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Abstract
In this paper, we present an industrial case study of a batch process; the degradation effect is
fouling in heat exchangers which impedes heat transfer and fluid flow during batch production.
The degradation increases from batch to batch until the batch reactor is shut down for a scheduled
maintenance. That is, there is a periodic pattern in the batch-to-batch data as a result of the
degradation. We propose a novel data-driven modeling technique for predicting the evolution of
a batch degradation key performance indicator (KPI). This method extends existing algorithms
(based on partial least squares, PLS) for the treatment of within-batch data to the present batch-
to-batch degradation problem. An existing missing data algorithm for PLS models is employed to
predict degradation in future batches. The proposed approach is then applied to the case study, and
predicts the evolution of the fouling KPI with respect to the production planning under predefined
process operations, which is a basis for optimal scheduling of batch production and maintenance.
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1. Introduction

The performance and efficiency degradation of industrial equipment and assets is inevitable in
their life cycles. The assessment of process condition provides information of degradation, and
the following optimization of process operations is meant to mitigate the influence of degradation.
In some cases, it is necessary to shut down the plant and carry out the maintenance operation for
restoration when the degradation reaches a certain degree. Human experience-based maintenance
scheduling is not necessarily optimal on account of degradation in production along with other
physical and logistical constraints. However, optimal scheduling asks for information about future
degradation evolution. Therefore, the development of a predictive degradation model plays a
significant role in plant performance optimization in consideration of degradation effects.

A batch reactor is a multi-purpose unit operation that is widely used in process industry to man-
ufacture diverse products. The flexibility of batch processes is the major reason for its popularity
in the chemical industry. By using batch production plants industry can easily adapt to market
fluctuations and extend their product portfolio to react to customer needs. A multi-product batch
process runs in a finite time period. It includes several stages: the raw materials are charged and
the initial conditions are set according to the recipe; then the reaction starts and lasts for some time;
the product is transferred into a storage tank and the product final quality variables are recorded
at the end of this batch. During the batch running period, the process variables such as temper-
ature, pressure, etc. are measured in real-time, and their profiles are called trajectories. These
trajectory data are presented in three-way form with time t = 1,2, ..,T , variable k = 1,2, ...,K



2 O. Wu et al.

and batch n = 1,2, ...,N, while the initial condition variables and the final quality variables are
in two-way form with batch n = 1,2, ...,N and variable k = 1,2, ...,K (Nomikos and MacGregor,
1994). In comparison with continuous processes, monitoring, control and optimization of batch
processes are more challenging. These challenges arise from the problems that are associated with
batch processes: absence of steady state (wide operating range) and presence of constraints, irre-
versible behavior, repetitive nature (Bonvin et al., 2006). In the presented case study, the reaction
heat is removed by pumping the reactant through the heat exchangers, and the fouling in the heat
exchangers impedes the fluid flow and leads to the increase of the pressure drop across the heat
exchanger during the reaction period. As a result, the pressure drop is chosen as a fouling indicator
for the heat exchanger (see figure 1). However, the contribution of the fouling towards the real-
time pressure drop measurement is hidden and the increasing trend of fouling is masked within
the individual batch duration, which results from the variant batch operation conditions. To deal
with this problem, the pressure drop measured under selected operation conditions (at the start of
the reaction) is considered as the fouling KPI for each individual batch as figure 1 illustrates. The
fouling evolution from batch to batch is then indicated by the batch fouling KPIs.

Figure 1: Fouling indication by the pressure drop
across the heat exchanger

As for the degradation prediction in contin-
uous process, a variety of degradation ex-
amples using different data-driven modeling
approaches (such as support vector machine,
neural network, etc.) are found in literature
(Sun et al., 2008; Aminian and Shahhosseini,
2008; Riverol and Napolitano, 2005). Due to
the discrete characteristic of the degradation
KPI in batch processes, these approaches do
not deal well with the multi-dimension batch
data structure. On the other hand, the mul-
tiway approach was proposed to solve batch
data structure problems by transforming three-dimension data into batch-wise unfolded data, and
the multiway PLS approach is then employed in the within-batch modeling to predict the final
quality of the individual batches (Nomikos and MacGregor, 1994; Garcı́a-Muñoz et al., 2003;
Wold et al., 2010). As to degradation in batch production, unlike final quality variables barely
affected by previous batches, degradation grows from batch to batch. Moreover, degradation pre-
diction usually means to predict degradation evolution in next N batches, and the time horizon
for prediction can be longer than one month, while the application of the multiway PLS approach
using the within-batch model is only available to predict the final degradation in a single batch.

In this paper, a novel data structure called “campaign” is proposed for the analysis of degradation
evolution from batch to batch. A data-driven model is developed based on the unfolded campaign
data. Finally, an application of the PLS method and its missing data estimation algorithm enable
the prediction of degradation evolution. The paper structure is presented as follows: the proposed
approach details are presented in Section 2; the corresponding application on the case study and
its results are showing in Section 3; finally, Section 4 draws the conclusions.

2. Method

2.1. The campaign concept in batch processes

In some cases, the batch degradation KPI presents periodic nature as maintenance is carried out
to restore its degradation state regularly (see Figure 2). The figure shows the evolution of the
fouling KPI in the heat exchanger. Each point represents the fouling degree in an individual batch,
and the color and symbol together denote the batch product type from P1 to P9. The product
order is planned ahead of time and flexible to modify as necessary. The period between two
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Figure 2: Heat exchanger fouling evolution in batch process and campaigns

maintenance operations is named campaign, which contains a series of batches. The idea of the
campaign concept is to capture the dynamics of the degradation evolution. To make effective use
of campaign data, further data structure analysis is necessary. The structure of campaign data
includes individual batch data firstly, where batch trajectory data have three dimensions: batch,
time and variable. Secondly, campaign is a “batch” consisting of a series of batches connected by
the degradation evolution.

2.2. Campaign PLS approach and campaign data unfolding method

As one campaign consists of a series of batches, the campaign data structure has four dimensions
(campaign, batch, variable and time). The modeling approaches for continuous processes are
not applicable to the multi-dimension campaign process, and it requires an unfolding method to
transform the multi-dimension campaign data into two-dimension data . In the multiway analysis,
the batch-wise unfolding method is developed to transform the three-dimension batch data into
two-dimension unfolded data: batch data are extracted horizontally in a time-wise fashion and
each batch becomes a single row of data (Nomikos and MacGregor, 1994; Garcı́a-Muñoz et al.,
2003; Wold et al., 2010):

Xm
batch = [xi1,xi2, ...,xiki,xt1

1 ,xt1
2 , ...,xt1

T ,xt2
1 ,xt2

2 , ...,xt2
T , ...,xtkt

1 ,xtkt
2 , ...,xtkt

T ] (1)

where, Xm
batch is the unfolded batch data of the mth batch, which includes initial conditions and un-

folded trajectories: the initial condition variables xik, k = 1,2, ...ki is the index of initial condition
variables; trajectory data xtk

t , k = 1,2, ...,kt is the index of trajectory variables, t = 1,2, ...,T is the
time index in a single batch.

In a similar methodology, a campaign unfolding method is proposed to obtain 2-dimension un-
folded campaign data. The variable and time dimensions are unfolded firstly to obtain the unfolded
batch data Xm

batch using the batch-wise unfolding method. Then the three-dimension campaign
data is unfolded as Figure 3 illustrates, where the campaign data are extracted horizontally in a
batch-wise fashion and each campaign becomes a single row of different unfolded batch data. For
simplicity, unfolded batch data are presented with the index k = 1,2, ...,K. Further, the unfolded
campaign data are employed for the degradation modeling. To build a degradation model based on
campaign data, the outputs are the evolution of degradation KPIs, and the inputs are the unfolded
campaign data which contain control and process information of a single campaign.

In this section, PLS is employed for the campaign-based degradation modeling due to its advantage
in dealing with a large number of correlated predictor variables and avoiding over-fitting problem.
In PLS, the highly correlated data in the input and output space are modeled separately with
orthogonal principal components based on multivariate statistical projection, and linear regression
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Figure 3: Campaign data structure and unfolding method

is employed on those dimension-reduced principal components (Geladi and Kowalski, 1986; Abdi,
2010). The campaign-based PLS model is:

Xn =TnPT +En, Xn = [Xn
1 ,X
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2 , ...,X
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2 , .., .x

m
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Yn =TnCT +Fn, Yn = [yn
1,y
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M]

(2)

where, Xn ∈ R1×M(k1+k2) is the nth unfolded campaign; the mth unfolded batch data from the
nth campaign Xn

m ∈ R1×(k1+k2) are divided into manipulated data zm
k , k = 1,2, ...,k2 and process

data xm
k ,k = 1,2, ...,k1, while k is the corresponding index; the output Yn ∈ R1×M is a series of

degradation KPI in a campaign, and the element yn
m is the degradation KPI of mth batch in nth

campaign; Tn ∈ R1×L is the score of the nth campaign projecting on the principal component,
while L is the dimension; P∈RM(k1+k2)×L and C ∈RM×L are the model parameters, called loading
matrix, which can be estimated through the NIPALS algorithm (Geladi and Kowalski, 1986).

The campaign-based PLS model can be used to estimate the evolution of batch degradation from
the known input observations (historical process data and the manipulated data). In the batch foul-
ing example, the manipulated data are exclusively the production planning, that is, the planned pro-
duction schedule shows which products are going to be produced and the production order. Given
the current batch K, the known data X∗n are {Xn

1:K ,z
K+1:M
1:k2 }, and missing data X#

n are {xK+1:M
1:k1

}.
The future batch degradation indicators of interest are {yn

K+1:M}. The missing data estimation
approaches for PLS models such as the trimmed sore regression (TSR) are meant to provide esti-
mation of final score T̂n with the known samples X∗n (the information update to K), and then output
Ŷn is calculated from the estimated score T̂n. TSR algorithm is proved to be effective in multiway
PLS applications (Arteaga and Ferrer, 2002; Nelson et al., 1996; Keivan Rahimi-Adli, 2016).

3. Case study

3.1. Case study description

The case study presents an example of heat exchanger fouling in a polymerization batch process
(see the process schematic in Figure 4). This batch process produces multiple water and paper
treatment chemicals. The polymerization starts when initiators are added into monomer emulsion
in the reactor. The recirculation system works during the reaction, and two parallel heat exchangers
help to cool down the reactor. The emulsion flow results in polymer residues depositing in the
reactor and the heat exchangers. The fouling in heat exchanger impedes the flow and can even
lead to a blockage, and it also decreases the cooling efficiency and prolongs batch duration with
less production capacity. Therefore, the cleaning is required to remove the residues in the heat
exchanger after running certain number of batches. We focus on the fouling in heat exchangers as
it is the short-board of the process.
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3.2. Multi-product effects on fouling KPIs

Figure 4: Case study process schematic

Multiple products in batch process add more
complexity to degradation prediction. Differ-
ent products mean different batch recipes, such
as ratios of raw materials, additives and oper-
ation conditions, which results in disturbances
to fouling KPIs. In figure 2, the fouling KPIs
from batch to batch show an increasing trend
between two cleanings, especially for the same
product type. KPIs with different product type
show some biases among them, for example,
the green KPIs are relatively larger than the
blue KPIs. This is not due to fouling evolution,
and it brings more disturbances in degradation
modeling. To avoid this, the product biases are
calculated by comparing KPIs to some fitted
curves of the main product KPIs (P6), and the
bias correction is carried out by adding the product-based biases to the KPIs (see the smoothed
KPIs in Figure 5).

3.3. Results

Figure 5: Bias corrected fouling indicators

The factors that contribute to fouling evolu-
tion in heat exchangers include the product
recipes and trajectory process variables like
temperature, pressure, flowrate, etc. The pres-
sure drop across the heat exchanger is em-
ployed as a batch fouling KPI, and the multi-
product biases are excluded to obtain smooth
increasing fouling KPIs with less disturbances.
To model the fouling KPI evolution in the
heat exchanger, the unfolded campaign data
is obtained using the proposed method. An
equally long campaign is a perquisite for the
PLS model, hence the last 30 batches of one
cleaning period are collected as one campaign,
which includes the dynamics of the fouling
evolution. The collected historical data for
modeling includes 20 campaigns. 23 input variables are selected from the unfolded batch data,
which are production planning variables, landmarks of trajectory data and batch quality data (Wold
et al., 2010). The output vector for each campaign includes 30 batch fouling KPIs. The unfolded
campaign data X has a row of 460 input variables. The heat exchanger fouling campaign PLS
model is developed based on the historical data (20 campaigns), where several campaigns are ex-
cluded for cross validation purpose. Based on this model, we can predict fouling evolution in
upcoming campaigns of batches by using the missing data estimation method TSR as explained
above. We illustrate this using two campaign examples in Figure 6, where three predictions are
given using the data up to different stages of the campaign, and compared to the actual fouling
KPIs. The first case is K=1, which means given observation data up to Batch 1 and the production
planning for the whole campaign, one needs to predict the fouling evolution in the remaining 29
batches. Similar for K=10 and K=20. The fouling KPI predictions in Figure 6 follow the actual
KPIs with a smooth increasing curve.
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Figure 6: Two fouling KPIs campaign predictions: given information up to Batch K = 1,10,20

4. Conclusions
This paper focuses on degradation prediction for batch processes with heat exchanger fouling as
the case study. To solve the degradation prediction problem, a new “campaign” concept is pro-
posed to structure the batch degradation evolution. Furthermore, an unfolding method is proposed
to transform the four-dimension data into two-dimension unfolded campaign data for PLS mod-
eling. The campaign-based PLS approach is then applied in the case study, and the missing data
estimation method TSR is employed for the degradation prediction. The validation result illus-
trates the effectiveness of the proposed campaign PLS approach in predicting heat exchanger foul-
ing evolution, and this fouling predictions can provide further information for better production
scheduling and maintenance planning.
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