
Isogeometric Analysis
Higher-Order Differential Equations

Mathias Farvolden
Tjomsland

Master of Science in Physics and Mathematics

Supervisor: Trond Kvamsdal, MATH
Co-supervisor: Kjetil Andre Johannessen, IMF

Department of Mathematical Sciences

Submission date: June 2013

Norwegian University of Science and Technology

Abstract

This thesis introduces Isogeometric Analysis as a potentional bridge between the
Finite Element Analysis (FEA) and Computer Aided Design (CAD) communities.
An introduction to B-splines and B-spline-based Isogeometric Analysis is given.
Then an implemented Isogeometric Analysis solver is used to solve both the Pois-
son problem and the higher order Biharmonic equation on the unit square. The
signi�cant convergence results for Isogeometric Analysis is veri�ed in both cases.
Lastly, the highly non-linear, and sti�, Cahn-Hilliard equation is studied. The
implemented solver is used to show good results, particularily in the Dirichlet
boundary condition case. This demonstrates a major advantage of Isogeometric
Analysis over traditional Finite Element Method, in that higher order partial dif-
ferential equations can be solved without any major workarounds or adjustments
to the solver by increasing the continuity of the basis.

Sammendrag

Denne masteroppgaven introduserer Isogeometrisk Analyse som en potensiell bro
mellom Finite Element Analysis (FEA) og Computer Aided Design (CAD) -
fagfeltene. En introduksjon til B-splines og Isogeometrisk Analyse basert på B-
splines blir gitt. En implementasjon av en Isogeometrisk Analyse løser blir brukt
for å løse både Poisson problemet og den høyere ordens Biharmoniske ligningen
på enhets�rkanten. De lovende teoretiske konvergensresultatene bekreftes i begge
tilfeller. Til slutt studeres den høyst ikkelinære og stive Cahn-Hilliard ligningen.
Den implementerte løseren gir gode, kvalitativt veri�serte resultater, spesielt med
bruk av Dirichlet grensebetingelser. Dette demonstrerer en stor fordel som Isoge-
ometrisk Analyse har over tradisjonell Elementmetode. Høyere ordens partielle
di�erentialligninger kan løses uten store omformuleringer eller modi�seringer til
metoden, fordi man kan øke kontinuiteten til basisen.

Preface and Acknowledgements

This project was completed as the concluding thesis of the Master of Science pro-
gram called Applied Physics and Mathematics, with a specialization in Industrial
Mathematics at the Norwegian University of Science and Technology (NTNU).
The thesis was completed during the spring of 2013.
When the possibility to work with such a new and up-and-coming �eld as Iso-
geometric Analysis came by, the chance was instantly grasped. Isogeometric
Analysis seems to be shifting the analysis community towards greater connection
with CAD geometrically, and shows great results. The text assumes some knowl-
edge of Finite Element Analysis, but assumes no prior knowledge of Splines and
Isogeometric Analysis.
The project has been very rewarding, and greatly challenging. Especially, since
the �eld is relatively new, not a lot of textbooks or instructional texts have been
written yet. However, the works of Thomas J. R. Hughes and Yuri Bazilevs have
been a great source of knowledge and inspiration. Furthermore, I want to direct
a huge thank you to my great project supervisors, Trond Kvamsdal and asso-
ciate supervisor Kjetil A. Johannessen, whom both have been great contributors
and facilitators of my learning and my thesis' completion. A special thank you
to Kjetil A. Johannessen for his many brilliant ideas and his availability as is-
sues were worked on underways. I also want to direct a big thank you to Arne
Morten Kvarving, who stepped in and contributed with his great knowledge of
time-integration and sti� systems towards the end of the project.
Mathias F. Tjomsland
16 June 2012
Trondheim

CONTENTS vii

Contents

1 Introduction 1

2 Spline Theory 5

2.1 Splines . 5
2.2 B-Splines . 5
2.3 Variation Diminishing Spline Approximation 9
2.4 Parametric Spline Curves . 9
2.5 Tensor Product Spline Surfaces . 11
2.6 Matrix Representation of B-splines 12
2.7 Derivatives of B-splines . 13
2.8 Knot Insertion and Order Elevation 15

2.8.1 Knot Insertion . 15
2.8.2 Order Elevation . 16
2.8.3 K-re�nement . 16

3 Isogeometric Analysis Implementation 17

3.1 A Model Problem . 17
3.1.1 The Poisson Problem . 17
3.1.2 The Weak Form . 17

3.2 B-spline Basis Functions . 19
3.3 Elements in Isogeometric Analysis 19
3.4 Matrix Formulation . 20
3.5 Imposing Boundary Conditions . 22

3.5.1 Homogeneous Dirichlet Boundary Conditions 22
3.5.2 Dirichlet Boundary Conditions 22
3.5.3 Multi Point Restraints . 23

3.6 Error Analysis . 25
3.7 Mapping . 27
3.8 Numerical Integration . 29

4 Solver Implementation Overview 33

5 Veri�cation of Solver 37

5.1 Veri�cation of Results on the Homogeneous Poisson Problem . . . 37
5.2 Veri�cation of Results on the Non-Homogeneous Poisson Problem . 40
5.3 Veri�cation on Higher Order Equations 40

5.3.1 The Biharmonic Equation 41
5.3.2 Results . 42

viii CONTENTS

6 Numerical Experiments 47
6.1 The Cahn-Hilliard Equation . 47

6.1.1 The Strong Form . 48
6.1.2 A Dimensionless Form . 49
6.1.3 The Weak Form and Spatial Discretization 49

6.2 Time Integration and Numerical Challenges 50
6.3 Implementation Adjustments to Solver 51
6.4 Results . 53

6.4.1 Dirichlet Boundary Conditions 54
6.4.2 Periodic Boundary Conditions 64

6.5 Discussion . 69

7 Conclusion 71

A Cahn-Hilliard Code Implementation 76

1

1 Introduction

For a long time, �nite element analysis (FEA) has been the analysis tool
of choice for many engineers [24]. The �nite element method (FEM), based
on FEA, has generally proved very applicable, providing engineers with a much
needed analysis tool to model many di�erential equations on nearly arbitrary
domains. The applications of FEA are seemingly endless, playing a vital role
in, amongst others; structural engineering [40], aeronautical engineering [21],
biomechanical engineering [36], and the automotive industries [45]. Simulation
of car crashes through the use of FEA, is saving the automotive industry large
sums otherwise used on physical mock-ups for crash testing. Building a bridge,
the engineers will need to know how much load it can withstand, and at what
frequencies it will resonate to identify any weak spots. Dentists use FEA to
simulate stress distributions in implants. Areonautical engineers use FEA to
optimize their wing design on new aircraft.

All of these applications require some sort of model or computerized geometrical
representation of the object on which analysis is to be performed. The vast
amount of design work is now done on a computer, using computer aided
design technology (CAD). 3D models of bridges, buildings, aircraft wings, and
cars are created by the design teams in CAD, before they are handed over to
engineers for analysis. However common this practice is, there has so far been
a void between the FEA and CAD industries. The two industries have grown
into independent �elds, speci�cally, without an agreed-upon mutual standard;
CAD and FEA use totally di�erent geometrical representations. This has been a
grave shortcoming of the industry as it is today, as nearly 80% of analysis time
[25] actually is spent by engineers on creating an analysis-suitable geometric
representation and meshes of the CAD model. There are in most cases no fully
automatic computerized way to do this transition from CAD to FEA geometries.

Furthermore, the analysis-suitable geometric representation the engineers create
is only an approximation to the CAD model. This implies that if the FEA
geometrc representation needs to be re�ned, changed, or improved; the engineers
have to consult the CAD model again. The fact that the FEA geometries only
are approximations is known to have a signi�cant e�ect on some highly geometry-
depentend situasions [13, preface], such as:

� Shell buckling analysis,

� Boundary layer phenomena in aerodynamics

2 1 INTRODUCTION

� Sliding contact bweteen bodies

In 2003, after a conversation about these shortcomings of the way the industry
was built up, and the lack of exactness in FEA geometries, Thomas J. R. Hughes
envisioned a solution that would bring the CAD and FEA industries much closer
together [13, ch.1]. The idea was to attemt to unite FEA and CAD around one
common, exact model. Now, relatively speaking, CAD is a larger industry than
FEA, and large sums of investments have gone into developing the standards of
todays CAD technology. With this in mind, and knowing that for all intents and
purposes the CAD models were already exact, Hughes found that the most ra-
tional way to implement his vision would be to suggest a new form of analysis to
the engineering community. This new form of analysis should utilize the existing
CAD geometrical representation standards in a way that would remove the need
of generating a seperate approximate FEA geometry, and should also if possible
be based on familiar analysis tools such as FEA to withold some familiarity for
engineers . Hence, Hughes proposed Isogeometric Analysis [25], [4], [3], [12],
[11], [53], [20].

Isogeometric Analysis aims to use the exact CAD representation for analysis.
Hughes found that the most widely used industry standard CAD geometric rep-
resentation was that of splines (NURBS based on B-splines) [13, ch. 1], [39],[17]
[10]. These spline represtentations are constituted by a number of basis functions
- each with a small span - very similar to the basis funtions or shape functions
used in FEA. Hughes showed that these spline basis functions could replace the
classical polynomial basis functions of FEA in the familiar Galerkin method.
Using these spline basis functions would allow the analysis to work potentially
directly on CAD models, meaning the geometric representation could be exact.
Furthermore, the geometric representation would be exact at all levels of spline-
mesh re�nement, as the re�nement of a spline based geometry does not change
the geometry - just the resolution of computation [25].

This thesis aims to investigate B-spline theory and demonstrate their use as basis
functions in the Galerkin method. This will be done by creating an Isogeomet-
ric Analysis solver implementation in MATLAB, that uses spline basis functions.
Speci�cally, one very noteworthy advantage of a spline basis is that one can create
a Cn-continuous basis. Whereas traditional FEA operates with a C0 continuity
across elements, Isogeometric analysis e�ortlessly allows one to choose higher or-
ders of continuity. This is especially applicable to higher order partial di�erential
equations - equations that demand such a higher-continuous basis. The imple-
mented solver is thus tested and veri�ed for both the Poisson equation and the

3

higher order Biharmonic equation. The strong error results found by Hughes is
veri�ed in each case - revealing similar, if not surpassing results to that of the
FEM[13]. Finally the solver is used to study the highly non-linear Cahn-Hilliard
equation - a very sti� and highly-nonlinear fourth order partial di�erential equa-
tion [22]. This equation is not solvable by traditional FEM without performing
complex workarounds. Therefore, this thesis also aims to demonstrate the power
of Isogeometric Analysis as a uni�ed system to solve both lower and higher order
partial di�erential equations.

4 1 INTRODUCTION

5

2 Spline Theory

2.1 Splines

The industry standard in CAD geometry representation is based on splines [13].
Splines are also widely used in computer graphics and general 3D-design software
to represent geometries. They are smooth functions that are piecewise de�ned.
Each piecewise part may be quite simple, but the power of spline representation
is that they can be used to model arbitrary functions and geometries. Also, they
are de�ned in a way that allows su�cient smoothness in the intersection between
the piecewise parts, which shall be shown as importantto the topic of this thesis.
The most commonly used spline representations in CAD are NURBS (Non-
Uniform Rational B-Splines). NURBS are projetive transformations of B-splines
from Rd+1 into Rd, and the main advantage of NURBS over B-splines is that
they can represent all conic sections exactly. NURBS are based on weighted B-
splines, and so electing a basis of B-splines for this thesis is a good starting point
in Isogeometric Analysis. Hence, an introduction to B-splines is in place. All
�gures are generated from Matlab implementations of the spline theory.

2.2 B-Splines

B-splines [43] are the type of splines used in this Isogeometric Analysis imple-
mentation. The B-spline functions are composed of several basis functions de�ned
in a parameter space. Let Ξ which is called the knot vector be a non-decreasing
set of numbers that will serve as coordinates in the B-spline parameter space.
Also, let p be the chosen polynomial order. Thus, we can de�ne a regular knot
vector as Ξ = {ξ1, ξ2, . . . , ξn+p+1}, where ξi ∈ R is the ith knot, and ξi ≤ ξi+1.
De�ned in this way, n turns out to be the number of basis functions we will need
to compute the B-spline curve over this knot vector.

A knot vector is called uniform if each of the knots are equally spaced, and
non-uniform if they are not. Also, a knot vector is called open if the �rst and
last value of ξ is repeated p + 1 times. Open and non-uniform knot vectors are
standard in CAD [13, p. 21], and hence, will be supported and assumed through-
out this thesis's implementation.

The B-splines are composed of several basis functions that are de�ned over p+ 1
spans in the knot vector. These basis functions Ni,p(ξ) are de�ned in a recursive

6 2 SPLINE THEORY

manner[34], starting with piecewise constants, for p = 0:

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(1)

When p = 1, 2, 3, . . ., the basis functions are de�ned recursively by the Cox-de
Boor recursion formula ([13, chapter 2.1.2] [5]):

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2)

The graphs of the �rst few basis functions on a uniform knot vector Ξ = {0, 1, 2, 3, 4, 5, . . .},
when the polynomial degree p = 1, 2, 3 are shown in �gure 1, 2, 3 respectively.
For the purpose of this thesis, it will be worthwhile to note that the basis

ξ

ξ

ξ

Figure 1: First three basis functions, p = 0 on knot vector Ξ = {0, 1, 2, 3, 4, 5, . . .}

functions in �gures 1, 2 and 3 are on a non-open knot vector. On an open
knot vector, things look a little di�erent at the end-points, because of the p + 1
identical knots. This is because of an important property of B-splines [34, The-
orem 1.4], which states: If a knot ξi occurs m times in the knot vector, then
the spline function will have continuous derivatives up to order p−m at the ith
knot. This means that by repeating knots, one can control the behaviour of the
spline function. If a knot is repeated p times, the spline function will have C0-
continuity at that knot value. Furthermore, the spline function will, when it has
C0-continuity, be interpolatory. This means, using open knot vectors, the spline
function will always be interpolatory at the endpoints, but not neccecarily at the
internal knot values unless repeated knots are present, or p = 1. This property is
visible in the arbitrary spline function interpolating the circled points in the top
half of �gure. 4; the endpoints are interpolated, but not the internal points. The

2.2 B-Splines 7

ξ

ξ

ξ

Figure 2: First three basis functions, p = 1 on knot vector Ξ = {0, 1, 2, 3, 4, 5, . . .}

ξ

ξ

ξ

Figure 3: First three basis functions, p = 2 on knot vector Ξ = {0, 1, 2, 3, 4, 5, . . .}

e�ect of adding a repeated knot is shown in the bottom half of �gure. 4. Here
p = 2 and Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}. The graph on the bottom has a double
knot at ξ = 2, giving Ξ = {0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 5} making the spline function
interpolatory in that point.

With these properties in place, a full set of basis functions for p = 2 on a non-
uniform, open knot vector Ξ = {0, 0, 0, 1, 2, 3, 3, 4, 5, 5, 5}, with a double knot at
ξ = 3 is shown in �gure 5. One more important feature of the B-spline basis
functions that now can be seen is that the sum of the nonzero basis functions in

8 2 SPLINE THEORY

ξ

ξ

f(ξ
)

f(ξ
)

Figure 4: Spline function modelling sin(ξ) based on the circled points, p = 2
and Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}, revealing the interpolatory nature of splines
at the endpoints (top), and the e�ect of inserting a double knot at 2, giving
Ξ = {0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 5} (bottom).

a arbitrary point ξ is unity:

n∑
i=1

= Ni,p(ξ) = 1 (3)

ξ

Figure 5: A complete set of basis functions for p = 2 and the knot vector Ξ =
{0, 0, 0, 1, 2, 3, 3, 4, 5, 5, 5}

2.3 Variation Diminishing Spline Approximation 9

The last concept needed before we can formally de�ne the spline curve, is that of
control points. The control points are the real number coe�cients of the basis
functions at each knot value ξ. The control points will be stored as points in a
vector called B. B-spline curves are made by taking linear combinations of the
basis functions, and hence we can �nally de�ne a B-spline curve, C(ξ) :

C(ξ) =

n∑
i=1

Ni,p(ξ)Bi, (4)

where Ni,p, i = 1, 2, . . . , n are the basis functions as de�ned in equation (2) on a
given knot vector, and Bi are the corresponding control points.

2.3 Variation Diminishing Spline Approximation

The B-spline curves can be applied in many ways and they are a powerful tool in
representing curves, surfaces and solids - in general; most geometric form or shape
that would be wanted as a domain for the Isogeometric Analysis of this thesis.
Firstly, splines can be used to approximate a function f de�ned on an interval
[a, b]. A simple but very useful method is called the Variation Diminishing
Spline Approximation [34, p.110]. The variation diminishing approximation
V of a function f(x) on [a, b] is de�ned by;

(V f)(x) =

n∑
i=1

Ni,p(x)f(ξ∗i), (5)

where ξ∗i = (ξi+1 + . . . + ξi+p)/p are the averages of each knot interval, and the
knot vector spans [a, b] with a and b being the endpoints of the knot vector. Fig-
ure 6 shows the variation diminishing approximation to sin(x), x ∈ [0, 5] using
p = 1 and p = 2 respectively in the upper and middle plot, whereas the bottom
plot uses p = 2 and a knot vector with halved knot spans, showing signi�cantly
improved results.

2.4 Parametric Spline Curves

By letting the control points be points in Rd,instead of real values as before, we
can de�ne parametric spline curves:

g(u) =

n∑
i=1

Ni,p(x)B(u), (6)

10 2 SPLINE THEORY

x

x

f(x
)

f(x
)

f(x
)

x

Figure 6: Variation diminishing spline approximation of sin(x), p = 1, 2, on knot
vector Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5},(top, middle respectively) and p = 2,Ξ =
{0, 0, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5, 5} (bottom)

where, in Rd, each entry in Bi will be a d-component coordinate in Rd. In R3,
if we de�ne each control point Bi = (xi, yi, xi), the parametric spline curve will
turn out to be:

g(u) = (

n∑
i=1

Ni,p(u)xi,

n∑
i=1

Ni,p(u)yi,

n∑
i=1

Ni,p(u)zi) (7)

An example of a parametric spline curve using the variational diminishing ap-
proach in R3, where xi = sin(u), yi = cos(u) and zi = u is shown in �gure 7

2.5 Tensor Product Spline Surfaces 11

Figure 7: Parametric spline curve, variational diminishing approach, p = 2,
Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 19, 19}, xi =
sin(u), yi = cos(u) and zi = u

2.5 Tensor Product Spline Surfaces

The idea of parametric curves can be generalized to parametric spline sur-
faces, or tensor product spline surfaces over a rectangular domain. The idea is
to use two, linearly independent, sets of spline basis functions - each representing
one parametric dimension, and letting them span the whole rectangular paramet-
ric domain [34, De�nition 7.1]. This is very similar to the idea that will be used
to develop the basis functions used in this thesis shortly. The two sets of spline
basis functions will be denoted Ni,p1(ξ) and Nj,p2(η), and will each be de�ned
just as in equation (2). The control points will now be a matrix B holding one
coordinate point (x, y) for every index (i, j) A surface can then be represented as

f(ξ, η) =

n1∑
i=1

n2∑
j=1

Ni,p(ξ)Nj,p(η)Bi,j (8)

If we allow the two parametric directions to be the regular coordinates, x and
y, we can develop a variational diminishing spline approximation to a function
de�ned on a rectangular domain [34, chapter 7.2.1]:

(V f)(x, y) =

n1∑
i=1

n2∑
j=1

Ni,p1(x)Nj,p2(y)f(ξ∗i , η
∗
j) (9)

12 2 SPLINE THEORY

where
ξ∗i = (ξi+1 + . . .+ ξi+p1)/p1 (10)

η∗j = (ηj+1 + . . .+ ηj+p2)/p2 (11)

as before. The variational diminishing spline approximation to the function

f(x, y) = g(x)g(y), (12)

where

g(x) =

{
1, 0 ≤ x ≤ 0.5

e−10(x−0.5), 0.5 < x ≤ 1
(13)

on the unit square, is shown in �gure 8. Here, a double knot is used at x, y = 0.5,
to preserve the fact that the function has discontinuities in its partial derivatives
across the lines x = 0.5 and y = 0.5. The results show a very good approximation.

x x
y y

z z

Figure 8: variational diminishing spline approximation to the equation (13). Ex-
act solution (left), and spline approximation (right),both knot vectors are equal
to {0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1, 1}

2.6 Matrix Representation of B-splines

B-splines are de�ned as a recurrence relation; the Cox-de Boor algorithm as
stated earlier. Recurrence relations can get a little di�cult to work with, even if
the relation is simple. However, it turns out that in the case of B-splines, this
recurrence relation can be represented as products of simple matrices, as de�ned
in Theorem 2.13 in [34]:

2.7 Derivatives of B-splines 13

Let t = (tj)n+p+1
j=1 be a knot vector of B-splines with degree p, and let µ be an

integer that satis�es tµ < tµ+1, and let p + 1 ≤ µ ≤ n. Then, for each positive
integer k with k ≤ p we can de�ne the matrix Rµ

k(x) = Rk(x) as

Rk(x) =

tµ+1−x

tµ+1−tµ+1−k

x−tµ+1−k
tµ+1−tµ+1−k

0 · · · 0

0
tµ+2−x

tµ+2−tµ+2−k

x−tµ+2−k
tµ+2−tµ+2−k

· · · 0

...
...

. . .
. . .

...
0 0 · · · tµ+k−x

tµ+k−tµ
x−tµ

tµ+k−tµ

 (14)

Then, with this de�nition of Rk(x), for any x in the interval [tµ, tµ+1) the values
for the p+ 1 B-splines of degree p that are nonzero in the interval can be written
as

NT
p = (Nµ−p,pNµ−p+1,p···Nµ,p = R1(x)R2(x) · · ·Rp(x). (15)

Thus, the spline curve's value in a point x can be given as

f(x) = R1(x)R2(x) · · ·Rp(x)b̃ (16)

where b̃ = (bµ−p, bµ−p+1, · · · , bµ)T are the control points.
This matrix representation allows for further analysis of the derivatives in the
next section, and give birth to the following algorithm [34, 2.21] for �nding the
values of each nonzero B-spline at a point x.

Data: Let p be the polynomial degree, the knots
tµ−p+1 ≤ tµ < tµ+1 ≤ tµ+p, and a number x in [tµ, tµ+1)

Result: The vector Np will contain the values of the p+ 1 nonzero splines
at x

Set N0 = 1 for k = 1, ..., p do
NT
k (x) = NT

k−1(x)Rk(x)

end
Algorithm 1: evaluating nonzero B-splines at point x

This algorithm, however, is slightly streamlined (as in [34, Algorithm 2.22])
for the use in this thesis. The Rk(x) matrices are not formed explicitly, and
the lower order spline values Np−1,Np−2, ... are stored. These lower order spline
values are needed for calculating spline derivatives, as we shall see in the next
section.

2.7 Derivatives of B-splines

When building the numerical system to be solved, we will need the derivatives
of the spline basis functions. Two important properties are used to obtain the

14 2 SPLINE THEORY

expression for the derivatives from equation (15). Firstly, the Rk(x) matrices
have the property [34, lemma 3.14] that when 2 ≤ p, and x, z ∈ R,

Rp−1(z)Rp(x) = Rp−1(x)Rp(z). (17)

Secondly, for the derivatives of two matricesA and B, whose entries are functions
of x, and whose dimensions are such that the matrix product AB makes sense,
the following holds[34, Lemma 3.13]

D(AB) = (DA)B + A(DB), (18)

Where D represent di�erentiating each entry with respect to x. Applying equa-
tion (18) to equation (15) we obtain

DNp(x) =

p∑
k=1

R1(x) · · ·Rk−1(x)DRk(x)Rk+1(x) · · ·Rp(x), (19)

where DRk(x) represents the di�erentiation of each term with respect to x in
Rk(x). Now, using equation (17), we can change the expression so that the dif-
ferentiating operator D is moved from Rk(x) to Rp(x). This gives the derivatives
as:

DNp(x) = pR1(x) · · ·Rp−1(x)DRp(x) = pNp−1(x)DRp. (20)

As mentioned in the discussion of the algorithm for computing values of nonzero
B-splines, the lower order splines Np−1 are already being found when calculating
Np and thus only need to be stored to easily be able to also compute the derivative
values with very little added computational cost.

To �nd second derivatives, we di�erentiate equation (20). D(DRp) = 0, and thus
get

D2Np(x)T = pDNp−1(x)TDRp. (21)

Then, using equation (20), we get

D2Np(x)T = p(p− 1)Np−2(x)TDRp−1DRp. (22)

The �rst and second derivatives willl be used in this thesis, however, it is noted
that for the rth derivative, we �nd [34, Theorem 3.15]

DrNp(x)T =
p!

(p− r)!
Np−r(x)TDRp−r+1 · · ·DRp. (23)

2.8 Knot Insertion and Order Elevation 15

Finally, we observe that the derivative of the jth B-spline of degree p on knot
vector t can be formulated as a recurrence relation [34, Theorem 3.16];

DNj,p(x) = p(
Nj,p−1(x)

tj+p − tj
− Nj+1,p−1(x)

tj+p+1 − ti(j + 1)
), (24)

2.8 Knot Insertion and Order Elevation

In regular FEA there are two main types of re�nements used to enrich the basis
[54]. h-re�nement refers to decreasing the element size, or in other words in-
creasing the number of elements to achieve higher resolution for computations
in the basis. p-re�nement involves increasing the polynomial degree of the basis
functions de�ned on the elements. In this section, the re�nement possibilities
available in Isogeometric Analysis will be presented. The main di�erence from
FEA is that the geometry remains constant under each type of re�nement, and
that whereas the FEM has C0 continuity across elements at all times, this con-
tinuity is much more controllable in Isogeometric Analysis.

2.8.1 Knot Insertion

The Isogeometric re�nement called knot insertion [13, 2.1.4.1] is in some ways
similar to the h-re�nement in FEA. However, in Isogeometric Analysis it does
not alter the geometry. A knot insertion is performed when a new (or existing)
knot value is added to the knot vector. However, as one adds a new knot to
the knot vector, one has to update the control points. This can be accomplished
rather simply in the following manner: If one has two knot vectors t̂ = (t̂j)

n+p+1
j=1

and t = (ti)
m+p+1
i=1 that have common knots at the end and t̂ ⊆ t. Suppose for a

�xed integer i, 1 ≤ i ≤ m that the integer µ is such that t̂µ ≤ ti < t̂µ+1. Then
we have, from theorem 4.6 in [34, p.87],

αp(i)
T = (αµ−p,p(i), ..., αµ,p(i) = { 1 if p = 0

R1(ti + 1) · · ·Rp(ti+p) if p > 0,
(25)

where the Rk,t̂ are the B-spline matrices de�ned in section 2.6. Now, if

f =
∑
j

cjNj,p,t̂ (26)

is a spline on t̂, with spline coe�cients c, the corresponding B-spline coe�cients
b on t is given by

bi =

µ∑
j=u−p

αj,p(i)cj = R1(ti+1) · · ·Rp(ti+p)cp, (27)

16 2 SPLINE THEORY

where cp = (cµ−p, ..., cµ)T . Then f can be written in terms of the new knot
vector t and coe�cients b,

f =
∑
j

bjNj,p,t. (28)

If the inserted knot is not already present in the knot, the continuity of Cp−1 is
maintained everywhere. If the inserted knot is present in the original knot vector,
the multiplicity of that knot increases by one, and the continuity is reduced by
one at that point. This has no analouge in FEA. In general knot insertion is
much more �exible than h-re�nement, as one can control the continuity as well.

2.8.2 Order Elevation

Order elevation [13, 2.1.4.2] is related to the p-re�nement in FEA. During order
elevation, one increases the polynomial degree of the basis functions. Again, there
is a bit more �exibility in the Isogeometric case. Say that one order elevates
from p to q. If it is neccecary to preserve exatly the Cp−m−1 continuity, where
m is the knot multiplicity, that existed before the order elevation, one has to
increase the multiplicity of each knot by q − p. However, if the multiplicity is
left unchanged, the order-elevated basis will have Cq−m−1 continuity. The main
di�erence between order elevation and regular p-re�nement is that p-re�nement
always has C0 continuity in its basis.

2.8.3 K-re�nement

A combination of knot insertion and order elevation will often be preferable,
similar to combinations of h and p re�nement in FEA. It turns out that knot
insertion and order elevation do not commute. If, for example, a knot insertion is
performed before an order elevation from p to q, one will obtain a basis with p−
m−1 continuous derivatives. However, if one order elevates from p to q �rst, then
inserts knots, one will end up with a basis with q −m− 1 continous derivatives.
It turns out [13, 2.1.4.3] that the second option also creates much fewer basis
functions than the �rst. This re�nement scheme was coined k-re�nement by
Cottrel, Hughes and Bazilevs [13]. There is no equivelant to this re�nement in
FEA. The fact that both knot insertion and order elevation are more �exible
than their FEA relatives, and the fact that di�erent sequenses of re�nement give
di�erent results opens up to a wide variety of possible re�nement schemes in
Isogeometric Analysis.

17

3 Isogeometric Analysis Implementation

3.1 A Model Problem

To show the workings of Isogeometric Analysis, we will in this section perform the
analysis on a simple, yet powerful model problem; namely the Poisson problem.
The development will highlight the similarities and di�erences between FEA and
Isogeometric Analysis.

3.1.1 The Poisson Problem

Th Poisson problem [35, p.103] is an elliptic partial di�erential equation with
many applications in the sciences. On a domain Ω in two dimensions it is de�ned
as;

∇2u(x, y) = −f(x, y)

u(x, y) = g on ΓD,

∇u(x, y) · n = h on ΓN ,

βu(x, y) +∇u(x, y) · n = r on ΓR.

(29)

where f is a given function de�ned on Ω, ∂Ω = ΓD ∩ ΓN ∩ ΓR is the boundary
of the domain, and n is the outwards unit normal vector on the boundary. ΓD
represents the part of the boundary with Dirichlet boundary conditions, ΓN rep-
resents the Neumann boundary conditions, and ΓR the Robin conditions.

3.1.2 The Weak Form

Formulating this problem in a numerically solvable way follows the Galerkin
method [27]. The Galerkin method is at the very heart of FEA. A thorough
introduction to the Galerkin method and FEA is not presented here, but can be
found in many texts, amongst others: [44, ch. 2.3], [38, ch. 6], [30], [42], [47] and
[33]. However, in general terms, equation (29) is reformulated into a weak form
by multiplying by a test function v and integrating over Ω∫∫

Ω

∇2u · v dxdy = −
∫∫
Ω

f · v dxdy (30)

18 3 ISOGEOMETRIC ANALYSIS IMPLEMENTATION

integrating by parts on the left hand side and rearranging we obtain∫∫
Ω

∇u · ∇v dxdy = −
∫∫
Ω

fv dxdy +

∫∫
ΓN

vhdΓ +

∫∫
ΓR

vr dΓ− β
∫∫
ΓR

v · udΓ

(31)
Boundary conditions will be discussed shortly, but in this thesis Dirichlet bound-
ary conditions are used. Thus the integrals concerning the Robin and Neumann
boundary conditions are set equal to zero, and we are left with∫∫

Ω

∇u · ∇v dxdy =

∫∫
Ω

f · v dxdy. (32)

This is called the weak form, and can be rewritten as

a(v, u) = L(v), (33)

where

a(v, u) =

∫∫
Ω

∇u · ∇v dx dy, (34)

and

L(v) =

∫∫
Ω

f · v dxdy. (35)

Obviously there are some restrictions to precicely which functions u and v are
allowed to be. It turns out that they are both in the Sobolev space H1(Ω) [16,
p. 258], which implies that they are once di�erential, and∫

Ω

∇u · ∇udΩ < +∞. (36)

The Dirichlet boundary conditions are worked into these functions, and we choose
the test function v to vanish on the boundary, whilst u = g on the boundary.
The collection of u - which are called trial solutions, S, is then:

S = {u|u ∈ H1(Ω), u|∂Ω = g}. (37)

And, the collection of v which are called weighting functions, V:

V = {v|v ∈ H1(Ω), v|∂Ω = 0}. (38)

3.2 B-spline Basis Functions 19

Clearly there is an in�nite number of functions satisfying the conditions of S,
and V. The catch of the Galerkin's method is now to construct �nite-dimensional
approximations of S, and V, which implies that one looks for a solution amongst
some �nte-dimensional set of functions. Frequently, S, and V can be chosen to be
the same space. In the implementation of Isogeometric Analysis in this project,
these �nite-dimensional set of functions are chosen to be a set of B-spline basis
functions spanning the domain Ω.

3.2 B-spline Basis Functions

Let us now establish B-splines as our basis funtions. We are free to choose the
�nite dimensional approximations to S and V from equations (37) and (38)
respectively. For this thesis, both S and V will be chosen to be the set of B-
spline basis functions spanning the basis Ω. These basis functions, in parameter
space, are de�ned as

Ni,j;p1,p2(ξ, η) = Ni,p1(ξ)Nj,p2(η), (39)

where Ni,p1(ξ) and Nj,p2(η) are the B-spline basis as de�ned in equation (2) in
the ξ and η direction and with polynomial order p1, p2 respectively and with one
knot vector corresponding to each parametric direction. The general shape of
nine basis functions for p1 = p2 = 2, is shown in �gure 9.

It will be necessary to adopt a global indexing of the basis functions in equation
(39) such that

Nî = Ni,p1;j,p2(ξ, η), (40)

where the polynomial degrees are implied. A system to map global î to local
i,j will be implemented, and is central to the code. The i,j coordinates will
correspond to the knot indexes of the the lower left corner of the span of Ni,j .This
mapping is represented as a matrix GToL which in row î contains the two values
i,j. In addition, a list of global basis functions that are nonzero in a given element
e is also stored in a matrix. Any subsequent references to a N with one subscript
will be referring to this notation, still representing a basis function spanned by
two seperate B-splines. The global numbering Nî will be analog to the numbering
of elements, starting from bottom left in parameter space (see �gure 10).

3.3 Elements in Isogeometric Analysis

The concept of elements is more ambiguous in Isogeometric Analysis than it is
in FEM. One can recall that a B-spline basis function is de�ned on p + 1 knot

20 3 ISOGEOMETRIC ANALYSIS IMPLEMENTATION

Figure 9: Nine basis functionsNî(ξ, η) when p1 = p2 = 2. The bottom and left
basis functions are on the border at their bottom and left sides respectively.

spans in each parametric direction. The convention of [13] is adopted, de�ning
elements to be the span of knots in the knot vector. One must then note that
each basis function is de�ned to span several elements.

The two knot vectors will always span a rectangle in parameter space. To perform
numerical integration, the elements in parameter space need to be mapped to an
integration element or a parent element to perform the Gaussian Quadrature
(se section 3.8), similar to FEM. However, one also needs a mapping from the
parameter space to the physical space. This is done in the regular B-spline fashion
of implementing control points, and shall be discussed in more detail in section
3.7. An overview of the spaces, element numbering and mappings necessary, as
well as the span of a basis function is presented in �gure 10.

3.4 Matrix Formulation

Once the set of B-spline basis functions as de�ned above are chosen as the �nite-
dimensional approximation to the trial solution and weighting function spaces,
we can proceed in the familiar FEM way of matrix representation. The solution
that is wanted, which will be called d will be built by summing basis functions
multiplied by a factor (a weighting of that basis function) di,

d =

neq∑
i=1

diNi, (41)

3.4 Matrix Formulation 21

Figure 10: An overview of the three spaces in use in Isogeometric Analysis, as
well as element numbering. The shaded blue area corresponds to the span of
basis function Nξp+3,2;ηp+1,2

where neq is the number of spline functions. Also, the weighting functions v
will now also be B-spline basis functions Nj . Thus, we can rewrite the weak
formulation of equations (33), (34) and (35) as,

a(d,Nj) = l(Nj). (42)

Inserting (41) for d gives

a(

neq∑
i=1

diNi, Nj) = l(Nj). (43)

It is clear from (34) that a(·, ·) is bilinear, meaning that one can write

neq∑
i=1

dia(Ni, Nj) = l(Nj). (44)

22 3 ISOGEOMETRIC ANALYSIS IMPLEMENTATION

Thus, for i, j = 1, . . . , neq, this can be represented in matrix form:

Ki,j = a(Ni, Nj) (45)

Fi = L(Ni) (46)

and;
K = [Ki,j], (47)

F = {Fi}, (48)

d = {di}, (49)

where K is the familiar sti�ness matrix, F the force vector, and d the displace-
ment vector famililar from FEM and the matrix equation to solve is:

Kd = F. (50)

3.5 Imposing Boundary Conditions

3.5.1 Homogeneous Dirichlet Boundary Conditions

The homogeneous Dirichlet boundary contidions are imposed after assembling
the sti�ness matrix and the force vector. A simple search through all of the
basis functions identi�es the basis functions that are located on the boundary.
Then the equations and variables (rows and columns) corresponding to these
basis functions in the sti�ness matrix are altered so that the value of these basis
functions is equal 0. Speci�cally, if for example basis function Nb is on the
boundary, then row number b and column number b in the sti�ness matrix is set
equal to 0, whilst the diagonal entry is set to Kb,b = 1, and Fb is set equal to
zero.

3.5.2 Dirichlet Boundary Conditions

For non-homogeneous Dirichlet boundary conditions, say g = g(x) on the bound-
ary, one needs to calculate what the spline values at the boundary should be to
enforce the given boundary condition. This can be done using a Least Squares
Approximation. The method of Least Squares Approximation will not inter-
polate all points of the given boundary, but will minimize the error at the data
points - at least in a least squares sense. The problem can be formulated as follows
[34, Problem 5.34]: Given data (xi, yi)

m
i=1 with x1 < · · · xm, and a n-dimensional

spline space Sp,t, �nd a spline g that minimizes

m∑
i=1

(yi − h(xi))
2. (51)

3.5 Imposing Boundary Conditions 23

where h is a spline in Sp,t.

This least square minimization problem can be written in terms of matrices as

min ‖Ac− b‖2, (52)

where ai,j = Nj(xi), and bi = yi. This problem always has a solution c∗ which
is found by solving

ATAc∗ = ATb. (53)

This method can then be used along each boundary to closely approximate the
Dirichlet boundary conditions. This only holds for su�ciently smooth boundary
conditions. The approximation will only be interpolating at the endpoints.

For the Poisson problem, regular Dirichlet boundary conditions are su�cient. For
higher order di�erential equations, however, both the values u and the derivatives
∇u ·n at the boundary must be provided for the solution to exist uniquely. This
is slightly more intricate. However, in the case that ∇u · n = 0, we can assure
that both the values of u and ∇u · n = 0 is satis�ed at the boundary by letting
the control points on the boundary be equal to their known or calculated value
of u at the border whilst at the same time setting the next control point inward
from the boundary equal to the same value as u. This is shown in �gure 11.

3.5.3 Multi Point Restraints

In the last part of this thesis, periodic boundary conditions are applied, which
means that the right boundary is linked to the left, and the top boundary is
linked to the bottom. To achieve this, a multi point restraint method called the
Master - Slave method is applied. The method is explained as follows [18]: Given
a list of constraints on the form

u1 = u7, u3 = u9, u5 = u9 + u6, (54)

one needs to assign slave Degrees Of Freedoms (DOFs) and master DOFs. For
example, let u7, u9, u5 be the slave DOFs in the respective equations. Then one
solves each constraint as

uslave = umaster. (55)

This gives
u7 = u1, u9 = u3, u5 = u9 + u6, (56)

respectively. Problems arise when the master DOFs on the right hand side are
slaves in other equations - such as in the equation u5 = u9 + u6, where u9 is the

24 3 ISOGEOMETRIC ANALYSIS IMPLEMENTATION

f(x)

x

y

b1 b2

b3

Figure 11: Illustration of setting ∇u · n = 0 on the boundary by letting the two
DOFs nearest to the boundary attain the same value.

slave in the second equation. In this case one needs to back-trace so that all right
hand sides of all the constraints only contain DOFs that are masters everywhere.
In this set of equations one thus replaces u9 with u3 as we know from the second
constraint, giving

u7 = u1, u9 = u3, u5 = u3 + u6. (57)

Then, we are able to assemble a transformation matrix as follows:

u1

u2

u3

u4

u5

u6

u7

u8

u9

=

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0

u1

u2

u3

u4

ũ5

u6

ũ7

u8

ũ9

(58)

If our solution vector is u, we can write this in matrix notation as

u = Tû (59)

The slave variables are "dropped" from the system, but their place is retained in
the solution array, simplifying the work of setting their values at the end of the

3.6 Error Analysis 25

computations. This is done by using the matrix transformation T. Now, if our
assembled Isogeometric Analysis system is Ku = f , we can apply the multipoint
constraints by restating the system as

K̂û = f̂ , (60)

where
K̂ = TTKT, (61)

and
f̂ = TTf , (62)

This multipoint master-slave method can be used to set periodic boundary con-
ditions. All values on the left boundary must be set equal to their corresponding
variables on the right boundary, and similarily for the bottom and top bound-
raries. In addition, all corners must be set equal. To also apply the derivative
boundary conditions in the periodic case, one needs to apply the following con-
straints for each corresponding pair of a boundary DOFs and the next DOF inside
the domain in the normal direction.

ulb+1 − ulb
∆x1

=
urb − urb−1

∆x2
(63)

Where in this example ulb is on the left boundary, ulb+1 is the �rst DOF to the
right of the left boundary, urb is on the corresponding right boundary DOF, and
urb−1 is the �rst DOF to the left of the right boundary. For the application later
in this thesis, a uniform grid is assumed, thus cancelling the ∆x's. In addition to
these derivative restraints, the derivatives near the corners must also carefully be
preserved. The DOFs selected as masters and slaves can be seen in �gure 12. All
of the constraints were assembled into a transformation matrix using the method
introduced above, and applied to the system.

3.6 Error Analysis

The aim of error estimation in Isogeometric Analysis is �rstly to show the same
error convergence results as for classical FEA. This is not at all trivial in a math-
ematical sense, and shall not be deducted here. The interested reader can consult
Bazilevs' paper [4] for the full mathematical proceedings. However, Bazilevs' re-
sults show that the error in Isogeometric Analysis converges in the same way as
in classical FEA. The result is that if the error e is de�ned as

e = uapprox − uexact, (64)

where uapprox is the approximate solution and uexact is the exact solution, the
error should behave as

‖e‖ ≤ Chp. (65)

26 3 ISOGEOMETRIC ANALYSIS IMPLEMENTATION

x

y

Figure 12: Illustration of master and slave assignments. Let x and y be the
parametric directions, and each intersection represent a DOF. Light blue dots
de�ne the slave DOFs, while black dots de�ne the elected master DOFs

C is some constant, h is a measure of the size of elements, p is the polynomial
order, and the norm being used is the one corresponding to the Sobolev space,
the energy norm, de�ned as:

‖e‖2 = a(e, e), (66)

a(·, ·) being de�ned exactly as in equation (34), giving;

‖e‖ =

√√√√∫∫
Ω

∇(e) · ∇(e)dA. (67)

The signi�cant term in equation (65) is hp, and thus, in terms of the energy norm
‖e‖, we expect the error to behave as

‖e‖ ≈ O(hp). (68)

Now, taking log of equation (65) on both sides,

log(‖e‖) = log(C) + p log(h), (69)

3.7 Mapping 27

this shows that plotting log of the energy norm against log of the element size,
should give a straight line, with slope equal to the polynomial degree p.

This error analysis results proves to be very signi�cant. This is because, reducing
h by a factor of 2, which implies dividing all elements of FEM, and halving the
knot spans in each direction in Isogeometric Analysis, the number of degrees
of freedom (equations to be solved) increases signi�cantly greater in FEM than
the number of degrees of freedom in Isogeometric Analysis. This actually means
that Isogeometric Analysis will converge at the same rate as FEM, but at lower
computational cost! [13]

3.7 Mapping

As mentioned in previous sections, two mappings are performed, as three spaces
are used; the integration reference element, the parametric space, and the carte-
sian coordinates (physical space), see �gure 10. The mapping from parameter
space to the integration element is a trivial a�ne transformation, and involves
placing the integrationpoints correspondingly in each parametric element, and
mulitplying by a area-factor AParamElement/AReferenceElement. However, the
mapping from cartesian coordinates and into parameter space and vice verca re-
quires the use of the Jacobi matrix and the Jacobian [32]. The Jacobian matrix
is de�ned as

J =

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
, (70)

and represents the transformation from cartesian coordinates into parameter
space. The Jacobian is de�ned as the determinant of J, |J|. The value of the Ja-
cobian turns out to be the area-scaling factor of the transformation. The inverse
tranformation - the forward mapping from parameter space into physical space -
G will also be needed. G is related to J by,

G = (JT)−1, (71)

or, the inverse of the transpose of J.

Thus, when implementing the solver using mapping from parameter space into
physical space, several implementation adjustments must be made. Firstly, the
Gauss integration points of each element in parameter space must be mapped
to their cartesian coordinate counterparts. This is done by the standard spline

28 3 ISOGEOMETRIC ANALYSIS IMPLEMENTATION

implementation [
x
y

]
=
∑
i,j

Ni(ξ)Nj(η)Bi,j , (72)

where B are the control point coordinates. This mapping is needed both in
plotting the results, and in evaluating the right-hand side of the poission equation,
f . Secondly, assembling the sti�ness matrix K, one needs to integrate (equation
(34))

a(Ni, Nj) =

∫∫
Ω

∇Ni(ξ, η) · ∇Nj(ξ, η) dxdy. (73)

However, ∇Ni(ξ, η) and ∇Nj(ξ, η) are calculated in parameter space, whereas
the integral is performed in cartesian coordinates. Therefore the foward mapping
G must be applied. In addition, the area factor (the Jacobian) must be applied,
giving

a(Ni, Nj) =

∫∫
Ω

G∇Ni(ξ, η) ·G∇Nj(ξ, η)|J|dxdy. (74)

Thirdly, assembling the force vector F, the integral (equation (35))

L(Ni) =

∫∫
Ω

f(x, y) ·Ni(ξ, η) dx dy, (75)

is used. Here, f is evaluated at (x, y), where x and y are the Gauss points mapped
into cartesian coordinates corresponding to (ξ, η). Thus, since no derivatives are
present, only the Jacobian is needed resulting in:

L(Ni) =

∫∫
Ω

f(x, y) ·N(ξ, η)i|J|dxdy. (76)

As mentioned, the Jacobian J represent the area scaling at the point evaluated.
A set of knot vector values and corresponding control points are presented in �g-
ure 13, giving mapped integration points in cartesian coordinates as in �gure 14.
As one can see here, the points are further apart near the edges and the corners,
and closer together, but evenly distributed throughout the interior. The Jaco-
bian at each point towards the edge is thus expected to be rather large, as the
area increases in these regions. The Jacobian should in this example be smaller
and nearly constant for the interior points. These expectations are veri�ed to be
true, as the value of the function creating the Jacobian was plotted at each of
the points of �gure 14, shown in �gure 15.

3.8 Numerical Integration 29

x

y

ξ

η

Figure 13: Knot vector intersections, and corresponding control points

x

y

Figure 14: Integration points mapped into cartesian coordinates

3.8 Numerical Integration

Numerical integration is central in building the matrices required for the Isoge-
ometric Analysis. In this thesis, the standard Gauss Quadrature [31, Chap-
ter 17.5] is used, as is the common approach in �nite element analysis. Gauss
quadrature tries to obtain the best numerical estimate by picking optimal points

30 3 ISOGEOMETRIC ANALYSIS IMPLEMENTATION

x

y

J

Figure 15: The value of the Jacobian at each of the integration points

to evaluate the function being estimated at. The Fundamental Theorem of Gaus-
sian quadrature [50] says that the optimal points to evaluate the function at, are
the zeros of the Legendre polynomial. By weighting these points with appro-
priate weights (often called the Christo�el Numbers[8]), an optimal approxima-
tion is obtained and the Gaussian quadrature �ts all polynomials up to degree
(2n1 − 1)(2n2 − 1) exactly, where n1 and n2 are the number of points evaluated
in each coordinate direction in 2D. The general formula on a two dimensional
domain is ∫ 1

−1

f(x, y) dxdy ≈
n1∑
i=1

n2∑
j=1

wi,jf(ti, uj), (77)

n1 and n2 are the number of points used in each direction, wi,j are the weights,
and ti, uj are the ideally placed evaluation points. It can be noted that the inte-
gration domain is the square[−1, 1]× [−1, 1] integration; so any other integration
domain needs to be mapped into this domain. The placement of the Gauss eval-
uation points on [0, 1]× [0, 1] is shown in �gure 16. For this thesis, the number
of Gauss points was adjusted to equal (p1 + 1)(p2 + 1) at runtime, where p1 and
p2 are the B-spline polynomial degree in each of the two parametric directions,
which ensures a suitable accuracy.

3.8 Numerical Integration 31

Figure 16: Locations of the 9-point 2D Gauss evaluation points on the square
[0, 1]× [0, 1]

It will be noted, as found by Hughes, Reali and Sangalli [26], that Gauss integra-
tion is not ideal in the same way for Isogeometric Analysis as it is for polynomials
and the �nite element method. The �nite element basis is C0-continuous accross
elements, whereas the B-spline basis usually has higher degrees of continuity ac-
cross elements, something that would have to be accounted for in an ideal method
speci�cally for Isogeometric Analysis. However, within the scope of this thesis,
Gaussian quadrature is used, simultaneously keeping with FEM-tradition.

32 3 ISOGEOMETRIC ANALYSIS IMPLEMENTATION

33

4 Solver Implementation Overview

This sections aims to give a brief overview of the structure of the Isogeometric
Analysis solver implemented in this project. A �owchart of the program is pre-
sented in �gure 17, which outlines the main structures of the program. The code

Start

Input data such as
knot vectors and

control points

Compute gauss points and
weights, and connectivity
arrays between local and

global indexing.

K=0 and F=0

Loop through all
elements

Loop through all
nonzero basis

functions in element

Loop through all
quadrature points

in element

Add contributions to K
and F

Evaluate basis functions
and derivatives

Solve Kd=F

Compute spline surface
solution from d and

basis functions

Output data

Stop

Loop through all
other nonzero basis
functions in element

Figure 17: Flowchart of program

architecture is very modular, some important functions created are described in

34 4 SOLVER IMPLEMENTATION OVERVIEW

table 1. Most of these functions are used at startup, in the order listed except for
getBoundarySplines, which is used after the assembly of the sti�ness matrix
and force vector is completed. The getSplineValsAndDerivs function is called
before the assembly starts, calculating all the B-spline basis function values at
all the integration points that will be needed. This reduces the "evaluation of
basis functions and derivatives" in the innermost loop of the �owchart to table
look-ups in the pre-calculated spline value matrices. It will also be noted here
that the program is compatible with di�erent polynomial orders and numbers
of basis equations in the two parametric directions independent of each other
throughout, even though many examples are run with the su�cient accuracy of
p1 = p2 = 2

35

Function Name Inputs Outputs
getGeometry p1, p2, n1, n2 Knot vectors and control points.

Only this function needs to be
changed to change the entire ge-
ometry.

getConnectivity n1, n2, p1, p2 GToL - Global To Local mapping
of spline basis function mapping.
SinE - List of the nonzero spline
basis functions in each element.

getGaussPoints knotvector1,
knotvector2,
n1, n2, p1,
p2

Gauss point weights and an ar-
ray of Gauss points in parameter
space, one for each parameter di-
rection.

getSplineValsAndDerivs p, knotvec-
tor, Gauss-
points

Matrix N: [(basis function index)
x (Gauss points)] containing val-
ues of each basis function value
at each Gauss point, and ma-
trix ND which is the same, but
with the derivative values at each
point for each basis function. For
the higher order solver, NDD -
the second derivative values - was
also returned.

getBoundarySplines GToL, n1, n2 Array of global index to all
boundary basis functions. De-
pending on which implementa-
tion of Dirichlet boundary condi-
tions were used, this function can
return either a list of all (global)
boundary basis conditions, one
array per side of the boundary,
or a list containing the mapping
from master to slave DOFS

Table 1: Important functions. p, p1 and p2 are the polynomial degrees, n1,n2

are the number of spline basis functions in each parametric direction, other input
values are de�ned as outputs of other functions in the table

36 4 SOLVER IMPLEMENTATION OVERVIEW

37

5 Veri�cation of Solver

One aim of this thesis is to use an Isogeometric Analysis solver to experiment with
the Cahn-Hilliard equation, which will be introduced in the next sextion. The
Cahn-Hilliard equation is rather complex, and has no easily obtainable known
exact solution. However, in developing a solver from scratch - it is vital to be
able to verify the solver at di�erent stages of development to �nd errors and check
if the solutions are as expected. This section presents the results of two major
veri�cation steps, namely the solution of the Poisson problem, and the solution
of the biharmonic equations. The solutions presented for the Poisson problem
veri�es the core of the solver, and its applications to second order partial di�er-
ential equations. The solutions presented for the biharmonic equations veri�es
the solver for fourth order partial di�erential equations - which is the class of
equations to which the Cahn-Hilliard equation belongs. It is noted that as the
Cahn-Hilliard solver will operate in parameter space, applying no mapping to a
physical space, the veri�cations below are also perfomed directly on the parame-
ter space, setting the paramter space and the physical space equal. The domain
used is Ω = [0, 1]× [0, 1]

5.1 Veri�cation of Results on the Homogeneous Poisson

Problem

Implementing the solver for the Poisson problem (see equation (29)), with ho-
mogeneous Dirichlet boundary conditions, a suitable solution would have to be
zero on the boundary, and have a readily available exact solution. Therefore the
exact solution of u was chosen to be

u(x, y) = sin(2πx)sin(2πy) (78)

which is zero at the boundary of Ω. Then,

∇2u(x, y) = −8π2 sin(2πx)sin(2πy), (79)

which means that the f on the right hand side of the Poisson equation (equation
(29)) would have to equal

f = −8π2 sin(2πx)sin(2πy), (80)

for the test problem implementation.

The results of a coarse implementation, using only 6 basis functions with polyno-
mial order 2 in each direction, along with the exact solution, and the pointwise

38 5 VERIFICATION OF SOLVER

Figure 18: Results with 6 basis functions in each direction and p1 = p2 = 2. The
scale on the vertical axis of the point-wise error plot here is 0.1

Figure 19: Results with 18 basis functions in each direction and p1 = p2 = 2.
The scale on the vertical axis of the point-wise error plot here is 10−4

error can be seen in �gure 18. Results for a �ner implementation, using 18 basis
functions in each directon, and p = 2 are shown in �gure 19. An error analysis

5.1 Veri�cation of Results on the Homogeneous Poisson Problem 39

was computed doing several runs with di�erent element size h and p, to study the
behaviour compared to the expected error described in section 3.6.As we can see
in �gure 20, and table 2, the error behaves exactly as expected (see section 3.6), in
e�ect validating the results of the program for the Poisson problem. The log-log
graph is linear, and the slope of each line is closely equal to p. The slight mis�t
in the largest value of h is attributed to inexact numerical integration, causing
(primarily overintegration) as the extreme points of f(x, y) correspond with the
centre - and most heavily weighted - Gauss integration points at this low resolu-
tion. These errenous data points at h = 0.5 are omitted in the generation of the
values in table 2.

Figure 20: Error plot for homogeneous Dirichlet conditions on
the Poisson problem for di�erent polynomial degrees p. h =
0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625

40 5 VERIFICATION OF SOLVER

Polynomial order Slope of line in error plot
p = 1 0.9920
p = 2 2.1005
p = 3 3.1560
p = 4 4.1215
p = 5 5.3140
p = 6 6.0735

Table 2: The slope of the error plot lines of the homogeneous Dirichlet Poisson
problem showing very good agreement with their expected value. The value for
p = 6 was calculated at a later time than the �gure.

Polynomial order Slope of line in error plot
p = 1 1.3900
p = 2 2.1170
p = 3 3.2520
p = 4 4.2975
p = 5 5.1965
p = 6 6.3954
p = 7 7.0884

Table 3: The slope of the error plot lines of the non-homogeneous Dirichlet
Poisson problem showing very good agreement with their expected value.

5.2 Veri�cation of Results on the Non-Homogeneous Pois-

son Problem

The same convergence results were obtained for the homogeneous Poisson prob-
lem, thus allowing any values for the dirichlet boundary conditions. The conver-
gence results are shown in �gure 21 and table 3

5.3 Veri�cation on Higher Order Equations

The Cahn-Hilliard equation to be studied shortly is a fourth order partial dif-
ferential equation with no easily veri�ed exact known solution. Hence, the next
step is to verify the solver for a fourth order partial di�erential equation that has
known solutions. For this purpose, the Biharmonic Equation was chosen.

5.3 Veri�cation on Higher Order Equations 41
lo
g
of
 e
rr
or

log of h

p=1

p=2

p=3

p=4

p=5

p=6

p=7

Figure 21: Error plot for non-homogeneous Dirichlet Poisson with di�erent poly-
nomial degrees p. h = 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625

5.3.1 The Biharmonic Equation

The Biharmonic Equation arises in the �eld of continuum mechanics [46], involv-
ing applications such as thin plate theory and �exure of elastic plates. In two
dimensions it is also used to model a simpli�cation of the Navier-Stokes equations
for slow, viscous �ow problems with Reynolds Number Re = ρUL/µ, Re � 1.
[46, Chapter 8.], [41] The Biharmonic equation is given in strong form as follows;

∆2u(x, y) = f(x, y) on Ω, (81)

where Ω = [0, 1]× [0, 1] as stated earlier. As mentioned in the earlier discussion of
boundary conditions, fourth order partial di�erential equations need two sets of
boundary conditions for the solution to exist uniquely. The Dirichlet boundary
conditions applied in this veri�cation are

u(x, y) = g on ΓD

∇u(x, y) · n = 0 on ΓD,
(82)

where ΓD consists of the entire boundary, and function g is assumed to be given.
Now we perform the same method as was done for the Poisson problem. We mul-
tiply (81) by a test function v integrate twice by parts, and obtain the following

42 5 VERIFICATION OF SOLVER

weak form: Find u ∈ S so that∫∫
Ω

∆u ·∆v dx dy =

∫∫
Ω

f · v dx dy.∀v ∈ V. (83)

Here, the spaces S and V are as follows,

S = {u|u ∈ H2(Ω), u|ΓD = g},
V = {v|v ∈ H2(Ω), v|ΓD = 0}.

(84)

which is analouge to the spaces for the Poisson problem, except that here the
functions u and v are required to be twice di�erentiable on Ω. This is easily
ensured since splines (as mentioned earlier) have continous derivatives up to order
p −m at the ith knot, where m is the number of times the ith knot appears in
the knot vector, and p is the polynomial order. Thus, since m = 1 for the spline
implementation of the latter part of this thesis, we only require a polynomial order
of at least p = 3 The rest of the development of obtaining a matrix formulation
of this weak form follows exactly as for the Poisson problem.

5.3.2 Results

The exact solution opted for in the veri�cation, which also satis�es the boundary
conditions, is

u(x, y) = cos(4πx) cos(4πy) (85)

Thus, the right hand side of (81) is obtained by repeatedly di�erentiating u,
giving

f(x, y) = 512π4 cos(4πx) cos(4πy). (86)

The only neccessary modi�cations to the code is the production of second deriva-
tives, the integration on the left hand side of (83), and the implementation of the
boundary conditions. The Dirichlet boundary conditions were calculated and ap-
plied using the Least Squares approximation introduced earlier, using the exact
solution along the boundaries as g. Then the method of setting ∇u · n = 0 by
making the values of each �rst interior point equal to the corresponding boundary
point was applied. The solution of the solver can be seen compared to the exact
solution for a coarse simulation of only 11 B-splines in each parametric direction
in �gure 22, and for a higher accuracy of 35 B-splines in each parametric direction
in �gure 23. The convergence of the error analyis is again as expected, shown
in �gure 24 and table 4

5.3 Veri�cation on Higher Order Equations 43

Figure 22: Results with 11 basis functions in each direction and p1 = p2 = 3.
The scale on the vertical axis of the point-wise error plot here is 0.2

Polynomial order Slope of line in error plot
p = 3 3.5214
p = 4 4.6172
p = 5 5.3374
p = 6 6.8094
p = 7 6.9864

Table 4: The slope of the error plot lines of the Biharmonic equation showing
very good agreement with their expected value.

44 5 VERIFICATION OF SOLVER

Figure 23: Results with 35 basis functions in each direction and p1 = p2 = 3.
The scale on the vertical axis of the point-wise error plot here is 10−4

5.3 Veri�cation on Higher Order Equations 45

p=3

p=4

p=5

p=6

p=
7

Figure 24: Error plot for di�erent polynomial degrees p > 3. h =
0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125

46 5 VERIFICATION OF SOLVER

47

6 Numerical Experiments

Higher order partial di�erential equations is an important class of equations, with
applications in biomedical and engineering �elds such as liquid-liquid problems,
liquid-vapor problems, emulsi�cation, canser growth and rotation-free thin shell
theory [22]. However, such higher order partial di�erential equations have in
general not been easily implemented in classical FEA. This is because their vari-
ational form contain higher order derivatives of the test functions which again
implies the need of higher continuity in the basis functions. Traditionally, FEM
has C0 continuity across elements, which is not enough for solving higher order
partial di�erential equations. Hence, work on higher order di�erential equa-
tions has mostly happened through �nite di�erence and spectral techniques. [13]
However, these techniques are quite limited, especially on more complicated do-
mains. Thus, other solutions for (nearly) arbitrary domains are needed. FEA
has seen some workarounds in the later years to solve higher order di�erential
equations.The Mixed method [28], Discontinuous Galerkin method [52] and the
Countinuous Discontinous Galerkin [15] methods are all workarounds for the fun-
damental limitation of C0 continuity in FEA. However, there is no general method
for solving higher order di�erential equations in FEM. The methods mentioned
above all involve some kind of added complexity, either computational or math-
ematical, and require more degrees of freedom to be added - to the often already
computationally large systems.

The remainder of this thesis will demonstrate Isogeometric Analysis' potentially
vital role in solving higher order partial di�erential equations. With Isogeomet-
ric Analysis, there is nearly no added complexity in dealing with such equations.
The number of degrees of freedoms remains fundamentally unchanged, and any
desireable continuity Cn can be achieved. This very noteworthy advantage of Iso-
geometric Analysis will be demonstrated on the Cahn-Hilliard equation, which
now will be introduced. It is noted that the Cahn-Hilliard equation has been
succsessfully solved using FEM-workarounds such as those mentioned above or
by reformulating the problem, examples can be found in [2], [51], and [14].

6.1 The Cahn-Hilliard Equation

The Cahn-Hilliard equation is most often used to model the spinoidal decom-
position of binary liquids. A spinoidal decomposition is a process in which a
homogeneous mixture spontaneously seperates into two phases. However, the
equation has also been used in diverse �elds such as image processing, planet
formation and cancer growth [13]. There are two primary ways to model phase
transition phenomena such as spinoidal decomposition; sharp interface models

48 6 NUMERICAL EXPERIMENTS

and phase-�eld models. Traditionally, sharp interface models have been used to
model the development of an interface, such as a liquid-solid interaction. How-
ever, such a method creates a number of implementation di�culties, such as
di�erent di�erential equations on each side of the interface and discontinuities
accross interfaces. Phase-�elds models, however models the interfaces as smooth
(relatively sharp) transition regions where surface tension is distributed[37]. The
Cahn-Hillard equation is an example of a Phase-�eld model. The main motiva-
tion behind the Cahn-Hilliard equation is considering two seperate and competing
mechanisms' e�ect on a binary liquid. Firstly, the system will try to minimize the
chemical free energy. Secondly, the system will try to minimize the interface free
energy. Thus, by considering these two contributions, Cahn and Hillard (1958,
1961) [7] were able to derive Cahn Hillard equation presented in the next section.
A full derivation of the equation can be found in [6].

6.1.1 The Strong Form

The strong form of the Cahn-Hilliard equations can be formulated as follows
[22], [13]: Let Ω ⊂ Rd, and d = 2 or 3. The boundary will be denoted as Γ
as before. A binary mixture, as described above, is contained in Ω, and let c
be the concentration of one of the components in Ω. Then, the concentration
c : Ω× (0, T)→ R is given as

∂c

∂t
= ∇ · (Mc∇(µc − λ∆c)) + on Ω× (0, T)

c = g on Γ× (0, T)

Mcλ∇c · n = 0 on Γ× (0, T)

c(x, t) = c0(x) in Ω.

(87)

Here,λ is a constant so that
√
λ is a length scale of the problem. Mc is the mo-

bility of the solution. Sometimes it is assumed constant, but herein the standard
function as found in the original �ndings of Cahn and Hilliard [7] is used:

Mc = Dc(1− c) (88)

D is a chosen constant with dimensions of di�usivity. The function µc represents
the chemical potential. It is highly nonlinear, and is thus often approximated by a
third or fourth order polynomial.[22] [13]. Here, however, the full thermodynamic
version is pre�ered,

µc =
1

2θ
log

c

1− c
+ 1− 2c. (89)

θ is a dimensionless number representing Tc/T - the ratio between the critical
temperature Tc of the system where the two phases have the same composition

6.1 The Cahn-Hilliard Equation 49

and the absolute temperature T . It turns out that for θ > 1, the chemical
potential will drive the phase separation to their pure forms, whilst for θ ≤ 1
there is only a single solution, namely constant concentration.

6.1.2 A Dimensionless Form

Before obtaining our weak form of the problem, it is useful to scale the problem to
obtain a dimensionless form of the equation. Scaling problems can help identify
dimensionless constants - relations that reduce the problems complexity in the
sense of having to adjust fewer constants governing the system. We will need
two scales, one for time and one for length. The dimensionless variables can be
written as,

x∗ = x/L0, t
∗ = t/T0. (90)

L0 is chosen to be a suitable length scale, and T0 = L4
0/(Dλ), as in [13, ch. 11].

Applying these new variables to (87), we obtain the dimensionless form of the
Cahn-Hilliard equation:

∂c

∂t∗
= ∇ · (M∗

c∇(µ∗
c −∆c)). (91)

From now on, we shall use the dimensionless form, and hence drop the superscript
∗. One can note one further dimensionless number, α [22]. Setting

α =
L2

0

3λ
, (92)

we see that the thickness of the interface boundraries are proportional to α−0.5.
Now, if θ is �xed, the whole problem is charecterized by the value of α. The value
of θ is chosen to be equal to 3/2 which is true for a physically relevant case [19].
Thus, α is somewhat similar to the Reynolds number in �uid dynamics - fully
characterizing the solutions.

6.1.3 The Weak Form and Spatial Discretization

The weak form is obtained in the standard way, multiplying (91) by a test function
v and integrating by parts. Assuming periodic or Dirichlet boundary conditions,
the following weak from is obtained;∫∫

Ω

v
∂c

∂t
dΩ = −

∫∫
Ω

∇v(Mc∇µc +∇Mc∆c)dΩ −
∫∫
Ω

∆vMc∆cdΩ. (93)

Now, from our B-spline basis functions, we have that

c =

neq∑
i=1

ciNi, (94)

50 6 NUMERICAL EXPERIMENTS

and
∂c

∂t
=

neq∑
i=1

∂ci
∂t
Ni, (95)

and that v also are spline functions Nj . Hence, the left hand side can be spatially
discretisized in the familiar way:∫∫

Ω

v
∂c

∂t
dΩ =

∫∫
Ω

neq∑
i=1

∂ci
∂t
NiNjdΩ, (96)

and hence ∫∫
Ω

neq∑
i=1

∂ci
∂t
iNiNjdΩ =

neq∑
i=1

∂ci
∂t

∫∫
Ω

NiNjdΩ, (97)

with

M = [Mi,j] =

∫∫
Ω

NiNjdΩ (98)

being the Mass matrix of the left hand side of the system. The right hand side of
(93) cannot be discretisiced in this way because of the nonlinearities present, as
will be discussed shortly, but we shall name the operator on the right hand side

A(c) = −
∫∫
Ω

∇v(Mc∇µc +∇Mc∆cdΩ −
∫∫
Ω

∆vMc∆cdΩ. (99)

Thus we can write the spatially discretized system as

M
∂c

∂t
= A(c). (100)

6.2 Time Integration and Numerical Challenges

The Cahn-Hilliard equation is known to be very sti� [29], and, as we have already
seen, it is very nonlinear. These both have dramatic e�ects on computational
costs when time-integrating (100). Sti�ness is di�cult to de�ne exactly, but it is
characterized by explicit time integration methods performing very badly, and is
frequent in systems of partial di�erential equations where di�erent mechanisms
act on very di�erent time scales simultaneously[23] [48]. This is the case for the
Cahn-Hilliard equation. In a sti� system, stability, rather than accuracy, dic-
tates the length [1] . In practice, this means that one has to utilise implicit time
integration methods. One problem with using an implicit method is the com-
putational cost. Generally these methods need to solve rather large systems of

6.3 Implementation Adjustments to Solver 51

equations at each time-step. In this thesis Matlab's built in sti� solver ode15s
was used to do the time-integration. This is a quite robust and well built solver
that selects (and varies) its degree between 1 and 5, and also adjusts its time-
step lenght to stay within given accuracy bounds, whilst keeping computational
times relatively low. However, a drawback is that it frequently computationally
approximates the Jacobian matrix of the right hand side. This means that the
operator A in (100) gets called a large number of times.

The right hand side of the Cahn-Hilliard equation is highly nonlinear. An equa-
tion is called nonlinear if the unknown and its partial derivatives are related in
a nonlinear manner [49]. Both Mc and µc contribute to the nonlinearity of the
function. Hence, the right hand side, as we have seen cannot be represented in a
static matrix form. In short, the right hand side depends heavily on the concen-
tration c and its derivatives, and therefore it has to be re-calculated every time
c is updated (i.e. at every time-step). One ends up with a very large number of
calls to the operator A. This has a substantial e�ect on run-times, even as A
was coded to reduce its computational cost.

In addition, the Cahn-Hilliard equation obviously demands some level of reso-
lution in order to track the boundaries of the phase-interfaces correctly. If the
interface boundary is much smaller than the computational resolution it is obvi-
ous that the boundaries will not be represented accurately.

6.3 Implementation Adjustments to Solver

The same solver thas was veri�ed earlier was used to implement the Cahn-Hilliard
equation. However, some changes had to be made to the solver for it to solve
(100). Firstly the mass matrixM had to be calculated. This was performed by a
simple integration - very similar to the Poisson problem. The mass matrix is not
dependent on c or t and it is therefore su�cient to generate it once, at startup.
The same does not hold for the right hand side operator A. It is highly depen-
dent on c and its derivatives, and thus needs to be updated at every timestep.
A function called getRHS(t,c) was devised taking a given concentration as a
column vector input, then giving the right hand side output of a new column
vector. As we know,

c =

neq∑
i=1

ciNi, (101)

is evaluable at the Gauss points, hence, a reordering of the nested for-loops
shown back in �gure 17 was deviced. This would ensure that the concentration

52 6 NUMERICAL EXPERIMENTS

c was computed much fewer times per Gauss point. The reordering is shown in
algorithm 2. Even though all spline values and mapping values are calculated
at startup and not in every loop, the frequent calls to getRHS(t,c) to evaluate
A and its Jacobian have a great impact on run-times. Matlab is also known for
not handling nested for-loops ideally, which adds to the ine�ciency. Compiling
the code in another programming language with better compilation for nested
for-loops might well give signi�cantly decreased run-times. Some relevant values
of runtimes per evaluation for getRHS(t,c) is given in table 5. As one can see,
large levels of accuracy are quite time-expensive, if one assume large numbers of
calls to the getRHS(t,c) function.

Data: t, c, all necceccary precalculated spline and mapping values.
Result: The column vector A
Set N0 = 1
for every element do

for every nonzero basis function Nj do
for every Gauss point do

c, ∇c, ∆c = 0;
for every nonzero basis function Ni do

c = c+ ciNi;
∇c = ∇c+ ci∇Ni;
∆c = ∆c+ ci∆Ni;

end
Calculate Mc based on the computed c;
Calculate ∇µc based on the computed c and ∇c;
Compute the right hand side with the now available variables;

end
Perform numerical integration and direct result to Aj ;

end

end
Algorithm 2: Cahn-Hilliard right hand side algorithm

.

The ode15s solver in Matlab requires the right hand side to be a function
of only t and c, but it is neccecary to access all of the spline related variables
to compute the right hand side. This was solved by writing combined setter
and getter functions that took advantage of Matlab's persistent variable types.
Persistent variables retain their value in the function, so that the value is the
same for all function calls to that function. The combined setter and getter
functionality was implemented by checking if the function had input arguments

6.4 Results 53

h = 0.5 h = 0.25 h = 0.125 h = 0.0625 h = 0.03125
p = 3 0.0132 0.0399 0.1578 0.6335 2.5626
p = 4 0.0282 0.1112 0.4465 1.7888 7.1309
p = 5 0.0681 0.2872 1.071 4.3075 17.1904
p = 6 0.1451 0.5886 2.3018 9.3183 37.1483

Table 5: The runtime in seconds a single call to getRHS(t,c), for di�erent
polynomial degrees p and element-sizes h

passed to it. If there were no arguments passed, the persistent value was returned.
If arguments were passed to the function, the function would set the persistent
value to the input argument. A simple example for getting the number of elements
is shown below, however, simliar functions were constructed to be able to access
all necceccary spline (and other) variables inside other functions. A complete
listing of the main components of the Cahn-Hilliard code, excluding the trivial
getter/setter functions, is found in appendix A.

1 function [NoE] = getNoE(valNoE)
2 persistent nnoe;
3 %if there is a input argument, update persisent
4 if nargin==1
5 nnoe=valNoE;
6 end
7 %return the persistent variable, wether updated or not.
8 NoE=nnoe;
9 end

6.4 Results

As mentioned earlier, θ = 3/2 corresponds to a physical case. α is generally
set equal to 3000 as found in litterature [22]. This is to more easily be able
to qualitatively compare results with those of the litterature [13] [22]. As dis-
cussed, the Cahn-Hilliard equation does not have any exact solutions, however,
the stationary solutions in the periodic case are qualitatively known from the
work of [22] and the likes, and in general, the expected behaviour of the equa-
tion is qualitatively known. As stated earlier, there are two mechanisms that are
modeled in the Cahn-Hilliard equation. They operate on di�erent time scales,
and the quickest process is the minimization of the chemical free energy which
seperates the solution into its two seperate phases. Thus the �rst behaviour that
is expected to dominate is for the solution to spontaneously seperate into their
pure phases very quickly. [22] reports a time �gure of around 1 × 10−4 brefore

54 6 NUMERICAL EXPERIMENTS

this process is largely completed. Secondly, the minimization of interface free
energy is expected to join the pure phases into larger regions as one approaches
the steady state solutions. It is noted that the time-scale can vary over many
orders of magnitude, as shall be seen.

6.4.1 Dirichlet Boundary Conditions

Before attempting periodic boundary conditions it was decided upon studying the
behavior of the solution in the Dirichlet boundary case. These solutions may not
have a very direct phsyical application, but it allowed qualitative analysis of the
obtained results in a controlled environment. The Dirichlet boundary conditions
were opted to be c = 1 on the bottom and left boundary, and c = 0 on the top
and right boundary and ∇c · n = 0 on all of the boundary. In the interior of the
domain, the concentration was set to be random values of c around the constant
volume fraction c̄ = 0.5 such that c ∈ [0.45, 0.55]. This initial condition can be
seen in �gure 25.

Figure 25: Initial concentration of the Cahn-Hilliard Dirichlet boundary problem

6.4 Results 55

Using these boundary conditions, the qualitative behavior is intuitively ex-
pected to be as follows: First, the concentrations in the center should seperate
into pure phases (c = 0 or c = 1), then the two phases should gather along the
corresponding boundary. The steady state solution is intuitively expected to be
a diagonal line seperating the two faces, stretching between the two corners on
which the boundary condition changes. Snapshots of the solver using p = 3 and
h = 0.125 is shown in �gure 26. Using resolutions lower than this makes no
sence, as the accuracy is too coarse to depict any interfaces in any distinct man-
ner. Obviously p > 2 is a must for the continuous basis to be well de�ned. As

Figure 26: Solving the Cahn-Hilliard equation with p = 3 and h = 0.125. Time
to solve = 12 minutes

56 6 NUMERICAL EXPERIMENTS

we can see, the solution behaves qualitatively as expected. The phase separation
dominates the �rst parts of the solution, and is largely completed at 10−5 which
is very similar to the values found in litterature, as mentioned above. Then the
minimization of interface free energy kicks in and drives the solution towards the
steady state solution as expected. The run took about 12 minutes to complete.

The resolution obtained by p = 3 and h = 0.125 is not overly accurate, so the
solution was studied in both the case of increasing p, and halving h, to be able
to compare the di�erences in percieved accuracy and run-times. The solution
of p = 4 and h = 0.125 took 23 minutes to compute, and is shown in �gure
27. The results behave as expected, except that the steady state solution was
not completely achieved by time t = 105. Then, instead of increasing p, h - the
element size - was halved. Obviously, this increases the computational costs sig-
ni�cantly, and the solution took 4.7 hours to complete. The solution using p = 3
and h = 0.0625 is shown in �gure 28.

Finally, the resolution was increased to p = 4 and h = 0.0625. This run took a
whole 11.5 hours to complete, integrating from t = 0 to t = 1× 105. The results,
shown in �gure 29 show good tracking of the boundaries, and the expected be-
haviour.

The time interval needed to approach stationary solutions is very large, and the
step size of the solver must vary over many orders of magnitude. Matlab's ode15s-
solver does this quite well. A graph of the log of the time-step size is presented
in �gure 30. The time-steps varies from 10−8 to 104 to obtain the stationary
solution. This graph of the the time-step size is characteristic and very similar
to every other run of the solver. It is noted that the time at which the step-size
starts to increase dramatically is when the phase seperation is completed- around
t = 10−4. Much more integration steps are needed up until this point in time
than for the next 105 seconds.

Although α = 3000 - which is the value used so far - was the most obvious value,
we know that the width of the interface boundary is inversely proportional to
α. Thus, increasing α should result in thinner, sharper interface boundaries, and
decreasing it should result in wider interface boundaries. Firstly a simulation
using p = 3, h = 0.125 and α = 1500 was completed. This should create wider
and more di�use boundaries. This vas veri�ed, as can clearly be seeen in �gure

6.4 Results 57

Figure 27: Solving the Cahn-Hilliard equation with p = 4 and h = 0.125. Time
to solve = 23 minutes

31. It is especially visible in the two �rst time-steps, and when compared to the
solutions above.

Later, a new simulation was done at the same resolution, but with α = 5000,
which should decrease the boundary thickness. A noteworthy increase in the time
used by the solver was foun - nearly double of the α = 1500. This is because the
solver needs to take smaller time-steps to accurately track and maintain stability
with such sharp interface boundaries. The results are shown in �gure 32. How-
ever, the sharper boundaries are not clearly visible. This can be explained by

58 6 NUMERICAL EXPERIMENTS

Figure 28: Solving the Cahn-Hilliard equation with p = 3 and h = 0.0625. Time
to solve = 4.7 hours

the rather low resolution that was used for the run. The resolution is too low to
trace the boundary exactly. Increasing the resolution is expected to better reveal
the di�erence in interface width for di�erent values of α. However, due to long
run times, this was not prioritized.

A �nal example that was tested was the value of θ. Any θ < 1 should result in a
uniform distribution of c = c̄ = 0.5, very di�erent to the solutions already seen.
Thus, θ was set equal to 1/2 to test the behaviour of the solver. The Dirchlet

6.4 Results 59

Figure 29: Solving the Cahn-Hilliard equation with p = 4 and h = 0.0625. Time
to solve =11.5 hours

boundary conditions were set to the known value of c = 0.5, whereas the initial
concentration was changed to have larger extremeties, c ∈ [0.3, 0.7], to observe
the solution more easily. The results were exactly as expected, as shown in �g-
ure 33. These tests performed with Dirichlet boundary conditions qualitatively
veri�es the behavior of the implemented Matlab solver nicely.

60 6 NUMERICAL EXPERIMENTS

Figure 30: The logarithm of the time per time-step showing the adaptive stepsize
of ode15s

6.4 Results 61

Figure 31: Solving the Cahn-Hilliard equation with α = 1500, p = 3 and h =
0.125. More di�use interfaces visible.

62 6 NUMERICAL EXPERIMENTS

Figure 32: Solving the Cahn-Hilliard equation with α = 5000, p = 3 and h =
0.125.

6.4 Results 63

Figure 33: Solving the Cahn-Hilliard equation with θ = 0.5, p = 3 and h = 0.125.
Time to solve =1 minute

64 6 NUMERICAL EXPERIMENTS

6.4.2 Periodic Boundary Conditions

The solver was also implemented using Periodic Boundary Conditions, as intro-
duced in section 3.5.3. This involved choosing master and slave degrees of freedom
as shown earlier in �gure 12, and setting up the transformation matrix T. Most
of this is rather straight foward. However, the corners, especially the top right
corner, require quite a bit of back-tracking until the slave DOFs are expressed as
functions of only master DOFs. The corners needed seperate treatment in the
creation of the transformation matrix. However, once completed, the function
creating T worked for all sizes of rectangular domains - as is always the case in
the parameter space in Isogeometric Analysis. As (100) only governs the change
over time, it is important that the initial concentration c0 was periodic. This was
accomplished by �rstly by setting all of the values around the slave boundary
equal to the corresponding master boundary. Then the �rst internal points were
set to match the derivatives of the slave boundary to each corresponding deriva-
tive of the master boundary. The initial non-periodic conditions can be seen in
�gure 34, whereas the initial conditions after it was made periodic is visible in

Figure 34: Non-periodic initial conditions for periodic boundary runs

�gure 35.
Several runs were performed using this implementation of periodic boundary

6.4 Results 65

Figure 35: Periodic initial conditions for periodic boundary runs

conditions. One run is shown in �gure 36 with p = 3 and h = 0.0625. It is
clear form these results that something is not quite right. The solution does not
go to its pure phases completely. In addition an erronous area in the middle of
the solution is seen. However, it is easily seen that the solution seems period-
ical around the edges. To further investigate this behaviour, the same solution
was studied without performing the reinsertion of slave variables - thus looking
only at the reduced system. These results are shown in �gure 37. Without the
reinsertion of the slave DOFs, these plots will make little sence around the slave
boundary. However, in the reduced system, the qualitatively expected behaviour
of the Cahn-Hilliard equation is still apparant, at least for these early time steps.
Another set of reduced-system results are shown in �gure 38, still showing quali-
tatively promising results on the interior of the boundary, and periodic behaviour.
The error then, seems to be located in the application of periodic boundaries -
not in the inner workings of the solver.

66 6 NUMERICAL EXPERIMENTS

Figure 36: Run with periodic boundary conditions implemented

6.4 Results 67

Figure 37: Run with periodic boundary conditions implemented, without slave
DOF reinsertion. p = 3, h = 0.0625

68 6 NUMERICAL EXPERIMENTS

Figure 38: Run with periodic boundary conditions implemented, without slave
DOF reinsertion. p = 3, h = 0.125

6.5 Discussion 69

6.5 Discussion

The implementation of Dirichlet boundary conditions revealed very good results.
The solver modeled several known features of the Cahn-Hilliard equation in a
pleasing manner, verifying the solver nicely. However, during the implementation
of periodic boundary conditions, some di�culties were encountered. There are
two areas that are deemed most likely to be the origin of the error. Firstly,
setting up the transformation matrix was quite tidious work, especially �nding the
relations around the corner areas. A mistake could have been done in creating the
code used to set up this large system of equations. However, the work was double
checked, and veri�ed for a simple, small domain. Hence, the problem most likely
lies in the implementation of the transformation matrix. The implementation is
straight foward in the standard system

Ku = f . (102)

Our system is obviously quite di�erent,

M
∂c

∂t
= A(c). (103)

The implementation on the left hand side is similar in both cases. It is, however,
slightly more di�cult to implement the periodic boundary conditions on the non-
linear right hand side. Thus it is hypothesised that the error in implementing
periodic boundary conditions is to be found on the right hand side. Had the de-
cision to implement periodic boundary conditions been made earlier than it did,
time would have most likely been left to single out and �x the error. Sadly, with
computational times getting large as Dirichlet boundary conditions were imple-
mented, not enough time was left to discover and correct this error. However,
this leads us to the next point of discussion: Computational Times.

It is obvious that a large limitation to the current implementation is the run-times.
The large cost of computing A(c meant that only combinations of p = 2, 3 and
h = 0.125, 0.0625 were practicable for the above simulations. Cahn-Hilliard is
known to be computationally costly, but there are two areas in which solution
times ccould be minimized. The computational cost is completely dominated
by the solving of the nonlinear right hand side of the Cahn- Hilliard equation.
Hence, one can either attempt to reduce the cost of computing the right hand
side, or reduce the amount of times one has to compute the right hand side.
Reducing the cost of calculating the right hand side is probably possible. The
right hand side was indeed coded to reduce run-times, but it is possible that this
can be taken further. Three things that could be attempted are as follows: All of

70 6 NUMERICAL EXPERIMENTS

the spline basis functions' values are pre-calculated. It is thus probably possible
to pre-calculate a larger number necceccary variables, reducing some right hand
side calculations to table lookups, if memory is not a limitation. The second
option would be to attempt to simplify the right hand side. This would require a
thorough mathematical approach, but it is known that µc, for example, often is
approximated by polynomial functions. Such simpli�cations can reduce compu-
tational costs somewhat. A third option is to rewrite and compile the code in a
di�erent, and preferabely lower level programming language. Knowing that Mat-
lab is less than ideal for multiple nested for-loops, a compilation with speedier
handling of for-loops could increase the speed of calculating the right hand side
signi�cantly.

The other major option is to reduce the number of calls to the right hand side. As
noted earlier Matlab's ode15s solver was utilized for this thesis. Ode15s is a quite
robust and well coded solver, however, it is also very general - created to be able
to handle most types of equations Matlab users will throw at it. Thus, other,
more custimizable methods, reducing the amount of time-steps needed would
reduce the number of calls to the right hand side. [22] and [13] both identify
this need of a good solver with time-step adaptivity, and suggest implementing
the generalized-α method [9] to overcome time-stepping di�culties. This could
further reduce the computational costs.

71

7 Conclusion

B-splines turn out to be very simple yet powerful functions for geometric rep-
resentation. The most common geometric representation in CAD is based on
B-splines, it was through this project veri�ed that B-splines are a valid and good
choice as basis functions in the Galerkin method on which FEA is based. Using
B-splines as basis functions allows for, at least potentially, the use of CAD mod-
els directly, and exact geometries at all levels of re�nement, which is known to
be important in many applications. The simple structure, and local support of
the basis functions and their derivatives makes this implementation smooth and
e�cient. Using B-splines as basis functions is both veri�ed and reccomended.

The Isogeometric Analysis solver implementation in Matlab was �rstly tested
and veri�ed on the Poisson equation with homogeneous dirichlet boundary con-
ditions. The error analysis was completed by performind several runs with dif-
ferent polynomial degree p and element size h. The error analysis conformed to
the theoretical error prediction, and showed very strong results in favor of Iso-
geometric Analysis. The error convergence is the same as in FEA, but increases
in mesh detail come at a lower computational cost per degree of freedom than in
FEA. The solver was then used to solve the higher order Biharmonic equation
on the unit square. The same, strong error results held true also for this higher
order partial di�erential equation. Finally, the solver was implemented on a much
more complex equation; the non-linear and sti� Cahn-Hilliard-equation. Mod-
i�cations to the solver, and numerical and computational challenges in solving
this non-linear and sti� system were discussed. In the Dirichlet boundary case,
the results were qualitatively veri�ed, not only producing early run-time results,
but achieving the steady state solution. Achieving the steady solution can be
di�cult. Periodic boundary conditions were applied, which was a partial success.
The solution behaved largely as expected, as a periodic solution, except at the
slave boundary. Amongst the issues was that reinserting slave degrees of freedoms
did not produce the expected periodic results. This reveals that implementing
periodic boundary conditions is slightly more intricate in the mass-matrix-based
system of partial di�erential equations with a nonlinear operator on the right
hand side than in a normal sti�ness-matrix implementation.

Isogeometric Analysis is clearly a great numerical tool. Some of its strenghts are
demonstrated through this thesis, and the andvantages of this type of analysis
are clear. Not only will Isogeometric Analysis allow the usage of exact models at
all levels of re�nement, giving more exact results, it will even give these results at

72 REFERENCES

asymptotically lower computational cost. Furthermore, whereas traditional FEM
requires complex workarounds to solve higher order equations - and no general
method exists - Isogeometric Analysis is able to solve higher order di�erential
equations with almost no adjustments to the method or solver. This is a very
noteworthy advantage, and can become very important in �elds where higher
order partial di�erential equations frequently appear. In addition, Isogeometric
Analysis seems to be a promising and robust solution to bridge the gap that ex-
ist between the FEA and CAD technologies. The potential economic savings in
removing the need of seperate mesh generation for FEA is enormous. The indus-
try might still be largely sticking to tratditional FEA, but Isogeometric Analysis
de�nitely has the potential to play a very central part of analysis in the years
to come, as it grows into a more mature �eld, potentially outperforming and
replacing FEA in many applications.

References

[1] Hala Ashi. Numerical Methods for Sti� Systems. PhD thesis, The university
of Nottingham, 2008.

[2] John W Barrett, James F Blowey, and Harald Garcke. Finite element ap-
proximation of the cahn�hilliard equation with degenerate mobility. SIAM
Journal on Numerical Analysis, 37(1):286�318, 1999.

[3] Y. Bazilevs, V. M. Calo, Y. Zhang, T. J. R. Hughes, and G. Sangalli. Isogeo-
metric �yid-structure interaction analysis with applications to arterial blood
�ow. Computational Mechanics, (38), 2006.

[4] Y. Bazilevs, L. Beirao de Veiga, J. A. Cottrell, T. J. R. Hughes, and G. San-
galli. Isogeometric analysis: approximation, stability and error estimates for
h-re�nement meshes. Mathematical Models and Methods in Applied Sciences,
(16), 2006.

[5] C. De Boor. On calculation with b-splines. Journal of Approximation The-
ory, (6), 1972.

[6] John W. Cahn. On spinodal decomposition. Acta Metallurgica, 9(9), 1961.

[7] John W. Cahn and John E. Hilliard. Free energy of a nonuniform system. i.
interfacial free energy. The Journal of Chemical Physics, 28(2), 1958.

[8] E.B. Christo�el. Ueber die gaussche quadratur und eine verallgemeinerung
derselbe. J. Reine Angew. Math., (55):61�82, 1858.

REFERENCES 73

[9] Jintai Chung and Gregory M Hulbert. A family of single-step houbolt time
integration algorithms for structural dynamics. Computer methods in applied
mechanics and engineering, 118(1):1�11, 1994.

[10] E. Cohen, R. F. Reisenfeld, and F. Elber. Geometric Modeling with Splines:
An Introduction. A. K. Peters Ltd, 2001.

[11] J. A. Cottrell, T. J. R. Hughes, and A. Reali. Isogeometric analysis of struc-
tural vibrations. Computer Methods in Applied Mechanics and Engineering,
(196), 2007.

[12] J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes. Isogeometric
analysis of structural vibrations. Computer Methods in Applied Mechanics
and Engineering, (195), 2006.

[13] J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs. Isogeometric
Analysis. Wiley, 2009.

[14] Charles M Elliott and Donald A French. Numerical studies of the cahn-
hilliard equation for phase separation. IMA Journal of Applied Mathematics,
38(2):97�128, 1987.

[15] G Engel, K Garikipati, TJR Hughes, MG Larson, L Mazzei, and RL Taylor.
Continuous/discontinuous �nite element approximations of fourth-order el-
liptic problems in structural and continuum mechanics with applications to
thin beams and plates, and strain gradient elasticity. Computer Methods in
Applied Mechanics and Engineering, 191(34):3669�3750, 2002.

[16] Lawrence C. Evans. Partial Di�erential Equations. American Mathematical
Society Providence, Rhode Island, second edition, 2010. Graduate Studies
in Mathematics Volume 19.

[17] G. Farin. Curves and Surfaces for CAGD, A Practical Guide. Morgan
Kaufmann Publishers, �fth edition, 1999.

[18] Carlos A. Felippa. Introduction to �nite element methods howpub-
lished = http://www.colorado.edu/engineering/cas/courses.d/ifem.

d/ifem.ch08.d/ifem.ch08.pdf, note = Lecture notes from Department of
Aerospace Engineering Sciences and Center for Aerospace STructures, Uni-
versity of Colorado, year = 2004,.

[19] Ellen Kuhl Garth N. Wells and Krishna Garikipati. A discontinuous galerkin
method for the cahn-hilliard equation. Journal of Computational Physics,
(218), 2006.

74 REFERENCES

[20] H. Gomez, V. M. Calo, Y. Bazilevs, and T. J. R. Hughes. Isogeometric
analysis of the cahn-hilliard phase-�eld model. Computer Methods in Applied
Mechanics and Engineering, (197), 2008.

[21] R. T. Haftka. Automated procedure for design of wing structures to sat-
isfy strength and �utter requirements. Technical report, NASA - Langley
Research Center, 1973. Document ID: 19730018200.

[22] Yuri Bazilevs Hector Gomez, Victor M. Calo and Thomas J.R. Hughes.
Isogeometric analysis of the cahn-hilliard phase-�eld model. Technical re-
port, Institute for Computational Engineering and Sciences, The university
of Texas at Austin., December 2007.

[23] Desmond J Higham and Lloyd N Trefethen. Sti�ness of odes. BIT Numerical
Mathematics, 33(2):285�303, 1993.

[24] T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic
Finite Element Analysis. Dover Publications, 2000.

[25] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis:
Cad, �nite elements, nurbs, exact geometry and mesh re�nement. Computer
methods in applied mechanics and engineering, (194), 2005.

[26] T.J.R. Hughes, A. Reali, and G. Sangalli. E�cient quadrature forNURBS-
based isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, (199), 2010.

[27] Bernie L. Hulme. Discrete galerkin and related one-step methods for ordinary
di�erential equations. Mathematics of Computation, 26(120):881�891, 1972.

[28] J. Blowey J. Barrett and H. Garcke. Finite element approximation of the
cahn-hilliard equation with degenerate mobility. SIAM Journal on Numeri-
cal Analysis, 37(1):286�318, 1999.

[29] J. A. Evans M. J. Borden J. Liu, L. Dede and T. J. R. Hughes. Isogeomet-
ric analysis of the advective cahn-hilliard equation: Spinodal decomposition
under shear �ow. Technical report, The Institute for Computational Engi-
neering and Sciences, The University of Texas at Austin, March 2012. ICES
REPORT 12-12.

[30] Claes Johnson. Numerical Solution of Partial Di�erential Equations by the
Finite Element Method. Dover Publication, 2009.

[31] Erwin Kreyszig. Advanced Engineering Mathematics. Wiley, eigth edition,
1999.

REFERENCES 75

[32] V. D. Liseikin. Grid Generation Methods. Springer, 2010.

[33] Daryl L. Logan. A First Cource in the Finite Element Method. Cengage
Learning, fourth edition, 2007.

[34] Tom Lyche and Knut MÃ�rken. Spline Methods Draft. Department of Infor-
matics, Centre of Mathematics for Applications, University of Oslo, 2011.

[35] Robert C. McOwen. Partial Di�erentioal Equations, Methods and Applica-
tions. Pearson Education, second edition, 2003.

[36] David Moratal, editor. Finite Element Analysis - New Trends and Develop-
ments. InTech, 2012. under CC BY 3.0 license DOI:10.5772/2552.

[37] Bart Blanpain Nele Moelans and Patrick Wollants. An introduction to phase-
�eld modeling of microstructure evolution. calphad, 32(2):268�294, 2008.

[38] Brynjulf Owren. TMA4212 Numerisk lÃ�sning av partielle di�erensial-
ligninger med endelig di�erensmetoder. IME institute, NTNU, 2007. In
norwegian only. Curriculum used in class TMA4212.

[39] L. Piegl and W. Tiller. The NURBS Book (Monographs in Visual Commu-
nication). Springer Verlag, second edition, 1997.

[40] G. Prathap. The �nite element method in structural engineering: Principles
and practice of design of �eld-consistent elements for structural and solid
mechanics, volume 24. Kluwer Academic, 1993.

[41] E. M. Purcell. Life at low reynolds number. American Journal of Physics,
45(1), January 1977.

[42] J.N. Reddy. An introduction to the �nite element method. McGraw-Hill
science, third edition, 2005.

[43] Richard Franklin Riesenfeld. Applications of b-spline approximation to geo-
metric problems of computer-aided design. PhD thesis, Syracuse University,
Syracuse, NY, USA, 1973.

[44] Yousef Saad. Iterative Methods for Sparce Linear Systems. Society for In-
dustrial and Applied Mathematics, second edition, 2003.

[45] E. Schelkle and R. Remensperger. Integrated occupand-car crash simulation
with the �nite element method: The porsche hybrid iii-dummy and airbag
model. Technical report, SAE Techincal Paper 910654, 1991. doi:10.4271-
910654.

76 A CAHN-HILLIARD CODE IMPLEMENTATION

[46] A. P. S. Selvadurai. Partial Di�erential Equations in Mechanics 2: The
Biharmonic Equation, Poisson Equation. Springer, 2000.

[47] P. Seshu. Textbook of Finite Element Analysis. PHI Learning Pvt. Ltd.,
2004.

[48] John M. Stockie and Brian R. Wetton. Analysis of sti�ness in the immersed
boundary method and implications for time-stepping schemes. J. Comput.
Phys, 154:41�64, 1998.

[49] Eitan Tadmor. A review of numerical methods for nonlinear partial di�er-
ential equations. Bulletin of the American Mathematical Society, 49(4):507�
554, 2012.

[50] Eiric W. Weisstein. Fundamental theorem of gaussian quadrature. http://
mathworld.wolfram.com/FundamentalTheoremofGaussianQuadrature.

html. From MathWorld�A Wolfram Web Resource.Accessed 28 November
2012.

[51] Garth NWells, Ellen Kuhl, and Krishna Garikipati. A discontinuous galerkin
method for the cahn�hilliard equation. Journal of Computational Physics,
218(2):860�877, 2006.

[52] Yinhua Xia, Yan Xu, and Chi-Wang Shu. Local discontinuous galerkin meth-
ods for the cahn�hilliard type equations. Journal of Computational Physics,
227(1):472�491, 2007.

[53] Y. Zhang, Y. Bazilevs, S. Goswami, C. Bajaj, and T. J. R. Hughes. Patient-
speci�c vascular nurbs modelling for isogeometric analysis of blood �ow.
Computer Methods in Applied Mechanics and Engineering, (196), 2007.

[54] J.Z. Zhu and O. C. Zienkiewicz. Adaptive techniques in the �nite element
method. 4:197�204, 1988.

A Cahn-Hilliard Code Implementation

The main run sequence:

1 %Cahn−Hilliard solver
2 %Spline variables and calculation−−−−−−−−−−−−−−−−−−−−
3 %setting p−values
4 [p1,p2]=getP(3,3);
5 %setting element size values (e.size = 1/(h+1))
6 h1=3;

77

7 h2=3;
8 %calculate spline variables
9 getSplineVariables(p1,p2,h1,h2);

10

11 %Setting Cahn−Hilliard constants
12 %alpha=3000;
13 %theta = 3/2;
14 getCHconstants(3000,(1/2));
15

16 %Initial conditions
17 c0=getInitialConcentration(getSize());
18 %make random initial concentration periodic
19 C0=applyPeriodic(c0);
20

21 %Calculate Mass matrix
22 M = getMassMatrix();
23

24 %Apply boundary data to Mass matrix
25 T=getTransformationBoundary(1);
26 MB=(T.')*M*T;
27 for i = 1:length(MB(:,1))
28 if MB(i,:)==zeros
29 MB(i,i)=1;
30 end
31 end
32

33 %solve using Mass matrix and Matlab's ode15s solver
34 %start time
35 ts=0;
36 %end time
37 te=100
38 %Solving using Matlab ode15s:
39 options=odeset('Mass',MB);
40 [T,Y] = ode15s(@getBandCterms,[ts, te],C0,options);
41

42 %Reinsert known values
43 Yactual=performReinsertion(Y);

getSplineVariables:

1 function [] = getSplineVariables(p1,p2,h1,h2)
2 %GETSPLINEVARIABLES −−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % Inputs:
4 % p1,p2 = polynomial degree in each direction
5 % h1,h2 = element division. 2^h1 divisions.
6 %
7 % Sets to setter/getter−functions for later access from anywhere:
8 % lengthT,lengthU = number of spline functions
9 % NoE = number of elements

10 % GToL = global to local
11 % SinE = which functions have support in element E

78 A CAHN-HILLIARD CODE IMPLEMENTATION

12 % weightXi1, weightXi2 = gauss weights.
13 % xi1,xi2 = gauss points on elements.
14 % PinEXi1,PinEXi2 = index of first point in element E.
15 % EndpointsofE = physical coordinates of element E, for
16 % area calculation.
17 % N1,N1D,N1DD,N2,N2D,N2DD = spline and spline deriv.values
18 % in gausspts.
19

20 %get knotvectors
21 tStar=getKnotvector(h1);
22 uStar=getKnotvector(h2);
23

24 %making them both p1 and p2 regular
25 t=[(tStar(1)*ones(p1,1));tStar;tStar(length(tStar))*ones(p1,1)];
26 u=[(uStar(1)*ones(p2,1));uStar;uStar(length(uStar))*ones(p2,1)];
27

28 %Number of spline functions in each direction:
29 lengthT=length(t)−p1−1;
30 lengthU=length(u)−p2−1;
31 %setting problem size for later access
32 getSize(lengthT,lengthU);
33 %setting Number of elements for later access
34 NoE = (lengthT−p1)*(lengthU−p2);
35 getNoE(NoE);
36

37

38 %Getting connectivity, GlobalToLocal function mapping = GToL
39 %and which functions (globally) have Support in Element e = SinE
40 [GToL, SinE]=getConnectivity(lengthT, lengthU, p1,p2);
41 %setting variables for later access.
42 getConnect(SinE,GToL);
43

44 %finding boundary splines for periodic boundary implementation
45 [bSbottomtop,bSleftright]=getBoundarySplines(GToL,lengthT,lengthU);
46 [bbSbottomtop,bbSleftright]=getInternalBoundarySplines(GToL,lengthT,
47 lengthU);
48 %setting boundary splines for later access.
49 getPeriodicBoundary(bSbottomtop,bSleftright,bbSbottomtop,
50 bbSleftright,bCorners,bbCorners);
51

52

53 %Getting gausspoints xi1 and xi2, weights, and PinEXi1/2 − which
54 %has the index of the first point in each direction in each element.
55 [weightXi1, weightXi2, xi1, xi2, PinEXi1, PinEXi2, EndpointsofE] =
56 getGaussPoints(unique(t), unique(u), lengthT−p1, lengthU−p2,p1, p2);
57

58 %setting variables for later access
59 getWeights(weightXi1,weightXi2);
60 getXi(xi1,xi2);
61 getPinE(PinEXi1,PinEXi2);
62 getEndpoints(EndpointsofE);
63

79

64 %Finding values and derivatives of all bsplines at each gausspoint:
65 [N1,N1D,N1DD]=getSplineValsAnd2Derivs(p1,t,xi1);
66 [N2,N2D,N2DD]=getSplineValsAnd2Derivs(p2,u,xi2);
67 %setting variables for later access.
68 getSplineValues(N1,N1D,N1DD,N2,N2D,N2DD);
69

70 end

getKnotVector:

1 function [knotvector] = getKnotvector(divs)
2 %GETKNOTVECTOR −−−−−−−−−−−−−−−−−−−−−−
3 % Returns knot vector with divs amounts of divisions.
4 knotvector = [0 1]';
5

6 for i =1:divs
7 j=1;
8 while j ≤ length(knotvector)−1
9 knotvector=[knotvector(1:j) ; ...

(knotvector(j)+knotvector(j+1))/2; ...
knotvector(j+1:length(knotvector))];

10 j=j+2;
11 end
12 end
13 end

getConnectivity:

1 function [INN,IEN] = getConnectivity(lengthT, lengthU, p1, p2)
2 %GETCONNECTIVITY −−−−−−−−−−−−−−−−−
3 % Returns mapping INN (Global to local mapping) and
4 % IEN − which functions (global) have support in element e.
5 % Based on T. Hughes et. al's approach
6 % Global variable definitions and initializations:
7 nel = (lengthT−p1)*(lengthU−p2); % number of elements
8 nnp = lengthT*lengthU; % number of global basis functions
9 nen = (p1+1)*(p2+1); % number of local basis functions

10 INN = zeros(nnp,2);% NURBS coordinates array
11 IEN = zeros(nen, nel); % connectivity array
12 % Local variable initializations:
13 e=0;
14 A=0;
15 B=0;
16 b=0;
17 iloc=0;
18 jloc=0;
19 for j=1:lengthU
20 for i=1:lengthT
21 A = A + 1; % increment global function number
22 INN(A,1) = i;

80 A CAHN-HILLIARD CODE IMPLEMENTATION

23 INN(A,2) = j; % assign spline coordinates
24 if i≥(p1+1) && j≥(p2+1)
25 e = e+1; % increment element number
26 for jloc=0:p2
27 for iloc=0:p1
28 % global function number
29 B = A − jloc*lengthT − iloc;
30 % local function number
31 b = jloc*(p1+1)+ iloc + 1;
32 IEN(b,e) = B; % assign connectivity
33 end
34 end
35 end
36 end
37 end
38 end

getBoundarySplines:

1 function [bSbottomtop, bSleftright] = getBoundarySplines(...
GToL,lengthT, lengthU)

2 %GETBOUNDARYSPLINES −−−−−−−−−−−−−−−−−−−−−
3 %
4 %returns (master,slave) global function numbers
5 %for periodic boundary conditions in each direction
6 %i.e. bottom−top and left−right.
7

8

9 bSbottomtop = zeros((2*lengthT+2*lengthU−4)/4,2);
10 bSleftright = zeros((2*lengthT+2*lengthU−4)/4,2);
11

12 indexBb=1;
13 indexBl=1;
14 indexBt=1;
15 indexBr=1;
16 %loops through each global function and detects which ones
17 %are on the edge.
18 for i=1:length(GToL(:,1))
19 if GToL(i,2) == 1
20 bSbottomtop(indexBb,1)=i;
21 indexBb=indexBb+1;
22 end
23 if GToL(i,1) == 1
24 bSleftright(indexBl,1)=i;
25 indexBl=indexBl+1;
26 end
27 if GToL(i,2) == lengthU
28 bSbottomtop(indexBt,2)=i;
29 indexBt=indexBt+1;
30

31 end

81

32

33 if GToL(i,1) == lengthT
34 bSleftright(indexBr,2)=i;
35 indexBr=indexBr+1;
36 end
37 end
38 end

getInternalBoundarySplines:

1 function [bbSbottomtop, bbSleftright] = ...
getInternalBoundarySplines(GToL,lengthT, lengthU)

2 %GETBOUNDARYSPLINES −−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 %
4 % Returns the master slave adresses of interior boundary points
5

6 bbSbottomtop = zeros((2*lengthT+2*lengthU−4)/4,2);
7 bbSleftright = zeros((2*lengthT+2*lengthU−4)/4,2);
8

9

10 indexBb=1;
11 indexBl=1;
12 indexBt=1;
13 indexBr=1;
14 %loops through and adds any splines on the interior boundary to
15 %the respective arrays.
16 for i=1:length(GToL(:,1))
17 if GToL(i,2) == 2
18 bbSbottomtop(indexBb,1)=i;
19 indexBb=indexBb+1;
20 end
21 if GToL(i,1) == 2
22 bbSleftright(indexBl,1)=i;
23 indexBl=indexBl+1;
24 end
25 if GToL(i,2) == lengthU−1
26

27 bbSbottomtop(indexBt,2)=i;
28 indexBt=indexBt+1;
29

30 end
31

32 if GToL(i,1) == lengthT−1
33

34 bbSleftright(indexBr,2)=i;
35 indexBr=indexBr+1;
36

37 end
38 end
39 end

82 A CAHN-HILLIARD CODE IMPLEMENTATION

getGaussPoints:

1 function [weightXi1, weightXi2, xi1, xi2, PointsInElementXi1, ...
PointsInElementXi2, EndpointsofE] = getGaussPoints(uniqueT, ...
uniqueU, lengthT, lengthU, p1,p2)

2 %GETGAUSSPOINTS Summary of this function goes here
3 % Returns the gauss points in each parametric direction
4 % and the weights
5 % points to be evaluated:
6 % lgwt(n1,x1,x2) is a function that returns [gp, weights]
7 % n1=number of points
8 % gp=gauss points on interval [x1,x2] and
9 % weights = gauss weights for gp points.

10 n1=p1+1;
11 n2=p2+1;
12 EndpointsofE=zeros(lengthT*lengthU,4);
13 %calculating the xi1 gauss points
14 xi1 = zeros((n1)*(length(uniqueT)−1),1);
15 for i=1:length(uniqueT)−1
16 xi1((i−1)*n1+1:(i−1)*n1+n1)=lgwt(n1,uniqueT(i),uniqueT(i+1));
17 end
18 %calculating the xi2 gauss points
19 xi2 = zeros((n2)*(length(uniqueU)−1),1);
20 for i=1:length(uniqueU)−1
21 xi2((i−1)*n2+1:(i−1)*n2+n2)=lgwt(n2,uniqueU(i),uniqueU(i+1));
22 end
23 %Calculating xi1 endpoints of elements
24 PointsInElementXi1=zeros((lengthT)*(lengthU),1);
25 elemcounter=1;
26 for i=1:(lengthU)
27 for j=1:(lengthT)
28 PointsInElementXi1(elemcounter)=(n1*j−(n1−1));
29 EndpointsofE(elemcounter,1)=uniqueT(j);
30 EndpointsofE(elemcounter,2)=uniqueT(j+1);
31 elemcounter=elemcounter+1;
32 end
33 end
34 %Calculating xi2 endpoints of elements
35 PointsInElementXi2=zeros((lengthT)*(lengthU),1);
36 elemcounter=1;
37 for i=1:(lengthT)
38 for j=1:(lengthU)
39 PointsInElementXi2(elemcounter)=(n2*i−(n2−1));
40 EndpointsofE(elemcounter,3)=uniqueU(i);
41 EndpointsofE(elemcounter,4)=uniqueU(i+1);
42 elemcounter=elemcounter+1;
43 end
44 end
45 %getting gauss weights
46 [¬, weightXi1] = lgwt(n1,−1,1);
47 [¬, weightXi2] = lgwt(n2,−1,1);

83

48 end

getSplineValsAnd2Derivs:

1 function [Vals, Derivs, SecondDerivs] = ...
getSplineValsAnd2Derivs(p, knot, xi)

2 %function [Vals, Derivs] = getSplineValsAndDerivs(p, knot,xi)
3 %INPUTS
4 % p − order
5 % knot − knot vector
6 % xi − vector of xi points; points to evaluate
7 %OUTPUTS
8 % Vals − Matrix with the value of all spline functions
9 % at all xi points.

10 % Derivs − Matrix with the value of all derivatives at
11 % all xi points
12 % SecondDerivs − Matrix with the value of all second
13 % derivatives at all xi.
14

15 %Creating variables
16 Vals = zeros(length(knot)−p−1,length(xi));
17 Derivs= zeros(length(knot)−p−1,length(xi));
18 SecondDerivs= zeros(length(knot)−p−1,length(xi));
19 %Switching the knot vector around for compatibility
20 knot=knot';
21

22 %Looping over all xi points
23 for xipoint = 1:length(xi)
24

25 %finding location of last non−zero basis function of xi, in knot
26 %So far assuming p+1 regular knots...
27 mu = 1+p;
28 while mu<length(knot)−p−1 && xi(xipoint) ≥ knot(mu+1),
29 mu = mu+1;
30 end
31

32 %Finding values of the splines at xi point
33 Bp = zeros(p+2,p+1);
34 Bp(end−1, 1) = 1;
35 for i=1:p,
36 for k=mu−i:mu,
37 %Accounting for equal knots
38 %(leaves no contribution if equal)
39 if knot(k+i) 6= knot(k),
40 Bp(k−mu+p+1, i+1) =Bp(k−mu+p+1, i+1) + ...

(xi(xipoint) − ...
knot(k))/(knot(k+i)−knot(k))*Bp(k−mu+p+1,i);

41 end
42 if knot(k+i+1) 6= knot(k+1),
43 Bp(k−mu+p+1, i+1) = Bp(k−mu+p+1, i+1) + ...

(knot(k+i+1)−xi(xipoint))/(...

84 A CAHN-HILLIARD CODE IMPLEMENTATION

knot(k+i+1)−knot(k+1))*Bp(k−mu+p+2, i);
44 end
45 end
46 end
47 %Finding values of derivatives at xi point
48 D=zeros(p+1,1);
49 for i=(mu−p):mu
50 %Accounting for equal knots
51 if knot(i+p) 6= knot(i)
52 D(i−mu+p+1) = D(i−mu+p+1) + ...

p/(knot(i+p)−knot(i))*Bp(i−mu+p+1,p);
53 end
54 if knot(i+p+1) 6= knot(i+1)
55 D(i−mu+p+1) = D(i−mu+p+1) − ...

p/(knot(i+p+1)−knot(i+1))*Bp(i−mu+p+2,p);
56 end
57 end
58

59 %Finding values of second derivatives
60 D2a=zeros(p+2,1);
61 D2b=zeros(p+1,1);
62 if p>2
63 k=p−1;
64 for j = mu−k:mu
65 %accounting for equal knots
66 if knot(j+k)6=knot(j)
67 D2a(j−mu+k+2) = D2a(j−mu+k+2) + ...

1/(knot(j+k)−knot(j))*Bp(j−mu+k+2,k);
68 end
69 if knot(j+k+1)6=knot(j+1)
70 D2a(j−mu+k+2) = D2a(j−mu+k+2) − ...

1/(knot(j+k+1)−knot(j+1))*Bp(j−mu+k+3,k);
71 end
72 end
73 k=p;
74 for j = mu−k:mu
75 %accounting for equal knots
76 if knot(j+k)6=knot(j)
77 D2b(j−mu+k+1) = D2b(j−mu+k+1) + ...

1/(knot(j+k)−knot(j))*D2a(j−mu+k+1);
78 end
79 if knot(j+k+1)6=knot(j+1)
80 D2b(j−mu+k+1) = D2b(j−mu+k+1) − ...

1/(knot(j+k+1)−knot(j+1))*D2a(j−mu+k+2);
81 end
82 end
83

84 end
85

86

87 %Adding current spline values to Vals
88 Vals(mu−p:mu,xipoint)=Bp(1:end−1,p+1);

85

89 %Adding current spline derivative Values to Derivs
90 Derivs(mu−p:mu, xipoint)=D;
91 %Adding second derivatives to Secondderivs.
92 coeff=factorial(p)/(factorial(p−2));
93 Dprefinal=coeff*D2b;
94 SecondDerivs(mu−p:mu, xipoint)=Dprefinal;
95 end
96 end

getInitialConcentration:

1 function [c0] = getInitialConcentration(size)
2 %GETINITIALCONCENTRATION Summary of this function goes here
3 % c0 = returns initial random concentration in a vector of
4 % size(size)
5

6 % setting the random values equal at each run to better
7 % compare results
8 rng('default')
9 %concentration average

10 cA=0.5
11 %creates a random initial concentration c= cA +/−0.05
12 c0=cA*ones(size,1)+0.125*(cA−rand(size,1));
13 end

applyPeriodic:

1 function [inRHS] = applyPeriodic(inRHS)
2 %UNTITLED2 Summary of this function goes here
3 % Detailed explanation goes here
4 %getting values
5 [bBT,bLR,bbBT,bbLR]=getPeriodicBoundary();
6

7 %setting one down from top left an one left from bottom right corner
8 inRHS(bbBT(1,2))=2*inRHS(bBT(1,1))−inRHS(bbBT(1,1));
9 inRHS(bbLR(1,2))=2*inRHS(bLR(1,1))−inRHS(bbLR(1,1));

10

11 %setting boundary values equal
12 for i=1:length(bBT)
13 inRHS(bBT(i,2))=inRHS(bBT(i,1));
14 end
15 for i=1:length(bLR)
16 inRHS(bLR(i,2))=inRHS(bLR(i,1));
17 end
18

19 %setting boundary derivatives equal
20 for i=2:length(bbBT)
21 inRHS(bbBT(i,2))=2*inRHS(bBT(i,1))−inRHS(bbBT(i,1));
22 end
23 for i=2:length(bbLR)

86 A CAHN-HILLIARD CODE IMPLEMENTATION

24 inRHS(bbLR(i,2))=2*inRHS(bLR(i,1))−inRHS(bbLR(i,1));
25 end
26

27 end

getMassMatrix

1 function [M] = getMassMatrix()
2 %GETMASSMATRIX−−−−−−−−−−−−−−−−−
3 % Returns the mass matrix for the Cahn Hilliard equations
4

5 %getting variables
6 [p1,p2]=getP();
7 NoE=getNoE();
8 [SinE,GToL]=getConnect();
9 [weightXi1,weightXi2]=getWeights();

10 [PinEXi1,PinEXi2]=getPinE();
11 [N1,¬,¬,N2,¬,¬]=getSplineValues();
12 size=getSize();
13 EndpointsofE = getEndpoints();
14

15

16 M = zeros(size);
17 %integrating
18 %over each element
19 for e = 1:NoE
20 %over all nonzero splines in element.
21 for i = length(SinE(:,e)):−1:1
22 iglob=SinE(i,e);
23 ilok=GToL(iglob,1);
24 jlok=GToL(iglob,2);
25 %all other nonzero splines in element.
26 for j = length(SinE(:,e)):−1:1
27 jglob=SinE(j,e);
28 iilok=GToL(jglob,1);
29 jjlok=GToL(jglob,2);
30

31 %Gauss Quadrature
32 cumulateM=0;
33 for g2=1:p2+1 %for all gauss points
34 for g1=1:p1+1
35 cumulateM=cumulateM+weightXi1(g1)*...
36 weightXi2(g2)*(N1(ilok,PinEXi1(e)+g1−1)*N2(jlok,PinEXi2(e)+g2−1)*...
37 N1(iilok,PinEXi1(e)+g1−1)*N2(jjlok,PinEXi2(e)+g2−1));
38 end
39 end
40 %Adding in global mass matrix.
41 M(iglob,jglob)=M(iglob,jglob)+((EndpointsofE(e,2)−...
42 EndpointsofE(e,1)))*((EndpointsofE(e,4)−EndpointsofE(e,3)))*0.25*...
43 cumulateM;
44 end

87

45 end
46 end
47 end

getTransformationBoundary:

1 function [TT] = getTransformationBoundary(iscalculate)
2 %GETTRANSFORMATIONBOUNDARY −−−−−−
3 % This function sets up the multipoint constraints
4 % transformation matrix if a input argument is sent,
5 % otherwise, it returns the transformation matrix T.
6 persistent Tmatrix;
7

8 if nargin==1
9 [bBT,bLR,bbBT,bbLR]=getPeriodicBoundary();

10

11 T=eye(getSize());
12 %corners Values
13

14 T(bLR(1,2),:)=zeros;
15 T(bLR(1,2),bBT(1,1))=1;
16

17 T(bBT(1,2),:)=zeros;
18 T(bBT(1,2),bBT(1,1))=1;
19

20

21 T(bLR(length(bLR),2),:)=zeros;
22 T(bLR(length(bLR),2),bBT(1,1))=1;
23

24

25 %General boundary values
26 for i=2:length(bBT)−2
27 T(bBT(i,2),:)=zeros;
28 T(bBT(i,2),bBT(i,1))=1;
29 end
30 for i=2:length(bLR)−2
31 T(bLR(i,2),:)=zeros;
32 T(bLR(i,2),bLR(i,1))=1;
33 end
34

35

36 %Derivatives
37 %Side derivative values
38 for i=3:length(bbBT)−2
39 T(bbBT(i,2),:)=zeros;
40 T(bbBT(i,2),bBT(i,1))=2;
41 T(bbBT(i,2),bbBT(i,1))=−1;
42 end
43 for i=3:length(bbLR)−2
44 T(bbLR(i,2),:)=zeros;
45 T(bbLR(i,2),bLR(i,1))=2;

88 A CAHN-HILLIARD CODE IMPLEMENTATION

46 T(bbLR(i,2),bbLR(i,1))=−1;
47 end
48

49

50 % Special values because of chained dependencies
51 % in the multipoint constraints
52 %Top left −1,
53 T(bLR(length(bLR)−1,1),:)=zeros;
54 T(bLR(length(bLR)−1,1),bLR(1,1))=2;
55 T(bLR(length(bLR)−1,1),bLR(2,1))=−1;
56

57 %Bottom right −1
58 T(bBT(length(bBT)−1,1),:)=zeros;
59 T(bBT(length(bBT)−1,1),bBT(2,1))=−1;
60 T(bBT(length(bBT)−1,1),bBT(1,1))=2;
61

62 %The right of top left
63 T(bbBT(2,2),:)=zeros;
64 T(bbBT(2,2),bbBT(2,1))=−1;
65 T(bbBT(2,2),bBT(2,1))=2;
66

67 %The left of bottom right
68 T(bbLR(2,2),:)=zeros;
69 T(bbLR(2,2),bbLR(2,1))=−1;
70 T(bbLR(2,2),bLR(2,1))=2;
71

72 %Top right
73 %1:
74 T(bbLR(length(bbLR),2),:)=zeros;
75 T(bbLR(length(bbLR),2),bbLR(1,1))=−1;
76 T(bbLR(length(bbLR),2),bLR(1,1))=2;
77

78 %2: Corner − already implemented
79

80 %3:
81 T(bbLR(length(bbLR)−1,2),:)=zeros;
82 T(bbLR(length(bbLR)−1,2),bbLR(1,1))=−2;
83 T(bbLR(length(bbLR)−1,2),bbLR(2,1))=1;
84 T(bbLR(length(bbLR)−1,2),bLR(2,1))=−2;
85 T(bbLR(length(bbLR)−1,2),bLR(1,1))=4;
86

87 %4:
88 T(bbBT(length(bbBT),2),:)=zeros;
89 T(bbBT(length(bbBT),2),bLR(2,1))=−1;
90 T(bbBT(length(bbBT),2),bLR(1,1))=2;
91

92 Tmatrix=T;
93 end
94 TT=Tmatrix;
95 end

getBandCterms:

89

1 function [outp] = getBandCterms(t,u)
2 %GETBANDCTERMS −−−−−−−−−−−−−−−−−−
3 % This function returns the right hand side of the
4 % Cahn−Hilliard equation
5

6

7 %getting values
8 cn=u;
9 [p1,p2]=getP();

10 NoE=getNoE();
11 [SinE,GToL]=getConnect();
12 [weightXi1,weightXi2]=getWeights();
13 [PinEXi1,PinEXi2]=getPinE();
14 [N1,N1D,N1DD,N2,N2D,N2DD]=getSplineValues();
15 size=getSize();
16 EndpointsofE = getEndpoints();
17 [alpha,theta]=getCHconstants();
18

19

20 %allocating variables
21 term1=zeros(size,1);
22 term2=zeros(size,1);
23

24

25 %integration loop
26 %over each element
27 for e = 1:NoE
28 %over all nonzero splines in element.
29 for i = length(SinE(:,e)):−1:1
30 iglob=SinE(i,e);
31 ilok=GToL(iglob,1);
32 jlok=GToL(iglob,2);
33 for g2=1:p2+1 %over all gauss points
34 for g1=1:p1+1
35 c=0;
36 cx=0;
37 cy=0;
38 cxx=0;
39 cyy=0;
40 %all other nonzero splines in element.
41 for j = length(SinE(:,e)):−1:1
42 jglob=SinE(j,e);
43 iilok=GToL(jglob,1);
44 jjlok=GToL(jglob,2);
45 %Cumulating values of c,cx,cy,cxx,cyy
46 c=c+N1(iilok,PinEXi1(e)+g1−1)*...
47 N2(jjlok,PinEXi2(e)+g2−1)*cn(jglob);
48 cx=cx+N1D(iilok,PinEXi1(e)+g1−1)*...
49 N2(jjlok,PinEXi2(e)+g2−1)*cn(jglob);
50 cy=cy+N1(iilok,PinEXi1(e)+g1−1)*...
51 N2D(jjlok,PinEXi2(e)+g2−1)*cn(jglob);

90 A CAHN-HILLIARD CODE IMPLEMENTATION

52 cxx=cxx+N1DD(iilok,PinEXi1(e)+g1−1)*...
53 N2(jjlok,PinEXi2(e)+g2−1)*cn(jglob);
54 cyy=cyy+N1(iilok,PinEXi1(e)+g1−1)*...
55 N2DD(jjlok,PinEXi2(e)+g2−1)*cn(jglob);
56

57 end
58 %Calculating Mc, muc and the necceccary
59 %derivatives
60 Mc=c*(1−c);
61 delMc=[cx−2*c*cx;cy−2*c*cy];
62 del2c=cxx+cyy;
63 delMuc=(3*alpha)/(2*theta)*[(cx/c)+...
64 (cx/(1−c))−(4*theta*cx);(cy/c)+(cy/(1−c))−(4*theta*cy)];
65

66 %scaling and weights for gauss integration:
67 snw=((EndpointsofE(e,2)−EndpointsofE(e,1)))...
68 *((EndpointsofE(e,4)−EndpointsofE(e,3)))*0.25*weightXi1(g1)*...
69 weightXi2(g2);
70

71 %Adding/integrating contributions to
72 %the two right hand side terms
73 term2(iglob)=term2(iglob)+snw*...
74 (N1DD(ilok,PinEXi1(e)+g1−1)*N2(jlok,PinEXi2(e)+g2−1)+...
75 N1(ilok,PinEXi1(e)+g1−1)*N2DD(jlok,PinEXi2(e)+g2−1)*...
76 (Mc*(del2c)));
77 term1(iglob)=term1(iglob)+snw*...
78 ([N1D(ilok,PinEXi1(e)+g1−1)*N2(jlok,PinEXi2(e)+g2−1); ...
79 N1(ilok,PinEXi1(e)+g1−1)*N2D(jlok,PinEXi2(e)+g2−1)]'*...
80 (Mc*delMuc+delMc*(del2c)));
81 end
82 end
83 end
84

85 end
86 %output the combined right hand side with implemented
87 %periodic boundary conditions
88 outp=applyBoundaryRHS((−1*term1−term2));
89

90 end

applyBoundaryRHS:

1 function [inRHS] = applyBoundaryRHS(inRHS)
2 %APPLYBOUNDARYRHS−−−−−−−−−−−−
3 %Transforms right hand side according to periodic
4 %boundary transformation
5

6 %getting variables
7 T=getTransformationBoundary();
8

9 %calculating

91

10 inRHS=(T.')*inRHS;
11

12 end

performReinsertion:

1 function [Y] = performReinsertion(Y)
2 %UNTITLED −−−−−−−−−−−
3 % Reinserts the missing (because of boundary conditions) DOFs
4 % using the transformation matrix.
5

6 %getting variables
7 [bBT,bLR,bbBT,bbLR]=getPeriodicBoundary();
8

9 %for every returned time−step from ode15s solver
10 for iii = 1:length(Y(:,1))
11 T=getTransformationBoundary();
12 Y(iii,:)=(T*(Y(iii,:).')).';
13 %only because some values were slightly over 1,
14 %ruining the color scale slightly
15 %the values were capped at 1:
16 for ii = 1:length(Y(1,:))
17 if Y(iii,ii)>1
18 Y(iii,ii)=1;
19 end
20 if Y(iii,ii)<0
21 Y(iii,ii)=0;
22 end
23 end
24

25 end

