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Introduction
Classical diagnosis of gastrointestinal disorders is uncomfortable for the patient, time-
consuming for the medical staff, and expensive for the health care system. The irritable 
bowel syndrome, for example, affects up to 16% of the population in the United States 
and results in costs of $1 billion [1]. Diagnosing gastrointestinal disorders based on man-
ual auscultation is not only time-consuming but also prone to error [2]. This not only 
increases the health care expenditure but also prolongs the discomfort for the patients. 
It has also been shown that a dysfunctional digestion correlates with psychological ill-
being [3].

Non-invasive monitoring of abdominal sounds by a microphone attached to 
the abdomen is cheap, and more convenient for both the patients and the medical 
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practitioners alike. The recordings can be analyzed by computer programs. Com-
puterized analysis of abdominal recordings could, for example, help differentiating 
between the irritable bowel syndrome and Crohn’s disease [4]. The assessment of gas-
trointestinal motility after major abdominal surgery is another area of application [5]. 
Recently, abdominal sound monitoring has also been suggested for meal detection in 
the context of an artificial pancreas [6].

In order to utilize abdominal sound monitoring for such analyses, bowel sounds 
must be separated from background noise. This paper proposes a data driven filtering 
method that enhances bowel sounds by removing noise and typical artifacts.

Paper organization

The paper is organized as follows: In the Background section, bowel sounds are char-
acterized and the processing of abdominal sound recordings that are contaminated by 
artifacts are outlined. Furthermore, empirical mode decomposition and its advantages 
are introduced. The next section describes the setup of the data recording. Afterward, 
the proposed  method is explained and illustrated by one exemplary recording seg-
ment. Results are reported by means of chosen details to emphasize particular prop-
erties of the method and in summary for all tested segments. Following this, the work 
is discussed and concluded.

Background
Characterization of bowel sounds

Bowel sounds are non-stationary, transient events. Two main types of bowel sounds 
can be differentiated: (a) clicks of short duration occurring alone or in sequence, (b) 
clusters of (non-differentiable) bursts of longer duration, e.g. [7]. Figure  1 depicts 
both types. The typical frequency range of bowel sounds lies between 50 and 1500 Hz 
[8–10]. Single studies report maximum frequencies of up to 3000 Hz [11] or 5000 Hz 
[12]. However, the power of the signal above 1500  Hz is rather small [11]. A more 
recent study confirmed that only 0.5% of the signal’s power spectrum density occurs 
at frequencies above 1000 Hz [13]. The same study revealed that the largest part of the 
power spectrum density of abdominal sounds is located between 100 Hz and 500 Hz 
[13].

0 2 4 6 8 10
Time (s)

-0.3

0

0.3

O
rig

in
al

 s
ig

na
l

 (a
rb

. u
ni

t)

cluster cluster succession

Fig. 1  Bowel sounds in clusters and as sparse succession. The raw signal has been processed by a high pass 
Butterworth filter with a cut-off frequency of 50 Hz to enhance the visibility of bowel sounds in this figure
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Processing contaminated abdominal sound

Artifacts contaminate sound recordings, and their elimination is challenging since the 
frequency range of typical artifacts, such as from swishing clothes, is the same as that 
of bowel sounds [13]. For artifact elimination, heuristic rules concerning the duration 
and energy content of identified sounds have been applied [13]. Statistical separation of 
bowel sounds and artifacts by means of neural networks has also been suggested [14].

Besides thresholding of the raw audio signal [14] or its envelope [11], mainly wave-
let-based methods have been proposed to amplify and extract bowel sounds from back-
ground noise. The idea of thresholding the wavelet coefficients proved useful [15] and 
was further refined [16]. In a different approach, the fractal dimensions of the raw signal 
were investigated [17]. These two methods have been combined later to using the fractal 
dimensions of the wavelet coefficients for bowel sound amplification [18].

Empirical mode decomposition

The complexity and the non-stationary nature of bowel sound signals require special 
attention and care. An important limitation of wavelet based methods is the predefini-
tion of the basis function used for the decomposition. An adaptive data driven analysis 
technique, called empirical mode decomposition (EMD) [19], and its variants are finding 
their ways in a number of technological areas owing to its peculiar properties. In bio-
medical data processing, it has been applied to electroencephalography (EEG) signals 
[20] and foetal heart rates [21]. The EMD process decomposes the signal into modes 
called intrinsic mode functions (IMFs). Unlike the wavelet decomposition, the EMD 
basis functions (the IMFs) are calculated from the data itself. An important property of 
the EMD is the dyadic filter bank property by virtue of which it behaves as a series of 
band pass filters [20].

This paper utilizes the filter bank property of the EMD to detect bowel sounds. After 
decomposing the signal into intrinsic mode functions, their fractal dimension (FD) is 
used as criterion for selecting the information-carrying IMFs. By this novel combination 
of EMD and FD analysis, both the background noise is reduced and single bowel sounds 
are segmented.

Experimental setup
Recording

A condenser microphone of type Sennheiser MKE2 P-C was fixed in the center of 
the chest-piece of a classical stethoscope. Medical tape was used to attach this modi-
fied chest-piece in the upper right quadrant of the abdomen. The audio signals were 
recorded with a sampling frequency of 32000 Hz and a resolution of 24-bit using a the 
digital audio recorder 722 (Sound Devices LLC, Reedsburg, Wisconsin, US).

The Regional Ethical Committee Central approved this pilot study, REK midt 
2018/2028. Ten volunteers were enrolled that reported themselves as healthy with 
respect to gastrointestinal functions. One recording was generated for each of the ten 
subjects. During the 90  min-recording sessions, the subjects remained silently seated 
in a reclined position with elevated legs and refrained from movements as much as 
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possible. The lunch meals were positioned at an easily reachable distance from the sub-
ject. As Fig. 2 illustrates, the subjects were fasting in the first 30 min of the experiment. 
After this fasting interval, the subjects ate for a maximum of 15 min.

Pre‑processing

The raw signals were down-sampled to a frequency of 4000 Hz using a Chebyshev Type 
I IIR filter of order 8 by means of Matlab’s built-in function decimate. This acceler-
ated the processing without loss of information since the maximum frequency of bowel 
sounds is not higher than 1000 Hz as discussed earlier.

Data exclusion

Two of the ten recordings were excluded: One recording contained almost no variations 
or audible sounds, respectively. This could be caused by poor contact between the skin 
and the microphone. The other recording was excluded because of very severe contami-
nation with background noise, originating possibly from electrical interference.

Segmentation and labeling of test set

A test set with labeled bowel sounds was generated to test the proposed method. From 
the eight included recordings, 10 segments, each with a duration of 10 s, were extracted. 
In particular, two successive segments were extracted 15, 25, 35, 45, and 55 min after 
the beginning of each recording (15:00–15:10, 15:10–15:20, 25:00–25:10, 25:10–25:20, 
35:00–35:10, 35:10–35:20, 45:00–45:10, 45:10–45:20, 55:00–55:10, 55:10–55:20). This 
distribution was chosen to include both the fasting and the digesting state.

Bowel sounds in these eighty 10 s-segments were identified by audio-visual examination 
using version 2.1.0 of Audacity® [22], labeled and exported as text-files. The labels were 
imported into Matlab and compared with the bowel sounds that were identified by the 
intrinsic mode function-fractal dimension (IMF-FD) method described in the following.

Methods
The proposed filtering method was developed using data from one additional subject 
not part of the eight subjects in the test set. The method is illustrated in the following on 
the basis of the segment shown in Fig. 1.

Multivariate empirical mode decomposition (MEMD)

The empirical mode decomposition (EMD) is an iterative, data driven decomposition 
method. Central to the EMD are the intrinsic mode functions (IMFs) which have zero 
mean and a number of extrema and zero crossings that differ at most by one. The IMFs 
are adaptively sifted out from a univariate signal beginning with the fast frequency 

Fig. 2  Protocol of recording sessions
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components. Cubic splines are fitted as envelopes through local extrema. The local 
means of these envelopes describe the low frequency components. The local fast com-
ponents are obtained by subtracting the local means from the signal. This is repeated on 
the identified local fast components until the remaining fast components comply with 
the above definition of an IMF. The residue of the original signal and the IMF is itera-
tively processed in the same way until no further IMF can be extracted from the residual. 
By adding all M IMFs and the residue res(t) , the original signal x(t) can be obtained [19]:

The multivariate EMD (MEMD) is an extension of the EMD to multivariate signals. 
The noise-assisted version of the MEMD reduces mode mixing within IMFs of a single 
channel [20]. Therefore, the mono-variate signal is converted to a multivariate signal by 
adding two channels of white noise before it is decomposed by an MEMD. The IMFs 
corresponding to the noise channels are then discarded before further processing. Fig-
ure 3 shows the IMFs after decomposing the signal in Fig. 1 using MEMD. The first eight 
IMFs clearly resemble the sonic events in the original signal by larger amplitudes.

An IMF represents one mode of oscillation without riding waves. Non-stationarities in 
the decomposed signal result in amplitude- and frequency-modulated IMFs. The instan-
taneous frequencies (IF) can therefore change within one IMF. Figure 4 shows the IFs 
of the first four IMFs in Fig.  3. A spike in these signals represents abruptly changing 

(1)x(t) =

M
∑

m=1

IMFm(t)+ res(t) .

Fig. 3  Original signal (same as in Fig. 1) and its decomposition into IMFs by applying MEMD. All M IMFs are 
individually scaled to the range max(|IMF|) · [−0.1, 0.1]
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frequencies in the underlying IMF. The IFs of the first IMFs fluctuate heavily. At times 
with sonic events, e.g. from 2.5 s to 3.2 s, IF2 fluctuates less. Comparing IF2 with its IMF 
in Fig. 3, one can see that IMF2 has large amplitudes at sonic events such as between 
2.5  s and 3.2  s, but is close to zero otherwise. The heavy fluctuations of IF2 can be 
accredited to noisy components.

Dyadic filter bank property of MEMD

An important property of MEMD is its filter bank property, where it behaves as a series 
of band pass filters [20]. This dyadic filter bank property is illustrated in Fig. 5a. Each 
marker represents the instantaneous amplitude of the instantaneous frequency at one 
time instance of one IMF. The spectrum of an IMF is not a sharp peak at a single fre-
quency but spreads over a range of frequencies. The spectra of successive IMFs are 
overlapping.

The spectra of the first eight IMFs in Fig. 5a are plotted as histograms in Fig. 5b. The 
histograms show the rate of occurrence of each frequency; information of the amplitude 
is omitted. IMF1 has a wide frequency distribution with no distinct peak. Moreover, the 
plateau appears between 1000 and 1600 Hz, and thus, at frequencies outside the range 
of bowel sounds. All together, this IMF seems to contain mostly noise or spurious com-
ponents. With an increasing IMF index, the spectra are shifted to lower frequencies and 
show more distinct peaks.

IMF‑FD filter to enhance bowel sounds

Selecting information‑carrying IMFs based on their fractal dimension

As we saw in Fig. 3, some IMFs mirror the variations of the original signal more than 
others: changes in IMFs 1–8 correlate with the sonic events in the original signal, 
whereas the other IMFs have no obvious relation to the sounds.

The complexity of a waveform signal can be described by its fractal dimension. For 
identification of bowel sounds, fractal dimension analysis has been applied directly to 
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Fig. 4  Original signal (same as in Fig. 1) and instantaneous frequencies (IFs) of the first four IMFs in Fig. 3. The 
first five seconds are shown. Vertical dashed lines indicate the discussed sonic event from 2.5–3.2 s
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the sound signal [17] and to coefficients of the wavelet transform [18], respectively. 
Inspired by the latter, we analyze the fractal dimension of a K-sample signal in sliding 
windows of length WL = 0.0006 · Fs + 1 , with Fs being the sampling frequency. The 
K −WL + 1 windows are shifted by one sample, and the FD values are assigned to the 
centers of these windows.
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Fig. 5  Spectral distribution of the IMFs (distribution of instantaneous frequencies) in Fig. 3. a Spectral 
distribution of the first eight IMFs in Fig. 3 illustrating the dyadic filter bank property of MEMD. b Histograms 
with 200 bins of the spectra of the first eight IMFs in Fig. 3
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For each IMF, the fractal dimension is approximated in the K −WL + 1 windows using 
the definition by Sevcik [23]:

where WL is the length of the window, and Lc is the sum of Euclidean distances between 
successive signal samples li:

Figure 6 presents the sliding FDs of the IMFs in Fig. 3. If the signal was flat in a window 
with 25 samples ( WL = 25 ) and a sampling rate of Fs = 4000 Hz, it would have the mini-
mum FD:

(2)FD = 1+
ln Lc

ln [2 · (WL − 1)]
,

(3)Lc =

WL−1
∑

i=1

∥

∥li+1 − li
∥

∥ .

(4)FDmin = 1+
ln [(25− 1) · 1/4000]

ln [2 · (25− 1)]
= −0.3216 .

Fig. 6  Local fractal dimensions (FDs) of the IMFs in Fig. 3. The same scaling was applied to all FDs



Page 9 of 20Kölle et al. BioMed Eng OnLine           (2019) 18:28 

The notation FDm indicates the vector containing the local fractal dimensions of the m-
th IMF; FDm

k  is the FDm at sample k. Mean µm and standard deviation σm of FDm are 
defined as:

They are illustrated in Fig. 7 and used to measure the variation of IMFs. Those IMFs car-
rying more information about the non-stationary bowel sounds, have higher means and 
standard deviations. 

The M IMFs are sorted into the set of selected IMFs ( MS ) and the set of discarded IMFs 
( MD ). These sets are defined as:

(5)µm =
1

K

(

K
∑

k=1

FDm
k

)

,

(6)σm =

√

∑K
k=1

(

FDm
k − µm

)2

K − 1
.

(7)m ∈



















MS if µm ≥ µ(µM)+ σ(µM)

∧ σm ≥ µ(σM)+ σ(σM)

MD otherwise,
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Fig. 7  Selected IMFs. Selection of IMFs by thresholding the mean µm and standard deviation σm of the 
fractal dimensions
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where µ(µM) and σ(µM) are the mean and standard deviation of all M µm , and µ(σM) 
and σ(σM) of all M σm , respectively. The threshold on µm selects the IMFs with on aver-
age high FD. The threshold on σm ensures that IMFs with a uniformly high µm are dis-
carded as this does not coincide with transient events.

By comparing the selected IMFs (2–6) to their spectral distribution in Fig. 5b, one can 
see that the major part of their spectra belongs to the interval [100, 1000] Hz. The dis-
carded IMFs on the other hand, have higher (IMF1) and lower (from IMF7 onwards) 
centers of spectral power. Thus, the frequency range of the selected IMFs coincides with 
the frequency range of bowel sounds defined in literature, e.g. [13].

Peeling information‑carrying samples from the selected IMFs

The fractal dimension of the IMFs (IMF-FD) is also used to extract the samples that 
carry information, i.e. sonic events. Threshold-checking at each sample k is used to get 
the peeled IMFs ( pIMF):

The m-th IMF at sample k ( IMFm
k  ) is kept if the local fractal dimension of this IMF, 

shifted by FDmin , is larger than the standard deviation σm of that IMF. Figure 8 illustrates 
the peeling: The peeled IMFs have the value of the original IMFs where the IMFs carry 
information, and are zero otherwise.

This is similar to the iterative fractal dimension-peak peeling algorithm (FD-PPA) by 
Hadjileontiadis (2005) [18]. However, in the proposed IMF-FD, the information-carry-
ing parts of the IMFs are extracted directly in one step. IMF2–6 are selected in the previ-
ous subsection, and their filtered versions feature high correlation with the sonic events 
in the original signal. IMF1 is discarded even though IMF1 also correlates with the sonic 
events. This is acceptable when considering the frequency distribution (shown in Fig. 5b) 
that implies IMF1 to contain high-frequency noise. The IMFs of index 7 and higher have 
decreasing correlation with the original signal’s information that we are interested in and 
have been discarded earlier.

(8)pIMFm
k =

{

IMFm
k , if FDm

k − FDmin > σm

0, otherwise .

FD2

IMF2
pIMF2

IMF
pIMF
FD
FD threshold

Fig. 8  Illustration of peeling information-carrying samples by means of IMF2. Dotted, vertical lines indicate 
the times where FD2 exceeds its threshold. IMF and pIMF are scaled for better visibility



Page 11 of 20Kölle et al. BioMed Eng OnLine           (2019) 18:28 

Combining the peeled samples of selected IMFs

A signal that has been decomposed by an MEMD can be easily recovered by adding 
the IMFs and the residue together. By selecting specific IMFs and samples, the signal’s 
content is filtered with respect to both frequencies and time. The filtered sound signal 
results from the sum of the selected peeled IMFs (that have been processed by Eq. 8):

For our example, this is shown in Fig. 9. The filtered signal resembles the sonic events of 
the original signal, and is zero otherwise. Audible analysis of the filtered signal confirms 
that the IMF-FD method, proposed here, is suitable to enhance the bowel sounds.

Proposed method

In summary, the steps of the IMF-FD method for the enhancement of bowel sounds are:

1.	 Decompose the signal into IMFs using noise-assisted MEMD [24].
2.	 Generate the sliding-window FDs [23] of the IMFs, Eq. (2).
3.	 Calculate the mean µm and the standard deviation σm of the FDs, Eqs. (5), (6).
4.	 Select the IMFs whose µm and σm exceed thresholds, Eq. (7).
5.	 Peel the sonic events from the selected IMFs, Eq. (8).
6.	 Sum up the peeled versions of the selected IMFs, Eq. (9).

Identification of bowel sounds

The sonic events correlate with the intervals where the filtered signal is nonzero. Con-
secutive sounds separated by less than 10 ms of silence are regarded as a single sonic 

(9)yfilteredk =
∑

m∈MS

pIMFm
k .

Fig. 9  Original and filtered version of the signal in Fig. 1. IMF-FD: intrinsic mode function-based fractal 
dimension filter. Identified: identified sonic events. IMF-FD + AE: IMF-FD filter plus artifact elimination



Page 12 of 20Kölle et al. BioMed Eng OnLine           (2019) 18:28 

event. Sounds further apart from each other are counted separately. The identified sonic 
events are marked in Fig. 9.

Artifact elimination

Common artifacts occur in the same frequency range as bowel sounds. It is therefore 
likely that artifacts are among the identified sonic events. The segment used to illus-
trate the IMF-FD filter contains bowel sounds in the form of two clusters of bursts and 
a sparse succession of clicks (Fig. 1). Two exemplary segments of 10 s duration are uti-
lized to describe the artifact elimination: (1) an event of sneezing in an otherwise silent 
period; (2) a stroke, followed by a cluster of bowel sounds and then noise caused by 
movements. The stroke is probably caused by hitting the microphone. The bowel sounds 
occur at lower volume than the artifacts. The chosen segments are only moderately con-
taminated by stationary background noise.

Figure 10 presents the original signals and the filtered versions of the artifact-contam-
inated segments. The artifacts are among the identified sonic events because the most 
complex IMFs display their non-stationarity.

The absolute power differs between segments, and thus, cannot be used to differenti-
ate artifacts from bowel sounds. The power distribution of the identified sonic events is 
analyzed in the following to explore the possibility to eliminate these as artifacts. The 
instantaneous energy density level [19] is non-stationary and can be assigned to instan-
taneous frequencies.

The total power of a filtered sonic event j that is present through the samples Kj is:

i.e., the sum of the squared amplitudes A of the Hilbert-Huang spectrum over the 
selected IMFs and the samples of the identified sound. The power of an identified sound 
in a certain frequency range 

[

f , f
]

 composes the power of the selected IMFs whose 

instantaneous frequencies IF  lie within the interval at time k:

Figure 11 presents the Hilbert-Huang power spectra in the frequency range [0, 1000] Hz 
for chosen parts of the discussed segments. This illustration uses the selected, peeled 
IMFs as basis. The power of the bowel sounds in Fig. 11a is distributed over the range 
80–1000  Hz. Almost no power occurs at frequencies below 80  Hz, and the power is 
concentrated between 100 and 300 Hz. From the sneezing artifact in Fig. 11b, the IMFs 
representing frequencies above 400 Hz remain after filtering. The selected IMFs of the 
artifacts caused by stroke and movement (Fig.  11c, d) contain frequency components 
in the whole presented range. However, they have more power below 100 Hz compared 
with the bowel sounds in Fig. 11a.

Based on these observations, the following differentiating power ratios Rj are derived 
as heuristic rules for artifact elimination:

(10)P
j
tot =

∑

k∈Kj

∑

m∈MS

(

Am
k

)2
,

(11)P
j
[

f ,f
] =

∑

k∈Kj

∑

m∈MS

(

Am
k (f < IF < f )

)2
.
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A sonic event j is identified as artifact and eliminated if:

1.	 The duration is shorter than 20 ms,
2.	 Rj

0−80
80−1000

> 0.5,

3.	 Rj
100−300
300−1000

< 0.5.

(12)R
j
0−80

80−1000

=
P
j
[0,80]

P
j
[80,1000]

,

(13)R
j
100−300
300−1000

=
P
j
[100,300]

P
j
[300,1000]

.
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Time (seconds)

IMF-FD
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(a)

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

IMF-FD
 + AE

IMF-FD

Original
 signal
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Fig. 10  Filtering and artifact elimination. Original and filtered versions of signals contaminated by artifacts. 
IMF-FD: intrinsic mode function-based fractal dimension filter. IMF-FD + AE: IMF-FD filter plus artifact 
elimination. a Sneezing artifact. b Stroke artifact (0.8–1 s), bowel sound (2–3 s), movement artifact (6.5–9.5 s)
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Figure 10 summarizes the results of the artifact elimination for the contaminated seg-
ments: the main artifacts are kept by the IMF-FD filtering, but they are removed after 
artifact elimination (IMF-FD + AE). The bowel sounds in Fig. 10b between 2.3 and 5 s 
are preserved nevertheless. The bottom signal (IMF-FD + AE) in Fig. 9 illustrates that 
the elimination procedure keeps the bowel sounds also in this example.

Wavelet‑based methods used for comparison

Two filters that enhance bowel sounds based on wavelet transforms are used for com-
parison: the wavelet transform-based stationary-nonstationary (WTST-NST) filter [15] 
and the wavelet transform-based fractal dimension (WT-FD) filter [18].

For both WT-filters, the wavelet decomposition is generated with the Matlab function 
wavedec using Daubechies wavelets of order 8.

The WTST-NST filter is used with the accuracy levels reported by [15]: parameters 
Fadj = 3 , ǫ = 0.00001 . To ensure freedom of boundary effects, however, the resolution 
scale is restricted to one level less than the maximum level of wavelet decomposition 
calculated by means of the Matlab function wmaxlev.

The WT-FD filter is implemented with the fractal dimension according to Sevcik 
[23], a sliding window size of WL = 0.0006 · Fs + 1 , and the parameters ǫ = 0.01 
and acc = 0.01 for the stopping criterion and the accuracy level of the peak peeling 
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Fig. 11  Hilbert-Huang power spectra of selected pIMFs for chosen parts of the examples and power 
distribution. a Cluster of bowel sounds in Fig. 9 (0.7–1.5 s). b Sneezing artifact in Fig. 10a (5.1–5.5 s). c Stroke 
artifact in Fig. 10b (0.82–0.92 s). d Movement artifact in Fig. 10b (6.5–9.5 s)
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algorithm, respectively. These tuning parameters are based on the original publication 
[25]. In order to analyze the fractal dimension of one-sample shifted vectors of length 
N in the WT-FD filter, the length of the sliding windows should be WL << N  [18]. 
The lowest ratio N/WL in [25] is 34 (for the shortest signals with 2048 samples, fixed 
sliding window length WL = 30 , and fixed resolution scale M = 1 ). Based on that, 
the maximum resolution scale is M = 5 corresponding to a minimum ratio N/WL 
of around 50 (for the signals with 40,000 samples, a  fixed sliding window length 
WL = 25 , and a fixed resolution scale M = 5).

Results
Qualitative comparison of IMF‑FD filter and wavelet‑based methods

The training examples were only moderately contaminated by background noise. 
A part of a more severely contaminated segment is presented in Fig.  12. Figure  12 
compares the IMF-FD, WTST-NST and WT-FD filters. All filters successfully extract 
the instances of the signal with higher local frequencies. The WTST-NST preserves 
modes with lower frequency that are removed by the other two filters. An important 
advantage of the proposed IMF-FD method is that it results in a zero signal except for 
the locations of sonic events. This enables a more robust and automated identification 
of sonic events. Neither WTST-NST nor WT-FD allow such an easy identification of 
relevant events but rather require further thresholds at this stage.

Figure 13 reinforces the strength of the IMF-FD filter in enhancing the most promi-
nent non-stationary sonic events with frequency variations. This figure presents 
a segment without bowel sounds but with other non-stationary events. The events 
are dampened significantly by the WT-FD method, but still present after filtering by 
WTST-NST  and IMF-FD. However, all falsely identified events are removed after 
processing the IMF-FD filtered events by the proposed artifact elimination.

4.1 4.2 4.3 4.4 4.5 4.6
Time (seconds)

IMF-FD

WT-FD

WTST-NST

Original
 signal

Fig. 12  Original and variously filtered signals. WTST-NST: wavelet transform-based stationary-nonstationary 
filter [15]. WT-FD: wavelet transform-based fractal dimension filter [18]. IMF-FD: intrinsic mode function-based 
fractal dimension filter
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Identification of bowel sounds and artifact elimination in test set

The IMF-FD filter with subsequent artifact elimination was applied to the test set. 
Detected sonic events were compared to the labeled bowel sounds.

Sonic events in the test set with 80 segments were identified using the IMF-FD fil-
ter and compared to the labeled bowel sounds. Figure 14 summarizes the results: Each 
marker indicates the rate of true positive (TP) detections to the number of false positive 
(FP) detections for one segment. If one labeled BS is identified as several BS, it is counted 
as a single TP. If a segment contains no labeled bowel sounds, the TP rate (number of TP 
BS divided by number of labeled BS) was set to 100%. This applies to 44 segments. Tak-
ing this into account, all labeled bowel sounds are identified in 75 of the 80 analyzed 
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Fig. 13  Example of a segment without bowel sounds but other non-stationary artifacts. Original and 
variously filtered signals. WTST-NST: wavelet transform-based stationary-nonstationary filter [15]. WT-FD: 
wavelet transform-based fractal dimension filter [18]. IMF-FD: intrinsic mode function-based fractal dimension 
filter; IMF-FD + AE: IMF-FD filter plus artifact elimination
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Fig. 14  True positive (TP) rate vs. false positive (FP) detections per segment for the 80 segments in the test 
set
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segments. In the remaining five segments, 67% to 86% of the labeled bowel sounds are 
identified. The sensitivity to bowel sounds is high, but there are also artifacts identified: 
The number of FPs lies between 0 and 220 per segment, mean (std) = 63.8 (40.4). High 
numbers of FPs occur for “silent” segments without predominant non-stationary sonic 
events. Since no event dominates the IMFs, the most “complex” parts of silent signals are 
equally distributed and lead to this many FPs.

The proposed artifact elimination reduces the number of false detections significantly: 
0–29 FPs remain per segment, mean (std) = 5.3 (7.5). In the segment for which 220 
FPs were detected originally (the highest number), all FPs are eliminated. However, the 
TP rate decreases at the same time: A 100%-detection rate is retained for 52 of 75 seg-
ments. The mean TP rate of all segments decreases from 98.5% to 76.1% after artifact 
elimination.

Discussion
The proposed IMF-FD method enhances and simultaneously isolates non-stationary 
transient sounds from stationary background noise. The simultaneous isolation is an 
advantage compared to the WTST-NST and WT-FD filters. Moreover, the data driven 
decomposition of the signal by MEMD makes the filter more flexible, while the wavelet 
based filters assume predefined basis functions.

The manual marking of bowel sounds in the test segments is challenging. First, one 
tends to “hear” more subtle events the more silent the overall signal is. Second, the exact 
beginning and end of a given sonic event is ambiguous. Third, when bowel sounds occur 
in clusters or in close succession, one has to decide if they are counted as one or several 
events. In some test segments, the bowel sounds were more clear and distinguishable 
than in others. This adds uncertainty to the manual labeling of bowel sounds. Neverthe-
less, in 94% of the tested 10 s-segments, all labeled bowel sounds were detected by the 
IMF-FD.

A higher degree of contamination by artifacts challenges the identification of real 
bowel sounds. Many typical noise sources in abdominal recordings cause sounds in the 
same frequency range as BS. The duration and power distribution of sonic events has 
been used before to differentiate bowel sounds from artifacts [13]. The developed set 
of heuristic rules worked well for the tuning set, and eliminated typical artifacts such 
as clothes swishing over the microphone. From the test set, some initially identified BS 
were eliminated as well. Some of these sonic events may have been falsely labeled as 
bowel sounds during the manual, audio-visual analysis. It may also be helpful to refine 
the artifact elimination. However, the examples showed that the IMF-FD filtering retains 
the original frequency composition of segmented events which can be utilized to elimi-
nate artifacts, for example by simple heuristic rules.

By selecting the IMFs based on their relative complexity, the most prominent non-
stationary events in the analyzed signal are extracted. No tuning to different frequency 
ranges is needed which adds flexibility as compared to the existing methods and facili-
tates the use of the IMF-FD filter in other applications. On the other hand, the IMF-FD 
filter will enhance the most prominent non-stationary events in the processed signal. 
If the signal has no such events, false events may be segmented. This limitation caused 
more than 200 FPs in one of the tested segments. To reduce this effect, additional 
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criteria could be used to select the relevant IMFs, such as the instantaneous frequencies 
if the target frequency range is known a priori. Another measure to mitigate this behav-
ior could be to superimpose a signal with a known event that does not interfere with the 
components of the analyzed signal.

One might argue that the computational time needed for the MEMD may be too long 
for real-time applications. However, bowel sound analysis with the purpose of diagnos-
ing diseases is usually not time-critical. Assuming that patients carry a recording device 
for a certain time, gastrointestinal diseases can be diagnosed off-line. Furthermore, the 
MEMD can be terminated after sifting out a defined number of IMFs that have been 
proven to be relevant. The criteria for selecting IMFs must be refined in this case.

Bowel sounds are not necessarily present in every segment, nor is it given that the 
noise remains within limits that allow a BS detection. No pre-processing is required for 
moderately contaminated recordings. Nevertheless, prominent peaks in the frequency 
spectrum affect the analysis of the power distribution over the frequency range and 
challenge the artifact elimination. It might be a good idea to use notch filters to remove 
noise caused by electric interferences.

Artifacts will be more prominent in real life situations compared to abdominal sound 
monitoring in the clinic. The tested artifact elimination based on heuristic rules reduced 
the TP rate in some occasions of the test set by up to 50%. More advanced strategies 
to separate the interesting events from background noise and artifacts will be needed. 
Pattern recognition methods might be applicable to subsequently analyze the extracted 
information on bowel sounds. The eventual diagnosis of gastrointestinal diseases or 
identification of digestive periods are out of the scope of this paper and left for future 
work.

Conclusion
The proposed method successfully enhances and segments transient bowel sounds from 
background noise. The dyadic filter bank property ensures that characteristic frequency 
components are identified. The method was tested on contaminated recordings. With 
a detection rate of almost 100%, the enhancement of bowel sounds was successful. The 
high sensitivity towards non-stationary events is connected with a  lower selectivity to 
bowel sounds, and some artifacts were identified as well. The artifacts were subsequently 
eliminated based on the power distribution over particularly interesting frequency 
ranges. A statistical artifact elimination trained on a larger data set with various bowel 
sounds and types of artifacts may be used in future work to enhance the elimination 
performance.
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