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BROWNIAN MOTION AND FINITE APPROXIMATIONS OF

QUANTUM SYSTEMS OVER LOCAL FIELDS

ERIK M. BAKKEN, TROND DIGERNES, AND DAVID WEISBART

Abstract. We give a stochastic proof of the finite approximability of a class
of Schrödinger operators over a local field, thereby completing a program of
establishing in a non-Archimedean setting corresponding results and methods
from the Archimedean (real) setting. A key ingredient of our proof is to show
that Brownian motion over a local field can be obtained as a limit of random
walks over finite grids. Also, we prove a Feynman-Kac formula for the finite

systems, and show that the propagator at the finite level converges to the
propagator at the infinite level.
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1. Introduction

This article grew out of a desire to explore the utility and effectiveness of sto-
chastic methods in a non-Archimedean setting. In a recent article two of us gave a
functional analytic proof of the finite approximability of the Schrödinger operator
over a local field [BD15]. In the present article we give a stochastic proof of the
same. The inspiration comes from [DVV94], where both a functional analytic and
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stochastic proof was given for the corresponding theorem over Rd. In both cases
the stochastic method gave a stronger convergence result for the eigenfunctions (at
the expense of a mild growth condition on the potential).

The results of [DVV94] were later partially extended to a setting of locally com-
pact abelian groups in [AGK00]. However, the proofs of [AGK00] used non-standard
analysis. We have found it worthwhile to present proofs which do not rely on non-
standard methods.

Non-Archimedean stochastics has been extensively explored by several authors.
Kochubei has devoted a whole book to the subject [Koc01], and the long list of refer-
ences therein testifies to an active field of research. For articles on non-Archimedean
random walks specifically, see, e.g., [AK94, AKZ99] and [CCZG13]. Of particular
interest to us is the probability density induced by the non-Archimedean “Lapla-
cian” over a local field. The existence of this density was obtained independently
by several authors, among them Kochubei [Koc91] and Varadarajan [Var97] (see
[Koc01, Ch. 4] and [VVZ94, Ch. XVI] for further references). In this article we
show that an analogous density can be defined at the finite level, and that the
associated objects at the finite level converge to the corresponding objects at the
infinite level.

Our setting is as follows: K is a local field with canonical absolute value | · |,
and H = Pα + V is a Schrödinger operator, densely defined and self-adjoint on
a suitable domain in L2(K). V is the potential given as (V f)(x) = v(x)f(x)
with v : K → [0,∞) a continuous function such that v(x) → ∞ as |x| → ∞.
P = F−1QF where (Qf)(x) = |x|f(x), F is the Fourier transform, and α is a
positive real number. It is customary to refer to Pα as the (negative of) the non-
Archimedean Laplacian for any α > 0, although it is only α = 2 which gives a
direct analog. Our task is to construct finite models Xn for K and corresponding
Schrödinger operators Hn = Pα

n + Vn on L2(Xn) such that the eigenvalues and
eigenfunctions for Hn converge to the corresponding objects for H (in a manner to
be made precise below).

The structure of the paper is as follows: In Section 2 we collect the facts we
need about local fields and the finite models. In Section 3 we construct probability
densities for the finite models and prove some basic facts about them. In Section 4
we use the results from Section 3 to construct measures of the Wiener type over the
finite models and prove that both the conditioned and the unconditioned versions
converge to the corresponding measures over the local field. In Section 5 we prove a
theorem of the Feynman-Kac type associated with the stochastics at the finite level.
In Section 6 we use our results to give a stochastic proof of the finite approximability
of the Schrödinger operator over a local field.

2. Basics about Local Fields and Finite Models

We recall here, without proofs, some quick facts about local fields and their finite
models. For details see [BD15, Section 2]

2.1. Local Fields. By a local field we mean a non-discrete, totally disconnected,
locally compact field. It comes equipped with a canonical absolute value which is
induced by the Haar measure, and which we denote by | · |. There are two main
types of local fields:
Characteristic zero. The basic example of a local field of characteristic zero is the
p-adic field Qp (p a prime number). Every local field of characterisitic zero is a
finite extension of Qp for some p.
Positive characteristic. Every local field of positive characteristic p is isomorphic
to the field Fq((t)) of Laurent series over a finite field Fq, where q = pf for some
positive integer f ≥ 1.
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Let K be a local field with canonical absolute value | · |. We use the following
standard notation:

O = {x ∈ K : |x| ≤ 1}, P = {x ∈ K : |x| < 1}, U = O \ P.
O is a compact subring of K, called the ring of integers. It is a discrete valuation
ring, i.e., a principal ideal domain with a unique maximal ideal. P is the unique
non-zero maximal ideal of O, called the prime ideal, and any element β ∈ P such
that P = βO is called a uniformizer (or a prime element) of K. For Qp one can
choose β = p, and for Fq((t)) one can take β = t.
The set U coincides with the group of units of O. The quotient ring O/P is a finite
field. If q = pf is the number of elements in O/P (p: a prime number, f : a natural
number) and β is a uniformizer, then |β| = 1/q, and the range of values of | · | is
{qN : N ∈ Z}. Further, if S is a complete set of representatives for the residue
classes in O/P , every non-zero element x ∈ K can be written uniquely in the form:

x = β−m(x0 + x1β + x2β
2 + · · · ),

where m ∈ Z, xj ∈ S, x0 6∈ P . With x written in this form, we have |x| = qm.

2.1.1. Characters and Fourier Transform. We fix a Haar measure µ on K, normal-
ized such that µ(O) = 1, and define the Fourier transform F on K by

(Ff)(ξ) =
∫

K

f(x)χ(−xξ) dx ,

where χ is a rank zero1 character on K, and dx refers to the Haar measure just
introduced. Any Fourier transform based on a rank zero character is an L2-isometry
with respect to the normalized Haar measure (since F1O = 1O for any such Fourier
transformF ; here and elsewhere 1 denotes characteristic function). Thus F−1 = F∗

is given by

(F−1f)(x) = (F∗f)(x) =

∫

K

f(y)χ(xy) dy.

For the rest of this article χ will denote a fixed character of rank zero on a local
field K, and F will denote the corresponding Fourier transform.

2.2. Finite Models. Our object of study is a version of the Schrödinger oper-
ator, defined for Qp in the book of Vladimirov, Volovich, Zelenov [VVZ94], and
generalized to an arbitrary local field K by Kochubei in [Koc01]:

H = Pα + V ,

regarded as an operator in L2(K). Here α > 0 2, P = F−1QF where (Qf)(x) =
|x|f(x) is the position operator3, and F is the Fourier transform on L2(K). V (the
potential) is multiplication by a function: (V f)(x) = v(x)f(x). We assume v to be
non-negative and continuous and that v(x)→∞ as |x| → ∞.

The operator H has been thoroughly analyzed (see [VVZ94] for K = Qp and
[Koc01] for general K): It is self-adjoint on the domain {f ∈ L2(K) : Pαf + V f ∈
L2(K)}, has discrete spectrum, and all eigenvalues have finite multiplicity. Our
next task is to set up a finite model for this operator.

Keep the above notation, i.e.: K is a local field, q = pf is the number of elements
in the finite field O/P , β is a uniformizer, and S is a complete set of representatives
for O/P . For each integer n set Bn = β−nO = ball of radius qn. Then Bn is

1The rank of a character χ is defined as the largest integer r such that χ|Br
≡ 1. See [BD15]

for explicit construction of such characters in the various cases.
2For a direct analog of the Laplacian one should set α = 2. However, as is customary in the

non-Archimedean setting, one works with an arbitrary α > 0, since the qualitative behavior of
the operator H does not change with α > 0.

3Our operator P corresponds to the operator D in [VVZ94] and [Koc01].
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an open, additive subgroup of K. For n > 0 we set Gn = Bn/B−n. Then Gn

is a finite group with q2n elements. Since the subgroup B−n will appear quite
frequently, we will often denote it by Hn, to emphasize its role as a subgroup. So
Hn = B−n = βnO = ball of radius q−n, and Gn = H−n/Hn. Each element of Gn

has a unique representative of the form a−nβ
−n + a−n+1β

−n+1 + · · · + a−1β
−1 +

a0 + a1β+ · · ·+ an−2β
n−2 + an−1β

n−1, ai ∈ S. We denote this set by Xn, and call
it the canonical set of representatives for Gn; we also give it the group structure
coming from its natural identification with Gn.

Let again µ denote the normalized Haar measure on K (cfr. 2.1.1). Since Hn is
an open subgroup of K, we obtain a Haar measure µn on Gn = H−n/Hn by setting
µn(x+Hn) = µ(x+Hn) = µ(Hn) = q−n, for x+Hn ∈ Gn.

So each “point” x + Hn of Gn has mass q−n, and the total mass of Gn is
q2n · q−n = qn. For Xn ≃ Gn this means that each x ∈ Xn has mass q−n, and the
total mass of Xn is qn.

With this choice of Haar measure on Gn the linear map which sends the char-
acteristic function of the point x +Hn in Gn to the characteristic function of the
subset x +Hn of K, is an isometric imbedding of L2(Gn) into L2(K). We regard
L2(Gn) as a subspace of L2(K) via this imbedding, and operators on L2(Gn) are
extended to all of L2(K) by setting them equal to 0 on the orthogonal complement
of L2(Gn) in L2(K).

We introduce the following subspaces of L2(K), along with their orthogonal
projections:

• Cn = {f ∈ L2(K)| supp(f) ⊂ Bn}. The corresponding orthogonal projec-
tion is denoted by Cn and is given by: Cnf = 1Bn

f .
• Sn = {f ∈ L2(K)|f is locally constant of index q−n}. The corresponding
orthogonal projection is denoted by Sn and is given by:
(Snf)(x) = qn

∫

Hn
f(x+y) dy = 1

µ(Hn)

∫

Hn
f(x+y) dy = ave(f, n, x), where

we have introduced the notation ave(f, n, x) for the average value of f over
x+Hn.
• Dn = Cn ∩ Sn. The corresponding orthogonal projection is denoted by Dn.

Note that L2(Gn) is mapped onto Dn via the isometric imbedding mentioned above.
Thus L2(Gn) can be identified with the set of functions on K which have support
in Bn and which are invariant under translation by elements of Hn (= B−n).

Of course, by using the identification x ∈ Xn ←→ x+Hn ∈ Gn, all of the above
statements remain valid when Gn is replaced by Xn

We now collect the basic facts and conventions for the finite level operators (for
details, see [BD15]):

Dn = CnSn = SnCn .

FCn = Sn, FSn = Cn, and hence FDn = Dn .

FCn = SnF , FSn = CnF , FDn = DnF .

Finite Fourier transform Fn:

(Fnf)(x) = q−n
∑

y∈Xn

f(y)χ(−xy), x ∈ Xn, f ∈ L2(Xn) .

F|Dn
= Fn, i.e., Fn = FDn = DnF .

2.2.1. Dynamical Operators at the Finite Level. For the finite versions of the dy-
namical operators we could, as in [BD15], use their compressions by Dn, i.e.,
V ′
n = DnV Dn, Q

′
n = DnQDn, P

′
n = DnPDn = F−1

n Q′
nFn, and H ′

n = DnHDn =
DnP

αDn + V ′
n. However, since our dynamical operators are defined by continuous

functions, it will be more convenient to descend to the finite level via the following
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operator

Enf =
∑

y∈Xn

f(y)1y+Hn
, f ∈ C(K). (2.1)

This is a linear idempotent with range Dn ≃ L2(Xn). It is continuous with re-
spect to the topology of uniform convergence on compacta on C(K) (but discon-
tinuous w.r.t. the L2-norm on C(K) ∩ L2(K)). Note that limn→∞(Dnf)(x) =
limn→∞(Enf)(x) if f is continuous. The finite version of a function f on K can be
thought of either as an element of Dn according to (2.1), or as a function on the grid
Xn, where it is simply given by its restriction f |Xn

. We will switch between these
two points of view depending on what seems more convenient in a given situation.
When working on Xn we will often make no notational distinction between a func-
tion on K and its restriction to Xn. For a function of two variables f ∈ C(K ×K)
we similarly have

(En ⊗ En)f =
∑

x,y∈Xn

f(x, y)1(x+Hn)×(y+Hn), f ∈ C(K ×K), (2.2)

which can be thought of as the restriction of f to Xn ×Xn.
For the finite versions Qn, Pn, Hn of the operators Q,P,H , we take

(Qnf)(x) = |x|f(x), f ∈ L2(Xn), x ∈ Xn

Pn = F−1
n QnFn

(Vnf)(x) = vn(x)f(x), vn = v|Xn
, f ∈ L2(Xn)

Hn = Pα
n + Vn, α > 0

(2.3)

Note that the finite operators Qn, Pn, Hn can also be viewed as operators on L2(K)
via the identification of L2(Xn) with Dn = DnL

2(K).

3. Stochastics at the Finite Level

We start by recalling the connection between Brownian motion and the heat
equation in the conventional setting over R. Here Brownian motion is described
by a family of Wiener measures (Wx)x∈R, which in turn are generated by the

probability densities4 pt(z) =
1√
2t
e−z2/4t, z ∈ R, t > 0. The relation

∫

C([0,∞):R)

f(ω(t))dWx(ω) =
1√
2π

∫

R

f(y)pt(x − y)dy

holds for all “observables” f belonging to a suitable class of functions on R. The
function u(x, t) = pt(x) is a fundamental solution of the heat equation

∂u

∂t
(x, t) = ∆u(x, t) (3.1)

which by Fourier transform becomes

∂û

∂t
(ξ, t) = −ξ2û(ξ, t) (3.2)

and so

p̂t(ξ) = û(ξ, t) = e−tξ2 , (3.3)

taking into account that pt(x) is a fundamental solution. The (pt)t>0 form a semi-
group under convolution, and thus give rise to a semi-group of operators (Tt)t>0

by Ttf = pt ∗ f . The infinitesimal generator of (Tt)t>0 is the Laplacian ∆ (on a
suitable domain), so we can also write et∆f = pt ∗ f .

4We are using self-dual Haar measure dz/
√
2π on R.
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Over a local field K one still lets t be a positive real parameter, but the role of
the Laplacian ∆ is played by the operator −Pα (remember that ∆ = −P 2 over R),
and so the heat equation (3.1) becomes

∂u

∂t
(x, t) = −(Pαu)(x, t), i.e.,

∂u

∂t
(x, t) = −(F−1QαFu)(x, t) , (3.4)

thus

∂û

∂t
(ξ, t) = −|ξ|αû(ξ, t) , (3.5)

giving

û(ξ, t) = e−t|ξ|α (3.6)

by a similar normalization as above. In analogy with the real case one now defines

pt(x) = (F−1e−t|·|α)(x) =

∫

K

e−t|ξ|αχ(xξ) dξ. (3.7)

The (pt)t>0 again form a semi-group under convolution (since clearly (p̂t)t>0 form a
semi-group under multiplication), and

∫

K pt(x)dx = 1 for all t > 0 (since p̂t(0) = 1
for all t > 0). Thus the only thing missing for the (pt)t>0 to generate a Wiener
measure as above, is the positivity of the (pt)t>0. And this has been proved by
several authors in various settings (see [Koc01, Ch. 4] and references therein, and
[Var97]).

For our finite model we pursue the above analogy and define

pt,n(x) = (F−1
n e−t|.|α)(x), x ∈ Xn (3.8)

in analogy with 3.7. Here we regard e−t|.|α as a function on Xn as explained above
(cfr. 2.2.1). We still have

e−tPα
n f = pt,n ∗ f (3.9)

since

(e−tPα
n f)(x) = (e−tF−1

n Qα
nFnf)(x) = (F−1

n e−tQα
nFnf)(x)

= (F−1
n (e−t|·|αFnf))(x) = (F−1

n (e−t|·|α) ∗ f)(x)
= (pt,n ∗ f)(x),

where the convolution ∗ now is over Xn:

(f ∗ g)(x) =
∫

Xn

f(y)g(x− y)dµn(y) = q−n
∑

y∈Xn

f(y)g(x− y).

The one-parameter family (pt,n)t>0 is a semi-group under convolution (since clearly
(p̂t,n)t>0 is a multiplicative semi-group), and

∫

Xn
pt,n(x)dx = 1 for all n and for all

t > 0 (since p̂t,n(0) = 1). It remains to show that the pt,n are positive.

Lemma 3.1. We have pt,n(x) > 0 for all x ∈ Xn, all n and all t > 0, hence
(pt,n)t>0 defines a probability distribution over Xn.

Proof. Remember that functions in L2(Xn) can be thought of as functions on K
which are supported in Bn and which are locally constant of index q−n. We use that
picture here. For example, the function ξ → e−t|ξ|α is interpreted as the function
∑

ξ∈Xn
e−t|ξ|α1ξ+Hn

(cfr. 2.2.1).

Below we also use the notation Si = {x ∈ K : |x| = pi} = Bi \Bi−1.
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pt,n(x) = (F−1p̂t,n)(x) =

∫

Bn

e−t|ξ|αχ(xξ)dξ

=

∫

B−n

dξ +
∑

−n+1≤i≤n

e−tqαi

∫

Si

χ(xξ) dξ

= q−n +
∑

−n+1≤i≤n

e−tqαi

(

∫

Bi

χ(xξ) dξ −
∫

Bi−1

χ(xξ) dξ

)

= q−n +
∑

−n+1≤i≤n

e−tqαi

∫

Bi

χ(xξ) dξ −
∑

−n≤i≤n−1

e−tqα(i+1)

∫

Bi

χ(xξ) dξ

= q−n − e−tqα(−n+1)

∫

B−n

χ(xξ) dξ + e−tqαn

∫

Bn

χ(xξ) dξ

+
∑

−n+1≤i≤n−1

(e−tqαi − e−tqα(i+1)

)

∫

Bi

χ(xξ) dξ

= q−n(1− e−tqα(−n+1)

) + e−tqαn

∫

Bn

χ(xξ) dξ

+
∑

−n+1≤i≤n−1

(e−tqαi − e−tqα(i+1)

)

∫

Bi

χ(xξ) dξ .

The integrals
∫

Bi
χ(xξ) dξ are always non-negative (see [VVZ94, p. 42] for the case

K = Qp; the same proof works for a general K), hence each term is non-negative,
and the first is positive, so pt,n is positive on Xn for all t > 0. �

4. Convergence of Measures

From now on we’ll be working on a fixed time interval which we will denote by
[0, t]; a generic time point in [0, t] will be denoted by s. We start by recalling the
above formulas for the densities (with the time parameter t replaced by s):

ps,n(x) =

∫

Bn

e−s|ξ|αχ(xξ) dξ

= q−n(1− e−sqα(−n+1)

) + e−sqαn

∫

Bn

χ(xξ) dξ (4.1)

+
∑

−n+1≤i≤n−1

(e−sqαi − e−sqα(i+1)

)

∫

Bi

χ(xξ) dξ

ps(x) =

∫

K

e−s|ξ|αχ(xξ) dξ

=
∑

i∈Z

(e−sqαi − e−sqα(i+1)

)

∫

Bi

χ(xξ) dξ . (4.2)

We now introduce the space D[0, t] of Skorokhod functions. These are the functions
defined on the interval [0, t] with values inK which satisfy the following two criteria:

(1) For each s ∈ (0, t), f(s± 0) exist; f(0 + 0) and f(t− 0) exist.
(2) f(s+ 0) = f(s) for all s ∈ [0, t), and f(t) = f(t− 0).

We will use the densities ps,n to construct, for each n and for each a ∈ Xn, a
probability measure Pn

a on the space D[0, t], and subsequently show that these
measures converge weakly to the measure Pa on D[0, t] which is constructed from
the densities ps. The measure Pn

a will give full measure to the paths which take
values in the grid Xn. To achieve all of this we need a few lemmas.
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Lemma 4.1. The (ps,n)s>0 are uniformly bounded, that is, for each s ∈ (0, t] there
is a constant Bs such that

||ps,n||∞ < Bs

for all n.

Proof. By (4.1) we have

ps,n(x) = q−n(1− e−sqα(−n+1)

) + e−sqαn

∫

Bn

χ(xξ) dξ

+
∑

−n+1≤i≤n−1

(e−sqαi − e−sqα(i+1)

)

∫

Bi

χ(xξ) dξ.

The first and second term go to 0 uniformly when n→∞ since |
∫

Bn
χ(xξ) dξ| ≤ qn.

The third term is bounded by
∑

i∈Z(e
−sqαi−e−sqα(i+1)

)
∫

Bi
χ(xξ) dξ, and the latter

is uniformly bounded according to [Var97, Lemma 2, Sec. 4, proof]. �

Lemma 4.2. ps,n(x) converges uniformly to ps(x) on compact sets.

Proof. Let E be a compact subset of K and choose n0 so that E ⊂ Bn for n ≥ n0.
Then for x ∈ E and n ≥ n0 we have:

|ps(x) − ps,n(x)| ≤ q−n(1 − e−sqα(−n+1)

) + e−sqαn

∫

Bn

χ(xξ) dξ

+
∑

i≤−n
i≥n

(e−sqαi − e−sqα(i+1)

)

∫

Bi

χ(xξ) dξ .

The first terms goes to 0 as n→∞, and so does the second since |
∫

Bn
χ(xξ) dξ| ≤

qn. For the third term we again take advantage of an estimate from [Var97, Lemma
2, Sec. 4, proof], this time writing it out more explicitly:

∑

i≤−n
i≥n

(e−sqαi − e−sqα(i+1)

)

∫

Bi

χ(xξ) dξ ≤
∑

i≤−n
i≥n

(e−sqαi − e−sqα(i+1)

)qi

≤
∑

i≤−n
i≥n

s

∫ qα(i+1)

qiα
e−syy1/α dy = s

∫

[0,q(−n+1)α]∪[qnα,∞)

e−syy1/α dy .

The last term goes to 0 (being the tail of a convergent integral), so ps,n converges
pointwise to ps. Since the estimates are independent of x, we have uniform conver-
gence on E.

�

We now start the construction of the measures Pn
a . Pick a point a ∈ Xn, fix N

time points 0 ≤ t1 < t2 < · · · < tN ≤ t, and for each i = 1, . . .N , pick a Borel subset
Ji of K. We define a measure Pn

a on the cylinder sets {ω : [0, t]→ K : ω(ti) ∈ Ji}
by

Pn
a(ω(ti) ∈ Ji)

=
∑

bi∈Ji∩Xn, 1≤i≤N

pt1,n(b1 − a) · · · ptN−tN−1,n(bN − bN−1)q
−nN . (4.3)

By Kolmogorov’s Extension Theorem [Øks98, Thm. 2.1.5], Pn
a has a unique exten-

sion to a probability measure on Ω[0, t], the space of all functions ω : [0, t] → K,
equipped with the σ-algebra generated by the cylinder sets. To get a probabil-
ity measure on D[0, t], equipped with the Borel sets coming from the Skorokhod
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topology, we need to check the Čentsov criterion, which says: If there are constants
c, d, e, C > 0 such that

EPn
a
(|Yt1 − Yt2 |c|Yt2 − Yt3 |d) ≤ C|t1 − t3|1+e (4.4)

for all 0 ≤ t1 < t2 < t3 ≤ t, then there is a unique measure on D[0, t] which satisfies
the condition (4.3). Here EPn

a
denotes the expectation w.r.t. the measure Pn

a , and
Ys denotes the random variable Ys(ω) = ω(s), ω ∈ Ω[0, t], s ∈ [0, t]. The random
variables Ys define a process with independent increments with respect to each of
the measures Pn

a .

Proposition 4.1. Let k be a real number with 0 < k < α, and pick time points
0 ≤ t1 < t2 < t3 ≤ t. Then there is a constant Dk > 0 such that

EPn
a
(|Yt1 − Yt2 |k|Yt2 − Yt3 |k) ≤ Dk|t1 − t3|2k/α. (4.5)

If also k > α/2, then Čentsov’s condition (4.4) is satisfied.

Proof. Using the point a = 0 in Xn, we have

EPn
0
(|Ys|k) =

∫

Ω[0,t]

|Ys(ω)|k dPn
0 (ω) =

∫

K

|x|k dPn
0 ◦ Y −1

s (x)

=
∑

x∈Xn

∫

{x}
|x|k dPn

0 ◦ Y −1
s (x) +

∫

K\Xn

|x|k dPn
0 ◦ Y −1

s (x)

=
∑

x∈Xn

|x|kps,n(x)q−n =
∑

x∈Xn,x 6=0

|x|kps,n(x)q−n.

Using the expression (4.1) for ps,n, we get

EPn
0
(|Ys|k)

= q−n
∑

x∈Xn,x 6=0

|x|k
(

q−n(1− e−sqα(−n+1)

) + e−sqαn

∫

Bn

χ(xξ) dξ

+
∑

−n+1≤i≤n−1

(e−sqαi − e−sqα(i+1)

)

∫

Bi

χ(xξ) dξ

)

= q−n
∑

x∈Xn,x 6=0

|x|k
(

q−n(1− e−sqα(−n+1)

)

+
∑

−n+1≤i≤n−1

(e−sqαi − e−sqα(i+1)

)

∫

Bi

χ(xξ) dξ

)

= q−n(1 − e−sqα(−n+1)

)

∫

Bn\B−n

|x|k dx

+

∫

Bn\B−n

|x|k
∑

−n+1≤i≤n−1

(e−sqαi − e−sqα(i+1)

)

∫

Bi

χ(xξ) dξdx

≤ q−n(1 − e−sqα(−n+1)

)qnqnk

+
∑

−n+1≤i≤n−1

(e−sqαi − e−sqα(i+1)

)

∫

B−i

|x|k
∫

Bi

χ(xξ) dξdx

≤ q−n(1 − e−sqα(−n+1)

)qnqnk +
∑

−∞<i<∞
(e−sqαi − e−sqα(i+1)

)q−ikq−iqi

= q−n(1 − e−sqα(−n+1)

)qnqnk +
∑

−∞<i<∞
(e−sqαi − e−sqα(i+1)

)q−ik .
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At this point we again invoke an inequality by Varadarajan [Var97][Lemma 2, Sec.

4, proof], which in our setting translates to
∑

−∞<i<∞(e−sqαi − e−sqα(i+1)

)q−ik ≤
Aks

k/α for some constant Ak which is independent of n, s. The chain of inequalities
then continues as (with Bk, Ck some other constants which are independent of n, s)

≤ (1 − e−sqα(−n+1)

)qnk +Aks
k/α ≤ sq−nαqαqnk +Aks

k/α

= sqαq−n(α−k) +Aks
k/α ≤ sqα +Aks

k/α ≤ Bks
k/α +Aks

k/α ≤ Cks
k/α ,

where we have used that α − k > 0, and that over the finite interval [0, t], we can
make sqα ≤ Bks

k/α for a suitable Bk. To sum it up, we have shown that

EPn
0
(|Ys|k) ≤ Cks

k/α (4.6)

for some constant Ck which is independent of n, s. Using that the process Yt has
stationary increments and that Y0 = 0 with Pn

0 -probability 1, we get

EPn
0
(|Yt2 − Yt1 |k|Yt3 − Yt2 |k) = EPn

0
(|Yt2−t1 − Y0|k|Yt3−t2 − Y0|k)

= EPn
0
(|Yt2−t1 |k|Yt3−t2 |k) ≤ (EPn

0
(|Yt2−t1 |2k))1/2(EPn

0
(|Yt3−t2 |2k))1/2

(4.6)

≤ C2k(t2 − t1)
k/α(t3 − t2)

k/α < C2k(t3 − t1)
2k/α .

Noticing that

EPn
a
(|Yt2 − Yt1 |k|Yt3 − Yt2 |k) = EPn

0
(|Yt2 − Yt1 |k|Yt3 − Yt2 |k)

for any a ∈ Xn (since only differences between the Yti occur), we finally get

EPn
a
(|Yt2 − Yt1 |k|Yt3 − Yt2 |k) ≤ C2k(t3 − t1)

2k/α, (4.7)

for k < α. So with Dk = C2k, (4.5) holds. If also k > α/2, the Čentsov criterion
holds. �

4.1. Convergence of Unconditioned Measures. The concept of weak conver-
gence of probability measures will play an important role in this article.

Definition 4.1 (Weak Convergence). Let (Pn) and P be probability measures on
a metric space M . We say that the sequence (Pn) converges weakly to P – written
Pn ⇒ P – if Pn(f)→ P(f) for all bounded, continuous real functions f on M .

For several equivalent definitions, see [Bil99, Thm. 2.1] (“Portmanteau Theo-
rem”).

Let an ∈ Xn, a ∈ K be such that an → a as n → ∞. We wish to prove that
Pn

an
⇒ Pa as n → ∞. To do this we will use the following theorem from [Var94]

(see also [Bil99, Theorem 13.1]):

Theorem 4.1 (Theorem 2, Ch. 11, in [Var94]). Suppose that Pm,P are probability
measures on D[0, t] such that

• Pt1,...,tN
m ⇒ Pt1,...,tN for all t1, ..., tN in [0, t]. (4.8)

• There are constants c, d, e, C > 0 such that for all n and
0 ≤ t1 < t2 < t3 ≤ t,

EPm
(|Yt2 − Yt1 |c|Yt3 − Yt2 |d) ≤ C(t3 − t1)

1+e. (4.9)

Then Pm ⇒ P.

By equation (4.7) the condition (4.9) is satisfied if c = d = k, 1 + e = 2k/α and
α/2 < k < α. To prove (4.8) we can use the following theorem.

Theorem 4.2 (Thm. 2.2 in [Bil99]). Let P, (Pm)∞m=1, be probability measures on
D[0, t], and suppose that
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• AP is a π-system5

• Every open set is a countable union of elements in AP .

If Pm(A)→ P(A) for all A ∈ AP , then Pm ⇒ P.

In K the set of all balls is a basis for the topology. In KN , the set of all products
of balls, A1 × · · · × AN , is a basis for the topology. This set is also closed under
finite intersections, so we can use Theorem 4.2 to prove convergence of the finite
dimensional distributions. So fix a set A1 × · · · × AN . Let an ∈ Xn → a ∈ K as
n→∞. We wish to prove that Pn,t1,...,tN

an
(A1×· · ·×AN)→ Pt1,...,tN

a (A1×· · ·×AN)
as n→∞. We have

Pn,t1,...,tN
an

(A1 × · · · ×AN )

=
∑

bi∈Ai,1≤i≤N

pt1,n(b1 − an) · · · ptN−tN−1,n(bN − bN−1)q
−nN .

Let n be large enough so that the balls A1, ..., AN all have radius larger than q−n.
Then

Pn,t1,...,tN
an

(A1 × · · · ×AN )

=
∑

bi∈Ai,1≤i≤N

pt1,n(b1 − an) · · · ptN−tN−1,n(bN − bN−1)q
−nN

=
∑

bi∈Ai,1≤i≤N−1

∫

AN

pt1,n(b1 − an) · · · ptN−tN−1,n(xN − bN−1)q
−n(N−1) dxN

=

∫

A1

· · ·
∫

AN

pt1,n(x1 − an) · · · ptN−tN−1,n(xN − xN−1) dxN · · · dx1 .

We also have that

Pt1,...,tN
a (A1 × · · · ×AN )

=

∫

A1

· · ·
∫

AN

pt1(x1 − a) · · · ptN−tN−1(xN − xN−1) dxN · · · dx1 .

When an → a,
∫

A1

· · ·
∫

AN

pt1,n(x1 − an) · · · ptN−tN−1,n(xN − xN−1) dxN · · · dx1

→
∫

A1

· · ·
∫

AN

pt1(x1 − a) · · · ptN−tN−1(xN − xN−1) dxN · · · dx1

by Lemma 4.1, and since the probability densities converge uniformly on compact
sets. Thus Pn,t1,...,tN

an
⇒ Pt1,...,tN

a and hence Pn
an
⇒ Pa. We have proved:

Theorem 4.3 (Weak Convergence of Unconditioned Measures). Let an ∈ Xn,
a ∈ K be such that an → a as n→∞. Then

Pn
an
⇒ Pa as n→∞ ,

where, we recall, ⇒ denotes weak convergence of measures.

5A class of subsets is a π-system if it is closed under the formation of finite intersections.
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4.2. Convergence of Conditioned Measures. Let a, b ∈ Xn. The conditioned
measure Pn

a,b,t of a Borel set A ⊂ D[0, t] is defined by6

Pn
a,b,t(A) =

Pn
a (A ∩ (ω(t) = b))

Pn
a(ω(t) = b)

. (4.10)

In this subsection we wish to prove the following theorem:

Theorem 4.4 (Weak Convergence of Conditioned Measures). If an ∈ Xn → a ∈ K
and bn ∈ Xn → b ∈ K, then Pn

an,bn,t
⇒ Pa,b,t. The convergence is uniform when

(a, b) varies in compact subsets of K ×K.

The proof of this theorem will occupy the remainder of this subsection. We first
prove the statement about weak convergence. To do this we first prove it for the
corresponding finite dimensional distributions.

Proposition 4.2. Let an, bn, a, b be as in the theorem, and pick time points 0 <
t1 < · · · < tN < t in [0, t]. Then

P
n,t1,...,tN
an,bn,t

⇒ P
t1,...,tN
a,b,t .

Proof. Let Ji, i = 1, . . . , N , be balls in K. Then by definition

Pn
an,bn,t(ω(ti) ∈ Ji) =

Pn
an
((ω(ti) ∈ Ji) ∩ (ω(t) = bn))

Pn
an
(ω(t) = bn)

.

Here the denominator is equal to pt,n(bn − an)q
−n. For the numerator we have

Pn
an
((ω(ti) ∈ Ji) ∩ (ω(t) = bn))

=

∫

J1

· · ·
∫

JN

pt1,n(x1 − an) · · · pt−tN ,n(bn − xN )q−n dxN · · · dx1 ,

so

Pn
an,bn,t(ω(ti) ∈ Ji)

=

∫

J1
· · ·
∫

JN
pt1,n(x1 − an) · · · pt−tN ,n(bn − xN ) dxN · · · dx1

pt,n(bn − an)

→
∫

J1
· · ·
∫

JN
pt1(x1 − a) · · · pt−tN (b − xN ) dxN · · · dx1

pt(b− a)

= Pa,b,t(ω(ti) ∈ Ji) ,

where we have used Lemma 4.2. From Theorem 4.2 it now follows that Pn,t1,,,tN
an,bn,t

⇒
P

t1,,,tN
a,b,t . �

To finish the proof that Pn
an,bn,t

⇒ Pa,b,t, we invoke a result from Billingsley

[Bil99]. To state it we need a concept which for Skorokhod functions plays the role
of the modulus of continuity:

m(ω : δ) = sup
s1<s<s2

0<s2−s1<δ

min{|ω(s2)− ω(s)|, |ω(s)− ω(s1)|}. (4.11)

Theorem 4.5 (Thm. 13.1 in [Bil99]). Let P, (Pk)
∞
k=1, be probability measures on

D[0, t]. If Pt1,,,tN
k ⇒ Pt1,,,tN as k → ∞ for all finite sets of time points t1, , , tN

and if for every η > 0

lim
δ→0

Pk({ω : m(ω : δ) > η}) = 0

uniformly in k, then Pk ⇒ P as k →∞.

6Here and in the following we use the probabilist’s notation for sets: (ω(t) = b) is a shortcut
notation for the set {ω : ω(t) = b}. More generally, for time points 0 ≤ t1 < · · · < tN ≤ t and
Borel sets Ji, i = 1, . . . N , the notation (ω(ti) ∈ Ji) means {ω : ω(ti) ∈ Ji, i = 1 . . . N}.
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What is left is to prove is that for every η > 0,

lim
δ→0

Pn
an,bn,t({ω : m(ω : δ) > η}) = 0

uniformly in n. To do this we will follow [DVV94]. The idea is to bound the
conditioned measures by the unconditioned measures, and use that the latter are
tight.

Define for each δ, η > 0

A(δ, η) = {ω : m(ω : δ) > η}. (4.12)

Also define m1 and m2 to be the analogues of m on the time intervals [0, 3t/4] and
[t/4, t], respectively.

If δ < t/2, then s1 and s2 are in the same time interval, so

m(ω : δ) = max{m1(ω : δ),m2(ω : δ)}.

With Aj(δ, η) = {ω : mj(ω : δ) > η} for j = 1, 2, we have

A(δ, η) = A1(δ, η) ∪ A2(δ, η).

Then it is enough to prove that for every η > 0,

lim
δ→0

Pn
an,bn,t(Aj(δ, η)) = 0,

uniformly in n for j = 1, 2. We will first prove it for j = 1 and prove the case j = 2
by time reflection.

By definition

Pn
an,bn,t(A1) =

Pn
an
(A1 ∩ (ω(t) = bn))

Pn
an
(ω(t) = bn)

. (4.13)

The denominator is equal to pt,n(bn−an)q
−n. For the numerator we have, for large

enough n,

Pn
an
(A1 ∩ (ω(t) = bn)) =

∑

x∈Xn

Pn
an
(A1 ∩ (ω(3t/4) = x) ∩ (ω(t) = bn))

=
∑

x∈Xn

Pn
an
(A1 ∩ (ω(3t/4) = x) ∩ (ω(t)− ω(3t/4) = bn − x))

=
∑

x∈Xn

Pn
an
(A1 ∩ (ω(3t/4) = x))Pn

an
(ω(t)− ω(3t/4) = bn − x)

by independent increments. Furthermore, we have the equality

Pn
an
(ω(t)− ω(3t/4) = bn − x) = Pn

0 (ω(t/4) = bn − x),

which follows from the following calculation

Pn
an
(ω(t)− ω(3t/4) = bn − x)

=
∑

y∈Xn

Pn
an
((ω(3t/4) = y) ∩ (ω(t) = y + bn − x))

=
∑

y∈Xn

p3t/4,n(y−an)pt/4,n(bn−x)q−2n = pt/4,n(bn−x)q−n
∑

y∈Xn

p3t/4,n(y−an)q−n

= pt/4,n(bn − x)q−n = Pn
0 (ω(t/4) = bn − x).
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So

Pn
an
(A1 ∩ (ω(t) = bn))

=
∑

x∈Xn

Pn
an
(A1 ∩ (ω(3t/4) = x))Pn

0 (ω(t/4) = bn − x)

≤
∑

x∈Xn

Pn
an
(A1 ∩ (ω(3t/4) = x)) sup

z∈Xn

pt/4,n(z)q
−n

= Pn
an
(A1) sup

z∈Xn

pt/4,n(z)q
−n.

(4.14)

Putting this back into equation (4.13) we get

Pn
an,bn,t(A1) ≤

Pn
an
(A1) supz∈Xn

pt/4,n(z)

pt,n(bn − an)
.

The denominator pt,n(bn − an) converges to pt(b − a) > 0, so there exists a γ >
0 such that pt,n(bn − an) ≥ γ for large n. Also, there is a γ′ > 0 such that
supz∈Xn

pt/4,n(z) ≤ γ′, so

Pn
an,bn,t(A1) ≤

γ′

γ
Pn

an
(A1).

The measures Pn
an

are tight, so – by [Bil99, Thm. 13.2] and the discussion following
it – we have, for every η > 0,

lim
δ→0

Pn
an,bn,t(A1(δ, η)) ≤

γ′

γ
lim
δ→0

Pn
an
(A1(δ, η)) = 0

uniformly in n. This proves the statement for j = 1.
To deal with the case j = 2, we define an operation of time reflection on D[0, t] by

ω∗(s) = ω(t− s− 0), 0 ≤ s < t (4.15)

and ω∗(t) = ω(0). Time reflection is an involutive Borel transformation on D[0, t].
At the level of measures we define, for any probability measure P on D[0, t], the
time reflected probability measure P∗ by P∗(E) = P(E∗). With this definition

(Pn
an,bn,t)

∗ = Pn
bn,an,t (4.16)

This comes from the fact that if s′ < s, then

Pn
an,bn,t(ω : |Ys − Ys′ | > ǫ) = Pn

0,bn−an,t(ω : |Ys−s′ | > ǫ)→ 0

as s′ goes to s from below. So Ys′ converges to Ys in measure, but it also converges
to Ys− in measure, which shows that Ys = Ys− almost everywhere. Since this
proves that a path is left continuous with probability one at any given time point,
the measures (Pn

an,bn,t
)∗ and Pn

bn,an,t
coincide on cylinder sets, hence on all Borel

sets.
Now define m∗

1 as the same as m1 except that ω(s) is replaced by ω(s− 0). Then

A2(δ, η)
∗ = {ω : m∗

1(ω : δ) > η}
and

{ω : m∗
1(ω : δ) > η} ⊂ {ω : m1(ω : 2δ) > η}.

This gives

Pn
an,bn,t(A2(δ, η)) = Pn

bn,an,t(A2(δ, η)
∗) ≤ Pn

bn,an,t(A1(2δ, η)),

and hence
lim
δ→0

Pn
an,bn,t(A2(δ, η)) = 0

for every η > 0, uniformly in n. Thus for every η > 0,

lim
δ→0

Pn
an,bn,t(A(δ, η)) = 0
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uniformly in n, and by Theorem 4.5, we get that Pn
an,bn,t

⇒ Pa,b,t, and we have
proved the first part of Theorem 4.4.

For the second part, let g be a bounded continuous function on D[0, t], and
consider the functions

hn(x, y) =
∑

(u,v)∈Xn×Xn

∫

D[0,t]

g(ω)dPn
u,v,t(ω)1(u+Hn)×(v+Hn)(x, y)

h(x, y) =

∫

D[0,t]

g(ω)dPx,y,t(ω)

for (x, y) ∈ K ×K. The first part of the theorem tells us that hn converges contin-
uously to h. On a compact subset A of K ×K, this implies uniform convergence
on A.

This completes the proof of Theorem 4.4.
We end this section by a theorem on the support of the measures Pn

a .

Theorem 4.6. For each a ∈ Xn the measure Pn
a gives full measure to the paths

on the grid, that is,

Pn
a(ω : ω(s) ∈ Xn, ∀s ∈ [0, t]) = 1

Proof. By definition of Pn
a , we have Pn

a(ω(ti) ∈ Xn, 1 ≤ i ≤ N) = 1 for any finite
set of time points t1, . . . , tN in [0, t]. Now take an increasing sequence of sets of
finitely many time points Fi such that

⋃∞
i=1 Fi = Q ∩ [0, t]. Then

Pn
a (ω : ω(s) ∈ Xn, ∀s ∈ Q ∩ [0, t]) = lim

i→∞
Pn

a (ω : ω(s) ∈ Xn, ∀s ∈ Fi) = 1

By right-continuity of the paths, the result follows. �

5. Feynman-Kac at the Finite Level

5.1. The Feynman-Kac formula. For the rest of this article we will often en-
counter the expression e−tH . This is well-defined on account of the self-adjointness
of H (see [BD15] for details).

The Feynman-Kac formula for the Hamiltonian H over K says

(e−tHf)(x) =

∫

K

Kt(x, y)f(y) dy, f ∈ L2(K) , (5.1)

where

Kt(x, y) =

∫

D[0,t]

e−
∫

t

0
v(ω(s)) ds dPx,y,t(ω) · pt(y − x) . (5.2)

For a proof in the real case, see, e.g., [Var94, Theorem 1, Ch. 10]. The same proof
works over a local field.
We now prove that we have a Feynman-Kac formula also at the finite level.

Theorem 5.1 (Feynman-Kac at the finite level).

(e−tHnf)(x) =

∫

Xn

Kn
t (x, y)f(y) dµn(y)

= q−n
∑

y∈Xn

Kn
t (x, y)f(y), f ∈ L2(Xn)

(5.3)

where

Kn
t (x, y) =

∫

D[0,t]

e−
∫

t

0
vn(ω(s)) ds dPn

x,y,t(ω) · pt,n(y − x), x, y ∈ Xn . (5.4)
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Proof. By (3.9) we have

e−tPα
n f = pt,n ∗ f ,

where ∗ is convolution on Xn:

(f ∗ g)(x) =
∫

Xn

f(y)g(x− y) dµn(y) = q−n
∑

y∈Xn

f(y)g(x− y) .

This gives

(e−tPα
n /Ne−tVn/Nf)(x) =

∫

Xn

pt/N,n(y − x)e−tvn(y)/Nf(y) dµn(y)

and thus

((e−tPα
n /Ne−tVn/N )Nf)(x)

=

∫

XN
n

pt/N,n(x1 − x) · · · pt/N,n(xN − xN−1) ·

· e−t(vn(x1)+···+vn(xN ))/Nf(xN ) dµn(xN ) · · · dµn(x1)

= q−nN
∑

XN
n

pt/N,n(x1 − x) · · · pt/N,n(xN − xN−1)e
−t(vn(x1)+···+vn(xN ))/Nf(xN )

Let tr = rt/N for 1 ≤ r ≤ N . Defining Yt1,...,tN (ω) = (ω(t1), . . . , ω(tN)) we have
∫

D[0,t]

e−(t/N)
∑

N
r=1 vn(ω(rt/N))f(ω(t)) dPn

x(ω)

=

∫

KN

e−t(vn(x1)+···+vn(xN ))/Nf(xN ) dPn
x ◦ Y −1

t1,...,tN (x1, . . . , xN )

= q−nN
∑

XN
n

pt/N,n(x1 − x) · · · pt/N,n(xN − xN−1)e
−t(vn(x1)+···+vn(xN ))/Nf(xN ).

Combining these equations we get

((e−tPα
n /Ne−tVn/N )Nf)(x) =

∫

D[0,t]

e−(t/N)
∑N

r=1 vn(ω(rt/N))f(ω(t)) dPn
x(ω) .

Now let N → ∞. By Trotter’s product formula, the left hand side converges to

(e−tHnf)(x). The right hand side converges to
∫

D[0,t]
e−

∫
t

0
vn(ω(s)) dsf(ω(t)) dPn

x(ω)

by bounded convergence and by Riemann integrability of vn ◦ ω over [0, t]. This
gives, for f ∈ L2(Xn),

(e−tHnf)(x) =

∫

D[0,t]

e−
∫

t

0
vn(ω(s)) dsf(ω(t)) dPn

x(ω)

=

∫

Xn

(

∫

D[0,t]

e−
∫

t

0
vn(ω(s)) dsf(ω(t)) dPn

x,y,t(ω)pt,n(y − x)

)

dµn(y)

=

∫

Xn

(

∫

D[0,t]

e−
∫

t

0
vn(ω(s)) ds dPn

x,y,t(ω)pt,n(y − x)

)

f(y) dµn(y)

= q−n
∑

y∈Xn

(

∫

D[0,t]

e−
∫

t

0
vn(ω(s)) ds dPn

x,y,t(ω)pt,n(y − x)

)

f(y)

= q−n
∑

y∈Xn

Kn
t (x, y)f(y)

=

∫

Xn

Kn
t (x, y)f(y) dµn(y) .

�
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Elementary properties of the propagator. We collect here some elementary
properties of the propagator Kn

t .
Let {ex}x∈Xn

be the canonical basis for L2(Xn), i.e., ex = qn/21x. Then
Tr(e−tHn) =

∑

x∈Xn
〈e−tHnex, ex〉 by definition. From the Feynman-Kac formula:

(e−tHnex)(y) = q−n
∑

z∈Xn

Kn
t (y, z)ex(z) = q−nKn

t (y, x)q
n/2 = q−n/2Kn

t (y, x) ,

and so

〈e−tHnex, ey〉 =
∫

Xn

(e−tHnex)(z)ey(z) dµn(z) =
∑

z∈Xn

(e−tHnex)(z)ey(z)q
−n

= (e−tHnex)(y)q
n/2q−n = qn/2q−nq−n/2Kn

t (y, x)

= q−nKn
t (y, x)

(5.5)

which gives

Tr(e−tHn) =
∑

x∈Xn

〈e−tHnex, ex〉 = q−n
∑

x∈Xn

Kn
t (x, x) . (5.6)

Since 〈e−tHnex, ey〉 = 〈ex, e−tHney〉 = 〈e−tHney, ex〉, we get

Kn
t (x, y) = Kn

t (y, x). (5.7)

Like any kernel of a semi-group, Kn
t also satisfies

Kn
t1+t2(x, y) =

∫

Xn

Kn
t1(x, z)K

n
t2(z, y) dµn(z) =

∑

z∈Xn

q−nKn
t1(x, z)K

n
t2(z, y) . (5.8)

This follows from the following calculation (for any f ∈ L2(Xn)):

(e−(t1+t2)Hnf)(x) = (e−t1Hne−t2Hnf)(x) =
∑

z∈Xn

q−nKn
t1(x, z)(e

−t2Hnf)(z)

=
∑

z∈Xn

q−nKn
t1(x, z)





∑

y∈Xn

q−nKn
t2(z, y)f(y)





=
∑

y∈Xn

q−n

(

∑

z∈Xn

q−nKn
t1(x, z)K

n
t2(z, y)

)

f(y) =
∑

y∈Xn

q−nKn
t1+t2(x, y)f(y) .

Since the last equality holds for all f ∈ L2(Xn), (5.8) follows.

6. Finite Approximations

6.1. Convergence of Traces. In this subsection we will show – under a mild
growth condition on the potential – that the operator e−tH is of trace class and
that

Tr(e−tHn)→ Tr(e−tH) as n→∞. (6.1)

We have

Tr(e−tHn) =
∑

x∈Xn

〈e−tHnex, ex〉 = q−n
∑

x∈Xn

Kn
t (x, x) (from the previous section)

Tr(e−tH) =

∫

K

Kt(x, x) dx (Mercer’s Theorem) .

The convergence (6.1) will be established by proving a suitable convergence at
the level of propagators. The proof is patterned on the corresponding proof in
[DVV94][Sec. 4].
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Lemma 6.1. There is a constant Bt, independent of n, such that

sup
x∈Xn

Kn
t (x, x) ≤ Bt .

Proof. This follows from the Feynman-Kac formula and lemma 4.1. �

Lemma 6.2. Kn
t converges continuously to Kt, i.e., if xn ∈ Xn → x ∈ K and

yn ∈ Xn → y ∈ K as n→∞, then

Kn
t (xn, yn)→ Kt(x, y).

In particular, Kn
t converges uniformly to Kt on compact sets.

Proof. From Lemma 4.2 we have that pt,n(y−x) converges uniformly on compacta
to pt(y−x). Uniform convergence on a compact set implies continuous convergence
on that set, hence pt,n(yn − xn)→ pt(y − x). From Theorem 4.4 we have that

∫

D[0,t]

e−
∫

t

0
vn(ω(s)) ds dPn

xn,yn,t(ω)→
∫

D[0,t]

e−
∫

t

0
v(ω(s)) ds dPx,y,t(ω) .

The lemma now follows from the Feynman-Kac formula (Thm 5.1). �

Corollary. For any ball Bm we have

∑

x∈Bm∩Xn

q−nKn
t (x, x)→

∫

Bm

Kt(x, x) dx

when n→∞.

Proof.

∑

x∈Bm∩Xn

q−nKn
t (x, x) =

∫

Bm

Kn
t (x, x) dµ(x) →

∫

Bm

Kt(x, x) dµ(x) ,

where in the second integral the function x → Kn
t (x, x) is regarded as an element

of Dn. �

To prove the convergence of traces (6.1) we need to extend the previous result
to the whole space K. For this we need some results related to Lévy’s inequality.
The following lemmas, which are adapted from [Var80] (with R replaced by a local
field K), will do the job.

Lemma 6.3 (Lévy’s Inequality). Let Y1, ..., Yn be independent random variables
and let ǫ, δ > 0 and Sj = Y1 + · · ·+ Yj . If

P(|Yr + · · ·+ Yl| ≥ δ) ≤ ǫ,

for all 1 ≤ r ≤ l ≤ n, then

P( sup
1≤j≤n

|Sj | > 2δ) ≤ 2ǫ.

Proof. Define E = {sup1≤j≤n |Sj | ≥ 2δ}, E1 = {|S1| ≥ 2δ}, and Ek = {|S1| <
2δ, ..., |Sk−1| < 2δ, |Sk| ≥ 2δ}, k ≥ 2. Then

P(E ∩ (|Sn| ≤ δ)) = P(

n
⋃

j=1

(Ej ∩ (|Sn| ≤ δ))) ≤ P(

n
⋃

j=1

(Ej ∩ (|Sn − Sj | ≥ δ)))

By independence

P(
n
⋃

j=1

(Ej ∩ (|Sn − Sj| ≥ δ))) =
n
∑

j=1

P(Ej)P(|Sn − Sj | ≥ δ) ≤ ǫP(E)
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Also P(E ∩ (|Sn| > δ)) ≤ P(|Sn| > δ) ≤ ǫ. Combining the two inequalities gives
that

P(E) ≤ ǫ

1− ǫ
.

If ǫ < 1/2, then P(E) ≤ 1 < 2ǫ. If ǫ ≥ 1/2, then P(E) ≤ ǫ
1−ǫ ≤ 2ǫ. Thus

P( sup
1≤j≤n

|Sj | > 2δ) ≤ P(E) ≤ 2ǫ.

�

Lemma 6.4. Let Yt be a stochastic process with independent increments. Let I be
a finite interval in [0,∞) and F a finite set of points in I. Then for every k > 0,

P( sup
s,t∈F

|Yt − Ys| > 4δ) ≤ 2

δk
sup
s,t∈F

EP(|Yt − Ys|k).

Proof. Let F be the m time points 0 ≤ t1 < ... < tm. The random variables
Y1 = Yt2 − Yt1 , ..., Ym−1 = Ytm − Ytm−1 are independent. Also,

|Yr + ...+ Yl| = |Yt′ − Yt′′ |
for some t′, t′′ ∈ F . Define ǫ by

ǫ = sup
1≤r≤l≤m−1

P(|Yr + ...+ Yl| ≥ δ).

By Chebyshev’s inequality

P(|Yr + ...+ Yl| ≥ δ) = P(|Yt′ − Yt′′ | ≥ δ) ≤ 1

δk
EP(|Yt′ − Yt′′ |k) ,

and so

ǫ ≤ 1

δk
EP(|Yt′ − Yt′′ |k) .

By Lemma 6.3,

P( sup
s,t∈F

|Yt − Ys| > 4δ)

≤ P( sup
1≤i≤m

|Yti − Yt1 | > 2δ) = P( sup
1≤i≤m−1

|Y1 + ...+ Yi| > 2δ)

≤ 2ǫ ≤ sup
s,t∈F

2

δk
EP(|Yt − Ys|k)

�

Returning to our measures Pn
x , we have

Lemma 6.5. Let I be a finite interval in [0,∞). Then for every k > 0,

Pn
x( sup

s,t∈I
|Yt − Ys| > 4δ) ≤ 2

δk
sup
s,t∈I

EPn
x
(|Yt − Ys|k).

Proof. Let Fn be an increasing sequence of finite subsets of I such that I∩Q =
⋃

Fn.
Then

Pn
x( sup

s,t∈I∩Q

|Yt − Ys| > 4δ)

= lim
n→∞

Pn
x( sup

s,t∈Fn

|Yt − Ys| > 4δ) ≤ 2

δk
sup

s,t∈I∩Q

EPn
x
(|Yt − Ys|k).

By right-continuity of the process,

Pn
x( sup

s,t∈I
|Yt − Ys| > 4δ) ≤ sup

s,t∈I

2

δk
EPn

x
(|Yt − Ys|k) .

�
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Recall that α is the exponent appearing in the definition of the Hamiltonian:
H = Pα + V .

Proposition 6.1. Pick a real number k with 0 < k < α, and let x ∈ Xn. There
exists a constant Ak > 0, independent of n and x, such that

Kn
t (x, x) ≤ Ak ·

(

e−
t
2v

∗(x) +
1

|x|k
)

,

where v∗(x) = inf |y|=|x| v(y).

Proof. Define R1 and R2 by

R1 = {ω|ω(0) = x, |ω(s)| = |x|, ∀s ∈ [0, t/2]}

R2 = {ω|ω(0) = x, |ω(s)| 6= |x| for some s ∈ [0, t/2]}
and

Ii =

∫

Ri

e−
∫

t

0
vn(ω(s)) ds1x(ω(t)) dP

n
x(ω).

for i = 1, 2. Then by Feynman-Kac,

q−nKn
t (x, x) = I1 + I2

For ω ∈ R1

∫ t

0

vn(ω(s)) ds ≥
∫ t/2

0

vn(ω(s)) ds ≥
t

2
v∗n(x) ≥

t

2
v∗(x),

so we get

I1 =

∫

R1

e−
∫

t

0
vn(ω(s)) ds1x(ω(t)) dP

n
x(ω) ≤ e−

t
2v

∗(x)Pn
x(R1 ∩ (ω(t) = x))

≤ e−
t
2v

∗(x)Pn
x(R1)q

−n sup
y∈Xn

pt/2,n(y) ≤ A′
kq

−ne−
t
2v

∗(x).

where A′
k is independent of x and n, and where the next to last inequality follows

from a calculation similar to that of (4.14). Also, by Lemma 6.5,

I2 ≤ Pn
x(R2 ∩ (ω(t) = x)) ≤ Pn

x(R2)q
−n sup

y∈Xn

pt/2,n(y)

≤ A′′
kq

−nPn
x(|ω(s)− ω(0)| ≥ |x| for some s ∈ [0, t/2])

Lemma 6.5
≤ q−nA′′′

k

2

|x|k sup
u,s∈[0,t/2]

EPn
x
(|Yu − Ys|k)

≤ q−nA′′′′
k

1

|x|k ,

(6.2)

where the last inequality follows from the computations in the proof of Proposi-
tion 4.1. Setting Ak = max(A′

k, A
′′′′
k ), this gives

Kn
t (x, x) ≤ Ak ·

(

e−
t
2v

∗(x) +
1

|x|k
)

.

�

Theorem 6.1. Assume α > 1. If |v(x)|
ln(|x|) → ∞ as |x| → ∞, then e−tH is of trace

class and

Tr(e−tHn)→ Tr(e−tH)

as n→∞.
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Proof. Choose a k with 1 < k < α. By the previous lemma,

∑

|x|=qm

Kn
t (x, x) ≤ (q − 1)qm−1+n ·Ak ·

(

e−
t
2v

∗(β−m) +
1

qmk

)

(6.3)

= qn · Ak · (1− 1/q)

(

qme−
t
2v

∗(β−m) +
qm

qmk

)

. (6.4)

So we have
∑

|x|≥qm

q−n ·Kn
t (x, x) ≤ Ak · (1− 1/q)

∑

i≥m

(

qie−
t
2 v

∗(β−i) +
qi

qik

)

which for k > 1 goes to 0 as m→∞, uniformly in n. Thus
∑

|x|≥qm

q−n ·Kn
t (x, x)→ 0

as m→∞, uniformly in n. Since
∫

|x|≥qm
Kt(x, x) dx =

∫

|x|≥qm

∫

D[0,t]

e−
∫

t

0
v(ω(s)) ds dPx,x,t(ω) · pt(0) dx ,

the same calculations as above show that the integral converges. All of this now
shows that

Tr(e−tHn) =
∑

x∈Xn

q−nKn
t (x, x)→

∫

K

Kt(x, x) dx .

By Mercer’s Theorem we have
∫

K Kt(x, x) dx = Tr(e−tH), and so

Tr(e−tHn)→ Tr(e−tH) .

�

6.2. Convergence of Eigenvalues and Eigenfunctions. We first wish to use
the fact that

Tr(e−tHn)→ Tr(e−tH)

to prove that e−tHn converges to e−tH in the trace norm.
From [BD15] we know that e−tHn → e−tH strongly. This immediately implies

Lemma 6.6. For any operator L of finite rank we have

Tr(e−tHnL)→ Tr(e−tHL)

as n→∞.

LetH2 denote the Hilbert-Schmidt operators with inner product 〈S, T 〉 = Tr(T ∗S)
and corresponding norm || · ||2. Also let ||T ||1 = Tr(|T |) denote the trace norm.

The proofs of the remaining results of this section follow the same pattern as in
[DVV94], but we include them here for completeness.

Theorem 6.2. For any t > 0,

||e−tHn − e−tH ||1 → 0

as n→∞.

Proof. We will first prove that

||e−tHn − e−tH ||2 → 0

as n→∞. This follows if
||e−tHn ||2 → ||e−tH ||2

as n→∞, and
〈e−tHn , L〉 → 〈e−tH , L〉
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for all L ∈ H2 as n→∞. From Proposition 6.1, we get that

||e−tHn ||22 = Tr(e−2tHn)→ Tr(e−2tH) = ||e−tH ||22
as n→∞.

By Lemma 6.6,

〈e−tHn , L〉 = Tr(L∗e−tHn)→ Tr(L∗e−tH) = 〈e−tH , L〉
for all operators L of finite rank. By density of finite rank operators in H2, the
result follows.

To go from convergence in Hilbert-Schmidt norm to convergence in trace norm,
we use the inequality

||A2 −B2||1 ≤ ||(A+B)||2 · ||(A−B)||2 + 2||B||2 · ||(A−B)||2
which follows from

A2 −B2 = (A+B)(A −B) + (A−B)B −B(A−B).

With A = e−
t
2Hn and B = e−

t
2H , we get that

||e−tHn − e−tH ||1 ≤ ||(e−
t
2Hn + e−

t
2H)||2 · ||(e−

t
2Hn − e−

t
2H)||2

+ 2||e− t
2H ||2 · ||(e−

t
2Hn − e−

t
2H)||2

which goes to 0 as n→∞. This proves the theorem. �

Convergence in trace norm implies convergence in operator norm which gives
convergence of eigenvalues and eigenfunctions (see pp. 289-290 in [RS80]). Thus
we have proved by stochastic methods the following result, which was the main
theorem both in [DVV94] and [BD15] (σ(·) denotes spectrum, r(·) denotes range
projection, and PA denotes spectral measure of an operator A):

Theorem 6.3 (Main Theorem). (1) If J is a compact subset of [0,∞) with
J ∩ σ(H) = ∅, then J ∩ σ(Hn) = ∅ for large n.

(2) If λ ∈ σ(H), there exists a sequence (λn) with λn ∈ σ(Hn) such that
λn → λ. Further, if J is a compact neighborhood of an eigenvalue λ ∈
σ(H), not containing any other eigenvalues of H, then any sequence λn

with λn ∈ σ(Hn) ∩ J converges to λ.
(3) Let λ and J be as in (2). Then dimPHn(J) = dimPH(J) for large n, and

for each orthonormal basis {e1, . . . , em} for r
(

PH(J)
)

there is, for each n,

an orthonormal basis {en1 , . . . , enm} for r
(

PHn(J)
)

such that limn→∞ eni =
ei, i = 1, . . . ,m.

Finally, we are now ready to reap the benefits from using stochastic methods
by showing that the eigenfunctions can be chosen to be continuous, and that they
converge uniformly on compact sets.

Lemma 6.7. For each t > 0, there exists a constant C = C(t) such that for any
h ∈ L2(K) and any n,

||e−tHnh||∞ ≤ C||h||L2(K), ||e−tHh||∞ ≤ C||h||L2(K).

Proof. First note that e−tHnf and e−tHf are continuous functions.
By Feynman-Kac,

0 ≤ Kt(x, y) ≤ pt(y − x).

By [Var97, Lemma 2, Sec. 4] we know that pt is in L2(K). Thus for every x ∈ K,

|e−tHh(x)| = |
∫

K

Kt(x, y)h(y) dy| ≤
∫

K

pt(y − x)|h(y)| dy ≤ ||pt||L2(K) · ||h||L2(K)
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Interpreting h as a function on Xn, we have by the finite Feynman-Kac formula
(5.3):

(e−tHnh)(x) =
∑

y∈Xn

q−nKn
t (x, y) · h(y),

so (Bt = the constant from Lemma 6.1)

|(e−tHnh)(x)|2 = |
∑

y∈Xn

q−nKn
t (x, y)h(y)|2

≤ (
∑

y∈Xn

q−n|Kn
t (x, y)|2) · (

∑

y∈Xn

q−n|h(y)|2)

(5.7)
= (

∑

y∈Xn

q−nKn
t (x, y)K

n
t (y, x)) · ||h||2L2(Xn)

(5.8)
= Kn

2t(x, x) · ||h||2L2(Xn)

Lemma 6.1
≤ B2t · ||h||2L2(K) .

So with C = max(||pt||L2(K), B2t), the lemma follows. �

Lemma 6.8. Fix t > 0. Then for each h ∈ L2(K),

e−tHnh→ e−tHh

uniformly on compacta.

Proof. We will prove it for a Schwartz-Bruhat function h, and then the general
result follows from Lemma 6.7. Let J be the union of a finite set of balls which
cover the support of h. We have Kn

t → Kt uniformly on compacta in K × K
(Lemma 6.2). As h is Schwartz-Bruhat, Dnh = h for n sufficiently large. Thus
Kn

t h→ Kth uniformly on compacta. Let L be a compact set. Then for x ∈ L

|e−tHnh(x) − e−tHh(x)| ≤
∫

J

|Kn
t (x, y)h(y)−Kt(x, y)h(y)| dy → 0

as n→∞, uniformly in x. �

Theorem 6.4 (Uniform Convergence on Compacta for Eigenfunctions). Let fn,j
and fj be eigenfunctions of Hn and H corresponding to the eigenvalues λn,j and
λj respectively. Assume that λn,j converges to λj and that fn,j converges to fj in
L2(K). Then

fn,j → fj as n→∞
uniformly on compacta.

Proof. We will first prove that

e−tHnfn,j → e−tHfj as n→∞
uniformly on compacta. Let M be a compact set. We have

||e−tHnfn,j − e−tHfj ||L∞(M)

≤ ||e−tHnfn,j − e−tHnfj ||L∞(M) + ||e−tHnfj − e−tHfj ||L∞(M)

This goes to 0 by Lemma 6.7 and 6.8.
Now we know that, as n→∞,

e−tλn,jfn,j = e−tHnfn,j → e−tHfj = e−tλjfj

uniformly on compacta. Since e−tλn,j → e−tλj , the result follows. �
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