnθ is the location parameter and σ = 1
α is the scale parameter of the

extreme value distribution.

A generalized extreme value distribution, GEV(µ, σ, ξ) is standard extreme value dis-
tributed when the location parameter, µ, is equal to 0, the scale parameter, σ, is equal to
1 and the shape parameter, ξ, is equal to 0.

The cumulative distribution for the standard extreme value distribution is defined as

F (y) = 1− e−ey . (4.1)

The linear regression model for the log failure times yi = lnti on the y data can be
expressed as

yi = lnti = β0 + β1xi1 + ...+ βkxik + σεi

= xTi β + σεi, i = 1, ..., k, (4.2)

where ε is standard extreme value distributed, type I, ε ∼ GEV(0,1,0).

To generate values from the standard extreme value distribution we start by generating
a value, v, from the uniform distribution on [0,1] and then use that the inverse of F (y) = v
is F−1(v) = y. y = F−1(v) is standard extreme value distributed. Then we can simulate
ε = y as follows
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F (y) = 1− e−ey = v

ln(1− v) = −ey

ε = y = ln(−ln(1− v)).

4.3 Gross variance

The performances of the methods in this report are compared by examining the gross
variances of the regression coefficients. The gross variance is the expected total mean
square error. The mean square error of an estimator is a method for quantifying the dif-
ference between values implied by an estimator and the true values of the quantity being
estimated. The expected mean square error is calculated by computing the square error
of the estimated regression coefficients obtained by the methods and then subtracting the
true regression coefficients of the model. To obtain a total variance of all n runs, the
variances of all n runs are summed, thereafter divided by the total number of runs, and
at last divided by the number of regression coefficients, s. In cases where the maximum
likelihood estimator does not exist in some of the n runs, the number of acceptable re-
gression coefficients is decreased to r, such that the total variance must be computed for
all r runs. The value of r varies for all cases and and is included in the discussion of the
results for example 1 in experiement 1, in section 6.1. The gross variance of n runs and s
regression coefficients is calculated by

GV =
1

s

( 1

n

n∑
i=1

(ĉoeff1,i − coeff1,i)
2 +

1

n

n∑
i=1

(ĉoeff2,i − coeff2,i)
2

+...+
1

n

n∑
i=1

(ĉoeffs,i − coeffs,i)
2
)
, (4.3)

where ĉoeffs,i is the estimated regression coefficient of the true regression coefficient
coeffs,i. The purpose of computing the gross variance is to distinguish between the methods
being investigated. The most accurate method should obtain the smallest gross variance,
as a low value of the gross variance implies that the estimated regression coefficients are
pretty similar to the actual regression coefficients.

4.4 The quick and dirty method

The concept of the quick and dirty method is to treat the censoring times as actual failure
times. This is simply obtained by letting the censoring limit replace all failure times
which lie outside the censoring limit. The quick and dirty method is easy to handle and
implement, and it is very fast. It is important to keep in mind that the quick and dirty
method ignores the censoring information, which may lead to inaccurate results. The
quick and dirty method can give inaccurate results especially in cases where the actual
failure times differ a lot from the censoring times. On the other hand, if the actual failure
times are quite close to the censoring times, the quick and dirty method may perform very
well.

The pseudo code for the implementation of the quick and dirty method is stated below.

• Define the expected response vector y = Xβ containig k observations, and the
vectors of the regression coefficients.
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• For n runs:

- Simulate an error vector, ε = [ε1, ε2, ..., εk]
T ∼ GEV (0, 1, 0).

- Set y = Xβ + σε = [y1, y2, ..., yk]
T .

- For right censoring at Cr, replace any yi > Cr by Cr for i = 1, 2, ..., k.

- For left censoring at Cl, any yi < Cl is replaced by Cl for i = 1, 2, ..., k.

- Use the lm function to estimate the regression coefficients of y.

- Save the estimated regression coefficients in a matrix for each iteration.

• Calculate the gross variance from equation (4.3).

4.5 Maximum likelihood estimation

Maximum likelihood estimation is a method of estimating unknown parameters of a sta-
tistical model, and these parameter estimates are obtained by maximizing the likelihood
function of that model. Although the method has been used earlier by several scientists,
it was R. A. Fisher who strongly recommended the use of the method in the time space
1912 - 1922. More details on maximum likelihood and the derivation of the maximum
likelihood for Weibull distribution can be found in section 2.3.

The maximum likelihood method is a straightforward method which is easy to imple-
ment in R, as the survreg function can be used to estimate the regression coefficients of
Weibull distributed data. A disadvantage is that the maximum likelihood estimates may
not exist. This is the case for instance when the factor’s high level are all right censored
and all observations at its low level are uncensored.

The pseudo code for the maximum likelihood method is stated as

• Define the expected response vector y = Xβ of k observations and the vectors of
the regression coefficients.

• For n runs:

- Simulate an error vector, ε = [ε1, ε2, ..., εk]
T ∼ GEV (0, 1, 0).

- Set y = Xβ + σε = [y1, y2, ..., yk]
T .

- State which observations are right censored, left censored or uncensored. Run
survreg to obtain estimates of the regression coefficients of y by Newton’s
method.

- Save the estimated regression coefficients in a matrix.

• Calculate the gross variance by equation (4.3).

4.5.1 Handling non convergence of the maximum likelihood estimation

The maximum likelihood estimator may not exist, and that can cause problems in the
computations of the regression coefficients. When the maximum likelihood estimates do
not exist, the estimated regression coefficients and the corresponding standard errors can
take on rather obscure or peculiar values. To overcome these problems, a confidence
interval is used to assess the validity of the standard errors. If all standard errors for the
estimated regression coefficients lie within the confidence interval, the maximum likelihood
estimator is assumed to exist and further computations can be accomplished. If one
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standard error lies outside the confidence interval, we assume that the maximum likelihood
estimator may not exist and the computations are terminated.

Choosing an α of 0.01, a 99 % confidence interval is to be estimated. 10 000 data sets
are simulated, giving 10 000 observations of ε in 10 000 vectors of eight elements, and then
the standard errors from each vector are computed. To obtain a 99 % confidence interval,
the 50 biggest and 50 smallest values should be removed, and the new biggest and smallest
values are used as limits. Dealing with three coefficients for instance, the lower limit and
upper limit can be adjusted as follows:

We now consider a model consisting of three coefficients. Let S1, S2 and S3 be the
estimators for the standard deviations of the coefficients and let V = min(S1, S2, S3).
Then

P (V = min(S1, S2, S3) ≤ Clower) = 1− (1− FS(Clower))
3 = 0.005,

(1− FS(Clower))
3 = 0.995

FS(Clower) = 1− 3
√

0.995 = 0.0017

where V is a set of the independent standard errors S1, S2 and S3 of the three coef-
ficients, and Clower is the lower limit of the confidence interval. The computation tells
us that 0.17 % of the standard errors should lie below the lower limit of the confidence
interval. This means that in the 10 000 estimated data sets, 17 of the estimated errors
should lie below the lower limit ( (10000 · 0.17%)/100% = 17). Therefore, the 17 smallest
standard errors of the 10 000 data sets are removed, and a new lower limit is obtained.

The probability of the maximum standard error being smaller than the upper limit of
the confidence interval is the probability of all three standard errors being smaller than
the upper limit;

P (V = max(S1, S2, S3) ≤ Cupper) = (FS(Cupper))
3 = 0.995

FS(Cupper) =
3
√

0.995 = 0.9983,

where Cupper is the upper limit of the confidence interval.

The computation shows that 99.83 % of the standard errors should lie below the upper
limit, which means 9983 of the 10 000 estimated standard errors. The 17 greatest standard
errors are removed, and the greatest of the remaining standard errors is the new upper
limit of the confidence interval.

Both of these limits need to be scaled, because the standard errors estimated by the
simulations are the standard errors of ε, but we need the standard errors of the regression
coefficients. The relation between the standard error of the regression coefficients and the
standard error of ε is

SDcoeff =
1

α
√

8
SDε,

where α is the shape parameter of the Weibull distribution.

The confidence interval needs to be computed for each value of α and σ, as three differ-
ent values of σ will be considered in the experiments (further explanation in section 6.1.1).
For the same values of σ, the same confidence interval is applied. The confidence interval
is also included when performing single imputation or multiple imputation initialized by
the maximum likelihood estimator.

The necessary code in R is
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alpha <- 5 # alpha is 5, 3.33 or 2.5

yvec <- vector()

sdvec <- vector()

for (i in 1:10000){

for (j in 1:8){

yvec[j] <- rgev(1,0,0,1)

}

sdvec[i] <- sd(yvec)

}

nsmallest <- order(sdvec)[1:n]

nlargest <- order(sdvec, decreasing = T)[1:n]

nlower <- sdvec[nsmallest[21]]

nupper <- sdvec[nlargest[21]]

sdlower <- nlower/(sqrt(8)*alpha)

sdupper <- nupper/(sqrt(8)*alpha)

The confidence interval obtained for σ was developed with the assumption of no cen-
sored data. When dealing with data sets that contain censored data, the uncertainty of
the statistics of the data sets will be higher than if the data sets did not contain any
censored data. Therefore, we can assume the confidence interval to be a little too strict
and can conveniently extend the boundaries to some point. The upper limit is increased
by 65 %, while the lower limit is decreased by 35 %. The interval limits for σ are then
given as

(0.015672, 0.33934) for original σ = 0.2,

(0.023532, 0.50952) for original σ = 0.3,

(0.031344, 0.67868) for original σ = 0.4.

4.6 Single Imputation

Single imputation is a method where one substitutes one value for each missing value, thus
obtaining a complete data set, which can be analysed by standard complete data methods
of analysis. Each missing value can be imputed from the variable mean of the complete
cases or from the mean conditional (conditional expectation) on observed values of other
variables, which is the procedure used in this report.

A distinct advantage of single imputation is, as mentioned, that once the values have
been filled in, standard complete data methods of analysis can be used on the data set.
Another advantage is that the imputations can incorporate the data collector’s knowledge.
On the other hand, a disadvantage is that simple imputation does not reflect the uncer-
tainty about the predictions of the unknown missing values. Hence, the standard errors
of the estimates tend to be too low compared to the standard error of the non-missing
values.

Hamada and Wu [2] describe the method of single imputation.
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First, we assume a Weibull distributed T with probability density f(t) and cumulative
distribution function F (t). As introduced in section 4.2, the transformation Y = lnT
has the extreme value distribution whose probability density, f(y), is given in equation
(2.3) and the cumulative distribution, F (y), is given in equation (2.4). Then, the linear
regression model can be expressed as in (4.2);

y = Xβ + σε, (4.4)

where y is the response vector, X is a matrix of the explanatory variables from the
experimental design, β is a vector of coefficients, σ is the standard deviation and ε is
the error, which is standard extreme value distributed, ε ∼ GEV(0, 1, 0). Then, we must
compute the conditional expectation in the case of right censoring and left censoring. The
right censoring time is presented as Cr, while the left censoring time is expressed as Cl.

For right censored data at Cr, the truncated generalized extreme value distribution
function is

P (Y ≤ y|Y > Cr) =
P (Y ≤ y ∩ Y > Cr)

P (Y > Cr)
=
P (Y ≤ y ∩ 1− (Y ≤ Cr))

1− P (Y < Cr)

=
P (Y ≤ y)

1− P (Y ≤ Cr)
=

F (y)

1− F (Cr)
,

and the truncated density function is defined as

f(y|Y > Cr) =
F ′(y)

1− F (Cr)
=

f(y)

1− F (Cr)
.

The conditional expectation is

E(y|Y > Cr) =

∫ ∞
Cr

y
f(y)

1− F (Cr)
dy =

1

1− F (Cr)

∫ ∞
Cr

y
1

σ
e
y−µ
σ e−e

y−µ
σ dy. (4.5)

The integral in (4.5) can be rewritten using the transformation z = y−µ
σ and dz

dy = 1
σ

as ∫ ∞
Cr−µ
σ

(zσ + µ)eze−e
z
dz,

which again can be modified by the transformation u = ez and du
dz = ez = u;

∫ ∞
e
Cr−µ
σ

(σln(u) + µ)e−udu =

∫ ∞
e
Cr−µ
σ

σln(u)e−udu+

∫ ∞
e
Cr−µ
σ

µe−udu

=

[
− σln(u)e−u

]∞
e
Cr−µ
σ

+ σ

∫ ∞
e
Cr−µ
σ

1

u
e−udu

+

∫ ∞
e
Cr−µ
σ

µe−udu

= σ

(
Cr − µ
σ

e−e
Cr−µ
σ + E1

(
e
Cr−µ
σ

))
+µe−e

Cr−µ
σ ,
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where E1

(
e
Cr−µ
σ

)
is the exponential integral. 1

The expression of the expected value, E(y|Y > Cr) in (4.5) becomes

E(y|Y > Cr) =
1

1− F (Cr)

(
σ

(
Cr − µ
σ

e−e
Cr−µ
σ + E1

(
e
Cr−µ
σ

))
+ µe−e

Cr−µ
σ

)
. (4.6)

For left censored data at Cl, the truncated generalized extreme value distribution
function is

P (Y ≤ y|Y ≤ Cl) =
P (Y ≤ y ∩ Y ≤ Cl)

P (Y ≤ Cl)
=

P (Y ≤ y)

P (Y ≤ Cl)
=

F (y)

F (Cl)

and the truncated density function is defined as

f(y|Y > Cr) =
F ′(y)

F (Cl)
=

f(y)

F (Cl)
.

The conditional expected value is defined as

E(y|Y ≤ Cl) =

∫ Cl

−∞
y
f(y)

F (Cl)
dy =

1

F (Cl)

[∫ ∞
−∞

yf(y)dy −
∫ ∞
Cl

yf(y)dy

]

=
1

F (Cl)

[∫ ∞
−∞

y
1

σ
e
y−µ
σ e−e

y−µ
σ dy −

∫ ∞
Cl

y
1

σ
e
y−µ
σ e−e

y−µ
σ dy

]
. (4.7)

Using that the first interval equals the expected value of the Gumbel distribution as
defined in (2.5), and using the same transformations as for right censored data, z = y−µ

σ

and dz
dy = 1

σ for the second integral, the two integrals transform to

(µ− γσ)−
∫ ∞
Cl−µ
σ

(zσ + µ)eze−e
z
dz.

Another transformation is performed, where u = ez and du
dz = ez = u and the expression

above becomes

(µ− γσ)−
∫ ∞
e
Cl−µ
σ

(σln(u) + µ)e−udu

= (µ− γσ) +

[
σln(u)e−u

]∞
e
Cl−µ
σ

−
∫ ∞
e
Cl−µ
σ

σ
1

u
e−udu−

[
µe−u

]∞
e
Cl−µ
σ

= (µ− γσ)− σE1

(
e
Cl−µ
σ

)
− µe−e

Cl−µ
σ .

The expected value, E(y|Y ≤ Cl) in (4.7) transforms to

E(y|Y ≤ Cl) =
1

F (Cl)

(
µ− γσ − σE1

(
e
Cl−µ
σ

)
− µe−e

Cl−µ
σ

)
. (4.8)

1 The exponential integral is defined as

Ei(x) = −
∫ ∞
−x

e−t

t
dt.

Since E1(x) = −Ei(−x), E1(x) can be written as

E1(x) =

∫ ∞
x

e−u

u
du.
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Initializing the censored times

When executing a single imputation test, the censored data must be set to some values,
to obtain a complete data set. Then, the mean and the variance of the response vector
are computed, because the mean and the variance will be used in the computation of
the conditional expected value of the originally censored data. The values to be inserted
for the censored data could be obtained by among others the quick and dirty method
or maximum likelihood estimation. As mentioned earlier, the quick and dirty method
manages censored data by setting the censored data equal to the censoring time and then
estimating the regression coefficients by linear regression, while the maximum likelihood
estimator applies Newton’s method to estimate the regression coefficients. The psuedo
codes for both approaches are displayed below.

Single imputation using the quick and dirty approach

• Define the expected response vector y = Xβ containig k observations, and the
vectors of the regression coefficients.

• For n runs:

- Simulate an error vector, ε = [ε1, ε2, ..., εk]
T ∼ GEV (0, 1, 0).

- Set y = Xβ + σε = [y1, y2, ..., yk]
T .

- For right censoring at Cr, replace any yi > Cr by Cr for i = 1, 2, ..., k.

- For left censoring at Cl, any yi < Cl is replaced by Cl for i = 1, 2, ..., k.

- Use the lm function to estimate the regression coefficients of y.

- Estimate the mean µi for each value of yi for i = 1, 2, ..., k and the variance σ2

(and hence the standard error σ).

- If yi > Cr, set yi equal to equation (4.6) for i = 1, 2, ..., k.

- If yi < Cl, set yi equal to equation (4.8) for i = 1, 2, ..., k.

- Apply the lm function to estimate the regression coefficients of y.

- Save the estimated regression coefficients in a matrix.

• Compute the gross variance from equation (4.3).

Single imputation using maximum likelihood estimation

• Define the expected response vector y = Xβ of k observations and the vectors of
the regression coefficients.

• For n runs:

- Simulate an error vector, ε = [ε1, ε2, ..., εk]
T ∼ GEV (0, 1, 0).

- Set y = Xβ + σε = [y1, y2, ..., yk]
T .

- State which observations are right censored, left censored or uncensored. Run
survreg to obtain estimates of the regression coefficients of y by Newton’s
method.

- Estimate the mean µi for each value of yi for i = 1, 2, ..., k and the variance σ2.

- If yi > Cr, set yi equal to equation (4.6) for i = 1, 2, ..., k.
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- If yi < Cl, set yi equal to equation (4.8) for i = 1, 2, ..., k.

- Run the lm function to estimate the regression coefficients of y.

- Save the estimated regression coefficients in a matrix.

• Delete estimated regression coefficients of which the maximum likelihood estimator
did not exist.

• Compute the gross variance by equation (4.3).

To avoid trouble with computations of which the maximum likelihood estimator does
not exist, a confidence interval as presented in 4.5.1 is applied on the standard errors of
the regression coefficients. When the standard errors lie within the interval, the maximum
likelihood estimator is assumed to exist and the computation of the regression coefficients
is completed. If one or more of the standard errors do not lie within the confidence
interval, the maximum likelihood estimator is assumed not to exist, causing unacceptable
values for the standard errors and the estimated regression coefficients. In that case, the
computation of the regression coefficients is not performed.

4.7 Multiple Imputation

Multiple imputation is a Monte Carlo technique, where the idea is to impute several values,
m, for each missing value. The method was first introduced by Rubin in the 1970s and
later elaborated in his book published in 1987 [6], and is also discussed in Scafers [7].
The m imputations are ordered such that m complete data sets can be created from the
vectors of imputation. Replacing each missing value by the first component in its vector of
imputations creates the first completed data set and so on. Each complete data set is then
analysed by standard procedures, and the results are later combined to produce estimates
and confidence intervals that incorporate missing data uncertainty. The m imputed values
are drawn from a truncated distribution, as explanied in section 3.3.

The described procedure suggests that m imputations create m data sets, where each
data set is analysed and at the end each parameter of the m data sets is averaged. Since the
models considered in this report are linear models, we can change the order of the linear
operations, such that the averaging is performed before the analysing. The suggested
procedure is therefore; m imputations create m data sets, where the parameters of m
values are averaged, and then the data set of averaged values is analysed. This swap saves
us for some work and time, as only one data set needs to be analysed, instead of m. It is
very important to note that the swapping is only possible when dealing with linear models.

As for simple imputation, two advantages of multiple imputation are the ability to
use complete case methods of analysis and the ability to incorporate the data collector’s
knowledge. A disadvantage of multiple imputation is that the method requires more work
in both creating the imputations and analysing the results, although analysing the results
only demands performing the same task m times instead of once. In this report, m is
chosen to be 5.

Initializing the censored times

As for single imputation, the censored data in multiple imputation must be set to some
values, to obtain a complete data set. The mean and the variance of this complete data set
are then computed, because the mean and the variance will be used in the computation
of the imputation values. The quick and dirty method and maximum likelihod estimation
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are used to compute the values to be inserted for the censored data. The pseudo codes
for both approaches can be found below.

Multiple imputation using the quick and dirty method

• Define the expected response vector y = Xβ consisting of k observations and the
vectors of the regression coefficients.

• For n runs:

- Simulate an error vector, ε = [ε1, ε2, ..., εk]
T ∼ GEV (0, 1, 0).

- Set y = XTβ + σε = [y1, y1, ..., yk]
T .

- For right censoring at Cr, replace any yi > Cr by Cr for i = 1, 2, .., k.

- For left censoring at Cl, any yi < Cl is replaced by Cl for i = 1, 2, ..., k.

- Use the lm function to estimate the regression coefficients of y.

- Estimate the mean µi for each value of yi for i = 1, 2, ..., k and the variance σ2

(and hence the standard error σ).

- If y contains right censored data:

1. Run the truncated pseudo code from section 3.3 to simulate m values for
each of the censored values of y.

2. Replace each censored value by the mean of the m imputed values.

- If y contains left censored observations:

1. Run the truncated pseudo code from section 3.3 to simulate m values for
each of the censored values of y.

2. Replace each censored value by the mean of the m imputed values.

- Use the lm function to estimate the regression coefficients of y.

- Save the estimated regression coefficients in a matrix.

• Compute the gross variance by equation (4.3).

Multiple imputation using maximum likelihood estimation

• Define the expected response vector y = Xβ consisting of k observations and vectors
of the regression coefficients.

• For n runs:

- Simulate an error vector, ε = [ε1, ε2, ..., εk]
T ∼ GEV (0, 1, 0).

- Set y = Xβ + σε = [y1, y1, ..., yk]
T .

- State which observations are right censored, left censored or uncensored. Run
survreg to obtain estimates of the regression coefficients of y by Newton’s
method.

- Estimate the mean µi for each value of yi for i = 1, 2, ..., k and the variance σ2.

- If y contains right censored data:

1. Run the truncated pseudo code from section 3.3 to simulate m values for
each of the censored values of y.

2. Replace each censored value by the mean of the m imputed values.
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- If y contains left censored observations:

1. Run the truncated pseudo code from section 3.3 to simulate m values for
each of the censored values of y.

2. Replace each censored value by the mean of the m imputed values.

- Run lm to obtain estimates of the regression coefficients of y.

- Save the estimated regression coefficients in a matrix.

• Compute the gross variance by equation (4.3).

As for the other methods using the maximum likehood estimator, the existence of the
maximum likelihood estimator is assessed through the validity of the standard errors of the
estimated regression coefficients. As explained in section 4.5.1, computations where all the
estimated standard errors of the regression coefficients lie within the confidence interval,
are the ones being considered. Computations for which one or more of the standard errors
lie outside the confidence interval are not completed and are considered as not valid.
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Chapter 5

Examples and experiments

The examples and experiments in this report are the exactly same as the ones in Sue-Chu
[8], with the exception of example 2. The intention of using the exact same examples was
to obtain an opportunity of comparing the performances of the methods for both Weibull
distributed data and normally distributed data, as Sue-Chu examines normally distributed
data. Example 2 in Sue-Chu [8] was edited for usage in this report because the original
model experiences problems when two values are right censored, due to linear dependency
among the coefficient columns. The interaction AB is linear dependent of the factors k, A
and B, as AB = - ( k + A + B ). To avoid these problems, the interaction AB is excluded
from the model.

In the end, it turns out that the methods for Weibull distributed data and normal
distributed data are implemented differently, such that a comparison is not possible after
all.

5.1 Example 1

The first example consists of a simple model. The response, y, is produced by a 23 full
factorial experiment as shown in table 5.1 . The factors A and C, and the interaction
AB have true values equal to 1. The error term, ε, is set to be standard extreme value
distributed with location 0, scale 1 and shape 0. Thus, the linear regression model of
example 1 is defined as

y = A+ C +AB + σε, ε ∼ GEV (0, 1, 0).

Table 5.1: Example 1, a 23 full factorial experiment.

Run no. A C AB E(y)

1 -1 -1 1 -1
2 1 -1 -1 -1
3 -1 -1 -1 -3
4 1 -1 1 1
5 -1 1 1 1
6 1 1 -1 1
7 -1 1 -1 -1
8 1 1 1 3

A simple example is chosen such that the analysis should be easy to conduct. With
real coefficients equal to 1, the computation of the gross variance should be easy and the
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performances of the different methods can therefore easily be compared. The maximum
likelihood estimator may not exist due to right censored observations being at a high level
and no censoring are at a low level.

The regression coefficients of the factors A and C and the interaction AB are estimated
n times as respectively â, ĉ and âb. n is equal to 100. In experiments where the maximum
likelihood estimator sometimes does not exist, the number of valid estimates of â, ĉ and
âb decrease to r, as mentioned in section 4.3. The value of r varies from experiment to
experiment. The gross variance, as defined in equation (4.3), for example 1 is given as

GVex1 =
1

3

( 1

n

n∑
i=1

(âi − 1)2 +
1

n

n∑
i=1

(ĉi − 1)2 +
1

n

n∑
i=1

(âbi − 1)2
)
.

5.2 Example 2

Example 2 is also a 23 factorial experiment, but a more complex one than example 1, and
it consists of a less symmetric response vector, y. The factors and interaction A, B and
AC have respectively 2, 3, -0.5 as true values. In addition, a constant with value 10 is
added to the response. The experiment is presented in table 5.2. Again, the error term, ε
is set to be standard extreme value distributed with location 0, scale 1 and shape 0. The
linear regression model of example 2 is expressed as

y = 10 + 2A+ 3B − 0.5AC + σε, ε ∼ GEV (0, 1, 0).

Table 5.2: Example 2, a 23 full factorial experiment.

Run no. A B AC E(y)

1 -1 -1 1 4.5
2 1 -1 -1 9.5
3 -1 1 1 10.5
4 1 1 -1 15.5
5 -1 -1 -1 5.5
6 1 -1 1 8.5
7 -1 1 -1 11.5
8 1 1 1 14.5

The gross variance is computed as

GVex2 =
1

3

( 1

n

n∑
i=1

(âi − 2)2 +
1

n

n∑
i=1

(b̂i − 3)2 +
1

n

n∑
i=1

(âci + 0.5)2
)
,

where â, b̂ and âc are the estimates for the regression coefficients A and B, and the
interaction AC. As for example 1, the maximum likelihood estimator may not exist due
to right censored observations being at a high level and no censoring are at a low level.

5.3 Experiment 1

In experiment 1, the computation of the error vector is performed for each error term in
the error vector and also in every of the n runs, such that every error vector is unique for a
specific run. Thus, the computations of the n response values are based on different error
vectors. As the error vector differs from run to run within a method, it will also differ
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from method to method. None of all the single runs would base their estimation on the
same errors. The experiment will test the four methods on their ability to give accurate
estimates of regression coefficients when dealing with censored values. The changing error
will test if the methods are able to perform well for different values.

5.4 Experiment 2

The purpose of experiment 2 is to compare the performances of the methods more directly,
by running them with the same error vector. The error terms are still varying within each
error vector. The experiment is implemented such that each error vector is estimated first
and then applied on all four methods. This way, the error vector applied in the 34th run
of the quick and dirty method is exactly the same error vector as the one used in the 34th
run of simple imputation. Experiment 2 will test the method’s ability to estimate the
regression coefficients when censoring is present.

By comparing the results of the computations performed with experiment 1 and ex-
periment 2, one can discuss if the equalness of the error vector is necessary in order to
distinguish the performances of the methods.
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Chapter 6

Results of experiment 1

6.1 Example 1

The results of the methods for example 1 in experiment 1 is presented in this chapter.
The methods are run for nine different combinations of censoring choices, and for three
different values of σ. The choices of the censoring limits and σ are explained in the next
section.

6.1.1 Choice of Cr, Cl and σ

The censoring in this project is of Type I censoring, where the censoring times are fixed
and the number of censored units is random. To test how well the methods perform when
censoring is present, the methods are tested for three possible scenarios; right censoring,
left censoring and both right and left censoring. The censoring limits are particularly
chosen with regard to element 3 and 8 of y in table 5.1. Whether a value of y is censored
or not, depends on the original value, the censoring limit and the estimated error, defined
in 4.2.

Two limits close to the original values were chosen, Cr = 2.9 and Cr = 3.1 as right
censored limits, and Cl = −2.9 and Cl = −3.1 as left censored limits. In these cases it
is very likely that only element 3 and element 8 become censored, but not necessarily.
Element 3 and 8 may not be censored at all, and one or more of the other elements could
be censored, even though the possibility of that happening is very small. Anyhow, the
total number of censored items would be random. In addition, two limits further away,
Cr = 2.0 and Cl = −2.0 are considered. As for the limits Cr = 2.0 and Cl = −2.0, the
chance of the elements 1,2,4,5,6 or 7 being censored is higher than for the other limits.
A total of nine experiments are conducted; experiments where data is right censored at
2.0, 2.9 or 3.1, left censored at -2.0, -2.9 or -3.1, and experiments where the data is both
left and right censored at 2.0 and -2.0, 2.9 and -2.9, and 3.1 and -3.1. The experiments
containing both left and right censored data are chosen with respect to the closeness to
the original values, such that the two limits furthest away from the original values are
combined and so on.

In addition to the censoring limits, the error term, σε needs to be defined. The sim-
ulation of ε is described in 4.2, while the value of σ can be fixed by the investigator, by
choosing an appropriate value of α, the shape parameter of a Weibull distribution, since
σ = 1

α . Three different values of α were chosen; 5, 3.33 and 2.5, such that the values of σ
will be 0.2, 0.3 and 0.4.
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6.1.2 Testing for Cr = 2.0 and Cl = −∞

The results of the experiment of which the data in model 1 is right censored at Cr = 2.0
are displayed in table 6.1.

The last unit of y, unit 8 (with value equal to 3), is expected to be right censored in
this experiment, although it might not always be the case. In addition, there is also a
chance of element 4,5 and 6 (all values equal to 1) being censored. Since the censoring limit
is a little far from the original value, the quick and dirty method is expected to perform
poorer than the other methods. None of the methods stands out remarkably in neither a
positive or a negative way. However, when comparing the gross variances in table 6.1, the
quick and dirty method is pretty much giving the poorest result with gross variances of
0.018903, 0.027292 and 0.040402 for σ = 0.2, 0.3 and 0.4 respectively, even though single
imputation using the maximum likelihood estimator gives the highest gross variance for
σ = 0.4, of the value 0.041581. The maximum likelihood estimator gives the best overall
result, with the lowest gross variances for σ = 0.3 and 0.4 as respectively 0.019079 and
0.033097. The lowest gross variance for σ = 0.2, is obtained as 0.0084327 by the multiple
imputation initialized by the maximum likelihood estimator. It is interesting to notice that
for σ = 0.2, both single imputation and multiple imputation initialized by the maximum
likehood estimator performs a little better than maximum likelihood estimation itself.

All in all, the results of the four methods are pretty similar, and none of the methods
deviates much in either a good or a bad way. The experiment is run 100 times, but it
must be mentioned that the maximum likelihood estimator did not exist in every run.
For maximum likelihood estimation and both the single imputation and the multiple
imputation initialized by the maximum likelihood estimator, the number of runs of which
the maximum likelihood estimator existed varies from 93 runs to 100 runs. This means
that the number of results to base the analysis on, is a little smaller for methods using
the maximum likelihood estimator than for the methods applying the quick and dirty
approach.

Graphic presentation of regression coefficients

The gross variance computations are based on the estimated regression coefficients, such
that estimated coefficients which lie close to the original value give a low gross variance.
To display the estimated regression coefficients obtained by the four methods, a graphic
presentation is chosen for one of the experiments. The estimated regression coefficients,
â, b̂ and âb, of the experiment of which σ = 0.3 and data is right censored at Cr = 2.0, are
plotted. The coefficients estimated by the quick and dirty method are displayed in figure
6.1 and the coefficients estimated by maximum likelihood estimation are showed in figure
6.2. Figure 6.3 and figure 6.4 display the estimated regression coefficients obtained by
single imputation respectively initialized by the quick and dirty method and the maximum
likelihood estimator. At last, the estimated regression coefficients estimated by multiple
imputation are displayed in figure 6.5 and figure 6.6 for respectively the quick and dirty
approach and the maximum likelihood estimator as initializing method.

The regression coefficients estimated by methods using the quick and dirty approach,
displayed in figure 6.1, 6.3 and 6.5, are mostly lower than the original values, which is
natural considering that the quick and dirty approach assigns the censoring limit to the
censored observations, and for right censoring the censoring limit is lower than the actual
values of the censored observations. The regression coefficients estimated by methods
using the maximum likelihood estimator, which are showed in figure 6.2, 6.4 and 6.6, are
on the other hand more centered around the actual values, but the estimated values are
slightly more higher than lower than the actual values.
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Table 6.1: Results for Cr = 2.0 and Cl = −∞.

σ QD MLE
SI SI MI MI

using QD using MLE using QD using MLE

0.2
0.017986 0.012186 0.010109 0.0087354 0.012604 0.0092547
0.019398 0.0082323 0.010790 0.0096961 0.010632 0.0077740
0.019324 0.010041 0.011689 0.0089031 0.013812 0.0082694

Average 0.018903 0.010153 0.010863 0.0091115 0.012349 0.0084327

0.3
0.027898 0.017867 0.017227 0.024444 0.021109 0.020492
0.026220 0.018205 0.020401 0.022729 0.019648 0.021884
0.027757 0.021164 0.020127 0.017453 0.021482 0.021980

Average 0.027292 0.019079 0.019252 0.021542 0.020746 0.021452

0.4
0.038818 0.035997 0.039829 0.041255 0.037019 0.033332
0.041039 0.030438 0.035930 0.040476 0.030710 0.039402
0.041349 0.032856 0.032181 0.043013 0.031241 0.041299

Average 0.040402 0.033097 0.035980 0.041581 0.032990 0.038011

6.1.3 Testing for Cr = 2.9 and Cl = −∞

The results of right censoring at Cr = 2.9 for model 1 can be seen in table 6.2.

Again, item 8 of y is expected to be censored, but not as often as in the previous
experiment. It is possible for the items 4,5 and 6 to be censored, but that is a rare
occurrence. All methods should in principle be able to perform as good as the others, and
basically, the performances are in fact reasonably similar. Looking at the gross variances
in table 6.2, it is hard to identify a definite best or worst method. For σ = 0.2, maximum
likelihood estimation gives the best estimated regression coefficients, with a gross variance
equal to 0.0081771, while for σ = 0.3 and σ = 0.4, the quick and dirty method gives
the best results with gross variances respectively equal to 0.018395 and 0.029122. The
greatest gross variance for σ = 0.2 is given by multiple imputation using the quick and
dirty approach, for σ = 0.3 and 0.4, single imputation using the maximum likelihood
estimator gives the poorest results.

The differences between the gross variances for all methods are very small, it is almost
kind of random which method gives the best result. All in all, all four methods perform
well for right censoring at 2.9.

The possibility of a non existing maximum likelihood estimator is again present, and
in this example the number of acceptable runs varies from 93 to 100 for methods applying
the maximum likelihood estimator.

6.1.4 Testing for Cr = 3.1 and Cl = −∞

For right censoring at Cr = 3.1, the results of the four methods are displayed in table 6.3.

The possibility of censored item is again highest for the last item of y. The chance
of the other items being censored is almost negligible small, but we shall not exclude the
possibility completely. Again, none of the methods presented itself as a obvious best or
worst method. For σ = 0.2, the best gross variance is given by the method of maximum
likelihood, while the worst is given by the quick and dirty method. For σ = 0.3, multiple
imputation initialized by the maximum likelihood estimator gives the most accurate result
and multiple imputation using the quick and dirty approach gives the least accurate result.
The quick and dirty method gives the best result when σ = 0.4, and multiple imputation
initialized by the quick and dirty approach gives the poorest result.
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(a) Estimated regression coefficients of A.

(b) Estimated regression coefficients of C.

(c) Estimated regression coefficients of AB.

Figure 6.1: The quick and dirty method for Cr = 2.0 and Cl = −∞ for σ = 0.3.
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(a) Estimated regression coefficients of A.

(b) Estimated regression coefficients of C.

(c) Estimated regression coefficients of AB.

Figure 6.2: Maximum likelihood estimation for Cr = 2.0 and Cl = −∞ for σ = 0.3.
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(a) Estimated regression coefficients of A.

(b) Estimated regression coefficients of C.

(c) Estimated regression coefficients of AB.

Figure 6.3: Single imputation using QD for Cr = 2.0 and Cl = −∞ for σ = 0.3.
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(a) Estimated regression coefficients of A.

(b) Estimated regression coefficients of C.

(c) Estimated regression coefficients of AB.

Figure 6.4: Single imputation using MLE for Cr = 2.0 and Cl = −∞ for σ = 0.3.
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(a) Estimated regression coefficients of A.

(b) Estimated regression coefficients of C.

(c) Estimated regression coefficients of AB.

Figure 6.5: Multiple imputation using QD for Cr = 2.0 and Cl = −∞ for σ = 0.3.
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(a) Estimated regression coefficients of A.

(b) Estimated regression coefficients of C.

(c) Estimated regression coefficients of AB.

Figure 6.6: Multiple imputation using MLE for Cr = 2.0 and Cl = −∞ for σ = 0.3.
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Table 6.2: Results for Cr = 2.9 and Cl = −∞.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0088407 0.0076118 0.0069562 0.0096872 0.0091996 0.0097453
0.0075462 0.0080493 0.010608 0.0073492 0.0092546 0.0077210
0.0084009 0.0088701 0.0089861 0.0078975 0.0085871 0.0090601

Average 0.0082626 0.0081771 0.0088501 0.0083113 0.0090138 0.0088421

0.3
0.019088 0.021719 0.020997 0.019140 0.021635 0.020530
0.017992 0.020034 0.024073 0.018956 0.020821 0.020580
0.018106 0.016592 0.015350 0.025565 0.019483 0.020989

Average 0.018395 0.019445 0.20140 0.021220 0.020646 0.020700

0.4
0.029516 0.030374 0.031802 0.028718 0.035654 0.035631
0.029465 0.033248 0.032724 0.034547 0.029681 0.036366
0.028384 0.034998 0.030380 0.037970 0.030050 0.028913

Average 0.029122 0.032873 0.031635 0.033745 0.031795 0.033637

As for right censoring at 2.9, the four methods perform consistently very good for right
censoring at 3.1.

The number of runs of which the maximum likelihood estimator do not exist varies
between 0 and 9, giving between 91 and 100 acceptable runs.

Table 6.3: Results for Cr = 3.1 and Cl = −∞.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0086548 0.0073425 0.0079220 0.0077118 0.0074838 0.0079452
0.0097494 0.0064637 0.0089186 0.0074871 0.0087324 0.0089398
0.0078917 0.0071450 0.0076819 0.0093494 0.0088455 0.0089930

Average 0.0087653 0.0069837 0.0081742 0.0081828 0.0082237 0.0086260

0.3
0.016366 0.015631 0.015086 0.018809 0.018961 0.017153
0.021605 0.019439 0.018724 0.020555 0.021734 0.018194
0.016161 0.019097 0.020255 0.016844 0.019176 0.018476

Average 0.018044 0.018056 0.018022 0.018736 0.019957 0.017941

0.4
0.027913 0.034563 0.029858 0.036948 0.037368 0.036071
0.026553 0.035999 0.035749 0.037852 0.037713 0.031684
0.032711 0.037742 0.033246 0.031840 0.034973 0.038555

Average 0.029059 0.036101 0.032951 0.035547 0.036685 0.035437

6.1.5 Testing for Cr =∞ and Cl = −2.0

The results of the experiment with left censoring at -2.0, are shown in table 6.4.

When considering left censoring at -2.0, the third item of the response vector, having
a value equal to -3, is expected to be left censored. It is a small chance of items 1,2 and 7
being left censored as well.

The gross variances obtained by the four methods vary more in this experiment with
left censored data at -2.0, than they did for right censored at 2.0. Evaluating the gross
variances in table 6.4, simple imputation and multiple imputation both initialized by the
maximum likelihood estimator give the two best results for all values of σ. The quick and
dirty method gives the poorest result for σ = 0.2, while maximum likelihood estimation
performs the worst when σ = 0.3 and 0.4. The gross variance varies especially for σ = 0.4,
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from 0.032815 for the multiple imputation initialized by the maximum likelihood estimator
to 0.11201 for maximum likelihood estimation. It is natural that the gross variance would
vary more for a higher value of σ, as a higher value of σ leads to a higher value of the
error term.

In this example, the imputation methods, with the exception of single imputation using
the quick and dirty approach, give the best results.

The number of acceptable runs for methods using the maximum likelihood estimator
decreases substantially when dealing with left censored data instead of right censored data.
For right censored data at Cr = 2.0, the number of acceptable runs varied from 93 to 100.
For left censored data at Cl = −2.0 however, the number varies from 39 to 60 acceptable
runs.

Table 6.4: Results for Cr =∞ and Cl = −2.0.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.028639 0.027662 0.011835 0.0083657 0.010674 0.0095753
0.027121 0.019696 0.020378 0.0097537 0.012327 0.010302
0.024505 0.013265 0.012539 0.0072168 0.011078 0.0082758

Average 0.026755 0.020208 0.014973 0.0084454 0.011360 0.0093844

0.3
0.036399 0.051422 0.042157 0.016616 0.030273 0.016297
0.037158 0.045260 0.037179 0.017364 0.023647 0.016011
0.038476 0.045865 0.032506 0.016652 0.025110 0.018415

Average 0.037344 0.047516 0.037281 0.016877 0.026343 0.016908

0.4
0.046053 0.10609 0.075761 0.044960 0.039004 0.027662
0.048091 0.12382 0.068749 0.030015 0.040432 0.041420
0.051616 0.10611 0.080734 0.035952 0.042616 0.029362

Average 0.048587 0.11201 0.075081 0.036976 0.040684 0.032815

6.1.6 Testing for Cr =∞ and Cl = −2.9

For left censoring at Cl = −2.9, the gross variances obtained by the four methods are
displayed in table 6.5.

Again, the third item of y is expected to be censored, but it will not always be the
case. The items 1,2 and 7 could also be left censored, but the possibility is extremely
small.

The two methods with the overall lowest gross variances for all values of σ are the quick
and dirty method and multiple imputation using the quick and dirty approach. The next
best method is multiple imputation initialized by the maximum likelihood estimator. The
overall worst method is maximum likelihood estimation, which gives the highest values of
the gross variance for all values of σ.

All in all, the performances are good, but maximum likelihood estimation distinguishes
itself as the least good method.

The number of acceptable runs for all methods applying the maximum likelihood
estimator varies from 52 to 70.

6.1.7 Testing for Cr =∞ and Cl = −3.1

Table 6.6 shows the gross variances of the experiment with left censoring at Cl = −3.1.

As in the previous example, the third item of the response is expected to be left
censored, and in addition there is an extremely small chance of the first, second and
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Table 6.5: Results for Cr =∞ and Cl = −2.9.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0084592 0.024477 0.0080811 0.0084098 0.0088219 0.0086626
0.0085777 0.016146 0.0082365 0.0094247 0.0077283 0.0083216
0.0088554 0.020776 0.0078400 0.012646 0.0077953 0.0092039

Average 0.0086308 0.020466 0.0080525 0.010160 0.0081152 0.0087294

0.3
0.019866 0.039179 0.020316 0.021859 0.018897 0.020116
0.018440 0.028385 0.021639 0.025338 0.023922 0.020816
0.019539 0.033378 0.023259 0.027977 0.015779 0.022355

Average 0.019282 0.033647 0.021738 0.025058 0.019533 0.021096

0.4
0.027237 0.10541 0.036467 0.051698 0.033120 0.031262
0.027851 0.072830 0.042962 0.034893 0.037258 0.028937
0.031878 0.079606 0.027510 0.029631 0.028419 0.030328

Average 0.028989 0.085949 0.035646 0.038741 0.032932 0.030176

seventh item being censored as well.

The quick and dirty method continues to perform well, not unexpected considering
that the censoring limit is close to the original value, and yields the lowest gross variances
for σ = 0.3 and 0.4. For σ = 0.2, multiple imputation using the quick and dirty approach
gives the best gross variance. The greatest gross variances are provided by maximum
likelihood estimation for all values of σ. Single imputation and multiple imputation are
fairly similar in their performances.

The number of acceptable runs for methods involving maximum likelihood estimation,
is slighly higher than for the two other experiments with left censoring, the number varies
from 53 to 78 runs.

Table 6.6: Results for Cr =∞ and Cl = −3.1.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0072590 0.014601 0.0075967 0.0093927 0.0090571 0.0085983
0.0082214 0.013629 0.0084026 0.011034 0.0074294 0.0092066
0.0080732 0.015711 0.0082096 0.011034 0.0066092 0.0066546

Average 0.0078512 0.014647 0.0080696 0.010487 0.0076986 0.0081532

0.3
0.016453 0.039240 0.017937 0.020153 0.019320 0.018735
0.016336 0.047095 0.017291 0.023234 0.017036 0.018659
0.017954 0.028645 0.018619 0.019132 0.022410 0.015192

Average 0.016914 0.038327 0.017949 0.020840 0.019589 0.017529

0.4
0.032285 0.055789 0.035045 0.031660 0.040942 0.030530
0.029676 0.040414 0.043319 0.034971 0.031115 0.032491
0.027057 0.043470 0.029679 0.036840 0.036404 0.032980

Average 0.029673 0.046558 0.036014 0.034490 0.036154 0.032000

6.1.8 Testing for Cr = 2.0 and Cl = −2.0

The results of the first example with both right and left censoring are dispayed in table
6.7.

There is a chance of all items of the response vector being censored, but of course the
probability of the third and eighth element being censored is higher than for the other
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elements.

Single imputation and multiple imputation both initialized by the maximum likelihood
estimator gives the lowest values of the gross variances. Not surprisingly, the quick and
dirty method gives the highest gross variances, as both censoring limits lie further away
from the original values. Multiple imputation initialized by the quick and dirty approach
performs a little better than single imputation initialized by the same approach.

For methods applying the maximum likelihood estimator, the number of accpetable
runs varies from 38 to 69, although most experiments consist of more than 50 runs.

Table 6.7: Results for Cr = 2.0 and Cl = −2.0.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.068356 0.033060 0.030848 0.010179 0.026441 0.010646
0.070414 0.016536 0.031695 0.010676 0.023609 0.012145
0.069667 0.014878 0.030443 0.0094504 0.027131 0.013156

Average 0.069479 0.021491 0.030995 0.010102 0.025727 0.011982

0.3
0.078411 0.052624 0.046099 0.028916 0.032260 0.023070
0.081861 0.025966 0.048689 0.027239 0.035249 0.024685
0.078255 0.031666 0.059704 0.031087 0.035696 0.028680

Average 0.079509 0.036752 0.051497 0.029081 0.034402 0.025478

0.4
0.085481 0.078305 0.072992 0.042772 0.052565 0.053458
0.085630 0.062727 0.074539 0.057021 0.048685 0.036799
0.092177 0.066544 0.065862 0.039851 0.047353 0.041454

Average 0.087763 0.069192 0.071131 0.046548 0.049534 0.043904

6.1.9 Testing for Cr = 2.9 and Cl = −2.9

Table 6.8 displays the gross variances obtained by the four methods when data is both
right censored at 2.9 and left censored at -2.9.

Again, the third and the eighth element of y are expected to be censored, but they
don’t need to be. The chance of other elements being censored is relatively small, but it
is present.

For σ = 0.2, single imputation using the quick and dirty approach gives the lowest gross
variance of 0.0073767, while for σ = 0.3 and 0.4, the quick and dirty methods yields the
best gross variances of respectively 0.018106 and 0.032527. The worst gross variances for
all values of σ are obtained by maximum likelihood estimation, with the values 0.014371,
0.032795 and 0.063956.

The quick and dirty method shows how well it performs when the actual values are
close to the censoring limits, while the imputation methods illustartes the advantage of
imputation, as both imputation methods using the maximum likelihood estimator perform
better than their initializer, when the initial values are not too good.

The number of acceptable runs for each experiment of every method involving the
maximum likelihood estimator varies from 54 to 78.

6.1.10 Testing for Cr = 3.1 and Cl = −3.1

The gross variances obtained from the four methods for left censoring at -3.1 and right
censoring at 3.1, are shown in table 6.9.

As in the two previous examples, the third and eighth element of the response are
expected to be censored, but need not to be, and the other elements may be censored as
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Table 6.8: Results for Cr = 2.9 and Cl = −2.9.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0084499 0.014782 0.0074147 0.010361 0.0075742 0.012299
0.0096322 0.011072 0.0075734 0.010187 0.0075908 0.0078227
0.0075499 0.017260 0.0071421 0.010464 0.010624 0.0098519

Average 0.0085440 0.014371 0.0073767 0.010337 0.0085963 0.0099912

0.3
0.019101 0.031734 0.016420 0.038286 0.022430 0.019317
0.016840 0.035035 0.017955 0.027682 0.019452 0.019843
0.018376 0.031615 0.020559 0.025363 0.020775 0.020643

Average 0.018106 0.032795 0.018311 0.030444 0.020886 0.019928

0.4
0.035369 0.066835 0.047492 0.059473 0.037087 0.038642
0.030573 0.060673 0.033956 0.040450 0.038037 0.040274
0.031640 0.064361 0.034110 0.049093 0.031424 0.040356

Average 0.032527 0.063956 0.038519 0.049672 0.035516 0.039757

well, even though the probability of that happening is small.

The results for right censoring at 3.1 and left censoring at -3.1 are pretty similar to
the ones for right censoring at 2.9 and left censoring at -2.9. Again, the quick and dirty
method gives the best results, while maximum likelihood estimation provides overall the
worst results. But overall, the results of the methods are pretty good.

The number of acceptable runs varies from 67 to 82, for all methods using the maximum
likelihood estimator.

Table 6.9: Results for Cr = 3.1 and Cl = −3.1.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0072173 0.024941 0.0079364 0.011783 0.0087936 0.0089530
0.0071209 0.015771 0.0079451 0.010666 0.010624 0.0062341
0.0086558 0.018911 0.0088165 0.0090658 0.0085931 0.0093417

Average 0.0076647 0.019874 0.0082327 0.010505 0.0093369 0.0081763

0.3
0.014513 0.034051 0.017909 0.029968 0.019381 0.019974
0.014324 0.020175 0.018928 0.029428 0.017593 0.018215
0.017245 0.023594 0.023064 0.020467 0.019210 0.027654

Average 0.015361 0.025940 0.019967 0.026621 0.018728 0.021943

0.4
0.025078 0.050994 0.030453 0.042218 0.030956 0.037581
0.030406 0.061977 0.049430 0.034521 0.032281 0.035094
0.029153 0.076476 0.050401 0.036689 0.036760 0.035393

Average 0.028212 0.063149 0.043428 0.037809 0.033332 0.036023

6.1.11 Summary of example 1

Example 1 shows us how the four methods perform for censored data, and in fact the
results are quite good.

The quick and dirty method performs well for situations where the actual values are
close to the censoring limits, and not so good for the opposite cases. Maximum likeli-
hood estimation gives accurate results for right censored data, but is not able to perform
equally well for left censoring. It might have something to do with the implementation
of the survreg function, but that’s just pure conjecture on my part, it’s not scientifically
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proven. Generally, multiple imputation gives very good results. When the initializing
method gives inaccurate results, this is often reflected in the results of multiple imputa-
tion, but the results of multiple imputation is still better than the results obtained by the
initializing method. Multiple imputation’ s ability to perform better than its initializing
method can be seen in the results, with the exception in which the actual values are close
to the censoring values and the quick and dirty method gives better results than the impu-
tation methods initialized by the quick and dirty method. Single imputation also delivers
good results, and also performs better than its initializing methods, but the method is
more sensitive to the quality of the performance of the initializing method than multiple
imputation.

6.2 Example 2

6.2.1 Choice of Cr, Cl and σ

The complexity of example 2 allows us to vary the censoring limits more than what was
possible for example 1. As for example 1, the methods are tested for right censoring,
left censoring and both right and left censoring. The censoring limits are chosen with
particularly regard to the units 1,4,5 and 8 of y in table 5.2. If a value of y is censored or
not, depends on the original value, the censoring limit and the estimated error, defined in
4.2.

Two limits close to the original values were chosen, 14 and 15, as right censoring and
5 and 6, as left censoring. In addition, two values further away were chosen, 12 and 8 for
respectively right and left censoring. With the less stringent limits, 12 and 8, more values
have the opportunity of being censored. Element 4 of y is expected to be right censored
most times, thereafter element 8. Element 1 and secondly element 5 are expected to be left
censored most times. There is also a chance of no items being censored at once, since the
censoring is based on time and not on amount. A total of nine experiments are conducted;
experiments where data is right censored at 12,14 or 15, left censored at 5,6 or 8, and
additionally experiments where data is both right and left censored, at 12 and 8, 14 and 6,
and 15 and 5. As for example 1, the experiments containing both right and left censored
data are chosen with respect to the closeness to the original values.

The error term is estimated by the same procedure as for example 1. The simulation
of ε is presented in section 4.2, while the value of σ is determined by the prespecified value
of α. The values of σ are chosen to be the same as for example 1; 0.2, 0.3 and 0.4.

6.2.2 Testing for Cr = 12 and Cl = −∞

Table 6.10 shows the gross variances obtained by the four methods for right censoring at
12.

The fourth and eighth element of y are expected to be right censored. In addition, the
third and seventh element can be censored. On the other hand, there is possible to end
up with no censored values.

This example illustates the advantage the maximum likelihood approach has over the
quick and dirty approach when the actual values are not close to the censoring limits. The
greatest gross variances are all obtained by the quick and dirty method, with 0.35751,
0.35433 and 0.34932 for respectively σ = 0.2, 0.3 and 0.4. The three lowest gross variances
are assigned to methods using the maximum likelihood estimator. The results by single
and multiple imputation using the quick and dirty method are better than the results by
the quick and dirty method itself.
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The quick and dirty method clearly appear as the weakest method, showing off the
trouble the method encounters when the censoring limit is far away from the actual values,
while the maximum likelihood estimator provides its strength.

Table 6.10: Results for Cr = 12 and Cl = −∞.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.35264 0.013507 0.15709 0.011170 0.17101 0.010197
0.35873 0.013299 0.15911 0.012040 0.16552 0.012514
0.36117 0.014756 0.15848 0.013177 0.16285 0.012739

Average 0.35751 0.013854 0.15823 0.012129 0.16646 0.011817

0.3
0.35497 0.030570 0.15684 0.023417 0.15742 0.031089
0.35708 0.025221 0.15787 0.034163 0.15738 0.027995
0.35093 0.028552 0.15015 0.029185 0.16482 0.026164

Average 0.35433 0.028114 0.15495 0.028922 0.15987 0.028416

0.4
0.35182 0.052097 0.15949 0.051441 0.16588 0.063650
0.34431 0.048662 0.17417 0.054454 0.16994 0.054378
0.35184 0.051211 0.16381 0.047983 0.17060 0.053638

Average 0.34932 0.050657 0.16582 0.051293 0.16881 0.057222

6.2.3 Testing for Cr = 14 and Cl = −∞

The gross variances obtained by the methods for right censoring at 14 are displayed in
table 6.11.

Element 4 and 8 of y are expected to be censored, and maybe element 7 in addition.
In other words, the number of censored items can vary from zero to three.

Again, the quick and dirty method presents itself as the weakest method, yielding the
lowest gross variances in all cases. The best gross variances for σ = 0.2 and 0.3 are given
by multiple imputation using the maximum likelihood estimator, while single imputation
using the quick and dirty approach gives the best result for σ = 0.4. But, the results
obtained by all methods using the maximum likelihood approach are very similar. The
imputation methods using the quick and dirty approach perform better than the quick
and dirty method itself, showing the improvement imputation can provide.

All in all, the performances are good for all methods, in which the quick and dirty
method provides the least good results. None of the methods present itself as a clear
winner.

6.2.4 Testing for Cr = 15 and Cl = −∞

The results of right censoring at 15 are shown in table 6.12.

The fourth and eighth element of y are expected to be censored, but they may not be.

The results are pretty good for all the methods, it is hard to distinguish the best
methods from the worst. The quick and dirty method provides the greatest gross variance
for σ = 0.2, but at the same time, it gives the lowest gross variance for σ = 0.3 and
0.4. Maximum likelihood estimation gives the best result for σ = 0.2, and the worst for
σ = 0.4. The poorest performance for σ = 0.3 is obtained by single imputation using the
maximum likelihood estimator.

The attempt to distinguish the methods in this example does not tell us clearly which
method is the most and least accurate, because there is very little difference between the
gross variances. If the example was run again, the outcome could be a little different,
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Table 6.11: Results for Cr = 14 and Cl = −∞.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.044466 0.011771 0.020270 0.014153 0.018861 0.013357
0.044691 0.015004 0.019720 0.011146 0.018580 0.012419
0.044011 0.011662 0.021012 0.013387 0.018750 0.012068

Average 0.044389 0.012812 0.020334 0.012895 0.018730 0.012615

0.3
0.048952 0.022620 0.030753 0.026373 0.028447 0.031144
0.050412 0.030334 0.029344 0.030078 0.027177 0.027159
0.053434 0.030712 0.027192 0.027138 0.026614 0.022794

Average 0.050933 0.027889 0.029096 0.027863 0.027413 0.027032

0.4
0.061838 0.046298 0.042648 0.052123 0.049755 0.050606
0.056998 0.048589 0.043024 0.046828 0.046996 0.048178
0.054183 0.045571 0.048136 0.043929 0.043641 0.043704

Average 0.057673 0.046819 0.044603 0.047627 0.046797 0.047496

leaving other methods as the source of the best and worst results. However, the gross
variances would still be very similar and hard to distinguish.

Table 6.12: Results for Cr = 15 and Cl = −∞.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0098806 0.0086323 0.0088815 0.0090684 0.0080370 0.010005
0.0089540 0.0076464 0.0088264 0.010617 0.0088691 0.0094464
0.010259 0.0075843 0.0081612 0.0078642 0.0093051 0.0091101

Average 0.0096979 0.0079543 0.0086230 0.0091832 0.0087371 0.0095205

0.3
0.019030 0.018215 0.018119 0.025337 0.019674 0.019424
0.017297 0.021793 0.017945 0.022883 0.022873 0.019598
0.019273 0.019993 0.019792 0.023822 0.015703 0.020360

Average 0.018533 0.020000 0.018619 0.024014 0.019417 0.019794

0.4
0.034322 0.033242 0.038554 0.039780 0.034778 0.036653
0.034341 0.039266 0.033698 0.035392 0.037416 0.035288
0.032211 0.040258 0.035160 0.032193 0.037503 0.040630

Average 0.033625 0.037589 0.035804 0.035788 0.036566 0.037524

6.2.5 Testing for Cr =∞ and Cl = 8

The gross variances for left censoring at 8, are shown in table 6.13.

Element 1 and 5 of the response vector are clearly expected to be censored. There is
also a chance of unit 2 and 6 being censored, and even unit 3.

Single and multiple imputation using the maximum likelihood estimator are the best
performing methods, followed be maximum likelihood estimation. The weakest perfor-
mance is assigned the quick and dirty method, yet the imputation methods using the
quick and dirty method perform better than the initializing method itself. When the cen-
soring limit lie further away from the actual values as in this case, we experience large
variations in the gross variances. For σ = 0.2, the lowest gross variance has a value of
0.0074899, while the greastet is 0.41758. The lowest gross variance for σ = 0.3 is 0.020033,
while the greatest is 0.44056. And finally, for σ = 0.4 the lowest gross variance obtained
is 0.032612 and the greatest is 0.46549.
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The methods using the maximum likelihood estimator perform well, while the quick
and dirty approach reveals its disadvantages.

Table 6.13: Results for Cr =∞ and Cl = 8.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.41038 0.032005 0.11725 0.0073552 0.089462 0.0084226
0.42193 0.041002 0.12017 0.0085347 0.093989 0.011623
0.42043 0.089375 0.11490 0.0065799 0.093755 0.012496

Average 0.41758 0.054127 0.11744 0.0074899 0.092402 0.010847

0.3
0.43925 0.069492 0.15629 0.016890 0.12032 0.022296
0.44213 0.051367 0.13956 0.018989 0.11876 0.022026
0.44031 0.075751 0.16549 0.049512 0.10661 0.015778

Average 0.44056 0.065537 0.15378 0.028464 0.11523 0.020033

0.4
0.47451 0.10977 0.18052 0.027705 0.14238 0.035015
0.46385 0.13785 0.18927 0.036274 0.13850 0.037534
0.45812 0.087515 0.19056 0.033857 0.14406 0.034041

Average 0.46549 0.11171 0.18678 0.032612 0.14165 0.035530

6.2.6 Testing for Cr =∞ and Cl = 6

Table 6.14 shows the gross variances obtained for left censoring at 6.
For left censoring at 6, the first and fifth element of the response vector are expected

to be censored, and in addition the sixth item can be censored as well. The items don’t
necessarily become censored.

Single and multiple imputation using the maximum likelihood estimator give the small-
est gross variances, followed by single and multiple imputation using the quick and dirty
approach. The worst results are obtained by the quick and dirty method. All in all, the
results are good for each method.

Table 6.14: Results for Cr =∞ and Cl = 6.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.065126 0.024692 0.012499 0.0072587 0.016660 0.010008
0.060943 0.029710 0.012108 0.0097744 0.017486 0.010597
0.065734 0.031622 0.012311 0.0091019 0.017061 0.0079775

Average 0.063934 0.028675 0.012306 0.0087117 0.017069 0.0095275

0.3
0.081373 0.068070 0.022212 0.020477 0.026004 0.017928
0.083377 0.054639 0.022499 0.018046 0.022321 0.021068
0.077444 0.045367 0.020649 0.017790 0.028935 0.022464

Average 0.080731 0.056025 0.021787 0.018771 0.025753 0.020487

0.4
0.085309 0.069052 0.033333 0.032154 0.040698 0.033055
0.094217 0.085315 0.029925 0.031340 0.042283 0.042127
0.090795 0.10203 0.053478 0.031850 0.039001 0.031599

Average 0.090107 0.085466 0.038912 0.031781 0.040661 0.035594

6.2.7 Testing for Cr =∞ and Cl = 5

The gross variances obtained from the methods for left censoring at 5, are displayed in
table 6.15.
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For left censoring at 5, the first and fifth element of y are expected to be censored,
but they might not be. The number of censored values in each run would vary from zero
to two.

In this example, maximum likelihood estimation gives the greatest gross variances of
0.025691, 0.061321 and 0.10943 for σ = 0.2, 0.3 and 0.4 respectively. The lowest gross
variances are obtained as 0.0074257 for σ = 0.2 and 0.018056 for σ = 0.3, both provided
by multiple imputation using the maximum likelihood estimator, and 0.033626 for σ = 0.4
by single imputation using same approach. The quick and dirty method performs well
alongside with the imputation methods.

The results show that maximum likelihood estimation performs weakest for left cen-
soring at 5. As mentioned in section 4.1, the survreg function experiences a bit of trouble
for left censoring. The better results of the quick and dirty method shows the advantage
the method has when the censoring limits are close to original values.

Table 6.15: Results for Cr =∞ and Cl = 5.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.012762 0.029801 0.012204 0.0093888 0.0099609 0.0083879
0.012524 0.026963 0.012134 0.0076326 0.0077944 0.0060540
0.011140 0.020309 0.0096951 0.012104 0.0094736 0.0078352

Average 0.012142 0.025691 0.011344 0.0097085 0.0090763 0.0074257

0.3
0.024262 0.059491 0.022444 0.019773 0.019212 0.016832
0.024176 0.080820 0.022196 0.019919 0.017135 0.018252
0.024609 0.043652 0.024474 0.034370 0.020606 0.019084

Average 0.024349 0.061321 0.023038 0.024687 0.018984 0.018056

0.4
0.038358 0.12109 0.038648 0.030854 0.036804 0.035452
0.043783 0.10006 0.041888 0.027794 0.037658 0.040336
0.036198 0.10714 0.044599 0.042230 0.036786 0.038838

Average 0.039446 0.10943 0.041712 0.033626 0.037083 0.038209

6.2.8 Testing for Cr = 12 and Cl = 8

The results of the experiment conducted with right censoring at 12 and left censoring at
8, are shown in table 6.16.

The first and fifth element of y are expected to be left censored, while the fourth and
eighth element are expected to be right censored. The other elements may be censored as
well.

The methods using the maximum likelihood estimator perform best, especially the
imputation methods, while the methods applying the quick and dirty approach provide
the weakest results. The difference in the gross variances is large, especially for σ = 0.2,
where the lowest gross variance is of value 0.067813 while the greatest is 1.5263.

It is easy to consider the method of maximum likelihood as the best approach in this
context. In addition, it is worth noticing that the imputation methods perform better
than the initializing methods in all cases.

6.2.9 Testing for Cr = 14 and Cl = 6

The gross variances obtained for the methods with right censoring at 14 and left censoring
at 6, are displayed in table 6.17.
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Table 6.16: Results for Cr = 12 and Cl = 8.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
1.5266 0.067523 1.1337 0.10323 1.1615 0.095927
1.5254 0.089822 1.1179 0.054655 1.1648 0.065767
1.5269 0.067447 1.1239 0.050592 1.1609 0.041746

Average 1.5263 0.074931 1.1252 0.069492 1.1624 0.067813

0.3
1.5322 0.27089 1.0894 0.15199 1.1585 0.12970
1.5300 0.17571 1.1225 0.12008 1.1654 0.18564
1.5306 0.12951 1.0994 0.18657 1.1345 0.23360

Average 1.5309 0.19204 1.1038 0.15288 1.1528 0.18298

0.4
1.5393 0.27636 1.1076 0.18788 1.1149 0.16001
1.5301 0.20697 1.1223 0.23289 1.1113 0.19919
1.5384 0.23239 1.1182 0.19897 1.1373 0.13215

Average 1.5359 0.23857 1.1160 0.20658 1.1212 0.15850

Unit 5 and 8 of the response are expected to be right censored, while unit 1 and 4 are
expected to be left censored. There is also a possibility of other units being censored and
a possibility of no values being censored.

For σ = 0.2, the quick and dirty method gives a clearly greater gross variance than
the other methods, while single and multiple imputation using the maximum likelihood
approach provide the best results. Then, for σ = 0.3 and 0.4, imputation methods using
the quick and dirty method appear as the best methods. For σ = 0.4, the methods
using the maximum likelihood estimator perform at the same level as the quick and dirty
method.

The imputation methods applying the quick and dirty method give the overall best
results.

Table 6.17: Results for Cr = 14 and Cl = 6.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.19287 0.086043 0.081578 0.038542 0.091465 0.060430
0.19254 0.092427 0.074262 0.055900 0.084207 0.062665
0.19321 0.067865 0.079526 0.062420 0.088792 0.045265

Average 0.19287 0.082112 0.078455 0.052287 0.088155 0.056120

0.3
0.20084 0.18881 0.079927 0.11099 0.087799 0.12951
0.20327 0.22210 0.083612 0.19249 0.094003 0.13851
0.19533 0.18962 0.087945 0.10911 0.086723 0.12942

Average 0.19981 0.20018 0.083828 0.13753 0.089508 0.13248

0.4
0.21017 0.23623 0.079225 0.17107 0.097981 0.20229
0.21268 0.21038 0.088753 0.20861 0.096971 0.20179
0.21092 0.24691 0.085890 0.19773 0.094794 0.22931

Average 0.21126 0.23117 0.084623 0.19247 0.096582 0.21113

6.2.10 Testing for Cr = 15 and Cl = 5

Table 6.18 shows the results of the experiment of right censoring at 15 and left censoring
at 5.

The fourth and eighth element of the response are expected to be right censored, along
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with the first and fifth element as left censored. It is not likely that the other elements
will be censored, but it’s not completely impossible.

All methods perform better than they did in the previous example, which is natural
considering the lower differance between the actual values and the censoring values. All
imputation methods give lower gross variances than the initializing methods itself. For σ =
0.2, the quick and dirty method provides the least accurate result, while for σ = 0.3 and
0.4, maximum likelihood estimation gives the greatest gross variances. The lowest gross
variance for σ = 0.2 is obtained by multiple imputation using the maximum likelihood
estimator, while for σ = 0.3 and 0.4, multiple imputation initialized by the quick and dirty
approach gives the best results.

Overall, each method provides good results.

Table 6.18: Results for Cr = 15 and Cl = 5.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.023273 0.012521 0.012433 0.011979 0.011237 0.011023
0.021759 0.020291 0.014906 0.012835 0.012438 0.010077
0.022398 0.017315 0.016485 0.028510 0.011967 0.011078

Average 0.022477 0.016709 0.014608 0.017775 0.011881 0.010726

0.3
0.030678 0.037148 0.025723 0.023259 0.020642 0.032068
0.032012 0.058817 0.025769 0.033479 0.021766 0.019190
0.031159 0.034149 0.023655 0.030581 0.016133 0.024160

Average 0.031283 0.043371 0.025049 0.029106 0.019514 0.025139

0.4
0.041357 0.082361 0.039740 0.063951 0.030676 0.042563
0.047182 0.079931 0.039309 0.050861 0.032467 0.045539
0.044036 0.080874 0.034914 0.055996 0.034777 0.044809

Average 0.044192 0.081055 0.037988 0.056936 0.032640 0.044304

6.2.11 Summary of example 2

Since the model in experiment 2 is more complex than the model in example 1, the
variation of the original values in the response is greater, hence it is easier to vary the
range of the censoring limits which leads to greater variations in the estimated regression
coefficients, thus greater variations in the gross variances. Example 2 brings out the
positive and negative sides of the four methods in a clearer way than example 1 does.

The impression of the performances of the methods are pretty much the same as
in example 1. The quick and dirty method performs well when the actual values and
censoring values are close. Maximum likelihood estimation also provides good results,
mainly better than the quick and dirty method when the censoring values are not so close
to the actual values. The imputation methods provide mainly very good results, of which
multiple imputation give satisfactory results more frequently than single imputation.

As mentioned, example 2 is more complex than example 1, providing greater variations
of the gross variances, as can be seen in the results. It is expected that the results would
be less accurate in this example, since the censoring limits generally are less close to the
actual values.
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Chapter 7

Results of experiment 2

7.1 Example 1

The choices of censoring values and error term are the same as in experiment 1, presented
in section 6.1.1.

The purpose of experiment 2 is, as mentioned in chapter 5, to compare the perfor-
mances of the four methods more directly, by running them for the same error vector. In
other words, the error term of each run is exactly the same for all four methods.

7.1.1 Testing for Cr = 2.0 and Cl = −∞

The results of example 1 with right censoring at 2.0 are shown in table 7.1.
For every value of σ, the quick and dirty method provides the largest values of the gross

variance; 0.019578, 0.025449 and 0.038323. Single imputation initialized by the maximum
likelihood estimator yields the lowest gross variance for σ = 0.2, as 0.0092684. For σ = 0.3
and 0.4, single imputation initialized by the quick and dirty approach gives the best values,
respectively 0.019498 and 0.034537. For σ = 0.2 and 0.3, all methods except the quick
and dirty method give very similar results. Which method is the best is kind of random.
The differences increase slightly for σ = 0.4. Single and multiple imputation using the
quick and dirty approach perform well, even if the initializing method itself does not.

All methods perform well, but the quick and dirty method presents itself as the weakest
method.

Table 7.1: Results for Cr = 2.0 and Cl = −∞.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.019561 0.012134 0.011486 0.010619 0.012070 0.010816
0.018768 0.0096867 0.010643 0.0089163 0.010825 0.0091240
0.020406 0.0079558 0.011514 0.0082699 0.012064 0.0084464

Average 0.019578 0.0099255 0.011214 0.0092684 0.011653 0.0094621

0.3
0.028642 0.019347 0.022138 0.020263 0.022727 0.020965
0.024146 0.022241 0.019008 0.021004 0.019458 0.021348
0.023559 0.017725 0.017348 0.018404 0.017788 0.018560

Average 0.025449 0.019771 0.019498 0.019890 0.019991 0.020291

0.4
0.040020 0.038690 0.036660 0.039789 0.038053 0.039724
0.037630 0.034823 0.034286 0.038680 0.034546 0.039039
0.037319 0.031311 0.032664 0.034446 0.033460 0.034535

Average 0.038323 0.034941 0.034537 0.037638 0.035353 0.037766
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7.1.2 Testing for Cr = 2.9 and Cl = −∞

Table 7.2 shows the results of right censoring at 2.9.

The results are good and very similar for this example. None of the methods deviate
in neither a good or bad way. Unlike in the previous example where the quick and dirty
method provided the greatest gross variances in all cases, the method yields the best
results for all cases in this example. The greatest gross variances are obtained by the
imputation methods using the maximum likelihood estimator.

Every method performs very well for right censoring at 2.9. Even though it is difficult
to distinguish the methods because the results are so similar, the quick and dirty method
is slightly considered as the best method.

Table 7.2: Results for Cr = 2.9 and Cl = −∞.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0083832 0.0087976 0.0086596 0.0089309 0.0087304 0.0089124
0.0064559 0.0082240 0.0070608 0.0077456 0.0071715 0.0077981
0.0087600 0.0085339 0.0090638 0.0094017 0.0090326 0.0093652

Average 0.0078664 0.0085185 0.0082614 0.0086927 0.0083115 0.0086919

0.3
0.014673 0.018634 0.015861 0.017209 0.015875 0.017096
0.019424 0.019120 0.020632 0.021869 0.020429 0.022097
0.016990 0.021087 0.018177 0.019955 0.018220 0.020073

Average 0.017029 0.019614 0.018223 0.019678 0.018175 0.019755

0.4
0.037170 0.035342 0.038821 0.040600 0.039123 0.040290
0.028284 0.027205 0.029267 0.030790 0.029400 0.031042
0.028573 0.032640 0.032640 0.032334 0.031250 0.032549

Average 0.031342 0.031729 0.033576 0.034575 0.033258 0.034627

7.1.3 Testing for Cr = 3.1 and Cl = −∞

The gross variances obtained by the methods for right censoring at 3.1 are shown in table
7.3.

As for right censoring at 2.9, the results are overall good and very similar. The method
of maximum likelihood gives the best results for σ = 0.2 and 0.4, while the quick and dirty
method gives the best result for σ = 0.3. The greatest gross variances for σ = 0.2 and 0.3
are provided by multiple imputation initialized by the maximum likelihood estimator, and
for σ = 0.4, the worst result is given by single imputation initialized also by the maximum
likelihood estimator.

Again, the differences in the gross variances of all methods are very small, thus all
methods perform well for right censoring at 3.1.

7.1.4 Testing for Cr =∞ and Cl = −2.0

Table 7.4 presents the results of left censoring at -2.0.

The two best results are obtained by the imputation methods using the maximum
likelihood estimator in all cases. The worst results are provided by the quick and dirty
method, maximum likelihood estimation and single imputation using the quick and dirty
approach. The gross variances are not as similar as in the previous example, varying
from 0.0081572 to 0.026819 for σ = 0.2, from 0.019914 to 0.048146 for σ = 0.3 and from
0.028508 to 0.10470 for σ = 0.4. It is intersting to notice that even though maximum
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Table 7.3: Results for Cr = 3.1 and Cl = −∞.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0084481 0.0088026 0.0088863 0.0091925 0.0088163 0.0092519
0.0078574 0.0073362 0.0081074 0.0083171 0.0081036 0.0083480
0.0080800 0.0076329 0.0083112 0.0086726 0.0083106 0.0086500

Average 0.0081285 0.0079325 0.0084350 0.0087274 0.0084102 0.0087500

0.3
0.015183 0.015780 0.015620 0.015940 0.015686 0.016067
0.017167 0.017719 0.018532 0.019082 0.018334 0.019120
0.016676 0.018047 0.017516 0.018303 0.017427 0.018268

Average 0.016342 0.017182 0.017223 0.017775 0.017149 0.017818

0.4
0.034761 0.031308 0.036483 0.038169 0.036457 0.038037
0.030971 0.029985 0.032035 0.032927 0.032297 0.033094
0.032442 0.030369 0.034192 0.035269 0.034103 0.035133

Average 0.032725 0.030554 0.034237 0.035455 0.034286 0.035421

likelihood estimation provides the worst results in two cases, the imputation methods
using this approach yields the best results.

The imputation methods present itself as the best methods in this example, especially
the ones initialized by maximum likelihood estimation.

Table 7.4: Results for Cr =∞ and Cl = −2.0.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.025460 0.021919 0.011383 0.0085308 0.010341 0.0086657
0.028148 0.018426 0.010469 0.0075369 0.011361 0.0076510
0.026850 0.019572 0.013225 0.0084040 0.011924 0.0088544

Average 0.026819 0.019972 0.011692 0.0081572 0.011209 0.0083904

0.3
0.041077 0.039126 0.033119 0.018534 0.025290 0.018681
0.037930 0.049960 0.034737 0.021700 0.022346 0.021745
0.039365 0.055353 0.035218 0.025530 0.023613 0.019315

Average 0.039457 0.048146 0.034358 0.021921 0.023750 0.019914

0.4
0.047088 0.075107 0.061976 0.034080 0.042872 0.028011
0.047637 0.13866 0.068497 0.041921 0.037868 0.029560
0.049759 0.10033 0.064270 0.027044 0.038150 0.027953

Average 0.048161 0.10470 0.064914 0.034348 0.039630 0.028508

7.1.5 Testing for Cr =∞ and Cl = −2.9

The gross variances obtained by the four methods for left censoring at -2.9 are shown in
table 7.5.

Maximum likelihood estimation provides the worst results with gross variances of
0.018598, 0.035284 and 0.068056 for σ = 0.2, 0.3 and 0.4 respectively. The best result
for σ = 0.2 is given by single imputation using the quick and dirty method as 0.0075884.
For σ = 0.3 and 0.4, the lowest gross variances are given by the quick and dirty method and
has the values 0.018555 and 0.030528. Even though maximum likelihood estimation gives
poor results, the imputation methods using this approach give good results, especially
multiple imputation.

Overall, the results are good, but the least good results are provided by maximum
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likelihood estimation.

Table 7.5: Results for Cr =∞ and Cl = −2.9.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0076386 0.018160 0.0070020 0.0096975 0.0076061 0.0080639
0.0086759 0.018044 0.0082116 0.0091761 0.0087538 0.0086736
0.0076080 0.019589 0.0075516 0.0087195 0.0082205 0.0084243

Average 0.0079742 0.018598 0.0075884 0.0091977 0.0081935 0.0083873

0.3
0.019566 0.034528 0.018896 0.023091 0.019388 0.020797
0.019897 0.039307 0.026412 0.036243 0.022362 0.020116
0.016201 0.032018 0.015544 0.018708 0.016551 0.017332

Average 0.018555 0.035284 0.020284 0.026014 0.019434 0.019415

0.4
0.031308 0.072799 0.050609 0.037100 0.037650 0.032214
0.026992 0.055069 0.039773 0.028927 0.032201 0.026899
0.033284 0.076299 0.055046 0.043614 0.041207 0.034817

Average 0.030528 0.068056 0.048476 0.036547 0.037003 0.031310

7.1.6 Testing for Cr =∞ and Cl = −3.1

The results of left censoring at -3.1 are presented in table 7.6.
The lowest gross variances in all cases are provided by the quick and dirty method,

closely followed by multiple imputation initialized by the maximum likelihood estimator.
The greatest gross variances are, as for left censoring at -2.9, given by maximum likelihood
estimation. Again, multiple imputation performs well even though the initializing method
does not.

The results are all in all pretty good for all methods, but slightly better for the quick
and dirty method and slighly worse for maximum likelihood estimation.

Table 7.6: Results for Cr =∞ and Cl = −3.1.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0071564 0.014179 0.0084100 0.0080011 0.0086116 0.0079353
0.0084042 0.012254 0.0088032 0.010512 0.0088187 0.0080137
0.0084432 0.013352 0.0088418 0.011691 0.0090625 0.0092303

Average 0.0080013 0.013362 0.0086850 0.010068 0.0088309 0.0083931

0.3
0.015901 0.033863 0.017820 0.020019 0.019226 0.017248
0.018015 0.036192 0.020928 0.020092 0.021190 0.018702
0.018752 0.032822 0.019933 0.022832 0.020121 0.020312

Average 0.017556 0.034292 0.019560 0.020981 0.020179 0.018754

0.4
0.032494 0.054825 0.044020 0.039168 0.035869 0.030439
0.033459 0.054105 0.038932 0.036171 0.034777 0.035300
0.027132 0.052798 0.041165 0.029321 0.033033 0.027877

Average 0.031028 0.053909 0.041372 0.034887 0.034560 0.031205

7.1.7 Testing for Cr = 2.0 and Cl = −2.0

Table 7.7 shows the results obtained for right censoring at 2.0 and left censoring at -2.0.
The greatest gross variances are given by the quick and dirty method for σ = 0.2 and

0.3, and by maximum likelihood estimation for σ = 0.4. For σ = 0.2 and 0.3, the best
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results are obtained by single imputation initialized by the maximum likelihood estimator,
while for σ = 0.4 the best result is obtained by multiple imputation using the quick and
dirty approach.

Overall, for right and left censoring not close to the original values, the methods are
doing a good job.

Table 7.7: Results for Cr = 2.0 and Cl = −2.0.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.069778 0.021961 0.033289 0.015269 0.028472 0.015307
0.068867 0.011970 0.026406 0.0096821 0.026780 0.010042
0.064740 0.014030 0.027266 0.0096899 0.021992 0.0095164

Average 0.067795 0.015987 0.028987 0.011547 0.025748 0.011622

0.3
0.076559 0.032153 0.042944 0.023140 0.032919 0.023285
0.074564 0.028273 0.040087 0.022179 0.031505 0.022620
0.076947 0.030476 0.050525 0.019501 0.036111 0.019462

Average 0.076023 0.030301 0.044519 0.021607 0.033512 0.021789

0.4
0.085816 0.083670 0.064380 0.048405 0.045965 0.053104
0.090038 0.098831 0.077474 0.056835 0.051295 0.060493
0.097045 0.094925 0.074582 0.058618 0.054235 0.052770

Average 0.090966 0.092475 0.072145 0.054619 0.050498 0.055456

7.1.8 Testing for Cr = 2.9 and Cl = −2.9

The gross variances given by the four methods for right censoring at 2.9 and left censoring
at -2.9, are shown in table 7.8.

For σ = 0.2 and 0.3, the best results, 0.0076984 and 0.014995 are given by single
imputation using the quick and dirty approach, while the worst results, 0.013515 and
0.040353 are provided by maximum likelihood estimation. The lowest gross variance,
0.030607, for σ = 0.4 is given by the quick and dirty method, while again, the worst result
is given by maximum likelihood estimation. The results are mostly better in this example
than in the previous example, which is not surprising considering that the censoring limits
are closer to the actual values.

The performances of the methods are overall good. None of the methods is a clear
winner, but the method of maximum likelihood presents itself as the poorest method.

7.1.9 Testing for Cr = 3.1 and Cl = −3.1

Table 7.9 displays the results of right censoring at 3.1 and left censoring at -3.1.
The quick and dirty method gives the lowest gross variances in all cases, followed by

the imputation methods initialized by the quick and dirty approach. Maximum likeli-
hood estimation yields the worst results, followed by single imputation and then multiple
imputation both applying the maximum likelihood estimator.

The results are pretty good for all methods. The quick and dirty method appears to
be the best method while the maximum likelihood estimator appears to be the poorest
method.

7.1.10 Summary of example 1

Again, the results of example 1 show us that the methods generally perform well for
censored data, as it did for example 1 in experiment 1.
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Table 7.8: Results for Cr = 2.9 and Cl = −2.9.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0090737 0.015571 0.0077400 0.017740 0.0082221 0.0092118
0.0078370 0.012512 0.0076785 0.0088448 0.0084299 0.0087326
0.0085076 0.012461 0.0076768 0.013641 0.0076913 0.010090

Average 0.0084728 0.013515 0.0076984 0.013409 0.0081144 0.0093448

0.3
0.015551 0.035934 0.015512 0.023506 0.016511 0.018792
0.016961 0.037039 0.015611 0.021332 0.016665 0.020773
0.014790 0.048086 0.013861 0.021811 0.015263 0.015904

Average 0.015767 0.040353 0.014995 0.022216 0.016146 0.018490

0.4
0.029447 0.062272 0.048400 0.035390 0.035989 0.032904
0.030483 0.078613 0.033912 0.040440 0.033614 0.038984
0.031892 0.071447 0.056902 0.056643 0.038095 0.052256

Average 0.030607 0.070777 0.046405 0.044158 0.035899 0.041381

Table 7.9: Results for Cr = 3.1 and Cl = −3.1.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.0064087 0.019568 0.0069858 0.013249 0.0072975 0.0090056
0.0083868 0.019404 0.0097689 0.014203 0.0099161 0.010940
0.0079434 0.013262 0.0087869 0.010469 0.0087956 0.010106

Average 0.0075796 0.017411 0.0085139 0.012640 0.0086697 0.010017

0.3
0.015773 0.033461 0.023203 0.029423 0.018858 0.021492
0.017221 0.021312 0.017590 0.019913 0.017892 0.019376
0.015604 0.049898 0.017769 0.042908 0.018722 0.024479

Average 0.016199 0.034890 0.019494 0.030748 0.018491 0.021782

0.4
0.033688 0.070532 0.036722 0.054757 0.037518 0.043324
0.029841 0.057568 0.039514 0.049807 0.032539 0.039973
0.031897 0.088731 0.041145 0.070451 0.037356 0.053265

Average 0.031809 0.072277 0.039127 0.058338 0.035804 0.045521

Since the error term is exactly the same for each method in each run, it is easier
to examine the correlation between the performances of the imputation methods and
the performances of the methods being used as initializers, if there is one. The results
of example 1 in experiment 2 shows that the imputation methods usually perform better
when the initializing method performs better, and otherwise. The ability of the imputation
methods to give good results even though the initializing method does not, can also be seen
from the results. The exception is for the quick and dirty approach when the censoring
values are very close to the actual values. Then, the initializing method obtains better
results than the imputation methods.

The results of the methods are pretty much the same as achieved in experiment 1.
The quick and dirty method performs well for cases where the censoring limits are close
to the original values and not so good for the opposite cases. Maximum likelihood es-
timation presents itself as a good method, but experiences problems when left censored
data is present. The imputation methods give very good results, and quite often the gross
variances of both single and multiple imputation are pretty similar.
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7.2 Example 2

The censoring values and the error term are chosen to be the same as in experiment 1, as
explained in section 6.2.1.

7.2.1 Testing for Cr = 12 and Cl = −∞

Table 7.10 presents the results obtained by the methods for right censoring at 12.
In this example, there is a clear distinction between the results obtained by methods

applying the quick and dirty approach and methods using the maximum likelihood esti-
mator, where methods applying the maximum likelihood estimator give the most accurate
results. The gross variances of the three methods using the maximum likelihood estimator
are pretty similar, while for the methods using the quick and dirty method, the imputation
methods give clearly better results than the quick and dirty method itself.

The maximum likelihood estimator shows the ability to perform well for censored data
further away from the actual values, whereas the quick and dirty approach reveals its
weakness for the same situation.

Table 7.10: Results for Cr = 12 and Cl = −∞.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.36143 0.012349 0.16071 0.011375 0.16927 0.011686
0.35556 0.013349 0.15361 0.011678 0.16147 0.011730
0.35611 0.013368 0.15862 0.013489 0.15705 0.013613

Average 0.35770 0.013022 0.15765 0.012181 0.16260 0.012343

0.3
0.34778 0.025607 0.15546 0.022205 0.15555 0.022681
0.35834 0.027668 0.16527 0.027046 0.16745 0.027771
0.34040 0.032239 0.14845 0.030855 0.14685 0.031102

Average 0.34884 0.028505 0.15639 0.026702 0.15662 0.027185

0.4
0.35791 0.047729 0.17494 0.051448 0.17632 0.052340
0.36795 0.042181 0.18325 0.045148 0.18387 0.046009
0.35056 0.057595 0.16640 0.049912 0.17021 0.051776

Average 0.35881 0.049168 0.17486 0.048836 0.17680 0.050042

7.2.2 Testing for Cr = 14 and Cl = −∞

The gross variances provided by the methods for right censoring at 14 are shown in table
7.11.

The greatest gross variances in all cases are obtained by the quick and dirty method.
For σ = 0.2, the lowest gross variance is given by single imputation using the maximum
likelihood estimator, while for σ = 0.3 and 0.4 the lowest gross variances are provided
by single imputation applying the quick and dirty method. Both single and multiple
imputation give pretty similar results for the same initializing method.

Overall, the methods perform well for right censoring at 14, but the quick and dirty
method is the least accurate method.

7.2.3 Testing for Cr = 15 and Cl = −∞

The results obtained for right censoring at 15 are presented in table 7.12.
The gross variances provided by all four methods are pretty good and similar for right

censoring at 15. For σ = 0.2, the lowest and greatest gross variances are 0.0085997 and
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Table 7.11: Results for Cr = 14 and Cl = −∞.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.041198 0.014314 0.017425 0.013392 0.016773 0.013535
0.046514 0.0094251 0.020264 0.0085167 0.020765 0.0085107
0.042384 0.013586 0.017690 0.013374 0.018428 0.013661

Average 0.043365 0.012442 0.018460 0.011761 0.018553 0.011902

0.3
0.048683 0.031359 0.029047 0.031192 0.029219 0.031569
0.046675 0.029384 0.026825 0.028464 0.027131 0.028125
0.047938 0.025172 0.025185 0.022378 0.025904 0.022702

Average 0.047765 0.028638 0.027019 0.027345 0.027418 0.027465

0.4
0.058439 0.050056 0.039787 0.046379 0.040050 0.046893
0.059558 0.051805 0.043771 0.051745 0.044097 0.052342
0.057097 0.058498 0.043337 0.058216 0.043386 0.058632

Average 0.058365 0.053453 0.042298 0.052113 0.042511 0.052622

0.0096976, for σ = 0.3, the gross variance varies from 0.018089 to 0.020158 and for σ = 0.4,
the lowest gross variance is 0.031537 while the greatest is 0.035849.

As the results show, there is very little variation in the gross variances, making it very
difficult to decide which method performs the best and which performs the poorest.

Table 7.12: Results for Cr = 15 and Cl = −∞.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.010499 0.0081804 0.0089538 0.0087696 0.0089933 0.0088282
0.0096770 0.0093236 0.0088618 0.0096939 0.0088336 0.0097978
0.0089168 0.0083703 0.0079834 0.0089862 0.0081442 0.0090731

Average 0.0096976 0.0086248 0.0085997 0.0091499 0.0086570 0.0092330

0.3
0.018282 0.018359 0.017771 0.018973 0.017595 0.018930
0.016738 0.018702 0.017054 0.019421 0.016987 0.019265
0.019247 0.020425 0.019893 0.022079 0.019739 0.022138

Average 0.018089 0.019162 0.018239 0.020158 0.018107 0.020111

0.4
0.032147 0.029903 0.032541 0.033640 0.032650 0.034341
0.035301 0.040718 0.037693 0.041329 0.037063 0.040520
0.027163 0.034703 0.029073 0.032577 0.029368 0.032349

Average 0.031537 0.035108 0.033436 0.035849 0.033027 0.035737

7.2.4 Testing for Cr =∞ and Cl = 8

Table 7.13 shows the results obtained for left censoring at 8.

The imputation methods using the maximum likelihood estimator give the best results,
followed by maximum likelihood estimation itself. The poorest results are obtained by the
quick and dirty method, which in fact gives the least accurate results for all values of
σ. The results provided by the imputation methods using the quick and dirty method
are clearly better than the results obtained from the quick and dirty method itself. It is
expected that the quick and dirty method will perform poorer than maximum likelihood
estimation as the censoring limit are further away from the actual values.

As expected, the results obtained by imputation methods using the maximum likeli-
hood estimator are good, while the results by the quick and dirty method are the least
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accurate.

Table 7.13: Results for Cr =∞ and Cl = 8.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.41433 0.035881 0.11052 0.010103 0.091914 0.0096848
0.40881 0.028397 0.10011 0.0065899 0.098535 0.0064882
0.42577 0.029514 0.11600 0.0066002 0.10773 0.0072348

Average 0.41630 0.031264 0.10888 0.0077644 0.099393 0.0078026

0.3
0.43678 0.065358 0.14955 0.017164 0.11911 0.017130
0.43153 0.050826 0.13155 0.015890 0.11784 0.016436
0.42870 0.085293 0.14015 0.023866 0.10960 0.021808

Average 0.43234 0.067159 0.14042 0.018973 0.11552 0.018458

0.4
0.46746 0.12689 0.18282 0.028557 0.14801 0.028527
0.46766 0.11674 0.16597 0.033087 0.13680 0.031974
0.46319 0.11974 0.19491 0.068490 0.14028 0.036123

Average 0.46610 0.12112 0.18123 0.043378 0.14170 0.032208

7.2.5 Testing for Cr =∞ and Cl = 6

For left censoring at 6, the results are presented in table 7.14.

Again, the results obtained by the imputation methods applying maximum likelihood
estimation are pretty good and similar, and it is difficult to distinguish the performances
of the two methods from each other, but single imputation is slightly better than multiple
imputation. For σ = 0.2 and 0.3, the quick and dirty method gives the least accurate
results, while maximum likelihood estimation provides the least accurate result for σ = 0.4.
In all cases, the imputation methods give better results than the initializing methods.

The results are mainly quite good for all methods, but the imputation methods perform
the best, especially the ones being initialized by the maximum likelihood estimator.

Table 7.14: Results for Cr =∞ and Cl = 6.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.062769 0.027749 0.013165 0.0083120 0.016197 0.0084653
0.060828 0.028848 0.011543 0.0089611 0.015872 0.0089747
0.060993 0.038759 0.012403 0.0070840 0.016473 0.0071500

Average 0.061530 0.031785 0.012370 0.0081190 0.016181 0.0081967

0.3
0.075118 0.062418 0.021230 0.018370 0.026273 0.019200
0.073715 0.067541 0.023421 0.019463 0.027034 0.019937
0.080975 0.079426 0.024811 0.023387 0.030379 0.023554

Average 0.076603 0.069795 0.023154 0.020407 0.027895 0.020897

0.4
0.10023 0.13875 0.039731 0.041566 0.047151 0.041850
0.085661 0.078902 0.030172 0.027080 0.037563 0.027193
0.084281 0.10554 0.030668 0.022993 0.035335 0.024162

Average 0.090057 0.10773 0.033524 0.030546 0.040016 0.031068

7.2.6 Testing for Cr =∞ and Cl = 5

The results of left censoring at 5 can be found in table 7.15.
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For left censoring at 5, single and multiple imputation initialized by the maximum
likelihood estimator and multiple imputation using the quick and dirty approach give
good and similar results for all values of σ. Maximum likelihood estimation provides
the greatest gross variances for all cases. Not surprisingly, the quick and dirty method
performs very well, considering that the censoring limit is close to the actual values. Even
though maximum likelihood estimation gives the poorest results, the imputation methods
initialized by this method provides results among the best.

All methods perform well for left censoring at 5, the least accurate results are given
by the method of maximum likelihood.

Table 7.15: Results for Cr =∞ and Cl = 5.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.012730 0.021058 0.012283 0.0081045 0.0097628 0.0081212
0.012632 0.029994 0.013108 0.0090506 0.0093891 0.0084832
0.014636 0.033708 0.010312 0.010260 0.0096691 0.010404

Average 0.013333 0.028253 0.011901 0.0091384 0.0096070 0.0090028

0.3
0.022415 0.053851 0.019526 0.016714 0.017447 0.016508
0.023140 0.081960 0.023917 0.019873 0.021632 0.019133
0.023881 0.055128 0.022823 0.019695 0.020680 0.018953

Average 0.023145 0.063646 0.022089 0.018761 0.019920 0.018198

0.4
0.040734 0.11599 0.043613 0.038579 0.039572 0.037903
0.036127 0.094122 0.037890 0.036721 0.033923 0.036642
0.036078 0.073632 0.037164 0.033230 0.033573 0.027708

Average 0.037646 0.094581 0.039556 0.036177 0.035689 0.034084

7.2.7 Testing for Cr = 12 and Cl = 8

The results obtained by the methods for right censoring at 12 and left censoring at 8 are
shown in table 7.16.

In this example, there is a clear distinction between the results obtained by methods
using the quick and dirty method and the maximum likelihood estimator, of which the
methods using the maximum likelihood estimator perform the best. Multiple imputation
using maximum likelihood estimation gives the most accurate results for all cases; 0.052605
for σ = 0.2, 0.12515 for σ = 0.3 and 0.21375 for σ = 0.4, closely followed by single
imputation applying the maximum likelihood estimator as well. The quick and dirty
method provides the greatest gross variances for all cases; 1.5256, 1.5306 and 1.5335 for
σ = 0.2, 0.3 and 0.4 respectively. The imputation methods using the quick and dirty
method give better results than the quick and dirty method itself.

In this example, the distinction between the quick and dirty method’s and the method
of maximum likelihood’s ability to handle censoring limits far away from the actual values
is evident, in favor of the maximum likelihood estimator.

7.2.8 Testing for Cr = 14 and Cl = 6

Table 7.17 presents the results obtained for right censoring at 14 and left censoring at 6.

For right censoring at 14 and left censoring at 5, the quick and dirty method gives the
greatest gross variances for σ = 0.2 and 0.3, while maximum likelihood estimation yields
the greatest gross variance for σ = 0.4. The imputation methods using the maximum
likelihood estimator are the best methods for σ = 0.2, while for σ = 0.3 and 0.4, the
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Table 7.16: Results for Cr = 12 and Cl = 8.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
1.5264 0.060662 1.1305 0.040698 1.1733 0.039588
1.5260 0.068572 1.1283 0.052725 1.1601 0.051698
1.5244 0.089436 1.1190 0.066813 1.1586 0.066530

Average 1.5256 0.072890 1.1259 0.053412 1.1640 0.052605

0.3
1.5315 0.16198 1.1159 0.11887 1.1473 0.12051
1.5297 0.20839 1.1191 0.16397 1.1344 0.15867
1.5307 0.12941 1.1096 0.097657 1.1325 0.096261

Average 1.5306 0.16659 1.1149 0.12683 1.1381 0.12515

0.4
1.5369 0.28033 1.1024 0.21245 1.1104 0.21240
1.5324 0.21562 1.0987 0.17252 1.1174 0.16514
1.5311 0.32441 1.0848 0.26595 1.1100 0.26370

Average 1.5335 0.27345 1.0953 0.21697 1.1126 0.21375

best methods are the imputation methods initialized by the quick and dirty method. This
example shows that the maximum likelihood estimator is more affected by the value of the
variance, σ. The gross variance of the quick and dirty method does not change much when
the value of σ changes, which is the opposite case for the maximum likelihood estimator,
where the gross variance increases considerably when the variance increases. Greater
uncertainty in the data gives greater uncertainty in the computations and consequently in
the computed gross variances.

The imputation methods give the most accurate results.

Table 7.17: Results for Cr = 14 and Cl = 6.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.19314 0.096810 0.081159 0.077336 0.087107 0.081918
0.19366 0.10043 0.079136 0.073597 0.088334 0.074195
0.19398 0.086166 0.079690 0.064763 0.088496 0.068120

Average 0.19359 0.094469 0.079995 0.070573 0.087979 0.074744

0.3
0.19920 0.17837 0.077586 0.13710 0.086834 0.13353
0.19912 0.19379 0.080271 0.14693 0.088369 0.14982
0.19685 0.15632 0.075927 0.12458 0.082053 0.12368

Average 0.19839 0.17616 0.077928 0.13620 0.085752 0.13568

0.4
0.21246 0.21742 0.088179 0.17116 0.098602 0.16795
0.21051 0.24452 0.084780 0.19896 0.094677 0.19813
0.21444 0.22459 0.086875 0.15931 0.096457 0.15913

Average 0.21294 0.22884 0.086611 0.17648 0.097082 0.17507

7.2.9 Testing for Cr = 15 and Cl = 5

The results of right censoring at 15 and left censoring at 5, are shown in table 7.18.

Multiple imputation applying the quick and dirty method gives the most accurate re-
sults in all cases; 0.012031, 0.020622 and 0.035303 for σ = 0.2, 0.3 and 0.4 respectively.
The least accurate results in all cases are obtained by maximum likelihood estimation,
yielding gross variances of 0.024945, 0.049329 and 0.084801 for σ = 0.2, 0.3 and 0.4 re-
spectively. Common to all imputation methods is that the imputation method performs
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better than the method used as initializer.
The results are pretty good for all four methods.

Table 7.18: Results for Cr = 15 and Cl = 5.

σ QD MLE SI(w/QD) SI(w/MLE) MI(w/QD) MI(w/MLE)

0.2
0.022373 0.021200 0.015170 0.013333 0.012925 0.013810
0.023678 0.023349 0.014404 0.015136 0.012172 0.013937
0.021765 0.030286 0.014916 0.014355 0.010997 0.014077

Average 0.022605 0.024945 0.014830 0.014275 0.012031 0.013941

0.3
0.029056 0.058110 0.025126 0.027743 0.020844 0.027533
0.030128 0.048249 0.024731 0.024901 0.020309 0.024550
0.029707 0.041627 0.025839 0.024737 0.020713 0.022565

Average 0.029630 0.049329 0.025232 0.025794 0.020622 0.024883

0.4
0.044781 0.075961 0.037558 0.051218 0.033274 0.044168
0.045957 0.093262 0.037816 0.050864 0.034342 0.050428
0.052803 0.085179 0.042660 0.064016 0.038294 0.060651

Average 0.047847 0.084801 0.039345 0.055366 0.035303 0.051749

7.2.10 Summary of example 2

When all four methods are performed for the same error term, the same units of the
response will be censored for all methods. Then, it is easier to compare the performances
of the methods to each other more directly, considering that the starting point is the same
for all methods. Yet, the results are pretty similar to the results obtained for various
error terms as investigated in experiment 1. The quick and dirty method performs well for
censoring limits close to the actual values, and the maximum likelihood estimator is very
accurate for right censoring and not so good for left censoring. The imputation methods
give mainly better results than the initializing methods.

We can see from the results that the performances of the imputation methods and the
initializing methods are related. If the initializing method gives a greater gross variance,
the imputation method also gives a greater gross variance.

All in all, the performances of the methods are good, but as expected, the gross
variances are greater than they were for example 1, since example 2 is a more complex
model.



Chapter 8

Discussion

Chapter 6 and 7 showed the performances of the four methods for the two different models
presented in chapter 5. Until now, we have discussed the performances of the methods for
the nine different censoring cases for each model in each experiment. In this chapter, the
performances of each method will be summarized and evaluated separately.

8.1 The quick and dirty method

Throughout all experiments, the quick and dirty method has performed well for all cases
where the censoring limits are close to the original values, and not so well for the opposite
cases. When the censoring limits are very close to the actual values, as they were for
right censoring at 2.9 and 3.1 and left censoring at -2.9 and -3.1 in example 1, the quick
and dirty method gives among the most accurate results, and sometimes even the most
accurate results. It’s not surprising that the results are excellent when the censored values
are substituted by values that similar to the actual values. However, since we don’t know
the actual values of censored data, it is impossible to predict the outcome of computations
performed by the quick and dirty method.

The imprecision of the results obtained by the quick and dirty method depends, as
mentioned, on the deviation between the actual values and the censoring limits, since the
quick and dirty method substitutes censored data by the censoring limits, treating them
as actual values. The results presented in chapter 6 and 7 showed that the results were
more accurate for example 1, where the differences between the censoring limits and the
actual values are smaller than they are in example 2. The fact that example 1 is a simpler
model than example 2 should not be forgotten in this discussion either. The least accurate
results are obtained when both the right censoring limit and the left censoring limit are far
away from the actual values, as for right censoring at 12 and left censoring at 8 in example
2. This significant variation of precision indicates that the quick and dirty method is an
unstable method.

Advantages of the quick and dirty method are that the method is easy to use, the
implementation is easy to perform, and the method is time efficient. On the other hand, it
is not possible to know in advance if the results obtained are satisfactory or not. There is
always a possibility of the results being poor, which is a clear disadvantage of the method.

The quick and dirty method is an appropriate method when the number of resources
is very limited, but there are as mentioned no guarantees for the precision of the results,
they can be very good or they can be very bad.
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8.2 Maximum likelihood estimation

Maximum likelihood estimation performs good throughout the experiments, but experi-
ences some problems when the data is left censored. When the data is right censored, the
performance of the method is very good. The method is rarely the absolute best perform-
ing method, but in several cases the results obtained by maximum likelihood estimation
are among the most accurate results. When the data is left censored, the results are poorer
than if the data is right censored, even though the difference between the actual values
and the censoring limits are similar for both cases of censoring.

The precision of the method of maximum likelihood depends on the difference between
the censoring limits and the actual values, but not to the same extent as the quick and
dirty method. The results are more accurate when the deviation between censoring limits
and actual values are smaller. Since the exact values of censored data are unknown, it
is not possible to know in advance how well the performance of the maximum likelihood
estimator would be, but generally the results are quite good. The results provided by
maximum likelihood estimation in these experiments are never as poor as some of the
results obtained by the quick and dirty method.

Maximum likelihood estimation is easy to use and time efficient as the quick and dirty
method, but when using maximum likelihood estimation there is always a possibility that
the maximum likelihood estimator does not exist, meaning the method does not converge.
Whenever the maximum likelihood estimator does not exist, the results are rather obscure
and should not be included in the analysis. Since not all runs of an experiment are usable,
due to non convergence of the maximum likelihood estimator, less than intended values
have been used in the analysis. The issue of the non converging maximum likelihood
estimator is particularly relevant when the data is left censored, as mentioned earlier. The
reason why the maximum likelihood estimator does not handle left censoring as well as
right censoring is not known. The problem may lie in the implementation of the survreg
function, but that is just a conjecture on my part.

The method of maximum likelihood is an accurate method, which can easily be used
in analysis with censored data, but one should be aware of the problems arising when
dealing with left censoring.

8.3 Single imputation

Single imputation is a well performing method, as can be seen from the results in chapter
6 and 7, sometimes it even causes the most accurate results. The concept of single impu-
tation is to compute the conditional expectation of the censored data on observed values
of the other variables. Using available information about other values than the censored
ones, increases the possibility of obtaining accurate results. In most of the censored cases
investigated in this report, single imputation presents very good results. Single imputation
is initialized by the quick and dirty method and the maximum likelihood estimator. The
performance of single imputation is related to the performance of the initializing method;
when the initializing method gives inaccurate results, single imputation does too. How-
ever, the results provided by single imputation is generally better than the ones obtained
by the initializing method. The exceptions are cases where the actual values and the
censoring limits are very close when the quick and dirty method is applied and cases with
right censoring when the maximum likelihood estimator is used. When single imputa-
tion is initialized by the maximum likelihood estimator, the issue of non convergence of
the maximum likelihood estimator arises, and the number of acceptable values for the
standard errors and the estimated regression coefficients decreases.
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Single imputation is a more complex method than both the quick and dirty method
and maximum likelihood estimation, and requires a more comprehensive implementation.
Especially when dealing with Weibull distributed data, as the exponential integral is in-
cluded in the expression of the conditional expectation of the censored data. The process
of applying MATLAB through R is very time consuming, which makes single imputation
the absolute slowest method of the methods considered in this report. The time consump-
tion is a clear disadvantage in this context, as is the underestimation of the standard errors
of the estimated regression coefficients.

It is worth noticing that the results provided by single imputation using maximum
likelihood estimation are very close to the results obtained by the quick and dirty method,
whenever the quick and dirty method is performing well. Taking into account that single
imputation is performing among the best for all censoring cases, single imputation using
maximum likelihood estimation appears to be both accurate and safe. However, the time
consumption is a disadvantage, comparing with multiple imputation.

All in all, single imputation is a reliable and precise method, which should be used
when performing complex experiments and resources allow us to.

8.4 Multiple imputation

The performances of multiple imputation are generally pretty good through all experiments
evaluated in this report. Considering the fact that the method imputes m values drawn
from a truncated distribution and then uses the average value in the computations, it is
not surprising that the method yields accurate results. The numerical computations in
chapter 6 and 7, show that multiple imputation quite often is the method providing the best
results. As for single imputation, multiple imputation is initialized by the quick and dirty
method and the maximum likelihood estimator. And again, the performance of multiple
imputation is also related to the performance of the initializing method. Whenever the
results of the initializing method are good, the results of multiple imputation are also
good, and usually better than the initializer’s results. The exceptions are cases when
the quick and dirty method is applied and the censoring limits are close to the actual
values, and when the maximum likelihood estimator is applied for right censoring. When
multiple imputation is initialized by the maximum likelihood estimator, the issue of non
convergence of the maximum likelihood estimator arises, and the number of acceptable
values for the standard errors and the estimated regression coefficients decreases.

Multiple imputation is a more complex method than the quick and dirty method and
maximum likelihood estimation. The method requires more implementation, but unlike
single imputation, we don’t need to include MATLAB in the numerical computations.
Thus the computation of the estimated regression coefficients is far less time consuming
for multiple imputation than for single imputation.

Although multiple imputation requires more work and time than a simpler method,
the good results are worth the extra effort, when the data sets to be analysed are not too
big and the value of m is small. Multiple imputation is a precise and reliable method.
As for single imputation, it is worth noticing that whenever the quick and dirty method
provides the best results, the results obtained by multiple imputation are very close. Since
the quick and dirty approach is an unstable method, multiple imputation using maximum
likelihood estimation should be considered as the most reliable and accurate method.
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Chapter 9

Conclusion

In this report we have investigated how four different methods manage censored data. The
methods were tested for two different experiments and two different examples, both a 23

factorial experiment, but the complexity of the models were different. Three scenarios of
censoring were considered; right censoring, left censoring, and both right and left censoring.
Type I censoring was used, meaning the censoring times were fixed, while the number of
censored units is random.

The results of the two conducted experiments show us that all four methods have the
ability of handling censored data, but the quality of the results is somewhat varying. The
performances of the methods depend on the which type of censoring is present and on the
difference between the censoring limits and the actual values.

The achievement of the quick and dirty method is very dependent on the difference
between the actual values and the censoring limits, since the quick and dirty method
treats the censoring limits as actual values for the censored observations. The smaller
the devations between the censoring limits and the original values are, the more accurate
results the quick and dirty method yields.

Maximum likelihood estimation is not that dependent on the censoring limits, but
the results show that maximum likelihood estimation performs slighly better when the
censoring limits are closer to the actual values. However, the maximum likelihood esti-
mator is more sensible for the value of the variance, σ, than the quick and dirty method
is, yielding more accurate results for the lower values of σ. It is expected that greater
variance will yield greater deviation in the estimated regression coefficients. When censor-
ing is present, there is always a possibility that the maximum likelihood estimator would
not converge and as the maximum likelihood estimator does not exist in several runs, the
number of acceptable values of the estimated regression coefficients decreases. This also
applies for the cases in which the maximum likelihood estimator is used as an initializer
for the imputation methods.

Common to both imputation methods are their ability to mostly perform better than
the initializing methods. Single imputation is able to achieve good results even though
the initializer is not, but single imputation is however affected by the performance of
the initializing method. When the initializing method gives inaccurate results, the same
applies for single imputation, but the results obtained by single imputation are better than
the ones provided by the initializer.

As for single imputation, multiple imputation is able to perform better than the ini-
tializing methods in most cases. In addition, multiple imputation is also affected by the
performance of the initializer, poor results provided by the initializing method yields poor
results obtained by multiple imputation, yet the results obtained by multiple imputation
are better than the ones provided by the initializer.
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These numerical results indicate that it is wise to apply the quick and dirty method
when the censoring limits are really close to the actual values, that one should use max-
imum likelihood estimation when the censoring limits are a little further away from the
actual values, and that one should apply the imputation methods when the difference
between the censoring limits and the actual values are greater. The only problem here is
that there is no way of knowing whether the actual values are close or not close to the
censoring limits, since we don’t know the exact values of censored data. The evaluating of
which method to prefer must be based on other factors, such as the size of the experiment,
the resources available and what level of accuracy one wants to achieve. Bearing in mind
that the exact value of a censored data is unknown, the quick and dirty method is a risky
choice, and should be avoided if a safer option is available, for instance methods using
the maximum likelihood estimator. Based on the numerical results, the imputation meth-
ods applying the maximum likelihood estimator appear as the safest and most accurate
methods. Considering the time consumption and the fact that single imputation under-
estimates the standard errors of the estimated regression coefficients, multiple imputation
is a more appropriate choice than single imputation.

The purpose of experiment 2 was to conduct the methods for the same error vector,
to check if similar starting point was necessary for distinguishing the performances of the
methods. The similarity in the results for all cases in experiment 1 and experiment 2 show
that same error term are not necessary in order to be able to distinguish the methods.
However, it was interesting to see how the methods performed for the same starting point.

To obtain a more precise analysis of the methods, several more models and censoring
limits should be considered. It may also be necessary to look for alternative ways to
compute the maximum likelihood estimator, as the survreg function experiences problems
for left censoring, either by trying to find another built-in mechanisms which will do the
job or by implementing the whole function yourself. Another solution to the issue with the
computation of the exponential integral in single imputation should also be sought. To
expand the experiment further, the methods could be tested for type II censoring. That
is, experiments of which the number of censored units is fixed and the experimental time
is random.

It is important to emphazise that it is not possible to draw a final conclusion about
which method is by far the best or worst method in general based on this analysis. In order
to do so, the number of data sets, models and censoring limits must be incredible higher
and the analysis would be extremely more comprehensive. That being said, the analysis do
give us an indication of what methods are the most and the least accurate and reliable. All
four methods are potential candidates for handling censored data, but multiple imputation
using maximum likelihood estimation appears to be the most appropriate one.
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Appendix A

R code

The four methods are implemented in R. The code for example 1 and experiment 1 are
included. The R packages needed to perform all computations are included in the code
for the quick and dirty method.

The quick and dirty method

The code for the quick and dirty method for right censoring at 2.0 and σ = 0.3.

library(splines)

library(survival)

# library(CensReg)

library(MASS)

library(FrF2)

install.packages(’fExtremes’)

library(norm)

library(fExtremes)

install.packages(’reliaR’)

library(reliaR)

install.packages(’R.oo’)

install.packages(’R.matlab’)

install.packages(’R.utils’)

library(R.oo)

library(R.matlab)

library(R.utils)

# Starting MATLAB-server, assigning to MATLAB,

Matlab$startServer()

matlab <- Matlab()

# testing if connected or not connected

isOpen <- open(matlab)

print(matlab)

#####################################################

A <- c(-1, 1,-1, 1,-1, 1,-1, 1)

C <- c(-1,-1,-1,-1, 1, 1, 1, 1)

AB <- c( 1,-1,-1, 1, 1,-1,-1, 1)

y <- c(-1,-1,-3,1,1,1,-1,3)

n <- 100

trueCoeffs <- c(1,1,1) # True coefficients



lengthY <- length(y)

right <- 2.0 # Right censored limit

left <- -Inf # Left censored limit

estimatedCoeffs <- matrix(0,3,n)

#####################################################

for(j in 1:n){

########################

yVector <- vector()

errorvec <- vector()

eps <- vector()

for (i in 1:lengthY){

v <- runif(1)

alpha <- 3.33 # To obtain sd.

eps[i] <- log(-log(1-v)) # Epsilon

sd <- 1/alpha # Standard error

errorvec[i] <- eps[i] * sd # The error vector

yVector[i] <- y[i] + errorvec[i]

}

#######################################################

# If censored, assign censoring limit as actual value

for (i in 1:lengthY){

if (yVector[i] > right){

yVector[i] <- right

}

if(yVector[i] < left){

yVector[i] <- left

}

}

########################################################

lmQD <- lm(yVector~A+C+AB) # Fitting linear model

coeffs <- lmQD$coef

a <- coeffs[2]; c <- coeffs[3]; ab <- coeffs[4]

values <- c(a,c,ab)

sigma <- summary(lmQD)$sigma

estimatedCoeffs[,j] <- t(values) # Saving the estimated coefficients

}



################ GROSS VARIANCE ###################

# Computing variance of A

aValues <- estimatedCoeffs[1,]

aTotal <- 0

for (i in 1:n){

error <- (aValues[i]-trueCoeffs[1])^2

aTotal <- aTotal + error

}

# Computing variance of C

cValues <- estimatedCoeffs[2,]

cTotal <- 0

for (i in 1:n){

error <- (cValues[i]-trueCoeffs[2])^2

cTotal <- cTotal + error

}

# Computing variance of AB

abValues <- estimatedCoeffs[3,]

abTotal <- 0

for (i in 1:n){

error <- (abValues[i]-trueCoeffs[3])^2

abTotal <- abTotal + error

}

# Computing the gross variance

GV <- (1/3)*((1/n)*aTotal + (1/n)*cTotal + (1/n)*abTotal)

print(GV)

Maximum likelihood estimation

The R code for maximum likelihood estimation for right censoring at 2.0 and σ = 0.3.

A <- c(-1, 1,-1, 1,-1, 1,-1, 1)

C <- c(-1,-1,-1,-1, 1, 1, 1, 1)

AB <- c( 1,-1,-1, 1, 1,-1,-1, 1)

y <- c(-1,-1,-3,1,1,1,-1,3)

n <- 100

trueCoeffs <- c(1,1,1)

lengthY <- length(y)

right <- 2.0 # Right censoring value

left <- -Inf # Left censoring value

sdupper <- 0.5095169

sdlower <- 0.02353152



estimatedCoeffs <- matrix(0,3,n)

for (j in 1:n){ # For loop for 100 runs

yVector <- vector()

errorvec <- vector()

eps <- vector()

########################################################

for (i in 1:lengthY){

v <- runif(1)

alpha <- 3.33 # To obtain sd

eps[i] <- log(-log(1-v)) # Epsilon

sd <- 1/alpha # Standard error

errorvec[i] <- eps[i] * sd # The error vector

yVector[i] <- y[i] + errorvec[i]

} # For loop ends

######################################################

# Checking if censored and assigning values

# Right censored = 0, event=1, left censored=2, interval censored=3

censored <- vector()

for (i in 1:lengthY){

if( yVector[i] > right ){

censored[i] <- 0

}

else if (yVector[i] < left){

censored[i] <- 2

}

else{

censored[i] <- 1

}

}

#####################################################

x <- exp(yVector) # survreg using log(y) when computing

m1 <- lm(yVector~A+C+AB)

ysurv <- survreg(formula=Surv(x,censored)~A+C+AB,

dist="weibull", init=coef(m1))

coeffs <- ysurv$coef

a <- coeffs[2]; c <- coeffs[3]; ab <- coeffs[4]

alpha1 <- ( 1/ysurv$scale) # Shape parameter

theta1 <- (exp(coeffs[1])) # Scale parameter



sigma <- 1/alpha1

sigmavalues[j] <- sigma

if(all(is.na(coeffs)==FALSE)){

stderror <- summary(ysurv)$table[,2]

if(stderror[2] < sdupper && stderror[2] > sdlower &&

stderror[3] < sdupper && stderror[3] > sdlower &&

stderror[4] < sdupper && stderror[4] > sdlower &&

is.na(stderror[2:4])==FALSE){

values <- c(a,c,ab)

estimatedCoeffs[,j] <- t(values) # Saving the estimated coefficients

}

}

}

##########################################################

# Deleting unacceptable values

estimatedCoeffs2 <- estimatedCoeffs[,colSums(estimatedCoeffs==0)==0]

r <- ncol(estimatedCoeffs2) # New number of acceptable runs

################ GROSS VARIANCE ##################

# Computing variance of A

aValues <- estimatedCoeffs2[1,]

aTotal <- 0

for (i in 1:r){

error <- (aValues[i]-trueCoeffs[1])^2

aTotal <- aTotal + error

}

# Computing variance of C

cValues <- estimatedCoeffs2[2,]

cTotal <- 0

for (i in 1:r){

error <- (cValues[i]-trueCoeffs[2])^2

cTotal <- cTotal + error

}

# Computing variance of AB

abValues <- estimatedCoeffs2[3,]

abTotal <- 0

for (i in 1:r){



error <- (abValues[i]-trueCoeffs[3])^2

abTotal <- abTotal + error

}

# Computing the gross variance

GV <- (1/3)*((1/r)*aTotal + (1/r)*cTotal + (1/r) * abTotal)

print(GV)

Single imputation, using the quick and dirty method

The R code for single imputation using the quick and dirty method for right cen-
soring at 2.0 and σ = 0.3.

A <- c(-1, 1,-1, 1,-1, 1,-1, 1)

C <- c(-1,-1,-1,-1, 1, 1, 1, 1)

AB <- c( 1,-1,-1, 1, 1,-1,-1, 1)

y <- c(-1,-1,-3,1,1,1,-1,3)

n <- 100

trueCoeffs <- c(1,1,1)

lengthY <- length(y)

right <- 2.0 # Right censoring limit

left <- -Inf # Left censoring limit

emc <- 0.5772 # The Euler-Mascheroni constant

estimatedCoeffs <- matrix(0,3,n)

#################################################

for (j in 1:n){

###############################################

yVector <- vector()

errorvec <- vector()

eps <- vector()

for (i in 1:lengthY){

v <- runif(1)

alpha <- 3.33 # To obtain sd

eps[i] <- log(-log(1-v)) # Epsilon

sd <- 1/alpha # Standard error

errorvec[i] <- eps[i] * sd # The error vector

yVector[i] <- y[i] + errorvec[i]

}

###################################################



# Checking if censored and assigning values

# Right censored = 0, event=1, left censored=2, interval censored=3

censored <-vector()

for (i in 1:lengthY){

if (yVector[i] > right){

yVector[i] <- right

censored[i] <- 0

}

else if(yVector[i] < left){

yVector[i] <- left

censored[i] <- 2

}

else

censored[i] <- 1

}

####################################################

lmQD <- lm(yVector~A+C+AB) # Fitting linear model

coeffs <- lmQD$coef

a <- coeffs[2]; c <- coeffs[3]; ab <- coeffs[4]

mu <- coeffs[1] + A*a + C*c + AB*ab

sigma <- summary(lmQD)$sigma

########################################################

# Matlab computing E1right and E1left

expintRight <- 0

expintLeft <- 0

setVariable(matlab, mu=mu, sigma=sigma, right=right, left=left,

expintRight=expintRight, expintLeft = expintLeft)

expintR <- evaluate(matlab,"expintRight=expint(exp((right-mu)/sigma));")

dataR <- getVariable(matlab, "expintRight")

E1right<- dataR$expintRight

expintL <- evaluate(matlab,"expintLeft=expint(exp((left-mu)/sigma));")

dataL <- getVariable(matlab, "expintLeft")

E1left <- dataL$expintLeft

#####################################################

# Right censored

zr <- (right - mu)/sigma

expectedRight <- (1/(1-(1-pgumbel(-right,-mu,sigma))))

*(sigma*((zr*exp(-exp(zr))) + E1right)

+ mu*exp(-exp(zr)))

# Left censored



zl <- (left-mu)/sigma

expectedLeft <- (1/(1-pgumbel(-left,-mu,sigma)))

*(mu - emc*sigma - sigma*E1left

- mu*exp(-exp(zl)))

# Changing value of y if censored

for (i in 1:lengthY){

if(censored[i]==0){

yVector[i] <- expectedRight[i]

}

else if(censored[i]==2){

yVector[i] <- expectedLeft[i]

}

}

# Computing parameters again, with new values for y

lmQD2 <- lm(yVector~A+C+AB) # Fitting linear model

coeffs2 <- lmQD2$coef

a <- coeffs2[2]; c <- coeffs2[3]; ab <- coeffs2[4]

values <- c(a,c,ab)

estimatedCoeffs[,j] <- t(values) # Saving the estimated coefficients

}

################# GROSS VARIANCE ###################

# Computing variance of A

aValues <- estimatedCoeffs[1,]

aTotal <- 0

for (i in 1:n){

error <- (aValues[i]-trueCoeffs[1])^2

aTotal <- aTotal + error

}

# Computing variance of C

cValues <- estimatedCoeffs[2,]

cTotal <- 0

for (i in 1:n){

error <- (cValues[i]-trueCoeffs[2])^2

cTotal <- cTotal + error

}

# Computing variance of AB

abValues <- estimatedCoeffs[3,]

abTotal <- 0



for (i in 1:n){

error <- (abValues[i]-trueCoeffs[3])^2

abTotal <- abTotal + error

}

# Computing the gross variance

GV <- (1/3)*((1/n)*aTotal + (1/n)*cTotal + (1/n) * abTotal)

print(GV)

Single imputation, using maximum likelihood estimation

The R code for single imputation using maximum likelihood estimation for right
censoring at 2.0 and σ = 0.3.

A <- c(-1, 1,-1, 1,-1, 1,-1, 1)

C <- c(-1,-1,-1,-1, 1, 1, 1, 1)

AB <- c( 1,-1,-1, 1, 1,-1,-1, 1)

y <- c(-1,-1,-3,1,1,1,-1,3)

n <- 100

trueCoeffs <- c(1,1,1)

lengthY <- length(y)

right <- 2.0 # Right censoring limit

left <- -Inf # Left censoring limit

emc <- 0.5772 # The Euler-Mascheroni constant

sdupper <- 0.5095169

sdlower <- 0.02353152

estimatedCoeffs <- matrix(0,3,n)

########################################################

for (j in 1:100){

########################################################

yVector <- vector()

errorvec <- vector()

eps <- vector()

for (i in 1:lengthY){

v <- runif(1)

alpha <- 3.33 # To obtain sd

eps[i] <- log(-log(1-v)) # Epsilon

sd <- 1/alpha # Standard error

errorvec[i] <- eps[i] * sd # The error vector

yVector[i] <- y[i] + errorvec[i]

}



####################################################

# Checking if censored and assigning values

# Right censored = 0, event=1, left censored=2, interval censored=3

censored <- vector()

for (i in 1:lengthY){

if( yVector[i] > right ){

censored[i] <- 0

}

else if (yVector[i] < left){

censored[i] <- 2

}

else{

censored[i] <- 1

}

}

######################################################

x <- exp(yVector) # survreg using log(y) when computing

m1 <- lm(yVector~A+C+AB)

ysurv <- survreg(formula=Surv(x,censored)~A+C+AB,

dist="weibull", init=coef(m1))

coeffs <- ysurv$coef

a <- coeffs[2]; c <- coeffs[3]; ab <- coeffs[4]

mu <- coeffs[1] + A*a + C*c + AB*ab

alpha1 <- ( 1/ysurv$scale) # Shape parameter

theta1 <- (exp(coeffs[1])) # Scale parameter

sigma <- 1/alpha1

if(all(is.na(coeffs)==FALSE)){

stderror <- summary(ysurv)$table[,2]

if(stderror[2] < sdupper && stderror[2] > sdlower &&

stderror[3] < sdupper && stderror[3] > sdlower &&

stderror[4] < sdupper && stderror[4] > sdlower &&

is.na(stderror[2:4])==FALSE){

#######################################################

# Matlab computing E1(right) and E1(left)

expintRight <- 0

expintLeft <- 0

setVariable(matlab, mu=mu, sigma=sigma, right=right, left=left,

expintRight=expintRight, expintLeft = expintLeft)

expintR <- evaluate(matlab,"expintRight=expint(exp((right-mu)/sigma));")



dataR <- getVariable(matlab, "expintRight")

E1right<- dataR$expintRight

expintL <- evaluate(matlab,"expintLeft=expint(exp((left-mu)/sigma));")

dataL <- getVariable(matlab, "expintLeft")

E1left <- dataL$expintLeft

######################################################

# Right censored

zr <- (right - mu)/sigma

expectedRight <- (1/(1-(1-pgumbel(-right,-mu,sigma))))

*(sigma*((zr*exp(-exp(zr))) + E1right)

+ mu*exp(-exp(zr)))

# Left censored

zl <- (left-mu)/sigma

expectedLeft <- (1/(1-pgumbel(-left,-mu,sigma)))

*(mu - emc*sigma - sigma * E1left

- mu*exp(-exp(zl)))

# Imputation if value of y is censored.

for (i in 1:lengthY){

yVector[i] <- ifelse(yVector[i] < left,

expectedLeft[i], yVector[i])

yVector[i] <- ifelse(yVector[i] > right,

expectedRight[i], yVector[i])

}

if(any(is.na(yVector))==FALSE &&

any(is.infinite(yVector))==FALSE){

######################################################

lmSIml <- lm(yVector~A+C+AB) # Fitting the model

coeffs2 <- lmSIml$coef

a <- coeffs2[2]; c <- coeffs2[3]; ab <- coeffs2[4]

values <- c(a,c,ab)

# Saving the estimated coefficients

estimatedCoeffs[,j] <- t(values)

}

}

}

}

#####################################################

# Deleting all elements not suitable



estimatedCoeffs2 <- estimatedCoeffs[,colSums(estimatedCoeffs ==0)==0]

r <- ncol(estimatedCoeffs2) # New number of acceptable runs

############## GROSS VARIANCE ##################

# Computing variance of A

aValues <- estimatedCoeffs2[1,]

aTotal <- 0

for (i in 1:r){

error <- (aValues[i]-trueCoeffs[1])^2

aTotal <- aTotal + error

}

# Computing variance of C

cValues <- estimatedCoeffs2[2,]

cTotal <- 0

for (i in 1:r){

error <- (cValues[i]-trueCoeffs[2])^2

cTotal <- cTotal + error

}

# Computing variance of AB

abValues <- estimatedCoeffs2[3,]

abTotal <- 0

for (i in 1:r){

error <- (abValues[i]-trueCoeffs[3])^2

abTotal <- abTotal + error

}

# Computing the gross variance

GV <- (1/3)*((1/r)*aTotal + (1/r)*cTotal + (1/r) * abTotal)

print(GV)

Multiple imputation using the quick and dirty method

The R code for multiple imputation using the quick and dirty method for right
censoring at 2.0 and σ = 0.3.

A <- c(-1, 1,-1, 1,-1, 1,-1, 1)

C <- c(-1,-1,-1,-1, 1, 1, 1, 1)

AB <- c( 1,-1,-1, 1, 1,-1,-1, 1)

y <- c(-1,-1,-3,1,1,1,-1,3)

n <- 100

m <- 5

trueCoeffs <- c(1,1,1)

lengthY <- length(y)



right <- 2.0 # Right censoring value

left <- - Inf # Left censoring value

estimatedCoeffs <- matrix(0,3,n)

estimatedRight <- matrix(0,1,m)

estimatedLeft <- matrix(0,1,m)

########################################################

for (j in 1:n){

#########################################################

yVector <- vector()

errorvec <- vector()

eps <- vector()

for (i in 1:lengthY){

v <- runif(1)

alpha <- 3.33 # To obtain sd

eps[i] <- log(-log(1-v)) # Epsilon

sd <- 1/alpha # Standard error

errorvec[i] <- eps[i] * sd # The error vector

yVector[i] <- y[i] + errorvec[i]

}

#####################################################

# Checking if censored and assigning values

# Right censored = 0, event=1, left censored=2, interval censored=3

censored <- vector()

for (i in 1:lengthY){

if (yVector[i] > right){

yVector[i] <- right

censored[i] <- 0

}

else if(yVector[i] < left){

yVector[i] <- left

censored[i] <- 2

}

else

censored[i] <- 1

}

######################################################

lmQD <- lm(yVector~A+C+AB) # Fitting linear model



coeffs <- lmQD$coef

a <- coeffs[2]; c <- coeffs[3]; ab <- coeffs[4]

mu <- coeffs[1] + A*a + C*c + AB*ab

sigma <- summary(lmQD)$sigma

############ Imputation starts #################

# Right censored

distR <- vector()

distInf <- vector()

for (i in 1:lengthY){

distR[i] <- 1 - pgumbel(-right,-mu[i], sigma)

distInf[i] <- 1 - pgumbel(-Inf, -mu[i],sigma)

}

for (i in 1:lengthY){

if(censored[i]==0){

for (s in 1:m){

Uright <- runif(1)

Vright <- distR[i] + (distInf[i] - distR[i])*Uright

Yright <- mu[i] + sigma * log(-log(1-Vright))

estimatedRight[,s] <- t(Yright)

}

if(censored[i] == 0){

yVector[i] <- mean(estimatedRight) # Imputing if censored

}

}

# Left censored

distL <- vector()

distminusInf <- vector()

for (i in 1:lengthY){

distL[i] <- 1 - pgumbel(-left,-mu[i], sigma)

distminusInf[i] <- 1- pgumbel(Inf, -mu[i], sigma)

}

for ( i in 1:lengthY){

if (censored[i]==2){

for (s in 1:m){

Uleft <- runif(1)

Vleft <- distminusInf[i] + (distL[i]- distminusInf[i])*Uleft

Yleft <- mu[i] + sigma * log(-log(1-Vleft))

estimatedLeft[,s] <- t(Yleft)

}

if(censored[i] == 2){

yVector[i] <- mean(estimatedLeft)

}

}

}

}



###################################################

# Computing regression coefficients with multiple imputation

# replacing censored values.

lmQD2 <- lm(yVector~A+C+AB) # Fitting the model

coeffs2 <- lmQD2$coef

a <- coeffs2[2]; c <- coeffs2[3]; ab <- coeffs2[4]

values <- c(a,c,ab)

# Saving the estimated coefficients

estimatedCoeffs[,j] <- t(values)

} # j loop ends

############### GROSS VARIANCE ####################

# Computing variance of A

aValues <- estimatedCoeffs[1,]

aTotal <- 0

for (i in 1:n){

error <- (aValues[i]-trueCoeffs[1])^2

aTotal <- aTotal + error

}

# Computing variance of C

cValues <- estimatedCoeffs[2,]

cTotal <- 0

for (i in 1:n){

error <- (cValues[i]-trueCoeffs[2])^2

cTotal <- cTotal + error

}

# Computing variance of AB

abValues <- estimatedCoeffs[3,]

abTotal <- 0

for (i in 1:n){

error <- (abValues[i]-trueCoeffs[3])^2

abTotal <- abTotal + error

}

# Computing the gross variance

GV <- (1/3)*((1/n)*aTotal + (1/n)*cTotal + (1/n) * abTotal)

print(GV)



Multiple imputation using maximum likelihood estimation

The R code for multiple imputation using maximum likelihood estimation for right
censoring at 2.0 and σ = 0.3.

A <- c(-1, 1,-1, 1,-1, 1,-1, 1)

C <- c(-1,-1,-1,-1, 1, 1, 1, 1)

AB <- c( 1,-1,-1, 1, 1,-1,-1, 1)

y <- c(-1,-1,-3,1,1,1,-1,3)

n <- 100

m <- 5

trueCoeffs <- c(1,1,1)

lengthY <- length(y)

right <- 2.0 # Right censoring value

left <- - Inf # Left censoring value

sdupper <- 0.5095169

sdlower <- 0.02353152

estimatedCoeffs <- matrix(0,3,n)

estimatedRight <- matrix(0,1,m)

estimatedLeft <- matrix(0,1,m)

#####################################################

for (j in 1:n){

######################################################

yVector <- vector()

errorvec <- vector()

eps <- vector()

for (i in 1:lengthY){

v <- runif(1)

alpha <- 3.33 # To obtain sd

eps[i] <- log(-log(1-v)) # Epsilon

sd <- 1/alpha # Standard error

errorvec[i] <- eps[i] * sd # The error vector

yVector[i] <- y[i] + errorvec[i]

}

#######################################################

# Checking if censored and assigning values

# Right censored = 0, event=1, left censored=2, interval censored=3

censored <- vector()

for (i in 1:lengthY){



if( yVector[i] > right ){

censored[i] <- 0

}

else if (yVector[i] < left){

censored[i] <- 2

}

else{

censored[i] <- 1

}

}

#########################################################

x <- exp(yVector) # survreg using log(y) when computing.

m1 <- lm(yVector~A+C+AB)

ysurv <- survreg(formula=Surv(x,censored)~A+C+AB,

dist="weibull", init=coef(m1))

coeffs <- ysurv$coef

a <- coeffs[2]; c <- coeffs[3]; ab <- coeffs[4]

mu <- coeffs[1] + A*a + C*c + AB*ab

alpha1 <- ( 1/ysurv$scale) # Shape parameter

theta1 <- (exp(coeffs[1])) # Scale parameter

sigma <- 1/alpha1

if(all(is.na(coeffs)==FALSE)){

stderror <- summary(ysurv)$table[,2]

if(stderror[2] < sdupper && stderror[2] > sdlower &&

stderror[3] < sdupper && stderror[3] > sdlower &&

stderror[4] < sdupper && stderror[4] > sdlower &&

is.na(stderror[2:4])==FALSE){

############## Imputation starts ###############

# Right censored

distR <- vector()

distInf <- vector()

for (i in 1:lengthY){

distR[i] <- 1 - pgumbel(-right,-mu[i],sigma)

distInf[i] <- 1-pgumbel(-Inf, -mu[i], sigma)

}

for (i in 1:lengthY){

if(censored[i]==0){

for (s in 1:m){

Uright <- runif(1)

Vright <- distR[i] + (distInf[i] -distR[i])*Uright

Yright <- mu[i] + sigma * log(-log(1-Vright))

estimatedRight[,s] <- t(Yright)



}

if(censored[i] == 0){

yVector[i] <- mean(estimatedRight)

}

}

}

# Left censored

distL <- vector()

distminusInf <- vector()

for (i in 1:lengthY){

distL[i] <- 1 - pgumbel(-left,-mu[i],sigma)

distminusInf[i] <- 1- pgumbel(Inf, -mu[i], sigma)

}

for ( i in 1:lengthY){

if (censored[i]==2){

for (s in 1:m){

Uleft <- runif(1)

Vleft <- distminusInf[i] + (distL[i] - distminusInf[i])*Uleft

Yleft <- mu[i] + sigma * log(-log(1-Vleft))

estimatedLeft[,s] <- t(Yleft)

}

if(censored[i] == 2){

yVector[i] <- mean(estimatedLeft)

}

}

}

# Only repeating for suitable values of y

if(any(is.na(yVector))==FALSE && any(is.infinite(yVector))==FALSE){

####################################################

# Computing regression coefficients with multiple imputation

# replacing censored values.

lmMIml <- lm(yVector~A+C+AB) # Fitting the linear model

coeffs2 <- lmMIml$coef

a <- coeffs2[2]; c <- coeffs2[3]; ab <- coeffs2[4]

values <- c(a,c,ab)

estimatedCoeffs[,j] <- t(values) # Saving the estimated effects

}

}

}

}

#######################################################

# Deleting all elements not suitable



estimatedCoeffs2 <- estimatedCoeffs[,colSums(estimatedCoeffs ==0)==0]

r <- ncol(estimatedCoeffs2) # New number of acceptable runs

############### GROSS VARIANCE ##################

# Computing variance of A

aValues <- estimatedCoeffs2[1,]

aTotal <- 0

for (i in 1:r){

error <- (aValues[i]-trueCoeffs[1])^2

aTotal <- aTotal + error

}

# Computing variance of C

cValues <- estimatedCoeffs2[2,]

cTotal <- 0

for (i in 1:r){

error <- (cValues[i]-trueCoeffs[2])^2

cTotal <- cTotal + error

}

# Computing variance of AB

abValues <- estimatedCoeffs2[3,]

abTotal <- 0

for (i in 1:r){

error <- (abValues[i]-trueCoeffs[3])^2

abTotal <- abTotal + error

}

# Computing the gross variance

GV <- (1/3)*((1/r)*aTotal + (1/r)*cTotal + (1/r) * abTotal)

print(GV)
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