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Problem Description

In this thesis I present a proof of Serre’s Conjecture, that is, all finitely
generated projective modules over the polynomial ring k[x1, . . . , xn], where
k is a field, are free.
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Abstract

We start by proving that all finitely generated projective R-modules, where
R = k[x1, . . . , xn] and k is a field, are stably free. Then we show that all
stably free projective modules over a ring with the unimodular column prop-
erty are free before showing that the polynomial ring R has the unimodular
column property.
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Samandrag

Vi byrjar med å vise at alle endeleggenererte projektive R-modular, der
R = k[x1, . . . , xn] og k er ein kropp, er stabilt frie. Etterp̊a visar vi at
alle stabilt frie projektive R-modular over ein ring med einingsmodulert
kolonneeigenskap (unimodular column property) er frie før vi viser at R
har einingsmodulert kolonneeigenskap.
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Introduction

We will present a proof of Serre’s Conjecture, that is, all finitely gener-
ated projective modules over k[x1, . . . , xn] are free. We start by reviewing
some basic homological algebra. In Chapter 1 we take a look at projective
modules, free modules, exact sequences and noetherian rings. In Chapter
2 we look into the tensor product and flat modules, which we will use to
prove the first step in our goal, namely that finitely generated projective
modules over k[x1, ..., xn] are stably free, which we will do in Chapter 3.
In Chapter 4 we will examine unimodular columns and the unimodular
column property which we need to complete the proof.

Serre’s Conjecture was proven by Suslin [4] and Quillen [2] indepen-
dently of each other. In An Introduction to Homological Algebra [3] Rot-
man presents a proof based on Suslin’s version and a sketch of Quillen’s
version. We will follow Rotman’s account of Suslin’s version.

All rings in this text are to be considered commutative.
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Chapter 1

Projective Modules

Before we start working on the proof of Serre’s Conjecture we will take a
look at projective modules and some basic tools which we will need. We
start by defining free modules.

Definition. Let R be a ring and F an R-module. We say F is a free R-
module if F is isomorphic to a direct sum of copies of R. In other words
there is an index set B, possibly infinitely large, where Rb = (b) ∼= R and
F ∼=

⊕
b∈B Rb. We call B a basis for F .

The basis of a free module has some similarities with the basis of a
vector space. There is a theorem in linear algebra which states that linear
transformations can be described by matrices. That theorem can also be
stated as a mapping defined by the basis elements, that is, if T is a linear
transformation T : V → W defined by a matrix, where {v1, . . . , vn} is a
basis for the vector space V and {w1, . . . , wn} is a basis for the vector space
W , then it can also be described by mapping elements of the basis of V to
elements of the basis of W . The following proposition is a parallel to that,
giving a mapping from a free module F to a module M .

Proposition 1.1. Given a ring R and a free R-module F with a basis B.
If f : B → M is a map to any R-module M then there exists a unique
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R-homomorphism f̃ : F → M with f̃u = f , where u : B ↪→ F is the
injection.

F

B M

u

f

f̃

Proof. Since B is a basis for F for every v ∈ F we can uniquely express
v =

∑
b∈B rbb where rb ∈ R and b ∈ B, and there is a well defined map

f̃ : F →M by f̃(v) =
∑

b∈B rbf(b). If s ∈ R then

f̃(sv) =
∑
b∈B

srbf(b) = s
∑
b∈B

rbf(b) = sf̃(v).

If v′ =
∑

b∈B r
′
bfb ∈ F then v + v′ =

∑
b∈B(rb + r′b)b and

f̃(v + v′) =
∑
b∈B

(rb + r′b)f(b) = (
∑
b∈B

rbf(b)) + (
∑
b∈B

r′bf(b)) = f̃(v) + f̃(v′).

This shows that f̃ is an R-map. If we assume that there exists another
such map g̃, that is g̃u = f , then for all v ∈ F

f̃(v) = f̃(
∑
b∈B

rbu(b)) =
∑
b∈B

rbf̃u(b) =
∑
b∈B

rbf(b),

=
∑
b∈B

rbg̃u(b) = g̃(
∑
b∈B

rbu(b)) = g̃(v),

so
g̃(v) = f̃(v).

Hence the R-map is unique.

We will use this to show a property of free modules that we will later
generalize into a basis free property. The notation → 0, in the following
proposition, will become clear after we have defined exact sequences.
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Theorem 1.2. Given a free R-module F and a surjective map p : A→ A′,
then for every map h : F → A there exists a map g : F → A such that the
following diagram commutes.

F

A A′ 0

h

p

g

Proof. Let B be a basis for F . For every b ∈ B there exist an element
p(ab) ∈ A′ such that h(b) = p(ab) where ab ∈ A. It follows that we have a
map u : B → A where u(b) = ab ∀ b ∈ B. By Theorem 1.1 there exists a
map g : F → A where pg = h

The next theorem shows another of the similarities between vector
spaces and free modules. A vector space over a field k is a finitely gen-
erated k-module if and only if it is finite dimensional.

Theorem 1.3. Every R-module M is a quotient of a free R-module F .
The module M is also finitely generated if and only if F can be chosen to
be finitely generated.

Proof. Let X be a generating set for M , and F be a free module where
the set {bx}x∈X forms a basis of F . By Theorem 1.1 there exists a map
g : F → M such that g(bx) = x ∀ x ∈ X. Since X ⊆ Im g then g is
surjective and F/ ker g ∼= M .

If M is finitely generated by X then F is finitely generated by {bx}x∈X
since X is a finite set. If F is finitely generated then M is finitely generated,
since the image of a finitely generated module is itself finitely generated.

Definition. A submodule of an R-module M is a retract of M if there exists
an R-homomorphism ρ : M → S, called a retraction, with ρ(s) = s ∀ s ∈ S.
It is equivalent to say that ρ is a retraction if and only if ρi = 1S , where
i : S ↪→M is the inclusion.
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Proposition 1.4. A submodule S of an R-module M is a direct summand
of M if and only if there exists a retraction ρ : M → S.

Proof. First assume ρ : M → S is a retraction. We want to show that M =
S ⊕ T , where T = ker ρ. If m ∈ M then ρ(m− ρ(m)) = ρ(m)− ρ(m) = 0,
which gives us m− ρ(m) ∈ ker ρ = T . We see that m = (m− ρ(m)) + ρ(m)
where ρ(m) ∈ S so M = S + T . If m ∈ S then ρ(m) = m, and if m ∈ T
then ρ(m) = 0. Therefore S ∩ T = 0 and M = S ⊕ T .

Now assume M = S ⊕ T . We can then write every m ∈M uniquely as
m = s+ t for s ∈ S and t ∈ T . Let ρ : M → S be a map where s+ t 7→ s.

ρ((s1 + t1) + (s2 + t2)) = s1 + s2

ρ(s1 + t1) + ρ(s2 + t2) = s1 + s2

ρ((s1 + t1) + (s2 + t2)) = ρ(s1 + t1) + ρ(s2 + t2)

Clearly ρ is a retraction.

Definition. A lifting of a map h : C → A′ is a map g : C → A such that
the following diagram commutes.

C

A A′

h

p

g

That is pg = h.

We will use the definition of a lifting to extend the notion of Theorem
1.2 into a basis free property. We define modules with this property to be
projective modules.

Definition. Let R be a ring and P be an R-module. We say P is a
projective module if given a map h : P → A′ and a surjective map p :
A → A′ then there is a map g : P → A such that the following diagram
commutes.
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P

A A′ 0

h

p

g

That is g is a lifting of h.

From Theorem 1.2 we see that every free R-module is projective. The
converse is not true in general, but, as we will show, it is true for finitely
generated projective k[x1, . . . , xn]-modules, where k is a field.

A very useful concept is exact sequences. They will help us formulate
several definitions, theorems and proofs.

Definition. A, possibly infinite, sequence of R-modules and R-maps,

· · · Mi−1 Mi Mi+1 · · ·
fi−2 fi−1 fi fi+1

where Im fj = ker fj+1 ∀ j, is called an exact sequence.

Definition. An exact sequence of the form

0 A B C 0
i p

is called short exact.

We see directly from the definition of exact sequences that the maps i
and p, in the above diagram, are respectively injective and surjective.

Definition. We say a short exact sequence,

0 A B C 0
i p

where there exists a map j : C → B such that pj = 1C , splits.
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Proposition 1.5. If the short exact sequence

0 A B C 0
i p

splits, then B ∼= A⊕ C.

Proof. Assuming the exact sequence splits there exists a map j : C → B
such that pj = 1C . If b ∈ B then p(b) ∈ C. Since

p(b− jp(b)) = p(b)− pjp(b) = p(b)− 1Cp(b) = 0

then b− jp(b) ∈ ker p, and since it is an exact sequence then there exists an
element a ∈ A such that i(a) = b− jp(b). It follows that B = Im i+ Im j.
Next assume that b ∈ Im i∩ Im j. Since b ∈ Im i we have that p(b) = 0 and
b = i(a) for some a ∈ A, and since the sequence splits we have b = j(c) for
some c ∈ C. So

j(c) = b,

and
pj(c) = p(b) = 0.

Since
pj(c) = 1Cc.

we get
c = pj(c) = 0,

and
b = j(c) = j(0) = 0.

Hence we have that B = Im i⊕ Im j ∼= A⊕ C.

Proposition 1.6. A module P is projective if and only if every short exact
sequence ending in P splits.

Proof. Consider the short exact sequence

0 A B P 0
i p



13

where P is projective. We can modify the diagram to the following.

P

0 A B P 0
i p

1P
j

Since P is projective there exists a map j : P → B such that pj = 1P so
the sequence splits by definition.

For the converse statement assume every short exact sequence ending
in P splits. Consider the diagram

P

B C 0
p

f

where p is surjective. By Theorem 1.3 there exists a free R-module F and
a surjective map h : F → P , so we can construct a short exact sequence
and get the following modified diagram.

0 kerh F P 0

B C 0

h

j
g0 f

p

The map j : P → F exists by our assumption that every short exact
sequence ending in P splits. Since F is free F is also projective and there
is a map g0 : F → B with pg0 = fh. We can define a map g : P → B by
g = g0j, hence P is projective.

With the next theorem we will try to characterize projective modules.
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Theorem 1.7.

1. A R-module is projective if and only if it is a direct summand of a
free R-module.

2. A finitely generated R-module is projective if and only if it is a direct
summand of Rn for some n.

Proof. First we will prove 1. Assume P is a projective R-module. Since
every module is a quotient of a free module there is a free module F and a
surjective map g : F → P . Therefore there exists an exact sequence

0 ker g F P 0
i g

where i is the inclusion. By Proposition 1.6 we have that the exact sequence
splits hence P is a summand in F .

Next assume an R module P is a direct summand of a free module F .
Then, by Proposition 1.4, there exists maps q : F → P and j : P → F such
that qj = 1P . Let f : P → C and p : B → C be maps where p is surjective,
and consider the following diagram.

F P

B C 0

q

j
f

p

h

The module F is free and therefore projective. Since the composition qf :
F → C is a map from F to C and p is surjective there exists a map
h : F → B where fq = ph so phj = fqj = f1P = f . Hence there exists a
map g : P → B where g = hj and f = pg so P is projective.

Next we prove 2. If P is a summand of Rn then it follows immediately
from part 1 that P is a finitely generated projective module. We can
prove the other implication by assuming P is projective and letting P =
(a1, . . . , an). Let the set x1, . . . , xn denote the basis for Rn. We define the
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map f : Rn → P by xi 7→ ai. This gives us the following short exact
sequence where i is the inclusion.

0 ker f Rn P 0
i f

Since P is projective the sequence splits, by Proposition 1.6, and by Propo-
sition 1.5 we get Rn = P ⊕ ker f .

Another important concept for finitely generated modules is noetherian
rings. The next preposition will determine some equivalent properties that
we will use to define noetherian rings.

Proposition 1.8. Given an R-module M the following are equivalent:

1. Every ascending chain of submodules of M stabilizes, that is, there
exists an n such that

S1 ⊆ S2 ⊆ S3 ⊆ · · · ⊆ Sn = Sn+1 = . . .

where Si is a submodule of M for every i.

2. Every non-empty collection C of submodules has a maximal element.
In other words there is a S0 ∈ C such that there is no S ∈ C with
S0 ( S.

3. Every submodule of M is finitely generated.

Proof. We begin by showing that point 1 implies point 2. Let C be a non-
empty collection of submodules and S0 ∈ C. Assuming point 2 is not true
there exist Si ∈ C such that Si−1 ( Si for i ≥ 1. This gives us the chain

S1 ⊆ S2 ⊆ S3 ⊆ · · · ⊆ Sn ⊆ · · ·

which does not stop contradicting point 1. Hence point 1 implies point 2.
Next we will show that point 2 implies point 3. Let S be a submodule

of M , and C the collection of all finitely generated submodules contained
in S, which is non-empty since {0} is finitely generated. By assumption
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we have that there exists a maximal element S∗ ∈ C with S∗ ⊆ M . If S
is not finitely generated there is a s ∈ S such that s /∈ S∗. We construct
the finitely generated submodule (S∗, s) ∈ C, but clearly S∗ ( (S∗, s)
which contradicts point 2, since S∗ is supposed to be the maximal element,
therefore S is finitely generated and point 2 implies point 3.

Lastly we will see that point 3 implies point 1. Let

S1 ⊆ S2 ⊆ S3 ⊆ . . .

be a ascending chain of submodules, that is Si ⊆ M ∀ i ≥ 1. We define
S∗ = ∪n≥1Sn. Clearly S∗ ⊆M and therefore finitely generated, by point 3,
which means that S∗ = (s1, . . . , sq) where every si ∈ Sni for some ni. Let

m = max{n1, . . . , nq}.

Then sni ∈ Sm for all i, hence S∗ ⊆ Sm. Then Sm = Sm+1 = · · · , hence
the chain stabilizes. Thus point 3 implies point 1.

Definition. Let R be a ring. If Proposition 1.8 is true for M = R, we say
that the ring R is noetherian.

Corollary 1.9. If R is a noetherian ring and S is a submodule of an R-
module M which is finitely generated, then S is finitely generated.

Proof. We will prove this by induction on the number of generating ele-
ments of M = (x1, . . . , xn). Let n = 1. We begin by defining the R-map
f : R → M by r 7→ rx1 which is clearly surjective since x1 generates M .
We denote the kernel of the map ker f = I, which is an ideal in R, and
note that M ∼= R/I. Since R is noetherian then R/I is finitely generated.
There is a bijection between the submodules of R/I and submodules of M
since they are isomorphic. A submodule of R/I is on the form J/I, where
J is an ideal in R and I ⊆ J ⊆ R, and are therefore finitely generated. If
S ⊆M is a submodule then the bijection between submodules ensures that
S ∼= J/I is finitely generated.

Next assume that the hypothesis holds for n > 1. LetM = (x1, . . . , xn+1)
and M ′ = (x1, . . . , xn). We have that submodules of M ′ are finitely gen-
erated, by our assumption, and that submodules of M/M ′ ∼= (xn+1) are
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finitely generated, by our base step n = 1. Let S ⊆ M be a submodule.
Consider the exact sequence

0 S ∩M ′ S S/(S ∩M ′) 0
i p

where S ∩M ′ ⊆ M ′ and S/(S ∩M ′) ∼= (S +M ′)/M ′ ⊆ M/M ′ are finitely
generated submodules. Since p is surjective then there is a z ∈ S for every
a ∈ S/(S∩M ′) such that p(z) = a. We claim S is generated by the elements
in the set {i(x1), . . . , i(xm), z1, . . . , zm′}, where S ∩M ′ = (x1, . . . , xm) and
p(zi) = ai where (S ∩M ′) = (a1, . . . , am′). Let s ∈ S then p(s) = a =∑m′

i=1 riai where ri ∈ R. Clearly

p(s−
m′∑
i=1

rizi) = 0

so

s−
m′∑
i=1

rizi ∈ ker p = Im i.

Hence

s−
m′∑
i=1

rizi = i(

m∑
i=1

rixi),

and

s =
m′∑
i=1

rizi +
m∑
i=1

rii(xi).

Therefore S = (i(x1), . . . , i(xm), z1, . . . , zm′) and so finitely generated.

Definition. For a ring R we let R[x] denote the polynomial ring where we
adjoin the indeterminate x to R where x commutes with every r ∈ R.

In Theorem 1.11 we will show that if R is a noetherian ring then the
polynomial ring R[x] is also noetherian. This will be very useful since
Serre’s Conjecture concerns k[x1, . . . , xn] where k is a field and therefore
noetherian.
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Lemma 1.10. A ring R is noetherian if and only if for every sequence of
elements a1, . . . , an, . . . ,∈ R there are elements r1, . . . , rm ∈ R with m ≥ 1
such that

am+1 =
m∑
i=1

riai

Proof. Let R be a noetherian ring. Let a1, . . . , an, · · · ∈ R be a sequence
of elements and Ir = (a1, . . . , ar), which is an ideal in R. Then there is an
ascending chain of ideals

I1 ⊆ I2 ⊆ · · ·

Since R is noetherian there is an m ≥ 1 such that Im = Im+1. Therefore if
am+1 ∈ Im+1 = Im then am+1 =

∑m
i=1 riai.

Next assume that the statement on sequence of elements in R holds. If
R is not noetherian there is a sequence of ideals that does not end.

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

If we disregard repetitions we get a new sequence.

I ′1 ( I ′2 ( I ′3 ( · · ·

We choose ai ∈ I ′i such that ai /∈ Ii−1. This will give us a sequence of ele-
ments that contradicts our assumption, and we conclude that R is noethe-
rian.

Theorem 1.11. If R is a noetherian then R[x] is noetherian.

Proof. Let R be a noetherian ring. Assume I is a ideal in R[x] which is not
finitely generated. Let f0(x) ∈ R[x] be the polynomial of minimal degree in
I and fn+1 ∈ R[x] be the polynomial of minimal degree in I − (f0, . . . , fn).
Since I is not finitely generated fi exists for all i ≥ 0. We note that

deg(f0) ≥ deg(f1) ≥ · · ·
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Let ai ∈ R denote the leading coefficient in fi. From Lemma 1.10 there is
an m ≥ 1 such that am+1 =

∑m
i=1 riai. We define

f∗(x) = fm+1(x)−
m∑
i=0

xdm+1−d1rifi(x)

where di = deg(fi). We note that deg(f∗) < deg(fm+1). This is because
the leading term of

m∑
i=0

xdm+1−d1rifi(x)

is
m∑
i=0

xdm+1−d1riaix
di =

m∑
i=0

xdm+1riai = am+1x
dm+1

which is also the leading term of fm+1. Since fm+1 /∈ (f1, . . . , fm) then
f∗ ∈ I − (f1, ..., fm), but this contradicts the assumption that fm+1 is of
minimal degree. Hence R[x] is noetherian.
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Chapter 2

Tensor Product and Flat
Modules

Some very important functors in homological algebra are the Hom functor,
the tensor product, and the functors which are derived from these. Flat
modules and tensor products are essential for some of the following proofs
and results. We will define flat modules by the tensor product therefore we
will start with the tensor product before we examine flat modules.

2.1 Tensor Product

We will define the tensor product with the help of R-biadditive functions.
Since the rings we consider are commutative then for any ring R a left R-
module is also a right R-module, and the other way around, but since the
tensor product and R-biadditive functions are defined for non-commutative
rings as well we will define them by left and right R-modules specifically.

Definition. Given a (not necessarily commutative) ring R, a right R-
module AR, a left R-module RB (AR and RB denotes that A and B are
right and left R-modules respectively), and an abelian group G. A function
f : A × B → G is called R-biadditive, if for all a, a′ ∈ A, b, b′ ∈ B, and

21
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r ∈ R, we have

f(a+ a′, b) = f(a, b) + f(a′, b),

f(a, b+ b′) = f(a, b) + f(a, b′),

and

f(ar, b) = f(a, rb).

If R is commutative, and G is also an R-module, and

f(ar, b) = f(a, rb) = rf(a, b)

then f is R-bilinear.

Definition. Given a ring R, and R-modules AR and RB, their tensor
product is an abelian group A⊗R B and a R-biadditive function

h : A×B → A⊗R B

such that for every abelian group G and R-biadditive function f : A×B →
G there exists a unique Z-homomorphism f̃ : A ⊗R B → G making the
following diagram commute.

A×B A⊗R B

G

h

f f̃

The tensor product is defined such that it is an abelian group that
admits a unique mapping that makes many diagrams commute. It is thus
a solution to a universal mapping problem, and solutions, if they exists, are
unique up to isomorphism.

Proposition 2.1. If R is a ring, and A and B are R-modules then their
tensor product exists.
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Proof. Let F be a free abelian group with basis A × B and let S be a
subgroup of F generated by all elements of the following types:

(a, b+ b′)− (a, b)− (a, b′),

(a+ a′, b)− (a, b)− (a′, b),

(ar, b)− (a, rb).

Where a, a′ ∈ A, b, b′ ∈ B and r ∈ R. We define A ⊗R B = F/S, a ⊗ b =
(a, b) + S, and the function

h : A×B → A⊗R B

by

h : (a, b) 7→ a⊗ b.

Then we have the following identities in A⊗R B:

a⊗ (b+ b′) = a⊗ b+ a⊗ b′,

(a+ a′)⊗ b = a⊗ b+ a′ ⊗ b,

ar ⊗ b = a⊗ rb.

From these identities we get directly that h is R-biadditive.
Consider the following diagram where G is an abelian group, f is R-

biadditive and i is the inclusion.

A×B A⊗R B

F

G

h

i nat

f f̃
φ
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Since F is free abelian, with basis A × B, there exists a homomorphism
φ : F → G with φ(a, b) = f(a, b) ∀ (a, b), by Proposition 1.1. Since f is
R-biadditive we have that

f((a, b+ b′)− (a, b)− (a, b′)) = 0,

f((a+ a′, b)− (a, b)− (a′, b)) = 0,

and

f((ar, b)− (a, rb)) = 0,

so S ⊆ kerφ. We define f̃ : A ⊗R B → G by f̃ : (a, b) + S 7→ f(a, b). We
need to check that f̃ is well defined. Since f is well defined we only need to
check that f̃(v) = f̃(v + s) = f(v) where v ∈ F and s ∈ S. We have that

f̃(v + s) = f(v + s) = f(v) + f(s) = f(v) + 0 = f̃(v)

therefore the map is well defined. We also see that f̃h = f so the diagram
commutes.

All that is left to prove is that f̃ is unique. The group A ⊗R B is
generated by the set of all a ⊗ b. Let us denote that generating set X =
{mi}ni=1. If we assume there is another R-map g̃ with the same properties
as f̃ then f̃(mi) = g̃(mi) ∀ mi ∈ X. For any m ∈ A⊗R B we have

g̃(m) = g̃(

n∑
i=1

rimi) =

n∑
i=1

rig̃(mi) =

n∑
i=1

rif̃(mi) = f̃(

n∑
i=1

rimi) = f̃(m)

where ri ∈ R ∀ i, which shows that f̃ is unique.

Now we have shown that the tensor product actually exists, but we did
so by defining the elements of the tensor product from the generators of
the free group F . Therefore we had to take care and be sure f̃ was well
defined, if f̃(S) 6= {0} we would have had a problem. We could also have
checked this by the following proposition.
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Proposition 2.2. Let f : A→ A′ and g : B → B′ be maps of R-modules.
Then there exists a unique Z-homomorphism f ⊗ g : A ⊗R B → A′ ⊗R B′
where

a⊗ b 7→ f(a)⊗ g(b)

Proof. We start by defining the map φ : A×B → A′ ⊗R B′ by

(a, b) 7→ f(a)⊗ g(b)

which is an R-biadditive function by the identities given in the proof of
Proposition 2.1. It yields a unique homomorphism f⊗g : A⊗RB → A′⊗RB′
where

a⊗ b 7→ f(a)⊗ g(b)

by the following diagram

A×B A⊗R B

A′ ⊗R B′
φ f ⊗ g

which is commutative.

Now that we know that the tensor product actually exists and is well
defined we will show that it is unique up to isomorphism.

Proposition 2.3. If U and A⊗B are tensor products of A and B over a
ring R then A⊗R B ∼= U .

Proof. Assume that A⊗R B and U are tensor products of A and B corre-
sponding to the following diagrams.

A×B A⊗R B A×B U

G G′

h

f f̃

n

g g′
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If we exchange G for U and f for n, and G′ for A⊗R B and g for h in the
above diagrams we get

A×B A⊗R B A×B U

U A⊗R B

h

n ñ

n

h h′

which both commutes. Next consider the following diagrams.

A⊗R B U

A×B U A×B A⊗R B

A⊗R B U

h

n

h

ñ

h′

1A⊗RB

n

h

n

h′

ñ

1U

In the first diagram the two small triangles with vertices A×B, A⊗RB and
U commutes making the larger triangle with vertices A × B, A ⊗R B and
A⊗RB commute. The uniqueness of ñ and h′, from the definition of tensor
product, leaves us with 1A⊗RB = h′ñ. A similar argument on the second
diagram yields that 1U = ñh′, therefore we have that ñ : A ⊗R B → U is
an isomorphism.

Corollary 2.4. Given maps of modules

A A′ A′′
f f ′

f ′f

and
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B B′ B′′
g g′

g′g

then we have that
(f ⊗ g)(f ′ ⊗ g′) = f ′f ⊗ g′g

The arrows showing the compositions f ′f and g′g are strictly not nec-
essary, but are left there to better illustrate where the homomorphism
f ′f ⊗ g′g, in the following proof, is derived from, and why it as well is
unique.

Proof. If we consider the diagram

A⊗R B A′ ⊗R B′ A′′ ⊗R B′′
f ⊗ g f ′ ⊗ g′

f ′f ⊗ g′g

we can easily see that both (f ⊗ g)(f ′ ⊗ g′) and f ′f ⊗ g′g takes a ⊗ b 7→
f ′f(a)⊗ g′g(b). From Proposition 2.2 the uniqueness of these homomor-
phism gives the equality.

We have already noted that the notion of exact sequences are relevant
for some of the proofs and results in this text. The next theorem shows the
effect of the tensor product on exact sequences.

Theorem 2.5. Given an R-module A and an exact sequence of R-modules

B′ B B′′ 0
i p

then the sequence

A⊗R B′ A⊗R B A⊗R B′′ 0
1⊗ i 1⊗ p
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is exact, and we say that the functor, in this case the tensor product, is
right exact.

Proof. To prove this we need to show that Im 1 ⊗ i = ker 1 ⊗ p and that
1⊗ p is surjective.

First we observe

(1⊗ p)(1⊗ i) = (1⊗ pi) = (1⊗ 0)

which means Im 1⊗ i ⊆ ker 1⊗ p. This gives us an induced map

p̃ : (A⊗R B)/K → A⊗R B′′

by
a⊗ b+K 7→ a⊗ p(b),

where a ∈ A, b ∈ B and K = Im 1⊗ i. Let

π : A⊗R B → (A⊗R B)/K

be the natural map, then both p̃π and 1⊗ p sends a⊗ b 7→ a⊗ p(b) so we
can form the following commutative diagram.

A⊗R B (A⊗R B)/K

A⊗R B′′

π

1⊗ p p̃

We have that ker 1⊗ p = ker p̃π. If ker p̃π = kerπ then ker 1⊗ p = kerπ =
K = Im 1⊗i and the proof is finished. The statement is true if p̃ is injective.
To prove this we will construct an inverse map

f̃ : A⊗R B′′ → (A⊗R B)/K

such that p̃f̃ = 1(A⊗RB)/K . First consider the map

f : A×B′′ → (A⊗R B)/K
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where
(a, b′′) 7→ a⊗ b+K

for a ∈ A, b ∈ B and b′′ ∈ B′′ where p(b) = b′′. This is a well defined map
since if p(b1) = p(b2) = b′′ then p(b1) − p(b2) = 0 hence b1 − b2 ∈ Im i and
a ⊗ (b1 − b2) ∈ K. Clearly f is R-biadditive therefore there exists a Z-
homomorphism f̃ by the definition of tensor product, making the following
diagram commute.

A×B′′ A⊗R B′′

(A⊗R B)/K

h

f f̃

By the equation

f̃ p̃(a⊗ b+K) = f̃(a⊗ p(b)) = a⊗ b+K.

we see that f̃ p̃ = 1, hence ker 1⊗ p = Im 1⊗ i.
The last step of this proof is to show that 1⊗ p is surjective. We have

that if b′′ ∈ B′′ then there exists a b ∈ B such that p(b) = b′′. Since
1⊗ p : a⊗ b 7→ a⊗ p(b) we see that if a⊗ b′′ ∈ A⊗R B′′ then there exists
a⊗ b ∈ A⊗RB where 1⊗ p(a⊗ b) = a⊗ b′′ hence the map is surjective.

So far we have only considered the tensor product as an abelian group,
but is it under any circumstances a module? The rings we consider are
commutative and in those cases, which we will show, it is also a module,
but for non-commutative rings this is not always the case.

Proposition 2.6. The tensor product of two R-modules (when R is a com-
mutative ring) is a module.

Proof. Let R be a ring, let A and B be two R-modules, and let r ∈ R,
a ∈ A and b ∈ B. If we let multiplication on the tensor product by R be
the natural choice r(a⊗b) 7→ ra⊗b then the result follows from the module
properties of A and B.
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When we consider the tensor product as a module with scalar multipli-
cation defined like in Proposition 2.6 we see that the R-biadditive functions
from the definition of the tensor product are R-bilinear.

Proposition 2.7. For every R-module M there exists an isomorphism

φ : R⊗RM →M

such that r ⊗m 7→ rm for r ∈ R and m ∈M

Proof. The function f : R×M →M , defined by r×m 7→ rm, is a bilinear
function. Consider the following diagram.

R×M R⊗RM

M

h

f f̃

Since all modules are abelian groups, by the definition of the tensor prod-
uct there exists an R-homomorphism f̃ such that the diagram commutes.
Hence f̃ : r⊗m 7→ rm. To prove it is an isomorphism all we need is for f̃ to
be injective, since it is clearly surjective. If we define f̃−1 : M → R ⊗RM
by m 7→ 1 ⊗m we find that it gives f̃ f̃−1 = 1M and f̃−1f̃ = 1R⊗RM from
the equations

f̃ f̃−1(m) = f̃(1⊗m) = m

and

f̃−1f̃(r ⊗m) = f̃−1(rm) = 1⊗ rm = r ⊗m.

Another useful property of the tensor product that we will use is that
it preserves direct sums.

Theorem 2.8. Given a module A and a collection of modules (Bi)i∈I over
a ring R we have that:
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1. There is an R-isomorphism

τ : A⊗R (⊕i∈IBi)→ ⊕i∈I(A⊗R Bi)

where τ : a⊗ (bi) 7→ (a⊗ bi).

2. The map τ is a natural isomorphism, in other words, if (Cj)j∈J is a
collection of R-modules, and for each i ∈ I there exists a j ∈ J and
an R-map σij : Bi → Cj , then the diagram,

A⊗R (⊕i∈IBi) A⊗R (⊕j∈JCj)

⊕i∈I(A⊗R Bi) ⊕j∈J(A⊗R Cj)

1⊗ σ

σ̃

τB τC

where σ : (bi) 7→ (σij(bi)) and σ̃ : (a⊗ bi) 7→ (a⊗ σij(bi)), commutes.

Proof. First we prove 1. Let f : A × (⊕iBi) → ⊕i(A ⊗R Bi) be a bilinear
map defined by f : (a, (bi)) 7→ (a ⊗ bi). Then there exists a Z-map τ :
A ⊗R (⊕iBi) → ⊕i(A ⊗R Bi) where τ : a ⊗ (bi) 7→ (a ⊗ bi) such that the
following diagram commutes.

A× (⊕iBi) A⊗R (⊕iBi)

⊕i(A⊗R Bi)

h

f τ

.

For τ to be an isomorphism we need to check if it is an R-map and if it
is injective. Let r ∈ R. We have that

τ(r(a⊗ (bi))) = f(r(a⊗ (bi))) = rf((a⊗ (bi))) = rτ((a⊗ (bi))).
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Hence τ is a R-map. Next we define a set of injective maps λk : Bk → ⊕iBi
by λk : bk 7→ (..., 0, 0, bk, 0, 0, ...) where bk is the value of the kth coordinate.
We then define a new map θ : ⊕i(A ⊗R Bi) → A ⊗R (⊕iBi) by combining
the set of maps and letting θ : (a⊗ bi) 7→ a⊗ Σiλi(bi). We can see that

θτ(a⊗ (bi)) = θ((a⊗ bi)) = a⊗ (bi)

which means that θτ = 1A⊗R(⊕iBi). Hence τ is injective and an R-
isomorphism.

Next we prove 2. We can easily check that the diagram commutes
directly. Going clockwise we get

a⊗ (bi) 7→ a⊗ (σij(bi) 7→ (a⊗ σij(bi)),

and counter clockwise we get

a⊗ (bi) 7→ (a⊗ bi) 7→ (a⊗ σij(bi)),

hence the diagram commutes.

2.2 Flat Modules

With what we now know about the tensor product we can start examining
flat modules.

Definition. Let R be a ring and A an R-module. We say A is a flat
R-module if for every exact sequence of R-modules

0 B′ B B′′ 0
i p

the tensored sequence

0 A⊗R B′ A⊗R B A⊗R B′′ 0
A⊗R i A⊗R p
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is an exact sequence. That is, tensoring with A yields an exact functor
A⊗R �.

We have already shown, in Theorem 2.5, that the tensor product is a
right exact functor. Thus we see that a module A is flat if and only if 1⊗ i,
as in the definition, is an injection.

Proposition 2.9. Given a ring R we have the following properties:

1. The ring itself is flat as an R-module.

2. A direct sum ⊕jMj of R-modules is flat if and only if each Mj is flat.

3. Every projective module is flat.

Proof. Consider the following diagram where B′, B and B′′ are R-modules.

0 B′ B B′′ 0

R⊗R B′ A⊗R B A⊗R B′′

i p

R⊗R i R⊗R p
φ τ ω

Where φ, τ and ω are natural isomorphisms from Proposition 2.7. If the
diagram diagram commutes then R⊗R i is injective and R⊗Rp is surjective.
This makes the sequence of tensor products exact and R will be flat as an
R-module. We start by examining the square with vertices B′, B, R⊗R B
and R⊗R B′. Let b′ ∈ B′ if we follow the diagram clockwise we get

b′ 7→ i(b′) 7→ 1⊗ i(b′),

and counter clockwise

b′ 7→ 1⊗ b′ 7→ 1⊗ i(b′),

hence that part of the diagram commutes. A similar argument will show
that the square with vertices B, B′′, R⊗R B′′ and R⊗R B also commutes,
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but we already know this to be true since the tensor product is a right exact
functor, making the whole diagram commute.

Next we will show that a direct sum of R-modules is flat if and only
if every summand is flat. Let A and B be R-modules, let ⊕jMj be a
direct sum of R-modules, let i : A → B be an injective map and let φ :
⊕j(Mj ⊗R A)→ ⊕j(Mj ⊗R B) be the R-map composed of the collection of
R-maps Mj⊗RA→Mj⊗RB defined by mj⊗a 7→ mj⊗ i(a). By Theorem
2.8 there exists R-isomorphisms τA and τB such that the following diagram
commutes.

(⊕jMj)⊗R A (⊕jMj)⊗R B

⊕j(Mj ⊗R A) ⊕j(Mj ⊗R B)

1⊗ i

φ

τA τB

Since the diagram commutes we see that 1 ⊗ i is injective if and only if φ
is injective, which is injective if and only if each R-map it is composed of
is injective, hence ⊕jMj is flat if and only if each Mj is flat.

From Theorem 1.7 we have that every projective module is a summand
of a free module. From part 1 and 2 of this proposition we have that every
free module is flat and every summand of a flat module is flat. Hence every
projective module is flat.

Proposition 2.10. Given a flat R-module A and an ideal I then the Z-map
A⊗R I → AI, given by a⊗ i 7→ ai, is an isomorphism.

Proof. Let κ : I → R be the inclusion and φA : A ⊗R R → A be the
isomorphism from Proposition 2.7. If we tensor

I R
κ

with A we get
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A⊗R I A⊗R R
A⊗R κ

which we can extend with the map φA to

A⊗R I A⊗R R A
A⊗R κ φA

We can simply trace the diagram and see that

a⊗ i 7→ a⊗ i 7→ ai

and since A is flat we have that A⊗R κ is injective, because it is injective
if and only if i is injective, so the resulting composition of A⊗R κ and φA
will give us the isomorphism we are looking for.
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Chapter 3

Stably Free Modules

We have now acquired enough tools to take the first big step in proving
Serre’s Conjecture Corollary 3.9. It states that every k[x1, ..., xn]-module,
where k is a field, is stably free. The concept of families will help a lot with
this. First we will define stably free modules and introduce the concept of a
finite free resolution, which will be very useful for formulating some proofs
and results in this chapter.

Definition. A finitely generated R-module P is stably free if there exists
a finitely generated free R-module F such that F ⊕ P is free.

Clearly stably free modules are projective, by Theorem 1.7, since they
are a summand of a free module.

Definition. A module M has FFR, finite free resolution, of length ≤ n if
M is finitely generated and there exists an exact sequence:

0 Fn Fn−1 · · · F0 M 0

Where each Fi is a finitely generated free module.

Most of the work we are going to do in this chapter, and maybe of what
we have done so far, is going into proving that every finitely generated pro-
jective k[x1, . . . , xn]-module has FFR Corollary 3.11, a result of Theorem

37
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3.10. The fact that they then also are stably free will follow immediately
from the following proposition.

Proposition 3.1. A finitely generated projective R-module P has FFR if
and only if P is stably free.

Proof. First assume P is stably free. then P is finitely generated and there
exists a finitely generated free module F with F ⊕ P free. We get that P
has FFR, of length ≤ 1, by the following exact sequence.

0 F F ⊕ P P 0

Next assume that P has FFR. We will prove that P is stably free by
induction on the length. Let P have FFR of length n = 0. Then there is
an exact sequence

0 F0 P 0

where F0 is finitely generated free and F0
∼= P by exactness. The module

P is then free and thus stably free.

Assume the theorem holds for length ≤ n. The free resolution

0 Fn Fn−1 · · · F0 P 0
g

has length n+ 1 and can be split into the two exact sequences

0 Fn Fn−1 · · · F1 K 0

and

0 K F0 P 0
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where K = ker g. The first sequence shows K has FFR of length ≤ n. Since
P is projective the second sequence splits. Therefore F0

∼= P ⊕K and K is
finitely generated projective. By assumption K is stably free, that is, there
is a finitely generated module Q with K ⊕Q finitely generated free. Then
P is stably free by

P ⊕ (K ⊕Q) ∼= (P ⊕K)⊕Q ∼= F0 ⊕Q.

since F0 ⊕Q and K ⊕Q are finitely generated free.

Similar to free resolutions, which are based on free modules, we can
define projective resolutions based on projective modules.

Definition. A module M has a projective resolution if there exists an exact
sequence

· · · Pn Pn−1 · · · P0 M 0

where each Pi is a projective module.

Before we prove Theorem 3.10 we need some results considering noethe-
rian rings and FFR.

Lemma 3.2. Given a noetherian ring R and a finitely generated R-module
A then there exists a projective resolution of A in which each module is
finitely generated.

Proof. We know there exists a finitely generated free R-module, P0, and
a surjective map ε : P0 → A, from Theorem 1.3, and since A is finitely
generated we can choose P0 to be finitely generated. Since R is noetherian
then ker ε is finitely generated which means that there is another finitely
generated free R-module P1 giving us the exact sequence

0 ker d1 P1 P0 A 0
d1 ε
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where d1 : P1 → ker ε is a surjective map. Again ker d1 is also finitely gen-
erated so we can keep constructing in this manner and we get the sequence

... Pn−1 ... P1 P0 A 0
dn d1 ε

which is a free resolution of A. Since free modules are projecive we are
done.

That the projective resolution we just constructed in the proof Lemma
3.2 is also a free resolution will help us prove Proposition 3.5.

Lemma 3.3. Given a diagram

...
...

P ′1 P ′′1

P ′0 P ′0

0 A′ A A′′ 0
i q

ε′ ε′′

where the columns are projective resolutions of A′ and A′′, and the bottom
row is exact, then there exists a projective resolution of A such that the
three columns forms an exact sequence of complexes.

Proof. We will prove this by induction on the length of the projective res-
olutions. We start by checking for length n = 0. We want to show that we
can form a 3× 3 diagram with exact rows and columns, and with the exact
sequence formed by A′, A and A′′ as the base row. Consider the following
diagram.
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0 0 0

0 K ′0 V0 K ′′0 0

0 P ′0 Q0 P ′′0 0

0 A′ A A′′ 0

0 0 0

i q

i0 q0

ε′ ε ε′′

We define Q0 = P ′0 ⊕ P ′′0 , and let i0 : P ′0 → Q0 and q0 : Q0 → P ′′0 by
x′ 7→ (x′, 0) and (x′, x′′) 7→ x′′ respectively. Clearly

0 P ′0 Q0 P ′′0 0
i0 q0

is an exact sequence. Since P ′′0 is projective we know there exists a map
σ : P ′′0 → A where ε′′ = qσ. We can use this to define ε : Q0 → A by
(x′, x′′) 7→ iε(x′) + σ(x′′). By chasing the diagram we see that the square
with vertices A, A′′, P ′′0 and Q0 commutes, that is ε′′q0 = qε. We already
know that q0, q and ε′′ are surjective hence ε is surjective. We define
V0 = ker ε, K ′0 = ker ε′ and K ′′0 = ker ε′′, which immediately results in maps
which will complete the diagram.

Next assume the proposition holds for n and let us denote the resulting
diagram ’the diagram given by length n’. If we let Vn = ker(Qn → Qn−1),
K ′n = ker ε′n and K ′′n = ker ε′′n then we can construct the following diagram
by the same reasoning as we used when n = 0.
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0 0 0

0 K ′0 V0 K ′′0 0

0 P ′0 Q0 P ′′0 0

0 A′ A A′′ 0

0 0 0

in+1 qn+1

δ′n+1 δn+1 δ′′n+1

By composing the maps

P ′n+1 Qn+1 P ′′n+1

K ′n Vn K ′′n

P ′n Qn P ′′n

we can splice the diagram together with ’the diagram given by length n’,
and the proposition is true by induction.

Proposition 3.4. Let M be a module. If M has a projective resolution

0 Pn · · · P2 P1 P0 M 0
d2 d1 ε
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where each Pi is a stably free, then M has FFR of length ≤ n+ 1.

Proof. We will show this by induction on n. If we let n = 0 then we have
an exact sequence,

0 P0 M 0

so there exists an isomorphism ε : P0 → M . Since P0 is stably free we get
that M is stably free and there exists finitely generated free modules F0

and F1 such that F0
∼= M ⊕ F1. We can use this to construct an exact

sequence

0 F1 F0 M 0

which shows that M has FFR of length 1.

Next we assume that the statement holds for n < 0. Let

0 Pn+1 · · · P2 P1 P0 M 0
d2 d1 ε

be a projective resolution for M with each Pi stably free. Since P0 is
stably free there is a finitely generated free module P0⊕F , where F is free.
Therefore we can construct the exact sequence

0 Pn+1 · · · P2 P1 ⊕ F P0 ⊕ F M 0
d′2 d1 ⊕ 1F ε′

where d′2 : p2 7→ (d2(p2), 0) and ε′ : (p0, f) 7→ ε(p0). From this sequence
we get a sequence ending in ker ε′ with n terms therefore ker ε has FFR of
length ≤ n + 1 by assumption. We can splice this sequence together with
the exact sequence

0 ker ε′ P0 ⊕ F M 0
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giving us a finite free resolution for M with length ≤ (n + 1) + 1 so the
proposition is true by induction.

Proposition 3.5. Given a noetherian ring R and a short exact sequence
of R-modules

0 M ′ M M ′′ 0
i p

if two of the modules have FFR then so does the third.

Before we begin the proof we note that for any free resolution of an
R-module M∗,

· · · Fn · · · F0 M∗ 0

if we denote the kernel of Fn → Fn−1 by Kn and Kn is stably free, then
there exists an F such that Kn ⊕ F is finitely generated free and

0 F ⊕Kn F ⊕ Fn Fn−1 · · · F0 M∗ 0

is a finite free resolution for M∗.

Proof. If a module has FFR it is finitely generated therefore two of the
modules in the above sequence are finitely generated. Since the ring R is
noetherian the third module is finitely generated as well. Consider the case
if M and M ′′ are finitely generated, then M ′ ∼= Im i which is a submodule of
M and thus finitely generated. If M ′ and M are finitely generated then M ′′

is the image of the finitely generated module M and thus finitely generated.
If M ′ and M ′′ are finitely generated then we have shown, in Corollary 1.9,
that in such an exact sequence M is finitely generated as well.

By Lemma 3.2 we can construct the following diagram where the columns
are projective resolutions, which also are free resolutions by how they were
constructed, of M ′ and M ′′.
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...
...

F ′1 F ′′1

F ′0 F ′0

0 M ′ M M ′′ 0
i p

By Lemma 3.3 we can create a projective resolution for M ,

· · · F1 F0 M 0

that gives us an exact sequence of complexes, where Fi ∼= F ′i ⊕ F ′′i , by the
proof of Lemma 3.3. Clearly it is also a free resolution. Let K ′n, Kn and
K ′′n denote the kernels of the following maps, respectively,

F ′n Fn F ′′n

F ′n−1 Fn−1 F ′′n−1

We will show that for each of the three possibilities, where two of
{M,M ′,M ′′} has FFR, then the free resolution we just created for the
remaining module will yield a finite free resolution.

Let M ′ and M ′′ have FFR of length n. If one of the lengths is ’shorter’
we can always keep adding the zero module to the sequence until it is of
the same length as the other. A consequence of Schanuel’s Lemma [3,
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Proposition 3.12] is that if a module M∗ has FFR of length n then for any
free resolution

· · · F ∗n · · · F ∗0 M∗ 0

we have that K∗n is stably free where K∗n is the kernel of F ∗n → F ∗n−1.
Therefore we have that both K ′n and K ′′n are stably free. By the exact
sequence of complexes the following short exact sequence exists.

0 K ′n Kn K ′′n 0

Since K ′′n is stably free it is also projective, hence the sequence splits and

Kn
∼= K ′n ⊕K ′′n.

We have that K ′n and K ′′n are stably free therefore there exists free modules
F ′ and F ′′ such that K ′n ⊕ F ′ and F ′′ ⊕K ′′n are free. By

(K ′n ⊕ F ′)⊕ (F ′′ ⊕K ′′n) ∼= (K ′n ⊕K ′′n)⊕ (F ′ ⊕ F ′′) ∼= Kn ⊕ (F ′ ⊕ F ′′)

we see that Kn is stably free and thus M has FFR.
Next let M and M ′′ have FFR of length n. Then Kn and K ′′n are stably

free. Again the short exact sequence of kernels splits so

Kn
∼= K ′n ⊕K ′′n

and
Kn ⊕ F ⊕ F ′′ ∼= K ′n ⊕ ((K ′′n ⊕ F ′′)⊕ F )

therefore K ′n is stably free thus M ′ has FFR.
Lastly let M ′ and M have FFR of length n. Then K ′n and Kn are stably

free so there exists a free R-module F such that K ′n ⊕ F and Kn ⊕ F are
finitely generated free. From the short exact sequence of kernels

0 K ′n Kn K ′′n 0

we get another short exact sequence
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0 K ′n ⊕ F Kn ⊕ F K ′′n 0

which we can splice together with the exact sequence

0 K ′′n F ′′n · · · F ′′0 M ′′ 0

to get

0 K ′n ⊕ F Kn ⊕ F F ′′n · · · M ′′ 0

a finite free resolution of M ′′, so M ′′ has FFR.

What Proposition 3.5 states is that modules with FFR is what we call
a family.

Definition. We define a family F to be a subclass of all R-modules such
that for every exact sequence of R-modules

0 M ′ M M ′′ 0

if two of the terms lie in F then all three lie in F .

Clearly {0} is contained in all non-empty families since if M ∈ F then
by the exact sequence

0 M M 0 0

we have {0} ∈ F .

Lemma 3.6. Every intersection of families of R-modules is a family.

Proof. Let F∗ = ∩αFα, with each Fα a family, and let

0 M ′ M M ′′ 0



48 CHAPTER 3. STABLY FREE MODULES

be an exact sequence with two terms in F∗. This means that those two
terms also are in each Fα which means that the remaining term is in each
Fα and therefore in F∗, making it a family.

Definition. We define F(X), the family generated by X where X is a
subclass of all R-modules, to be the intersection of all families containing
X.

We define a child of X, or X-child, to be a module which occur in a
short exact sequence where the two other terms are in X, we define C(X)
to be the class of all X-children, we define C0(X) = X, and we define
Cn(X) = C(Cn−1(X)).

Lemma 3.7. If X is a subclass of all R-modules then ∪∞n=0Cn(X) = F(X).

Proof. The set X is contained in every family F making up F(X). From
the definition of families and X-children we clearly get that C(X) ⊆ F ∀ F .
Furthermore we have that Cn(X) ⊆ F for all F and for any n. We see from
the definition of F(X) that ∪∞n=0Cn(X) ⊆ F(X). To complete the proof
we need to show that ∪∞n=0Cn(X) is a family containing X. Consider the
exact sequence

0 M ′ M M ′′ 0

where two terms lie in ∪∞n=0Cn(X). This means that there is a n such that
these two terms are contained in Cn(X) which means that there is a Cn+1

which contains the third term. From this we clearly see that ∪∞n=0Cn(X)
is a family. Lastly we see that X = C0(x) ⊆ ∪∞n=0Cn(X) and the lemma is
true.

Corollary 3.8. Let R be a noetherian ring and X be the class of R-modules
where each module has FFR. If M ∈ F(X) then M has FFR.

Proof. Let M ∈ F(X) then, from Lemma 3.7, there is a n ≥ 0 such that
M ∈ Cn(X). We will prove the corollary by induction on n. Let n = 0.
Then M ∈ X and M has FFR.
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Next assume the statements holds for n. Let M ∈ Cn+1(X). Then
there exists a short exact sequence with M where the two other terms lie
in Cn(X). By our assumption the two other terms have FFR, and from
Proposition 3.5 we have that M has FFR making the corollary true by
induction.

Definition. Let R be a ring and M an R-module. The subset x ⊆ M is
scalar closed if for every x ∈ X and r ∈ R we have that rx ∈ X

Definition. Given a scalar closed subset X we define the annihilator of x,
ann(x), to be

ann(x) = {r ∈ R : rx = 0}

We define the annihilator of the set X to be

ann(X) = {r ∈ R : rx = 0 ∀ x ∈ X}

and

A(X) = {ann(x) : x ∈ X and x 6= 0}

Lemma 3.9. Given a noetherian ring R, a non-zero finitely generated R-
module M , and a non-empty set X ⊆ M which is scalar closed. Then we
have the following:

1. If I is a maximal ideal among A(X) then it is a prime ideal.

2. There exists a descending chain

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn = 0

whose factor modules are of the form

Mi/Mi+1
∼= R/Pi

where Pi are prime ideals.
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Proof. First we prove 1. Since R is a noetherian ring we have, by Corollary
1.8, that A(X) contains a maximal element which we will denote I =
ann(x). let a, b ∈ R where ab ∈ I and b /∈ I. We observe that I ⊆ ann(bx)
and Ra ⊆ ann(bx), so I ⊆ I + Ra ⊆ ann(bx). If a /∈ I then we get
I ( I +Ra ⊆ ann(bx), but ann(bx) ∈ A(X), since X is scalar closed. This
contradicts that I is the maximal element, hence a ∈ I and I is prime.

Next we prove 2. Since R is noetherian then A(M) has a maximal ele-
ment P1 = ann(x1), which is a prime ideal by part 1. We define M1 = (x1)
and observe that M1 = R/ ann(x1) = R/P1. We repeat this construction
for the maximal element of A(M/M1) which we denote P2 = ann(x2+M1).
We let M2 = (x1, x2) and see that M2/M1

∼= R/ ann(x2+M1) = R/P2, and
{0} ⊆M1 ⊆M2. We can continue this process to create an ascending chain
which must stop with some M ′ ⊆M where M ′ = M , since R is noetherian
and by Corollary 1.9.

Finally we are ready to show the main results of this chapter.

Theorem 3.10. Let R be a noetherian ring. If every finitely generated
R-module has FFR then every finitely generated R[x]-module has FFR.

Proof. Let R be a noetherian ring and let every finitely generated R-module
have FFR. Let X denote the class of all R[x]-modules M of the form M ∼=
R[x]⊗RB where B is a finitely generated R-module. By assumption B has
FFR so there exists an exact sequence

0 Fm · · · F1 F0 B 0

with each Fi free. We know R[x] is flat as a R-module so if we tensor with
R[x] we get the following exact sequence.

0 R[x]⊗R Fm · · · R[x]⊗R F0 R[x]⊗R B 0

For each R[x]⊗R Fi we have, by Proposition 2.7 and Theorem 2.8, that

R[x]⊗R Fi ∼= R[x]⊗R (⊕i′∈I′R) ∼= ⊕i′∈I′R[x]⊗R R ∼= ⊕i′∈IR[x],



51

that is to say, R[x]⊗R Fi is a free R[x]-module. Thus M ∼= R[x]⊗R B, and
so all modules in X, has FFR. By Corollary 3.8 every module in F(X) have
FFR. So what we need to prove is that every finitely generated R[x]-module
lies in F(X).

Now let M be a finitely generated R[x]-module where ann(M)∩R 6= 0.
Let m ∈M and m 6= 0. We observe that

0 6= ann(M) ∩R ⊆ ann(m) ∩R.

We denote ann(m) ∩ R = J and get R/J ∼= (m)R, giving us the exact
sequence

0 J R R/J 0

which we can tensor with R[x] to get the following exact sequence.

0 R[x]⊗R J R[x]⊗R R R[x]⊗R R/J 0

We have that R/J ∼= (m)R and R[x] ⊗R R ∼= R[x], by Proposition 2.7, so
we have the following exact sequence.

0 R[x]⊗R J R[x] R[x]⊗R (m)R 0

From Corollary 2.10 we have that R[x]⊗R J ∼= R[x]J and this is non-zero
since J 6= {0}. By the exactness of the last sequence we have

R[x]/R[x]J ∼= R[x]⊗R (m)R.

Now R[x]/R[x]J = (1 + R[x]J) is cyclic and R[x] ⊗R (m)R is isomorphic
to a submodule of M which then is cyclic and which we will denote (m1)
where m1 ∈M . We note that

(m1) ∼= R[x]⊗R (m)R

and therefore (m1) ∈ (X) ⊆ F(X). From the exactness of the last exact
sequence, and since (m1) ∼= R[x]⊗R (m)R ∼= R[x]J , we get that R[x]⊗RJ ∼=
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ann(m1) and ann(m1) ∩ R 6= 0. Now we can repeat this argument on
M/(m1) and find a m2 + (m1) ∈ M/(m1) with ann(m2 + (m1)) ∩ R 6= 0
and (m1,m2)/(m1) ∈ X ⊆ F(X). There is an exact sequence

0 (m1) (m1,m2) (m1,m2)/(m1) 0

making (m1,m2) ∈ F(X). Since R is noetherian and this is an ascending
chain it has to stop by Corollary 1.9, hence we get that M ∈ F(X) if
ann(M) ∩R 6= 0.

Next we assume ann(M)∩R = 0. We know from Lemma 3.9 there is a
chain of submodules

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn = {0}

where Mi/Mi+1
∼= R[x]/Pi with Pi a prime ideal. For i = n − 1 we get

Mn−1/Mn
∼= R[x]/Pn−1, but Mn = {0} therefore Mn−1 ∼= R[x]/Pn−1. We

construct the exact sequence

0 Mn−1 Mn−2 Mn−2/Mn−1 0

where both Mn−1 and Mn−2/Mn−1 are on the form M ′ = R[x]/P where P
is a prime ideal. If we assume modules of the type M ′ have FFR then by
Proposition 3.5 so does Mn−2. There is also an exact sequence

0 Mn−2 Mn−3 Mn−3/Mn−2 0

which yields that Mn−3 has FFR. This process has to stop since R is noethe-
rian hence M has FFR. Therefore the rest of the proof is reduced to showing
that M ′ = R[x]/P has FFR. By assumption we have that

ann(M ′) ∩R = ann(R[x]/P) ∩R ∼= P ∩R = {0}.

The ideal P ∩R is a prime ideal in R. A ring is a domain if and only if {0}
is a prime ideal in the ring, hence R, and so R[x], are domains. Let f(x) be
a non-zero polynomial in P ⊆ R[x] and consider the following short exact
sequence.
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0 (f) P P/(f) 0

Since R[x] is a domain then (f) ∼= R[x], and since f(x) ∈ P then
ann(P/(f)) 6= {0} hence (f),P/(f) ∈ F . Since R[x],P ∈ F then
R[x]/P ∈ F

Theorem 3.11. Let k be a field. Then every finitely generated k[x1, . . . , xn]-
module has FFR.

Proof. We will prove this by induction n. First let n = 1. Since k is a field
by Theorem 3.10 every finitely generated k[x]-module has FFR.

Next assume the statement holds for n > 1. By Theorem 3.10 every
finitely generated k[x1, . . . , xn, xn+1]-module has FFR and the theorem is
true by induction.

Corollary 3.12. Let k be a field. If M is a finitely generated projective
k[x1, . . . , xn]-module then M is stably free.

Proof. By Theorem 3.11 every finitely generated k[x1, dots, xn] has FFR.
From Theorem 3.1 we have that every finitely generated projective module
with FFR is stably free.
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Chapter 4

UCP and Serre’s Conjecture

Before we can prove Serre’s Conjecture we will take a look at some results
concerning linear transformations, polynomial rings and free modules. The
key part of what we need to show is Theorem 4.2 which states that every
stably free module over a ring with UCP is free.

4.1 UCP, Unimodular Column Property

Definition. Let R be a ring. We say α = (a1, . . . , an) ∈ Rn is a unimodular
column if there is bi ∈ R such that a1b1 + · · ·+ anbn = 1.

We say R has unimodular column property, which we will denote UCP,
if, for every n, every unimodular column is the first column of some n× n
invertible matrix over R.

Theorem 4.1. Let R be a ring. If every finitely generated projective R-
module is free then R has UCP.

Proof. Let α = (a1, dots, an) ∈ Rn be a unimodular column, then there
are elements bi ∈ R such that

∑n
i=1 ribi = 1. Define φ : Rn → R by

(r1, . . . , rn) 7→
∑n

i=1 ribi. We have that φ(α) = 1 so there exists an exact
sequence

55
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0 K Rn R 0
φ

where K = kerφ. We know R is a projective module since it is a free R-
module, so by Proposition 1.6, the sequence splits and by Proposition 1.5
we have that Rn ∼= K ⊕ R. Since α is a unimodular column the elements
of α generates R hence Rn ∼= K ⊕ (α). The kernel K ⊆ Rn is free by our
hypothesis and of rank n− 1. Let the set {α2, . . . , αn} be a basis for K. if
we adjoin α then we get a basis for Rn. Let the set {ε1, . . . , εn} denote the
standard basis for Rn, in other words εi is the element of Rn with 1 in the
i-th coordinate and 0 in the others. Then the R-map T : Rn → Rn defined
by T (ε1) = α and T (εi) = αi for i ≥ 2, can be represented by an invertible
matrix T with α as it’s first column.

Theorem 4.1 is an example of the linear similarities we noted at the
beginning of Chapter 1. The converse is not necessarily true, but we will
show that it is so if R = k[x1, . . . , xn], where k is a field.

Proposition 4.2. Let R be a ring with UCP. If P is a stably free R-module
then P is free.

Proof. If P is a stably free R-module then there is a direct sum P⊕F ∼= Rn

where F is free. Clearly P ⊕ R ⊕ F ′ ∼= Rn where F ′ is a free R-module of
one less rank then F so it is enough to show that if P ⊕R is free then P is
free.

Let P ⊕ R ∼= Rn and let π denote the R-map π : Rn → R where
kerπ = P . Since π is surjective there is an element α = (a1, . . . , an) ∈ Rn
such that π(α) = 1. If we let the set {εi}ni=1 denote the standard basis forRn

then π(α) =
∑n

i=1 π(aiεi) =
∑n

i=1 aiπ(εi) which means α is a unimodular
column. By our hypothesis there exists an invertible n× n matrix M with
α as the first column. We denote the remaining columns α2, α3, . . . , αn.
We define the R-map T : Rn → Rn by T (εi) = Mεi. We let αj → α′j
denote the elementary column operation defined by α′j = αj − λjα where
π(αj) = λj ∈ R for j ≥ 2. By applying αj → α′j to the matrix M
we get the invertible matrix M ′ with columns α, α′2, α

′
3, . . . , α

′
n. We note
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that for j ≥ 2 we have π(α′j) = π(αj) − λJπ(α) = λj − λj = 0. The
matrix M ′ induces an R-isomorphism by T ′(ε1) = α and T ′(εj) = α′j when
j ≥ 2 which satisfies α′j = T ′(εj) ∈ kerπ ∀ j ≥ 2. Now let us take a
look at the restriction T ∗ = T |(ε2, . . . , εn) : (ε2, . . . , εn) → P . We have
just observed that ImT ∗ ⊆ P and since T ′ is injective so is T ∗. If we
have that T ∗ is surjective then P is free and we are done. Let β ∈ P ,
then β = T ′(r1ε1 + δ) with δ =

∑n
i=2 riεi. Now β − T ′(δ) ∈ P , but

β − T ′(δ) = T ′(ε1r1) = r1T
′(ε1) = r1α ∈ (α) so β − T ′(δ) ∈ P ∩ (α) = {0}.

Hence β = T ′(δ) ∈ Im(T ∗) and T ∗ is surjective.

Corollary 4.3. Let k be a field. If k[x1, . . . , xn] has UCP then every finitely
generated projective k[x1, . . . , xn]-module is free.

Proof. By Corollary 3.12 every k[x1, . . . , xn]-module is stably free and by
Proposition 4.2 every stably free R-module where R has UCP is free.

Clearly it only remains for us to show that k[x1, . . . , xn] has UCP, but
we still need some more results before we can do that.

Definition. We define the total degree of a polynomial in R = k[x1, . . . , xn]
as the maxiamal sum of powers of the variables of the terms of the polyno-
mial.

To clarify, the total degree of r1x
1
1x

3
2x

4
3 + r2x

4 ∈ R[x1, . . . , xn] is 1 + 3 +
4 = 8 since 8 > 4.

Lemma 4.4. Let k be a field, let R = k[x1, . . . , xn], let a ∈ R have total
degree δ and b = δ + 1. Define

y = xm,

and for 1 ≤ i ≤ m− 1

yi = xi − xb
m−i

m = xi − yb
m−i

. (4.1)

Then a = ra′ where r ∈ k and a′ ∈ (k[y1, . . . , ym−1])[y] is monic.
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Proof. We get the defining equations by an automorphism in R with inverse
xm 7→ xm and xi 7→ xi + xb

m−i

m for 1 ≤ n ≤ m − 1, which restricts to
an isomorphism k[x1, . . . , xm−1] → k[y1, . . . , ym−1] making k[y1, . . . , ym] a
polynomial ring.

We will denote (j1, . . . , jm) ∈ Nm by (j), and define (j)·(j′) =
∑m

i=1 jij
′
i.

Let us denote
(bm−1, bm−2, . . . , b, 1) = v

and a polynomial a ∈ R with

a =
∑
(j)

r(j)x
j1
1 · · ·x

jm
m

where r(j) ∈ k and r(j) 6= 0. If we substitute the equations in Equation
(4.1) into a then we get for the (j)-th monomial.

r(j)(y1 + yb
m−1

)j1(y2 + yb
m−2

)j2 · · · (ym−1 + yb)jm−1yjm .

We can expand and separate the pure power of y, that is,

r(j)(y
(j)·v + f(j)(y1, . . . , ym−1, y))

where the polynomial f(j) has at least one positive power of some yi which,
for any yi, can not be higher then the total degree, so it is strictly less then
b. Therefore for any (j) we have 1 ≤ ji < b for each ji ∈ (j). If (j) 6= (j′)
then (j) · v 6= (j′) · v. Therefore there are no cancellations of terms in∑

(j) r(j)y
(j)·v. Let D be the largest (j) · v then

a = rDy
D + g(y1, . . . , ym−1, y)

for some polynomial g where the largest exponent of y in g is less then D,
and rD is a non-zero element in k. Since k is a field the inverse of rD exists
so a = rDa

′ where

a′ = yD + r−1D g(y1, . . . , ym−1, y)

is a monic polynomial in y.
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Lemma 4.5. Let B be a ring, let s ≥ 1, and let f, g ∈ B[y] be the polyno-
mials:

f(y) = ys + a1y
s−1 + · · ·+ as

g(y) = b1y
s−1 + · · ·+ bs

Then for each 1 ≤ j ≤ s − 1 the ideal (f, g) ⊆ B[y] contains a polynomial
of degree ≤ s− 1 with bj as the leading coefficient.

Proof. Let I be the set containing {0} and all the leading coefficients of
h(y) ∈ (f, g) where deg(h) ≤ s − 1. Clearly I ⊆ B is an ideal containing
b1. We will prove that I contains b1, . . . , bj ∀ j ≤ s. We define

g′(y) = yg(y)− b1f(y) =

s∑
i=1

(bi+1 − b1a1)ys−1

where g′(y) ∈ (f, g) and we observe (b2−b1a1) is the leading term, therefore
(b2 − b1a1) ∈ I. Since b1 ∈ I and (b2 − b1a1) ∈ I then b2 ∈ I. Next we
define

g′′(y) = yg′(y)− (b2 − b1ai)f(y)

whit the leading coefficient (b3−b1a3)−(b2−b1a1)a1. Since b1, (b2−b1a1) ∈ I
then b3 ∈ I. We can continue this process through all the coefficients in g,
hence bj ∈ I ∀ j ≤ s and we are done.

Definition. We define GL(n,R) to be the group of all invertible n × n
matrices over R.

Definition. We define R to be a local ring if R has a unique maximal ideal.

Proposition 4.6. Let B be a local ring and R = B[y]. If ai is a monic poly-
nomial where ai is a coordinate in a unimodular column α = (ai, ..., an) ∈
Rn, then α is the first column of some matrix in GL(n,R).

Proof. If we let n = 1, 2 it is easy to see that the statement is true. If
n = 1 it will be an invertible element. If n = 2 then a1b1 + a2b2 = 1 and
we observe that
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[
a1 −b2
a2 b1

]
is in GL(n,R). Therefore we can assume n ≥ 3.

Let deg(a1) = s. We will prove the statement by induction on s. We
can, without loss of generality, assume a1 monic. If we let s = 0 then
a1 = 1. Let α be the first column in a n × q matrix L. If we perform
elementary row operations on L it will yield a matrix NL, where N is
invertible. Since a1 = 1 we can perform elementary row operations on
L such that the other entries in that column are equal to 0. Therefore
(NL)ε1 = ε1 where N is invertible. The column vector α is the first column
of L, hence α = Lε1 = N−1ε1 is the first column in an invertible matrix
and the statement holds for s = 0.

Next assume s > 0. Since a1 is monic we can perform elementary row
operations on the column α such that deg(a2) ≤ s − 1 ∀ i ≥ 2. Let m be
the unique maximal ideal in B. The ideal mR consists of all polynomials
with coefficients in m. The column ᾱ = (a1 +mR, ..., an+mR) ∈ Rn/mRn
is unimodular over (B/m)[y] since α is a unimodular column. If ai ∈
mR ∀ i ≥ 2 then a1 + m would be a unit in (B/m)[y], but a1 is not a
constant, because s > 0, so it can not be a unit in the PID (B/m)[y].
Therefore we can assume at least one ai where i ≥ 2 is not in mR, and we
can, without loss of generality assume a2 /∈ mR, that is

a2 = b1y
s−1 + ...+ bs−1y + bs

where some of the bj /∈ m. From Lemma 4.5 the ideal (a1, a2) ⊆ R contains
a monic polynomial of degree ≤ s− 1 so we can obtain a monic polynomial
by adding a linear combinations of a1 and a2 into a3, so the hypothesis
applies and the statement is true by induction.

Proposition 4.7. Let R = B[y] where B is a domain. If α = (a1, ..., an) ∈
Rn is a unimodular column with at least one ai monic then

α = Mβ

where M ∈ GL(n,R) and β is a unimodular column over B.
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We will adopt a new notation for the proof of Proposition 4.7 to make
the proof a bit more clear. If R = B[y] we will denote a matrix M over R
by M(y), since the elements are polynomials in y, and if α is a unimodular
column over R we denote it α(y).

Proof. We start by defining the ideal I ⊆ B as

I = {b ∈ B : GL(n,R)α(u + bv) = GL(n,R)α(u) ∀ u, v ∈ R}

First we see that if I = B then 1 ∈ I. If we let u = y, b = 1 and v = −y
then

GL(n,R)α(y) = GL(n,R)α(0)

that is
Nα(y) = N ′α(0)

for some N,N ′ ∈ GL(n,R), so α(y) = (N−1N ′α(0). Since α(0) is a uni-
modular colum over B the statement is true in this case.

Next we assume that I is a proper ideal in B. Then I ⊆ J for some
maximal ideal J in B. By our hypothesis B is a domain and therefore a sub-
ring of the localization BJ . The column vector α(y) is also a unimodualar
column over BJ [y] and since BJ is local then α(y) = M(y)ε1, by Proposi-
tion 4.6, where M(y) ∈ GL(n,BJ[y]). We let z be a new indeterminate and
adjoin it to BJ [y]. We define N(y, z) ∈ GL(n,BJ[y, z]) to be

N(y, z) = M(y)M(y + z)−1

We observe that N(y, 0) = In, the identity matrix, and α(y + z) =
M(y + z)ε1, since α(y) = M(y)ε1. It follows that

N(y, z)α(y + z) = N(y, z)M(y + z)ε1 = M(y)ε1 = α(y) (4.2)

We also note that each entry of N(y, z) is of the form fij(y) + gij(y, z)
where every term of gij involves a positive power of z. In other words
gij(y, 0) = 0. Since N(y, 0) = In then each fij(y) is either equal to 1 or 0.
Therefore there are no non-zero terms of the form λyi, for i > 0 and λ ∈ BJ ,
of the entries in N(y, z). So if we denote the entries of N(y, z) by hij(y, z)
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then hij(y, z) = r + fij(y, z) where r = 0 or r = 1. Consider the n × n
matrix N(y, z). The entries of N(y, z) are polynomials in the ring BJ [y, z].
Each such polynomial has coefficients in BJ , and these coefficients are by
definition formal quotients of the form x/s where x ∈ B and s ∈ B \ J .
Let b be the product of all the denominators s of all the coefficients of all
the n2 entries in N(y, z). Since J is a prime ideal we have that b /∈ J and
hence b /∈ I. If we let bz play the role of z in Equation 4.2 then

GL(n,B[y, z])α(y + bz) = GL(n,B[y, z], )α(y).

Let u, v ∈ R = B[y] and define a B-algebra map φ : B[y, z] → B[y] by
φ(y) = u and φ(z) = v. By applying φ to the last equation we get

GL(n,R)α(u + bv) = GL(n,R, )α(u)

thus b ∈ I which is a contradiction. Hence I can not be a proper ideal in
B.

4.2 Serre’s Conjecture

Finally we can prove Serre’s Conjecture.

Theorem 4.8. Let k be a field. Every finitely generated projective
k[x1, ..., xm]-module is free.

Proof. By Corollary 4.3 it is enough for us to prove that R = k[x1, ..., xm]
has UCP, which we will do by induction on m. The polynomial ring k[x] is
a PID. The Structure Theorem for Finitely Generated Modules [1, Chap-
ter 21, Theorem 1.1] over such rings implies, in particular, that finitely
generated projective modules are free. By Proposition 4.1 every finitely
generated projective k[x]-module then has UCP, which proves the case for
the base step m = 1.

Next assume the statement holds for m > 1. Let α = (a1, ..., an) be
a unimodular column over R = k[x1, ..., xm+1]. Since α contains some
non-zero ai we can assume without loss of generality that a1 6= 0. By
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Proposition 4.4 we have that there is a non-zero element r ∈ k such that
a1 = ra′1 where a′1 ∈ k[y1, ..., ym](y) is a monic polynomial and the yis and
the y are as in Proposition 4.4. The element r is a unit, since k is a field, so
we can assume a1 = a′1 without loss of generality. This allows us to apply
Proposition 4.7 so

α = Mβ

where M ∈ GL(n,R) and β is a unimodular over B = k[y1, ..., ym]. By our
assumption B has UCP. Therefore β = Nε1 for some N ∈ GL(n,B), but
NM ∈ GL(n,R) since B ⊆ R so

α = MNε1

meaning α has the unimodular column property. Hence R has UCP by
induction.
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