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Abstract This paper proposes an architecture consist-

ing of various edge detection filters implemented on

modern FPGA platforms exploiting a feature of Dy-

namic Partial Reconfiguration (DPR). The developed

system targets small scale systems, and its use in the

educational setting can be of great interest. Two di-

mensional convolution is the most common operation in

digital video/image processing and its implementation

is highly demanding in terms of computational inten-

sity, high-throughput and hardware resources. In the

case of a variety of filtering techniques used for edge

detection, the hardware resources become a constraint,

in particular when using convolution kernels with vary-

ing parameters and sizes. DPR introduces significant

functional density and increased flexibility by provid-

ing logic switching within a constrained hardware area.
Furthermore, parallel and pipelined hardware solutions

for filter implementation overcome computational per-

formance of software solutions and increase effective-

ness compared to static hardware solution. The advan-

tages of accommodating a number of various algorithms

within the same datapath at low cost and considerable

time is exploited in the proposed work. The effective-

ness of the DPR feature for edge detection application is

tested on the filter scenarios varying in sizes, complex-

ity and intensity of computation, where the resource
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utilization and timing are evaluated. Experimental re-

sults are proposed through comparisons between differ-

ent configurations (with DPR and without DPR) and

detailed performance analysis.
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Hardware implementation · Field Programmable Gate

Arrays (FPGAs) · Dynamic partial reconfiguration
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1 Introduction

Edge detection algorithms are widely used in the pre-

processing stage in many image/video processing algo-

rithms. Most of edge detection filters are convolution-

based, and these systems are characterized by high com-

putational load in particular with increasing resolution

requirements. Increased performance and throughput

are requested accordingly. The convolution operation

traditionally implemented as software running on CPU

is characterized by a sequential execution of source code.

The trend of increasing processor speed has reached

the limit and alternative ways of increasing the perfor-

mance are required. Software oriented architecture are

discarded in time-critical scenarios due to its increased

latency and low throughput. On the other side, inten-

sive task-level pipeline and data-level parallel process-

ing can enhance the convolution performance. The Gen-

eral Purpose Graphic Processing Unit (GPGPU) has

emerged as a powerful computing platform for intensive

data applications. The number of ASIC [1] and GPU so-

lutions [2, 3] for convolution algorithm processing are

proposed. Canny edge detection implementations [4, 5]

have been tested on a number of GPU configurations

(G80, GT200, Fermi). However, there has been a con-

siderable amount of research into reconfigurable tech-
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niques in order to design image processors with high

flexibility and performance, thus within limited usage

of hardware resources and low power consumption. The

flexibility arises as a mandatory characteristic within

the embedded real-time applications. In particular case,

targeting edge detection filtering focuses on efficient

matrix computation solutions. For example, FPGA im-

plementation [6] proposes a fast 1D convolution with

large kernels up to sizes 24 × 24, whereas Canny edge

detection FPGA implementations for real time applica-

tions have been presented by several works [7, 8, 9, 10].

The increasing resolutions represent a requirements

which limits hardware resources in choice of available

processing functions. By use of Dynamic Partial Re-

configuration (DPR) functionality on modern FPGAs,

reconfigurable solutions get additional flexibility. Pro-

grammable Logic (PL) resources are saved by storing

mutually time-exclusive algorithms within the defined

hardware area and by changing functionality/logic as

the application requires. This is performed by storing

partial bitstreams within the memory and program-

ming a piece of PL with partial bitstream of chosen

functionality when requested. DPR has been increas-

ingly used in architectures for video processing. A scal-

able architecture for DCT unit is implemented in [11],

whereas [12] use partial reconfiguration to implement

2-D Haar wavelet transform of various sizes for differ-

ent image resolutions in face recognition system. Self-

reconfigurable motion estimation algorithm with differ-

ent level of parallelism (from 1 to 4 reconfiguration par-

titions) is proposed in [13]. In [14] the DPR is used to

switch between the MPEG-2 and H.263 inverse quan-

tization module. Biometric personal recognition com-

posed of a number of image processing tasks [15] uses

DPR for switching tasks such as segmentation, image

normalization, isotropic filtering based on Gaussian fil-

ters for noise reduction, image binarization and smooth-

ing and feature extraction executed in sequential order.

[16] implement a test-platform where a VGA-camera

stream is fed into the FPGA, filtered by a reconfig-

urable filter and then outputted onto a monitor.

In this paper, we present a System-on-Chip (SoC)

platform providing a variety of edge detection filters.

The edge detection filters of various sizes, complex-

ity and sensitivity are described, developed, tested and

implemented on FPGA. The complete SoC develop-

ment includes filter architecture design targeting high

throughput by exploiting techniques such as 1D con-

volution and merged kernel convolution, intensive filter

testing with input reference images, comparison with

software models, software development of supporting

processor system for communication and partial recon-

figuration, and finally algorithm/module switching by

DPR on FPGA chip.

The paper is structured as follows: in Section 2 edge

detector filters and their kernels are presented. Canny

edge detector filter is described in detail in Section 3.

Section 4 presents details of dynamic partial reconfig-

uration and, in particular, its features, limitations and

level of abstraction. The details of filter implementa-

tions and overall system architecture are presented in

Section 6, whereas in Section 7 synthesis, implemen-

tation, performance analysis and test results are sum-

marized. Finally, the concluding remarks are given in

Section 8.

2 Video/Image Edge Detection

The video algorithms can be spatial, temporal or spatio-

temporal whereas spatial filtering techniques process

pixels within the same frame. Most of the image filters

use a convolution of the kernel H to a group of pixels.

The number of pixels used for the transformation is de-

pendent on the kernel size N×M where N = 2n+1 and

M = 2m+ 1 and the convolution process is denoted:

Y (x, y) =

n∑
i=−n

m∑
j=−m

H(i, j)p(x− i, y − j) (1)

where p is a generic pixel of the input image, H rep-

resents filter weights applied to N × M block of the

neighbor pixels centered at pixel p, Y (i, j) is a pixel of

the output image.

The edge detection process identifies and locates

sharp discontinuities in the image. Thus, an edge is de-
fined as a set of connected pixels which lie on the bound-

ary of two regions within the image. In practice the

image acquisition imperfections produce blurred edges

with transition region. The quality of the image acqui-

sition and the illumination conditions are factors which

determine the degree of blurring. The edge detection

process contains noise removal as pre-processing stage,

leading to edge detection itself as core process and post-

processing thresholding as last stage which improves

the complete edge detection process as presented in

Fig. 1. Several methods for edge detection are proposed

in the literature. However, convolution methods with

defined filter mask are the most common.

The geometry of the kernel determines the direc-

tion of the edge detection. Depending on the order of

the derivative employed in the method, there are two

categories: gradient searching for the extremes in the

first derivative of the image, and Laplacian which finds

the zero crossings in the second derivative. The gra-

dient of an image f(x, y) at location (x, y), is defined



An Adaptive High-Throughput Edge Detection Filtering System using Dynamic Partial Reconfiguration 3

as a vector with magnitude and the direction angle as

follows:

∇g =

[
Gx
Gy

]
=

[
∂f
∂x
∂f
∂y

]
(2)

where Gx and Gy are gradients in x and y direction.

The edge strength is measured by absolute magnitude

of the gradient ∇f defined as a distance measure as

follows:

|G| =
√
G2
x +G2

y, (3)

which can be further simplified in order to reduce the

computational complexity as presented:

|G| ≈ |Gx|+ |Gy|. (4)

The angle θ of gradient ∇f at image location (x, y)

determines the direction of the edge and is given by:

θ(x, y) = arctan(
Gy
Gx

). (5)

Mean 
Filter

Edge 
Detection 

Filter
Binarization

Fig. 1 General Edge Detecton Dataflow

2.1 Smoothing Filter

Images are often corrupted by random intensity vari-

ations. The edge detection in noisy environment can

be challenging since both noise and edges are a high-

frequency content. The noise increases false edge detec-

tion and removal of real edges. The sensitivity to the

noise can be minimized by filtering the input image by

low-pass filter.

2.1.1 Mean Filter

Linear smoothing filters use weighted sum of the pixels

in successive windows. The size of the defined neighbor-

hood can differ. For example, a two-dimensional 3×3

filter requires all the pixels in the range [(x − 1, y −
1), (x+ 1, y+ 1)] and the weight for each pixel is recip-

rocal to the total number of pixels in the neighborhood,

in this case w = 1
9 . A weighted average filter hardware

implementation for size 3× 3 requires less computation

compared to regular mean filter since division by 16

can be performed by shifting operation instead of using

division. The convolution kernel for weighted average

filter is:

H2D
WA =

1

16

1 2 1

2 4 2

1 2 1

 . (6)

2.1.2 Gaussian Smoothing Filter

Gaussian filters are class of linear smoothing filters with

the weights fitting the shape of a Gaussian function.

The two-dimensional Gaussian function is defined as:

G2D(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (7)

where σ is the standard deviation of Gaussian function.

It determines the level of smoothing in the image i.e.

the width of Gaussian filter. The Gaussian kernels are

rotationally symmetric and the amount of smoothing

performed by the filter is the same in all directions.

The limiting factors for implementation of convolu-

tion functions of large sizes in some cases can be solved

by two one-dimensional convolution. However, only 2D

filters characterized by property of separability may be

decomposed into 1D convolutions

H(x, y) = H(x) ∗H(y). (8)

and their execution by means of a couple of cascaded

1D convolutions is presented as:

Y (x, y) = H(x) ∗H(y) ∗ I(x, y) = H(x) ∗ [H(y) ∗ I(x, y)]

=
∑
k

Hx(k)
∑
l

Hy(l)I(x− k, y − l).

(9)

Large Gaussian filters can be implemented very ef-

ficiently due to the property of separability of Gaussian

functions. Two-dimensional convolution kernel can be

presented by product of two one-dimensional vectors as

given:

G2D(x, y, σ) = G(x, σ) ∗G(y, σ) (10)

=
1√
2πσ

e
− x2√

2σ ∗ 1√
2πσ

e
− y2√

2σ (11)

In this case image is convolved with a one-dimensional

Gaussian vector and then the result is convolved with

the same vector oriented orthogonally to the vector

used in the first convolution phase. The convolution

of an image with a filter kernel of size N × N implies
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N2 operations. When filter is presented as the outer

product of two 1 × N vectors, number of operations

is decreased from N2 to 2N operations. For example,

in the case of 5×5 Gaussian filter the convolution by

1 × 5 separable horizontal and vertical filters requires

10 computations versus 25 for the 2D kernel. The com-

putational saving increases with the increasing kernel

sizes as presented in Table 1.

Table 1 Number of multipliers and adders required for 2D
and 1D convolution

2D convolution 1D convolution

Kernel Size Nmult Nadders Nmult Nadders

5×5 25 24 10 8
7×7 49 48 14 12
9×9 81 80 18 16

11×11 121 120 22 20
13×13 169 168 26 24
15×15 225 224 30 28

2.2 Edge Detector Differentiation Phase

2.2.1 Sobel Edge Detector

The Sobel Edge Detector [17] defines convolution ker-

nels for creating corresponding gradient magnitudes,

and 5× 5 Sobel horizontal kernel is given by:

Hx =


1 1 0 −1 −1

1 1 0 −1 −1
2 2 0 −2 −2

1 1 0 −1 −1

1 1 0 −1 −1

 (12)

whereas Sobel vertical kernel is transposed matrix of

Hx:

Hy = HT
x . (13)

2.2.2 Laplace Edge Detector

Laplacian represents a 2-D measure for computing the

second derivative:

∇2 =
∂2

∂x2
+

∂2

∂y2
. (14)

This filter determines regions of the image with pixel

intensity change. The Laplace edge detector uses the

zero-crossing of second derivative of the pixel in order

to identify an edge in the process of edge detection.

2.2.3 LoG Edge Detector

The convolution operation is commutative, thus, smooth-

ing and differentiation in sequence can be combined

into a single operator ∇2Gσ. The combination of Gaus-

sian smoothing filter and Laplacian edge detection filter

known as the Laplacian of Gaussian (LoG) is presented

in the form:

LoG(x, y, σ) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 . (15)

2.2.4 Differences of two Gaussian Filters - DoG Filter

The separability property of a 2-D function is deter-

mined by the rank of the kernel and for Gaussian and

Sobel functions, the separability property is fulfilled.

In the case of LoG function, decomposition into two

1-D functions cannot be performed and thus the LoG

operator is not separable. Due to the lack of separa-

bility property, computational inefficiency is the limi-

tation of the LoG filtering in particular in the case of

large kernels. An approximation of the LoG operator is

achieved by the use of differences of two Gaussian func-

tions (DoG), which are themselves separable functions.

DoG kernel operator is defined by:

DoG2D(x, y, σ) = G(x, y, σ1)−G(x, y, σ2)

=
1

2π

(
1

σ2
1

e
− x2+y2

2σ21 − 1

σ2
2

e
− x2+y2

2σ22

)
(16)

The subtraction of two Gaussian functions with differ-

ent standard deviations is a bandpass filter allowing

extraction of image features in the frequency band of

interest which tend to correspond to edges.

2.3 Edge detection Enhancement - Binarization

Image binarization, or thresholding, represents a pixel-

based decision function. The gray value of a pixel gets

black or white value depending on the defined thresh-

old:

Ithreshold =

{
0 I < Threshold

2L − 1 I > Threshold
(17)

where L represents number of bits per pixel.
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3 Canny Edge Detection Algorithm

The Canny edge detector [18] is among the most widely

used edge detection algorithms. Among existing algo-

rithms, Canny edge detection filter is optimal in ad-

dressing detection, localization and number of responses.

The criteria of localization assumes detected edges and

real edges to be close to each other. It is computation-

ally more insensitive when compared with other algo-

rithms and as it is based on frame-level statistics, it is

characterized by high latency. The algorithm runs in

five separate steps:

– Smoothing

– Computation of horizontal and vertical gradients,

gradient magnitude and orientation in each pixel

location

– Non-Maximal gradient Suppression (NMS)

– Double Thresholding

– Edge Tracking

and its dataflow is presented in Figure 2. Many imple-

mentations of the Canny algorithm have been proposed

on a variety of hardware platforms. As aforementioned,

the implementations [7, 8, 9, 10] are FPGA-based. The

4-pixel parallel implementation [8] results in a speed-up

in the processing time, however it also results in an in-

crease of memory organization and control resources. A

distributed canny edge algorithm proposed by [9] adap-

tively computes the edge detection threshold based on

the block type and the local distribution of the gra-

dients within the image block. Canny filtering is deter-

mined by the width in the smoothing phase and thresh-

olds in the edge decision phase.

3.1 Smoothing

Gaussian smoothing filters are commonly used in Canny

edge detection filters to reduce the noise level in an

image and to improve the edge detection performance

by smoothing false edges. In order to implement the

Gaussian smoothing filter on the FPGA platform, the

smoothing kernel is rounded to fixed-point data format.

3.2 Computation of horizontal and vertical gradients

In this phase, there can be used a number of gradient

functions, such as Sobel filter. However, the gradient

computation can be performed using gradient masks

designed to approximate 2D partial derivatives of the

Gaussian function as follow:

Gradx(x, y, σ1) = − x

πσ4
e−

x2+y2

2σ2 (18)

Grady(x, y, σ1) = − y

πσ4
e−

x2+y2

2σ2 (19)

The choice of σ affects the performance of the Canny

detector and its value can be adapted to the noise or

blur in the image. Larger values of σ increases noise

resilience, whereas lower values provide better edge de-

tection. The choice depends on the present noise char-

acteristics and image content and statistics.

3.3 Gradient Magnitude and Angle Computation

The gradient magnitude computation sums the abso-

lute values of horizontal gradient Gx and vertical gradi-

ent Gy at each pixel location as in Sobel edge detection

algorithm. However, Canny detector uses also informa-

tion about the gradient direction α(G) for edge map

computation. The gradient direction falls in one of 4

possible angle ranges (0◦, 45◦, 90◦, 135◦).

3.4 Non-Maximal Suppression - NMS

Both magnitude and direction are used in order to de-

termine one-pixel wide edges. For the gradient direc-

tions in between the main directions, an interpolation is

performed and the direction is set to one of four princi-

ple directions. Then, NMS performs comparison of the

gradient magnitude of the active pixel with gradient

magnitudes of neighboring pixels along the chosen prin-

ciple gradient direction. The gradient magnitude is set

to zero in the case it is not local maximum.

3.5 Double Thresholding

After the search for local maximum on the edge di-

rection, double thresholding is proposed. It defines two

thresholds, TLOW and THIGH , and their computation

is based on the histogram of the gradient magnitude

for the entire input images. The high threshold THIGH
is computed by defining a percentage of the total pix-

els to be classified as strong edges, whereas the low

threshold is computed as a certain percentage of the

high threshold. The typical values of these percentages

are 20% and 40% for high threshold percentage and

low threshold percentage, respectively. However, most

of the existing implementations perform threshold com-

putation offline and use the same fixed pair of threshold

values for all images. Even if this results in a decreased

edge detection performance, the latency is considerably

lower.
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Gaussian
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Thresholding
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Gy

Magnitude |G|
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Non-Maximum 
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(NMS)

Edge Tracking 
(Hysteresis)

Fig. 2 Canny filter dataflow

In order to create the edge map, a double thresh-

olding is performed to gradients for classifying pixels as

definitive, possible or non- edges as follows:

Gedge =


0 |G| < TLOW

2L−1 TLOW < |G| < THIGH

2L − 1 |G| > THIGH

(20)

If the gradient magnitude of a pixel is greater than

the high threshold, the pixel is set to be a strong edge

and it can be included in the final edge map. Weak

edges, pixels whose gradient magnitude is in between

low and high threshold, are included in the edge map

only if they are connected to the strong edges.

3.6 Edge Tracking

The search for strong edge pixel candidates among weak

edges is performed in the last Canny detector phase. It

consists of strong edge pixel search in the 4-neighborhood,

i.e. every pixel that touches one of the current pixel

edges or 8-neighborhood i.e. every pixel surrounding

the current pixel in various implementations. Both edge

tracking algorithms require caches for storing data com-

puted after thresholding phase. A procedure for on-

fly comparison of a current pixel with the values of

three neighboring pixels above the current pixel and

left neighboring pixel presented by Gentsos at al. [8]

does not require additional cache resources. If any of

4-neighborhood pixels are strong edges, the candidate

pixel is included in the edge map.

4 Run-time Partial Reconfigurable Computing

Technology

Nowadays, FPGAs contain a large amount of hardware

logic such as look-up tables, flip-flops and build-in com-

ponents as memories, processors and multipliers. Large

variety of components gives possibility for intensive SoC

development within a single FPGA. In addition, the

DPR feature which allows the reconfiguration of a por-

tion of FPGA, while the rest of the FPGA logic (static

logic) retains the old functionality and keep running.

It relies on the assumption that time-multiplexing of

independent operations might significantly reduce the

FPGA resource demands and increase the flexibility in

choices of algorithms or protocols by loading a partial

configuration bitstream of the algorithm of interest in

the requested time. DPR improves FPGA fault toler-

ance and may reduce the resources required for imple-

menting an algorithm. It leads to selective load of the

processing core within the period in which a particu-

lar function is requested and to replacement of active

functionality with other functions on the same chip.

   FPGA

Reconfiguration 
Area

Static part

Function 
Block C

Function
Block B

Function
Block A

FPGA

Static part

Function
Block A

FPGA

Static part

Function
Block B

FPGA

Static part

Function
Block C

Time
PR PR

  FPGA

Static part

Function
Block A

Function
Block B

Function
Block C

Full Reconfiguration

Dynamic Partial Reconfiguration (DPR)

Fig. 3 Basic mechanism of Partial Reconfiguration

The techniques for placement and interaction of re-

configuration modules with reconfigurable partitions dif-
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fer between manufactures. The partially reconfigurable

region (PRR) on FPGA is a block where reconfigurable

modules (RM) are deployed at run time. A DPR sys-

tem can have multiple PRRs, but only one RM can be

active within a PRR. Furthermore, DPR requires static

region around the reconfigurable partition in order to

provide a safe and efficient routing. Fig. 3 illustrates

a DPR process with one PRR and three RMs. Earlier

most common communication link between static and

dynamic logic was established by Bus Macros (BM)

which were manually added by the user during the

design phase. BM are pre-routed slice based elements

made of LUTs. Nowadays, Xilinx Partial Reconfigura-

tion [19] uses proxy logic insertion during the synthesis,

whereas GoAhead tool [20] avoids additional logic by

using blockers in the reconfigurable partition.

DPR process defines two phases: the first phase in-

cludes fetching and storing the required partial bit-

streams in the local memory such as Flash memory,

SRAM or BRAM memory. This phase is not time-critical.

The second phase loads bitstreams into reconfigura-

tion regions including the transfer of partial bitstreams

from the on-board memory to the ICAP controller. The

key consideration in the second phase is the reconfig-

uration time. The reconfiguration time, measured by

a timer peripheral, is defined as the time that elapses

between the request for loading a new functionality of

the co-processor and the time point at which the co-

processor’s new functionality gets active. The funda-

mental limiting factor that impacts the reconfiguration

time is the speed of writing data to the configuration

memory. The hard macro in FPGAs that serves the

purpose of controlling reconfiguration by writing to the

configuration memory is the Internal Configuration Ac-

cess Port (ICAP). Xilinx’s proposed partial reconfigura-

tion flow uses the OPB-HWICAP [21], XPS-HWICAP

[22] or the fastest AXI-HWICAP [23] cores to control

the ICAP. Theoretical throughput for ICAP is achieved

if partial bitstream data comes in every clock cycle.

The ICAP with a 32-bit, 100 MHz streaming interface

provides up to 400 MB/s reconfiguration throughput.

However, a number of alternative reconfiguration con-

trollers [24, 16, 25] have been implemented in order to

speed up the reconfiguration process.

5 Core Development

In general, the motivation for using hardware imple-

mentation in general is to reduce the execution time

of algorithms compared to the software execution. By

involving additional hardware resources, the computa-

tional power of the complete system is increased. The

2D convolution modules within the proposed adaptive

video filtering system are fully described in VHDL hard-

ware description language. Structural features such as

kernel size in both dimensions, pixel depth and ker-

nel coefficients for this system can vary. The number

of additions and products grows exponentially depend-

ing on the kernel dimensions as presented in the previ-

ous sections. In the case of some filters, separable vec-

tors are used to reduce critical path and, thus, increase

the operating frequency. Different levels of computation

granularity such as pixel-, block- or frame-level can be

required for implementing various video processing al-

gorithms. These applications require a wide use of shift

registers, memory windows and line buffers providing

data context within the certain application. Adjacent

pixels require memory structure consisting of only a few

flip-flops. Pixel-level processing manipulates only one

pixel or one array of pixels within an image/frame scan

line, whereas shift registers provide a one-dimensional

temporary data buffer for storing incoming pixels. A

typical signal processing application which uses shift

register for storing is the one dimensional finite impulse

response (FIR) filter. The one-dimensional average fil-

ter uses a shift register presented in Fig. 4. The size of

the FIR filter determines the size of the shift registers

and the number of multiplications and additions. For

two pixels at the same location in adjacent scan lines,

an entire line of storage (line buffer) is required. For

two pixels at the same location in two different frames,

frame buffers are used.

Typically, line buffers are implemented as block RAMs

to avoid the communication latency introduced by com-

munication with off-chip DRAM memory. The depth of

the RAM blocks is constrained to the width of the in-

put image, whereas the number of line buffers is set to

M − 1 depending on the kernel height M and together

with the current incoming video data signal compose

an n-parallel input into convolution kernel. In this par-

ticular realization, the depth of line buffers is set to

512 8-bit pixels for testing purposes, whereas there is

no restriction of the maximum height of the image. In

the case of 3 × 3 kernel, two line buffers are used for

storing two input image lines. The stored pixels are,

then, used for convolution operation as central block

pixel and as a neighbor pixel in convolution process of

the surrounding pixels. The duration of the usage of the

pixel is determined by the kernel size. The processing

of the image borders is performed by zero padding to

guarantee the same output image size as input image

size. The intensity computation of central pixel is done

by multiplying the original pixels block N×M from the

image window with the kernel coefficients. In order to

perform the computation, a memory window of kernel

size is implemented. The memory window is a two di-
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mensional grid of shift registers. In each clock cycle, the

data from line buffers and input register are shifted into

the grid, the data from each register in the memory win-

dow are shifted to the right neighbor register and the

data from the grid are used for computing convolution

for the active central input pixel. In the proposed imple-

mentation, the multiplication is performed only by use

of adding and shifting operations. The computed par-

tial products are then summed by the use of an adder

tree and the total sum is delivered as output sample in

each clock cycle. The block diagram of the Laplace and

LoG edge detection filters are presented in Fig. 5 and

Fig. 6, respectively.

R2 R1 R0

x x x
h[1] h[2] h[3]

Input

+

+

Output

Shift Register

Fig. 4 Use of shift register in one-dimensional averaging fil-
ter

Line Buffers

(i,j)

Memory Window

+ +

+ +

x
2

+

+ abs

x
-2

x
-1

x
-1

Fig. 5 Sobel Edge Detector realization (y direction)

In the caseof a separable function, the following

property of convolution is used:

Y (x, y) = [I(x, y) ∗H1(x, y)] ∗H2(x, y)

= I(x, y) ∗ [H1(x, y) ∗H2(x, y)] .
(21)

Separable filter hardware realization, when applica-

ble, provides lower latency and buffer size. For exam-

Line Buffers

(i,j)

Memory Window

+

x
-4

+

+ + abs

Fig. 6 LoG Filter realization

Line Buffers

+

+

x

...

Frame Width
Nx1

...

x

x

x

+

H1y

H2y

H3y

HNy

...

H(y)

...

H1x H2x H3x HNx
...

*

1xN

H(x)

Fig. 7 Separable 2-D filter H(x, y) realization

ple, 2-D Gaussian kernel G, mean kernel and 2-D So-

bel kernel are separable and therefore they can be im-

plemented by two successive one-dimensional operators

where one is applied horizontally and the other verti-

cally as presented in Fig. 7. The results of column-wise

1-D convolutions for both horizontal and vertical com-

putations are stored in local cache of the size 1 × N ,

and then are convoluted with row-wise vectors in or-

der to produce final gradients. The gradient magnitude

is computed as the sum of absolute values of horizon-

tal and vertical gradient (Eq. 4). Separability property

is used for building filters with large kernels whereas

2-D convolution is used for designing filters with ker-

nels of sizes N < 5 due to faster memory access at the

considerable low increase of arithmetic operations. The

coefficient values for a number of separable functions

which are used in implementing edge detection filters

are given in Table 2.

The separability property does not hold for LoG nor

DoG operator or their extensions, and computational

inefficiency for these operators is introduced for larger
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kernel sizes. For improving the efficiency of DoG oper-

ator, the separability of the Gaussian functions is used

by performing convolution of an input image I with

two Gaussian kernels with standard deviations σ1 and

σ2 using 1D Gaussian operators in both directions as

presented in Fig. 8. The resulting two smoothed im-

ages IG1 and IG2 are used for computation of DoG

DG = IG1 − IG2.

Table 2 Coefficients for Separable Vectors in Large Filter
Kernels

Gaussian, 5×5, σ = 1

-0.0625 -0.25 -0.375 -0.25 -0.0625

Gaussian, 7×7, σ =
√

2

-0.030 -0.105 -0.222 -0.258 -0.222 -0.150 -0.030

Gaussian, 7×7, σ = 2.3

-0.085 -0.136 -0.180 -0.198 -0.180 -0.136 -0.085

Gaussian, 9×9, σ =
√

2

-0.005 -0.030 -0.104 -0.22 -0.282 -0.22 -0.104 -0.030 -0.005

Gaussian, 9×9, σ = 2.3

-0.040 -0.078 -0.125 -0.165 -0.182 -0.165 -0.125 -0.078 -0.040

Grad(Gaussian), 7×7, σ =
√

2

-0.109 -0.140 -0.131 0 0.131 0.139 0.109
-0.021 -0.072 -0.153 -0.197 -0.153 -0.072 -0.0207

Grad(Gaussian), 9×9, σ =
√

2

-0.037 -0.074 -0.142 -0.133 0 0.133 0.142 0.074 0.037
-0.003 -0.020 -0.069 -0.147 -0.189 -0.147 -0.070 -0.020 -0.003

Gaussian Filter
σ1

Gaussian Filter
σ2

I -

IG1

IG2

DG

Fig. 8 DoG Filter realization

5.1 Canny Edge Detector Implementation

The proposed architecture for Canny edge detector con-

sists of three stages as shown in Fig. 9. The stages

within the architecture are convolution stages perform-

ing operations such as smoothing and computation of

image gradient, followed by the NMS stage and dou-

ble thresholding and a final edge tracking stage. Each

of the stages is equipped with line buffers required for

adapting the input data to block processing.

5.1.1 Convolution Stage

The convolution computing core processes an N × N
overlapping image blocks by performing separate or

combined smoothing and gradient functions. In this

work both scenarios are implemented - Canny edge de-

tector (ED Filter V) computes ”Gradient of Gaussian”

of the original image, where partial derivatives of smooth-

ing Gaussian function with standard deviation σ =√
2 are computed and approximated by 2D masks fur-

ther split into two 1-D vectors. The second convolution

phase implementation of Canny edge Detector (ED Fil-

ter VI) consists of separate Mean filter and Sobel filter

cores.

The horizontal and vertical gradients are required

for computation of the gradient magnitude and angle

further used in the directional NMS module. In order to

avoid the realization of the arctan function in hardware,

the following approximation for gradient angle is used:

α ≈ Gy
Gx

. (22)

5.1.2 NMS Realization

In NMS phase, the directions of interest are limited

to four ranges as shown in Fig. 10. The edge angles

defining ranges of interest are
{
±π8 ,±

3π
8 ,±

5π
8 ,±

7π
8

}
.

The values of these edge angles and their fixed-point

approximation are given in Table 3. The direction of

the maximum gradient is defined in Table 4 based on

three parameters: the angle range of interest, the ra-

tio of Gy and Gx and their signs SGy and SGx . NMS

uses 8-neighbors window for determination of the local

maximum. Thus, a three-line buffer for storing gradient

magnitudes from the three frame/image rows together

with a buffer which keeps track of computed direction

(2-bit per pixel) are used. If the gradient of the cur-

rent pixel is the largest among neighbors on the chosen

direction, it is taken as an edge pixel, otherwise it is

suppressed.
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Local Gradient Maximum Computation

Comparator (Dir 3)
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5
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Fig. 9 The architecture of the proposed Canny edge detector algorithm

Table 3 Angles of interest for NMS function

Angle of Interest Value Fixed point value

tan(π/8) 0.41 1/2− 1/16− 1/32 + 1/256
tan(3π/8) 2.41 2 + 1/2− 1/16− 1/32 + 1/256

Dir1Dir3

 

Dir3Dir1

Dir2

π 0

π/8

3π/85π/8

7π/8

-7π/8 -π/8

-5π/8 -3π/8

Dir0Dir0

Dir2

Fig. 10 Selection of Edge Direction based on the angle values

5.2 Thresholding

The edges affected by noise are preserved after using

NMS stage. Thus, the edges created by the noise are

further examined by double thresholding. This stage is

in pipeline with NMS stage. In this particular imple-

Table 4 Selection of Edge Direction based on the angle val-
ues

Direction Range Magnitude Sign

Dir0 |Gy| < 0.41|Gx| −
Dir1 0.41|Gx| < |Gy| < 2.41|Gx| SGy

= SGx

Dir2 |Gy| > 2.41|Gx| −
Dir3 0.41|Gx| < |Gy| < 2.41|Gx| SGy

6= SGx

mentation, thresholds TH and TL are fixed to predeter-

mined values.

5.3 Edge Tracking

Comparison of the current candidate for a strong edge

with its neighboring pixels is performed in the final

phase. In this work, 4-pixel edge tracking is chosen

for implementation, where upper, lower, left and right

neighbors are considered for final decision to define a

pixel as the edge pixel. If any of these pixels is strong

edge, current pixel is also marked as strong edge. The

proposed 4-pixel edge tracking requires data from three

image lines, thus usage of two line buffer.

6 System Architecture

The proposed FPGA SoC architecture contains a set of

IP cores, some of which are adaptive, connected through

a common bus interface. The developed Edge Detection
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MICROBLAZE CPU

AXI Timer

AXI UARTLITE
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FPGA
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Bitstream N
...

...

RECONFIGURATION 
CONTROLLER

Fig. 11 System on Chip Communication with User Peripheral

filter core is with the capability of adjusting process-

ing features as commanded by the user. This adapta-

tion acts upon the measured component performance,

in this case quality of edge detection, trying to fulfill

the requirements given by the user. The flexibility intro-

duced by FPGA implementation featured with DPR is

based on the concept that mutually exclusive tasks can

execute on a partition within a single device. The pro-

posed self-reconfigurable adaptive video filtering system

is presented in Fig. 11. The main components of the

reconfiguration process are a reconfigurable core (RC)

and a reconfiguration engine (embedded Microblaze).

The RC is placed on a well-defined partially reconfig-

urable region within the programmable logic. The RC

logic is wrapped by an additional logic with interfaces

required to communicate with the processor. The self-

reconfiguration using the internal ICAP configuration

port provides the system with the required adaptation

capabilities. The AXI-HWICAP controller is used for

establishing communication with ICAP. The static re-

gion is composed of a 32-bit soft-core Microblaze pro-

cessor representing system CPU. The processor con-

trols the reconfiguration process by issuing the required

commands to configure the core to the candidate recon-

figuration modules. The additional peripherals such as

timer for computing the reconfiguration time and se-

rial communication for communication with the exter-

nal data source are included in the system. External

memories, both volatile and non-volatile, are required

for storing both processing data and configuration in-

formation (complete and partial bitstreams). The com-

munication between peripherals and memories is medi-

ated by use of the processor unit. A serial RS232 com-

munication interface, the link between the system and

external world, transfers the original and processed im-

ages/frames from and to a PC. The timer, UART and

interrupt controller, standard peripherals for Microb-

laze core, are interconnected through AXI-Lite proces-

sor bus, industrial standard interface adopted by Xilinx.

The dataflow chart in Fig. 12 shows the commu-

nication for performing self-reconfiguration. There are

presented the phases of the reconfiguration process and

algorithm choices with respect to the choice of param-

eters’ values within different phases of edge detector

algorithms. Six edge detection algorithms differing in

size of convolution matrices, complexity of detection
process and thresholding techniques are proposed for

testing purposes. Scenario includes dynamic on-fly re-

configuration between these edge detection algorithms.

The kernel sizes of proposed algorithms are fixed and

predetermined varying from 3×3 - 9×9. The system is

connected to the PC for sending the partial bitstream

to the memory, for communication with the processor

and for sending system specification including the re-

configuration commands. After establishing the com-

munication with the memory to store bitstreams, orig-

inal image data are transmitted to the processor by

serial communication and are further sent to the RC.

Data processed by the active reconfigurable core is sent

back through the processor to the external PC.

Both Linear flash and SRAM memories are used

and tested for storing full and partial bitstreams. The

partial bitstreams are placed in the independent ad-

dresses of the memory and their reading is performed

by ICAP programming when the reconfiguration phase

starts. The full bitstream is stored on flash memory to
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Fig. 12 Dataflow in the proposed self-reconfigurable system

be booted up into the FPGA at the power up. The re-

configuration time is measured from the start of the bit-

stream reading until the AXI HWICAP finishes the last

configuration write. This time represents theintroduced

latency of the complete reconfiguration process relevant

for the possibility of running application in real-time.

7 Results

This section details the hardware resource usage, the

optimization of the reconfiguration space and the anal-

ysis of the results used for testing. Concerning the area

performance of implemented core functionality, Table 5

shows the resources required to build each stage of the

edge detector filter algorithms, in particular convolu-

tion processors with various kernel sizes and proposed

complete edge detection variants. First, the SoC with

six edge detection cores is placed onto Kintex 7 board,

and the functionality of each of the edge detection filter

is tested. Testing was performed by comparing fixed-

point FPGA results with corresponding Matlab imple-

mentation. The proposed architectures of edge detec-
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Fig. 13 Resulting images after filtering image ”Lena” with chosen filters in Matlab

tion algorithms are tested on an 8-bit gray scale image

Lena of size 512× 512. Fig. 13 shows some results from

convolution stage and final results from edge detection

gathered in Matlab for image Lena.

The cores are designed in Xilinx ISE, whereas the

functional and timing verification are performed on Kin-

tex 7 board. However, due to the fact that only one

core is chosen to perform the edge detection, these cores

can be multiplexed in time in a reconfigurable manner

within the same FPGA partition.

The implementations of the filters are adapted for com-

munication on FPGA chip, i.e. the input and output

signals are 32-bit wide and it is assumed to receive

one pixel (32 bit) per clock cycle. The surrounding mi-

croprocessor system dictates 100 MHz clock frequency.

The tools used for partial reconfiguration of adaptive

video filtering system implementation are composed of

Xilinx Design Tools - EDK 14.7, ISE 14.7, SDK 14.7,

Impact and PlanAhead. After generating netlists of the

RC modules in ISE, EDK tool is used to build a proces-

sor system with interfaces and memories. The process-

ing system AXI Lite bus links the Microblaze proces-

sor to the interfaces and the reconfiguration partition.

PlanAhead is used to constraint the floorplan, to place

the reconfigurable module within the FPGA and to gen-

erate the full and partial bitstreams. Finally, Impact

tool programs the flash memory with the full bitstream

for boot up and partial bitstreams declared as data at

defined memory ranges. Software development of the

drivers and embedded applications for Microblaze pro-

cessor is done within SDK tool. A detailed overview of

the design floorplans with DPR and without DPR are

shown in Fig. 14. The reconfigurable region is placed in

the upper left quadrant. The pink rectangle represents

the constrained region of the reconfigurable core. The

size of the reconfigurable region is chosen considering

the resource utilization of each reconfigurable partition

and is set so that it fits the largest possible realization.

Matlab program adapted for serial communication is

used to send original data and fetch the output data

from the SoC. The initial configuration of the recon-



14 Milica Orlandić, Kjetil Svarstad

Table 5 Hardware Resources for various Image/Video Filters [512× 512]

Submodules
Kernel

Sigma Slices LUTS Flip-Flops
BRAM Memory Operating

Size [kbits] Frequency [MHz]

Mean Filter 3×3 - 43 109 92 8 496
Gaussian Filter 5×5 1 110 350 249 16 360

Gaussian Filter 9×9
√

2 215 696 470 32 267
Gaussian Filter 9×9 2.3 289 686 457 32 306

Sobel Filter 3×3 - 82 190 92 8 496
Sobel Filter 5×5 - 181 383 402 16 375
Laplace 3×3 67 131 92 8 430

LoG 3×3
√

2 53 102 80 8 430

LoG 5×5
√

2 94 191 260 16 387

Gradient of Gaussian 9×9
√

2 601 1488 925 32 290

Binarization 1×1 - 5 9 - -
NMS + Double Thresholding + 3×3 - 48 86 110 9 496
Edge Tracking + 3×3 - 37 58 78 8 496

Complete Edge Detector Implementation [512× 512]

ED 1 [3×3, 3×3] 187 470 415 16 256

ED 2
5×5 117 260 182 16 250

[3×3, 3×3]
ED 3 9×9 383 1026 883 32 310
ED 4 9×9 553 1377 1087 64 267
ED 5 9×9 694 1573 1251 49 290
ED 6 5×5 274 648 607 33 218

Total 5×5 2208 5354 4425 210 218

Edge Detection Reconfiguration Module

RM N ×N (up to N = 9) 480 1920 3840 288 100 (sys. clock)

figuration partition on RC is Filter V - Canny edge

detector and the resulting image after filtering received

on the external PC side is given in Fig. 15.

After the partial reconfiguration is performed for

Filters I and IV, the resulting images received on the

external PC are shown in Fig. 16. The resulting images

are compared with the results of the detection process

performed in Matlab and no mismatch has been found.

The theoretical reconfiguration throughput of the

ICAP suggested by Xilinx, cannot be achieved since

the system is not able to provide data in each clock cy-

cle. In this particular case, the partial bitstream of size

164 kB is sent to the programmable logic within 2.6

s. This limits the proposed SoC to the non-time crit-

ical applications and directs the issue of the speed-up

of partial reconfiguration process towards development

of fast internal controller interface for real-time multi-

media applications. Apart from the timing limitations,

algorithms placed within the same reconfiguration area

extend the resources and cut the functionality limita-

tion in the small-scale systems.

Fig. 14 Chip layout with and without DPR

The proposed SoC implementation gives clear idea

about capabilities of the new generations of FPGAs and
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Fig. 15 Output image on serial communication port - initial
configuration ED Filter V

Fig. 16 Output images after the use of partial reconfigura-
tion - ED Filter I, ED Filter VI

its feature of resource re-usage in time. There are large

possibilites for storing large convolution matrix mod-

ules, since the complete SoC with Microblaze proces-

sor, interfaces and edge detection reconfiguration mod-

ule utilizes only 15% and 12% of Slices and RAM on

Kintex FPGA, respectively. Further development of the

proposed implementation of Canny edge detection algo-

rithm with increased IO pixel-parallelism is a good can-

didate for cutting edge reimplementation. Furthermore,

the image processing pipeline can be greatly improved

by building stream system discarding microprocessor

as intermediate stage in the communication between

reconfiguration modules, memory and external sources.

Thus, the future work can concern establishment of the

direct communication between external source, memory

and the reconfiguration region.

8 Conclusion

We have proposed a parallel and pipelined architecture

that enables fast and robust edge detection in an em-

bedded system using an FPGA device. A SoC design

including a number of edge detection algorithms is pro-

posed. The system offers a variety of functions such as

smoothing, first and second derivative edge detectors

and segmentation algorithms which can be combined

for improving detection process. The chosen combina-

tion of available modules varying also in kernel size for

each image/video processing phase in edge detection al-

gorithm can be performed within the limited hardware

area by use of DPR. By detailed analysis of data depen-

dencies and computation complexity of various phases,

in particular convolution phase, a design methodology

for efficient paralellization and implementation of al-

gorithms has been followed. The complete system has

been validated, simulated, placed and tested on FPGA

hardware in communication with external image/video

source. There is room for improvements, in particular,

concerning increased input parallelism in the current

system. Furthermore, the filter pipeline can be greatly

improved by building stream system which discards mi-

croprocessor for communication purposes. As a future

work, the intention is to exclude the processor from the

video/image pipeline, to establish the direct communi-

cation between DDR memory and the reconfigurable

region, and, in this way, to release the processor for

system control purposes only. The proposed DPR sys-

tem includes video algorithms/filters as reconfigurable

modules varying in complexity and resource utilization.
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