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Abstract. As Francis turbines are chasing a higher efficiency, while trying to accommodate a
wider load region, turbine blade fatigue is becoming a more pronounced problem. Details of the
Fluid-Structure Interaction (FSI) between the turbine blades and the passing water is necessary
to accurately predict the dynamic behavior of a runner in the design phase. The dynamic
behavior of the turbine blades is characterized by three properties: The added mass of the
surrounding water, the increased stiffness due to passing water, and the hydrodynamic damping
provided by the surrounding water. Of the aforementioned properties, the hydrodynamic
damping is not yet fully understood. When the turbine blades are excited close to resonance,
the damping of the vibrating system determines the vibrational amplitude, and is therefore
important in order to estimate the lifetime of a runner. The hydrodynamic damping of passing
water has been investigated in a simplified setup, where the turbine blades are represented by a
2D hydrofoil. Two separate hydrofoil geometries have been tested. The hydrofoils were mounted
in a “fixed-beam” configuration, meaning that both the deflection and the angle at the fastening
point is zero. This setup was chosen, since it is the way that turbine blades are fastened in
a Francis runner, and should therefore give applicable results when performing modal testing.
The hydrofoils were mounted without any angle of attack, and exposed to water velocities up
to 28 m/s. Modal tests in the entire velocity regime indicates that the damping factor increases
linearly with water velocity, but at different rates below an above lock-in. The damping factor is
rapidly increasing when the velocity goes beyond that of lock-in. This behavior is observed for
both hydrofoils, even if the magnitude of the vortex shedding is of different magnitude for the
two. A slight increase in natural frequency was also observed with increasing velocity, due to a
combination of a stiffening effect of the water passing over the deflected blade, and a reduced
added mass effect, in that the amount of water that vibrates with the hydrofoil is diminished
when the water velocity is sufficiently high, i.e. it is blown away. The measurements have been
compared with CFD simulations, indicating that the observed trend does indeed continue up to
at least 45 m/s, indicating that the results are applicable to the velocity regimes occurring in a
prototype Francis runner

1. Introduction
In the current energy market, Francis turbines are expected to deliver power at high efficiency
while accommodating a large range of operation [1, 2]. This has caused several high head Francis
runners to fail due to blade cracking, caused by Rotor-Stator Interaction (RSI) [3]. Fatigue
damage due to vibration is a complex phenomena, with several factors: The static (mean) stress,
the amplitude of the vibration, and the frequency of vibration. Within this, the amplitude of
vibration, and hence the amplitude of the stress, can determine whether a turbine will withstand
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the load, or if it will fail during operation. It is therefore important to understand the underlying
mechanics that determine the vibrational amplitudes in the RSI-caused vibrations.

A classic damped vibrating system with a single degree of freedom can be characterized by
three key parameters: stiffness, mass and damping. If one considered the oscillating turbine
blade as a classic damped vibrating system, these characteristics will be slightly modified, as
the presence of flowing water adds to stiffness, mass and damping. These parameters have been
extensively investigated, and the impact of water on the stiffness and mass is well understood
[4, 5, 6, 7]. The effect on damping has received less attention in the past, but recent studies
have been conducted, indicating that the damping is indeed affected by the moving water.
The damping is a critical quantity to understand, as the vibration amplitude is sensitive to
damping at resonance. Some investigations of this have been performed in recent years, but
they are limited in the velocity range investigated. In addition, the behavior of fluid damping
in the velocity range where the blade’s natural frequency coincides with the shedding frequency,
known as lock-in, has not been a point of focus.

This paper presents experimental results on two separate hydrofoils, and a comparison is
made between the results and simulation efforts.

2. Materials and Methods
The experimental setup and data analysis methods are described in the following section. The
numerical setup is briefly explained, for an in-depth description, see [8].

2.1. Experimental Setup
The experiments were conducted at the Waterpower Laboratory at the Norwegian University
of Science and Technology (NTNU). The test set-up consisted of a 150 mm by 150 mm square
channel, containing the hydrofoil in a fixed-beam configuration, i.e. fastened in both ends. An
image of the test rig is shown in Figure 1

Figure 1. Image of the test rig.

The hydrofoils tested are illustrated in Figure 2. They are of the same width and cord length,
but F0 has an asymmetric trailing edge, and a more blunt leading edge than F1 .
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Figure 2. Hydrofoil geometries tested. Note that the tapering is much longer for F1 than
for F0 , allowing for a much smoother tapering angle, φ . In addition, F0 as an asymmetric
trailing edge, while F1 has a symmetric trailing edge. The leading edge of F0 closely resembles
a semicircle with diameter equal to the foil thickness, whereas the leading edge of F1 is elliptic
with major and minor diameter of 62 mm and 12 mm respectively.

The excitation was performed using Piezoelectric Macrofiber Composites (MFCs), which
have the ability to provide excitation at specific frequencies, enabling measurements when the
damping is quite large. This procedure is based on the approach previously employed by Coutu
et al, Yao et al, and Roth et al [4, 9, 10, 5, 6], and the MFCs are similarly excited 180◦out of
phase, in order to obtain the maximum excitation force. For a more in-depth explanation on
the application of MFCs in conjunction with modal testing of hydrofoils, the reader is referred
to the work of Seely et al [10]. The response was measured with a combination of Laser Doppler
Vibrometry (LDV) and semiconductor strain gauges from Kulite. A schematic of the test setup
is shown in Figure 3. The tests were performed in cavitation-free conditions.

2.1.1. Testing procedure In order to avoid transient effects, a stepped-sine excitation pattern
was chosen, as recommended by Ewins [11]. The testing therefore consisted of

(i) performing a continuous sweep, to identify the natural frequency

(ii) generating discrete sine waves around the resonant region

(iii) testing the response of each frequency

This process was repeated approx. 30 times for each velocity in order to estimate the uncertainty
in both natural frequency and damping.
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Figure 3. Schematic view of the measurement setup.

2.1.2. Analysis The amplitudes of both the excitation and response were calculated using the
Welch method as implemented by MATLAB. The Welch method is an estimate of the power
spectrum, which reduces the noise by reducing the frequency resolution through overlapping
windows. For the amplitude estimates, the flattop window was chosen. Since the Welch
method in MATLAB does not yield phase data, the phase difference between the excitation
and response was estimated by calculating the cross-power spectral density. The magnitude
ratio between the excitation and response, along with the phase difference was used to recreate
the complex Frequency Response Function (FRF), which was used to calculate damping and
natural frequency, using the nyquist diagram. By plotting the real part vs. the imaginary part
of the FRF, a resonant region will appear as a circle. By curve fitting the data to a circle,
geometric properties of the curve fit can be used to accurately estimate modal properties. This
method was chosen, since it does not rely on data far away from the resonant region, and is
therefore less sensitive to neighbouring modes of vibration. For a detailed explanation of the
circle-fit method and the Nyquist diagram, the reader is referred to Ewins [11], and Bergan et
al [12].

2.2. Numerical setup
The damping of F1 has been tested numerically using ANSYS CFX. To ensure fully developed
flow conditions in the test section, the inlet of the test domain was extended in order to satisfy
a common entrance length criterion of L > 10 · Dh. Similarly, the test domain was extended
downstream to avoid outlet conditions affecting the simulation results. The damping was found
using a one-way coupling, but investigating the structural response in advance, and performing
CFD on the blade with pre-determined vibration. For a more in-depth explanation of the
numerical setup and results, the reader is referred to [8].

3. Results
In Figure 4, the damping factor ζ is shown with respect to the water velocity w . Figure 6
shows the evolution of the natural frequency ωn of the hydrofoils with respect to w . The slope
estimates for the evolution of the damping are summarized in Table 1
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Figure 4. Damping vs velocity. Note that both hydrofoils exhibit a discontinuity in the slope
around lock-in, at approx. 11 m/s for F0 , and at approx. 8 m/s for F1 .

Table 1. Slope of damping change vs. velocity

ζ/w F0 F1
below lock-in 2.18 × 10−4 3.48 × 10−4

above lock-in 1.37 × 10−3 2.12 × 10−3

To give an idea of the numbers provided in table 1, the Half-Amplitude method is a useful
tool [13]: A damping factor, ζ , of 0.01 (or 1%), means that oscillations will half in amplitude
after 11 cycles, which for a hydrofoil with a natural frequency of 500 Hz is approx. 0.02 s.

The measurements are closely matched by the numeric simulations, shown in figure 5.
The experiments were limited to 28 m/s due to the onset of cavitation upstream the test

section, even with a gauge pressure of 9 bar in the test section. Simulations were therefore
conducted at 45 m/s, indicating that the trend obtained above lock-in continues.

As seen in Figure 4, the damping is nearly constant up to lock-in, but with a slightly positive
slope. There is a distinct discontinuity, at approx. 11 m/s for F0 and at approx. 8 m/s for
F1 . This is the lock-in region for each hydrofoil, the velocity at which the vortex shedding
frequency coincides with the hydrofoil’s natural frequency. This is detailed in table 2, where
the maximum vibrational amplitudes are shown with and without MFC excitation. Vibration
measured without MFC excitation is solely due to vortex shedding.

The natural frequency of the hydrofoils, as seen in Figure 6, seem to be relatively unaffected,
but a closer investigation reveals a trend, see Figure 7.

Figure 7 shows that the natural frequency is not constant with velocity, it does in fact increase
slightly with water velocity. F0 shows a sudden jump in natural frequency around lock-in, a
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Figure 5. Experimental and numeric results for F1 . Note that both the experimental and
numerical results indicate a change around the lock-in region (at 8 m/s), but they differ in the
results below lock-in.

Table 2. Maximum Vibrational Amplitudes

Excitation Source F0 F1
MFC 0.085 mm 0.125 mm
Vortex Shedding 0.013 42 mm 1.4 × 10−9 mm

behaviour that is not reflected in F1 . The order of increase seems to be quite similar as well,
around a 0.1% increase for each m/s

The maximum vibrational amplitudes for F0 and F1 are shown in table 2. As the results
indicate, the effect of vortex shedding is virtually non-existent for F1 , whereas the shedding-
related vibrational amplitude for F0 is at approx. 16% of the maximum excited amplitude.

4. Discussion
The measurements were limited to 28 m/s due to cavitation, but the numerical analysis indicates
that the trend is likely to continue at least up to 45 m/s, see figure 5. Given the similarities
between the numerical and experimental results at velocities up to 28 m/s, there simulations
performed at 45 m/s are most likely accurate.

At this stage, it is relevant to make comparison to other similar measurements, mainly those
of Coutu et al [4], where a hydrofoil has been mounted in a fixed-beam configuration, and modal
testing was done for velocities up to 25 m/s; and those of Yao et al [6], where the effect of the
trailing edge shape was tested on a cantilever beam.
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Figure 6. Natural Frequency. Note that there is a slight increase in natural frequency for both
F0 and F1 .
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Figure 7. Normalized natural frequency. Note that both F1 and F0 appear to approach a
constant value at 1.025.
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Coutu et al found that the damping factor was consistently increasing with water velocity,
without any discontinuities, but only above lock-in velocity. Comparing with Yao et al, a
discontinuity in damping slope was observed at lock-in for the torsional bending mode, which
for a cantilever beam is quite similar to the bending mode of a fixed-beam foil. Said discontinuity
was observed at lock-in, which agrees very well with the trends observed in the present work.

In order to make a quantitative comparison to the results obtained by Yao et al, consider
figure 8. Here, the damping is presented as a function of the reduced velocity, C∗ , defined by
Equation 1.

C∗ =
w

L · ωn
(1)

As Figure 8 shows, the slope of the damping factor change is nearly identical for F0 and
F1 when plotted against their reduced velocities. Compared with figure 9, it is clear that the
observed damping behavior is similar in scale.

The slope of the damping change measured in the present work agree adequately with the
measurements conducted by Yao et al, in which the slope of the damping was approx. 3.9 × 10−3

(when the velocity is expressed in absolute terms), as compared to approx. 2 × 10−3 obtained
in this work. In the work of Coutu et al, the damping factor slope was found to be 1.07 × 10−2

to 1.23 × 10−2, approx. 5 times higher than the results from this work. This result was fairly
consistent for all the geometries tested by Coutu. Even if the geometry of the hydrofoils differ
within each experiment, the dimensions for the test section remains.

Another key feature in the work of Yao is the apparent jump in natural frequency observed
at lock-in, something that was also seen in the present measurements. Coutu et al found that
the natural frequency remains constant, but CFD simulations performed by Nenneman et al
[14] indicate that the natural frequency does indeed increase with velocity. The present results,
and those of Yao, found that the natural frequency does change through the lock-in region, but
there is no conclusive experimental evidence of further trends above lock-in. It could very well
be the case that it is constant above lock-in.

Previous results have indicated that the phase shift in vortex shedding is the main contributor
to the observed discontinuity in the evolution of the damping factor[12], but the present results
contradict this. It is difficult to argue that the vortex shedding is the main contributor to
the increase in damping when the same behavior is observed for both F0 and F1 , even if the
magnitude of the vortex shedding is quite different for the two test specimens.

The divergence in the present results, along with those of Coutu and Yao, raises the question
of dimensionlessness: To what degree do we expect the damping factor to be dependent on the
geometry and/or scale? Since the geometries in question differ, the proportion between the added
mass and the blade stiffness is varying, which could cause different hydrodynamic behavior. It
is also interesting to address the validity of the assumption of linearity in the vibrating system.
Most theory regarding vibrating structures assume linearity, ie. spring force linearly proportional
with displacement, damping force linearly proportional with velocity [13]. This may not be the
case when the effects of FSI are prevailing[11]. There is lacking documentation on the effect of
non-linearities in turbine blades, but the difference in scale between the prevailing experiments
in this field suggest that the relative scale of the hydrofoil could be crucial to the expected rise
in damping factor.

5. Conclusion
The present measurements show that the damping factor of a hydrofoil behaves differently
above and below lock-in conditions, and the natural frequency is also affected by this. The
two different test geometries indicate that a more slender blade might produce a lower natural
frequency, having a reduced stiffness with the same oscillating mass, due to the larger relative
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Figure 8. Damping vs reduced velocity.

Figure 9. Measurements preformed by Yao et al [6].

contribution from the water. Comparisons with similar experiments indicate that the increase
in damping factor will be smaller for a stiffer hydrofoil, due to the reduced relative influence
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of the fluid and the inherent non-linearities in a fluid-structure vibration. This could arguably
be extended to encompass similar geometries of different scale, meaning that different types of
turbines, with different relative blade thickness might have very different damping evolution
with respect to the changing water velocities.

6. Further Work
Further investigations of damping behavior in submerged hydrofoils should include a thorough
assessment of the linearity of the vibrating system. In addition, focus should be placed upon
understanding the behavior of the natural frequency above lock-in, as the present measurements
are inconclusive. Additionally, all the work performed on vibrating hydrofoils has focused on a
single blade in vibration. Further measurements will encompass a multi-blade cascade, in order
to capture influence from neighbouring blades.
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