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Abstract

As the time between the decision about what to produce and the moment when demand is observed
(the decision lead time) increases, the demand forecast becomes more uncertain. Uncertainty can
increase gradually in decision lead time, or can increase as a dramatic change in median demand.
Whether the forecast evolves gradually or in jumps has important implications for the value of re-
sponsiveness, which we model as the cost premium worth paying to reduce the decision lead time (the
Justified cost premium). Demand uncertainty arising from jumps rather than from constant volatility
increases the justified cost premium when an average jump increases median demand, but decreases
the justified cost premium when an average jump decreases median demand. We fit our model to two
data sets, first publicly available demand data from Reebok, then point-of-sale data from a supermar-
ket chain. Finally, we present two special cases of the model, one covering a sudden loss of demand,

and the other a one-time adjustment to median demand.

1. Introduction

Postponing an order quantity decision until demand is known—thus reducing the decision lead

time to zero—eliminates demand-risk exposure.! Conversely, demand-risk exposure tends to increase

*Corresponding author: suzanne.detrevilleQunil.ch; Tel.:+41 21 692 3448.
LA decision lead time of zero means that the production decision can be postponed enough to permit working with
firm demand data. Even with a decision lead time of zero, the delivery lead time may well be positive. It need only be
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in the decision lead time, resulting in stockouts or overstocks that generate mismatch costs. The
ability to postpone the decision about what to order so that the order quantity can be based on
better demand information can be conceptualized as a real option (de Treville and Trigeorgis 2010),
and that option’s value can be estimated using quantitative-finance methods. Being able to quantify
the value of reducing demand-uncertainty exposure that arises from an increase in the decision lead
time transforms time into a decision variable.

The first step in estimating option value is to specify the forecast-evolution process: how demand
uncertainty increases in decision lead time.? The simplest case is the random-walk assumption that
underlies the Black-Scholes option-pricing model (Black and Scholes 1973). Each instant that the
decision lead time increases, demand uncertainty increases by a minute amount following a geometric
Brownian motion. When this constant-instantaneous-volatility process holds, demand is lognormally
distributed with volatility increasing in the square root of the decision lead time. This assumption
underlies the Cost-Differential Frontier decision tool proposed by de Treville et al. (2014b) that es-
timates the cost differential that must be offered by a long-lead-time supplier to compensate for the
increase in demand-uncertainty exposure resulting from an increase in decision lead time.?

In practice, changes in demand may occur suddenly as a change in median demand (jump) rather
than as an instantaneous increase in volatility. Demand is frequently subject to jumps: The World
Economic Forum in its 2012 report on supply-chain risk attributed 44% of supply-chain disruptions
to demand shocks (World Economic Forum 2012).* In finance, the limitations of the Black-Scholes
model are well known, but the model is generally used as a reasonable approximation (e.g., Bakshi
et al. 1997). When the true forecast-evolution process is subject to jumps but the mismatch cost is
estimated assuming that all demand uncertainty emerges from a constant-volatility process, how bad
is the error? Does the constant-volatility version of the model give a good enough approximation of

the mismatch cost for practical purposes, or does the error impact decision making enough to warrant

short enough that the production can be decided after demand is observed.

2For a stock option, decision lead time translates into the time until the stock price is known.

3The tool also calculates the cost premium worth paying to reduce decision lead time.

4A sudden shift in median demand represents a common type of demand shock, see https://www.investopedia.com/
terms/d/demandshock.asp.
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the use of a more complex model?

To address this question we extend the Cost-Differential Frontier decision tool to include jumps
following the classic model proposed by Merton (1976). We use publicly available demand data from
Reebok to gain insight into how the choice of model impacts supply-chain decision making. Parsons
(2004) studied the cost of demand-risk exposure faced by Reebok in the context of the exclusive
license held during the period 2000-2010 to produce replica jerseys with the National Football League
(NFL, see also Graves and Parsons 2005).% Available published Reebok data includes the mean and
standard deviation of annual demand for replica jerseys for New England Patriots fans; price, cost,
and residual value; and a qualitative description of the many types of demand jumps observed by
Reebok. Parsons (2004, pp. 74-75) concluded his analysis of Reebok data by proposing that “perhaps
the single greatest opportunity for Reebok is to improve its ability to respond to shifts in demand
through shorter lead times.” This data is used by Parsons (2004), Graves and Parsons (2005), Parsons
and Graves (2005) to demonstrate the value of postponement. Cattani et al. (2008) cited this work
as exemplifying the importance of analyzing the value of responsiveness (see also Uppala 2016). The
decision by the authors of the Reebok study to make their data and analysis publicly available made
it possible for us to build directly on their work and use our model to extend their analysis.

Our first result is that the impact of jumps on the cost premium worth paying to reduce decision
lead time depends on whether a jump is expected to increase or decrease median demand. If a jump
is expected to increase median demand, then treating demand uncertainty as though it came from a
constant-volatility process results in an understatement of the justified cost premium. If, however, a
jump is expected to reduce median demand, then assuming a constant-volatility process will lead to an
overstatement of that cost premium. This result arises from how the jump changes the skewness of the
marginal demand density. Jumps that are expected to increase median demand will increase skewness
as long as they occur relatively rarely. The resulting increase in right-tail weight increases the value

of the option to postpone the production commitment. A jump that reduces median demand reduces

5The license was won by Nike in 2010.
6 As jumps become less rare, their impact on the marginal density moves from the tail to the body.



skewness, making the postponement option less valuable. Managers with whom we have reviewed this
result have found it counterintuitive, as they experience more concern about being stuck with excess
inventory if a negative jump occurs than about stocking out following a positive jump.

In order to make the analysis as useful as possible to practitioners, we explore two special cases of
jumps that are frequently encountered in practice. The first special case models the risk that demand
would be completely lost. In the Reebok case this corresponds to a change of team jersey that reduces
demand for the old model to zero. We show that adding any reasonable risk of demand loss to a
constant-volatility process substantially increases the justified cost premium. The second special case
models a one-time update of median demand such as occurs when decision makers obtain early-sales
data, which we use to quantify the impact of a possible Super-Bowl win on the cost premium worth
paying to reduce decision lead time. These results are not surprising in their direction, but they are
striking in their magnitude. When the jumps that everyone knows to exist are explicitly considered
in setting the decision lead time, the company is likely to much more aggressively reduce decision lead
time.

A question that arose during the research project was whether demand jumps are experienced
in supply chains. To address this question, we randomly selected two products from a supermarket
chain and analyzed 100 observations of daily demand from point-of-sale data, then counted how
many observations had standardized residuals more than three standard deviations from zero. The
first product had four such outliers, indicative of demand jumps, and the second had none. We
then considered what would happen if we forced a jump model on a product where it seemed like a
constant-volatility assumption would suffice. By moving the threshold defining outliers from the usual
three down to 2.52 standard deviations, the number of outliers for the second product increased from
zero to four. Interestingly, treating these four points as jumps rather than normal variation for the
second product substantially increased the cost-premium frontier. Which representation is correct?
Our model cannot say. But, the fact that the option value of responsiveness is quite sensitive to when
outliers are assumed to represent demand jumps indicates that this is an area that managers should

be pondering.



2. Literature review

When we fit a normal or lognormal distribution to demand data, this is consistent with assuming
a constant instantaneous-volatility process: The increase in demand uncertainty as the decision lead
time increases can be modeled by a Brownian motion. Assuming that demand follows a normal (log-
normal) distribution implies an underlying process that follows an arithmetic (geometric) Brownian
motion. The standard deviation of demand (log demand) increases with the square root of the decision
lead time. Modeling the evolution of a demand forecast as a constant instantaneous-volatility process
is not new in supply-chain research. Hausman (1969) demonstrated that a forecast may plausibly
evolve according to a geometric Brownian motion. This research formed the basis for the Martingale
Model of Forecast Evolution (e.g., Heath and Jackson 1994, Milner and Kouvelis 2005). Oh and
Ozer (2013) emphasized the importance of accurately capturing the forecast-evolution process when
deciding about investing in lead-time reduction, giving as an example the case where manufacturer
and supplier have asymmetric information. De Treville et al. (2014b) demonstrated the use of a
constant-volatility process to transform decision lead time into a decision variable, showing that an
apparently compelling cost differential offered by a long-lead-time supplier may result in an increase
in mismatch cost that eliminates the cost advantage when volatility is high and the residual value
of the item being acquired is low. Including the value of responsiveness into decision making will
frequently change the production-location decision. A summary of the calculations that underlie the
Cost-Differential Frontier is given in Appendix E. The literature on the value of lead time is summa-
rized in de Treville et al. (2014b) and de Treville et al. (2014a), so we refer readers to those papers.
It is generally agreed that lead-time reduction makes companies better able to respond to demand
uncertainty, whether from general randomness or demand shocks, and the increased responsiveness
reduces the supply-demand mismatch cost (Fisher and Raman 1996, Iyer and Bergen 1997, Milner
and Kouvelis 2005, Lutze and Ozer 2008). De Treville et al. (2014a) applied the insights arising from
consideration of forecast evolution in decision making in three industrial settings: one with constant
instantaneous volatility, one with stochastic instantaneous volatility due to a bullwhip effect, and one

with a simple jump-diffusion process in which there was a risk of demand suddenly dropping to zero.



The demand forecasts considered in de Treville et al. (2014b) and here are assumed to eventually
converge to the true value of demand. They are also assumed to be unbiased, so that the expected
value of any given forecast update is zero (this is explained in further detail in de Treville et al.
2014a). De Treville et al. (2014b) considered instantaneous volatility that was both constant and
stochastic, showing that stochasticity in the instantaneous volatility increases the value of lead time,
especially when comparing longer decision lead times. Thus, demand risk can be a source of profit for
a responsive firm. Similar results are emerging in the field of marketing concerning the use of demand
clumpiness to increase profit (e.g., Zhang et al. 2014).

The ability to extract value from responsiveness has turned out to be a key piece of the puzzle
to policy makers that recognize the importance of manufacturing to the local economy, and that are
seeking to identify what kind of manufacturing has the best chance of being competitive in a high-cost
economy.’

Demand jumps are described as a source of operational inefficiency in the economics and the
operations management literatures (Lorenzoni 2009, Albuquerque and Bronnenberg 2012, Kesavan
and Kushwaha 2014, Kesavan et al. 2016). Empirical research supports the idea that shorter lead
times reduce the negative consequences of jumps (Kesavan et al. 2016, Tokar et al. 2014). Our models
and analysis contribute to this literature in making it possible to quantify the value of responsiveness

when demand uncertainty includes jumps.

3. The impact of jumps on the justified cost premium

3.1. Model presentation and application to Reebok demand data

In this section we present a model that estimates the cost premium worth paying to reduce the
relative decision lead time when jumps are added to a constant-volatility forecast-evolution process.

Not only does demand uncertainty incorporate the variance of log demand that increases linearly in

"A decision tool called the Cost-Differential Frontier emerged from this analysis. It addresses the question: What
cost differential does a supplier have to offer to compensate for the increase in demand-volatility exposure arising from
an increase in decision lead time? The Cost-Differential Frontier has been made available since 2014 as part of the U.S.
Department of Commerce toolbox to aid decision makers in valuing lead time (acetool.commerce.gov/inventory),
and it has also been made available by the Swiss State Secretariat for Economic Affairs (https://goo.gl/rjvQED).
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lead time, but median demand might shift up or down.

Figure 1 compares sample paths from three processes that have the same constant instantaneous
volatility, and that begin from a normalized demand forecast. The dashed (middle) line illustrates
the case where noise is added in very small amounts each instant, captured by a geometric Brownian
motion without drift. The solid (top) line combines geometric Brownian motion with a jump-diffusion
process, with an average jump increasing median demand by 60%. The dotted (bottom) line combines
a geometric Brownian motion with the risk of complete loss of demand. Our objective is to quantify

how the form of the demand forecast-evolution process affects the value of lead time.

I

— Jump-diffusion model
~|_ _ Constant-volatility model 7
(geometric Brownian motion)
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Figure 1: EVOLUTION OF DEMAND FORECASTS UNDER A CONSTANT-VOLATILITY (GEOMETRIC BROWNIAN MOTION),
A JUMP-DIFFUSION, AND A DEMAND-LOSS MODEL

At a decision lead time ¢ = 0, the demand forecast is equal to actual demand. The constant instantaneous volatility o
is 0.8 for the three paths. The solid (top) line adds jumps that change median demand at the previous instant by an
average of 60%. The dashed (middle) line denotes addition of noise to the forecast based solely on the geometric
Brownian motion. The dotted (bottom) line adds the risk that at any moment demand may drop to 0.



As the decision lead time increases, the dynamics illustrated in Figure 1 mean that the demand
uncertainty also increases. Our model (the development of which is described in detail in Appendices
A and B) estimates the per-unit cost premium relative to the cost offered by the long-lead-time
supplier that the decision maker should be willing to pay to reduce the decision lead time.

We fit the model to publicly available demand data for Reebok replica NFL jerseys for the New
England Patriots (Parsons 2004, Parsons and Graves 2005, Graves and Parsons 2005) to illustrate the
impact of assumptions about the underlying forecast-evolution process on the cost premium worth
paying to reduce decision lead time. Jerseys were produced by an Asian contract manufacturer, with
the production decision made well before demand was known. Demand for jerseys evolved over the
year based on team and player performance, also on player trades. As the Super Bowl approached,
demand increased for teams that made it to the playoffs, with a dramatic increase in jersey demand
for the winning team. We first analyzed this data using our models in early 2014, at which point the
New England Patriots were estimated by various betting websites to have a 10% chance of winning
the 2015 Super Bowl. That probability remained fairly constant throughout the fall of 2014. The
Patriots won the 2015 and 2017 Super Bowls, then made it to the 2018 Super Bowl, only to lose to
the Philadelphia Eagles—dramatically bringing our story to life. Winning a Super Bowl is expected
to increase expected jersey demand several fold: Reaping the profit from being able to meet such a
demand peak requires capacity rather than inventory. We calculate the justified cost premium arising
from a possible Super Bowl win in Section 5.

Our objective in this section is to consider jumps that are less spectacular, such as occur during
the season when teams perform above or below average or when players are traded. The probability
of a jump occurring over a given relative lead time is captured by a Poisson process with jump
intensity A, following standard practice in quantitative finance (Merton 1976). For an order placed
at time t € [0,1] where demand will be known at time ¢ = 1, the probability of a jump occurring is
1 — e =8 For an order placed at time ¢t = 0—representing a full relative lead time—and a jump
intensity of A = 0.2 the probability of a jump occurring at some point is 1 — e~ %2 = (0.18. If the order

can be postponed until t = 0.4, the probability of a jump occurring between when the order is placed



and when demand is observed is reduced to 0.11. We refer the reader to Appendices A and B for a
full description of the mathematical formulation of the general model.

The results of our analysis are shown in Figure 2. The selling price for a blank jersey is $21.60.%
The residual value for a blank jersey—one that has not yet been printed with a player’s name—
left over after the season is $8.46. The cost of purchasing a blank jersey from an offshore contract
manufacturer is $9.50. These values yield a critical fractile of 92.1%, which corresponds to a fill rate
of 98.8% if log demand is normally distributed (de Treville et al. 2014a).

The bottom curve in Figure 2 shows the justified cost premium in the absence of jumps. We
calibrate the volatility parameter by fitting a lognormal density to the demand data given in the case,
assuming that the demand variation captured in case data has emerged from a constant instantaneous-
volatility process. This yields a volatility parameter o of around 0.22. We make the simplifying
assumption that the demand uncertainty observed in the published demand data arises from volatility
rather than jumps. Although the case describes the kinds of jumps that are typically experienced in
the industry, no jumps are mentioned with respect to published data concerning the New England
Patriots. If this assumption is incorrect and the demand uncertainty in the published data does
arise to some extent from jumps, then model parameters should be adjusted to reduce the constant
volatility parameter and increase the expected jump impact. The cost premium worth paying to
eliminate demand-volatility exposure for these parameter values is less than 6%.

To this constant-volatility process we add jumps, following the qualitative description of jumps
given in the published company information. Jumps increase demand uncertainty, so push up the cost-
premium frontier. We consider three scenarios designed to have the same overall demand uncertainty:
1) jumps that are expected to increase expected demand when they occur, 2) jumps that are expected
to reduce expected demand when they occur, and 3) demand uncertainty modeled as though coming

from a constant-volatility process.

8The player name could be added by the Asian contract manufacturer, or the blank jersey could be printed locally.
We are only considering the demand-risk exposure for blank jerseys, and have adjusted the selling price accordingly:
The published data gives the selling price for a printed jersey as $24.00. We remove the cost of local printing of $2.40
to obtain our estimate of the unit price for a blank jersey of $21.60.
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Figure 2: IMPACT OF JUMPS ON THE COST-PREMIUM FRONTIER

We set the selling price for a jersey to $21.60, the unit cost to $9.50, and the unit residual value to $8.46, yielding a
critical fractile of 92.1%. The constant instantaneous volatility o is set to 0.22, the jump intensity A to 0.2, and & to
0.43 for the modified constant-volatility model. The bottom curve shows the cost-premium frontier arising solely from
constant volatility. Adding a jump to a constant-volatility process pushes up the cost-premium frontier because of the
increase in demand uncertainty exposure. Positive jumps—shown in the top curve—are produced by a process Y; that
follows a lognormal distribution with parameters 7 = 0 and ¢ = 0.83, so that a median jump leaves median demand
unchanged, and the expected impact of a jump that occurs is E(Y;) = 1.4. The second curve from the top shows the
cost-premium frontier with the same demand uncertainty as under positive jumps (shown in the top curve) but
coming instead from a constant-volatility process. The third curve from the top shows the cost-premium frontier
arising from negative jumps, where the expected impact of a jump is a 40% reduction in median demand, in contrast
to the 40% increase represented in the top curve. The negative jump process follows a lognormal distribution with

7 = —0.64 and ¢ = 0.51, which parameters were chosen by trial and error so that the negative jump curve represents

the same demand uncertainty as the curves with the positive jump and the modified model.

Again following standard practice in quantitative finance we assume that the jump follows a
lognormal distribution (Merton 1976). We have programmed the model into a decision tool in R that

is available at https://r.erim.eur.nl/r-apps/bicer/ so that interested readers can test their own
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parameter values. We begin by considering the case where the location parameter is 0. This yields
a median jump size of 1, so that a jump is equally likely to increase or decrease median demand.
The result is shown in Figure 2 in the top curve, which describes a jump that is expected to increase
median demand by 40%, which corresponds to a jump volatility of 0.83.° For these parameter values
the cost premium worth paying to eliminate demand uncertainty exceeds 15%.

Our next question is how the estimate of the justified cost premium would differ were we to correctly
estimate the amount of demand uncertainty implied by the combination of constant volatility and the
jump expected to increase median demand by 40% when it occurs, but incorrectly model it as coming
from a constant-volatility process. Would this be close enough, or does the difference justify explicitly
considering the two forecast-evolution processes? To answer this question we simulate demand values
from the jump demand process and fit a lognormal distribution, which has a volatility of ¢ = 0.43: A
decision maker who interprets demand uncertainty from jumps as coming from a constant-volatility
process will base her analysis on a volatility parameter of 0.43. The result is shown in the second
curve from the top in Figure 2. If demand uncertainty from jumps is taken into consideration but
treated as coming from a constant-volatility process, the cost premium worth paying drops from 15%
to around 10%. This simple illustration demonstrates the potential impact of correctly specifying the
forecast-evolution process on the production-location decision: A 15% cost premium might suffice to
make local production of blank jerseys feasible, but 10% might fall short.

Now let’s consider a jump that is expected to reduce rather than increase demand by 40%.'° The
result is shown in the second curve from the bottom in Figure 2. The cost premium worth paying to
eliminate demand uncertainty drops to around 7%, considerably below that for either positive jumps or
the same demand uncertainty coming from a constant instantaneous process. The constant-volatility

approximation thus overestimates the justified cost premium for negative jumps and underestimates

9The mean of a lognormal density with location parameter 7 and scale parameter < is e™+<*/2_ To consider a jump

that increases median demand by 40%, we set log(1.4) = 7 + 02/2. In Figure 2 we assume that a median jump does
not change median demand, that is, the median jump size is 1 and 7 = 0. This allows us to solve for ¢ = 0.83.

10We hold total demand uncertainty constant at & = 0.43. The expected jump size—reducing median demand by
40%-is 0.6. We used trial and error to find values of 7 and ¢ such that & = 0.43 and log(0.6) = 7 +¢%/2, which yielded
7 = —0.64 and ¢ = 0.51.
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it for positive jumps. This insight has the intriguing managerial implication that managers should
be more willing to invest in reducing decision lead time in the face of positive than negative jumps.
We have shared this result with several managers, all of whom have found it counterintuitive and
contrary to how they manage risk. The reaction across the board has been that these managers find
more worrisome—thus would be willing to pay a higher cost premium to avoid—jumps that reduce
median demand by 40% when they occur than those that instead increase median demand by the
same amount.

We lack an explicit form for the demand density arising from the jump-diffusion model. We can,
however, use asymptotic analysis to gain initial understanding of how the cost-premium frontier differs
when estimated under the modified rather than the jump model. For very small values of A\, 7, and
¢ we can approximate the density for the jump model using an Edgeworth expansion. Although the
parameter values for which the Edgeworth series provides a reasonable approximation are much smaller
than what we observe in practice, this asymptotic analysis allows us to formulate Propositions 1-3.
These propositions are proved in Appendix A for the values for which the Edgeworth approximation
holds. We then use numerical analysis to demonstrate that the propositions continue to hold for

parameter values commonly encountered in a realistic supply-chain setting.

Proposition 1. The cost premium worth paying to reduce decision lead time will be underestimated
(overestimated) when demand uncertainty is approzimated by a constant-volatility model and true
demand uncertainty includes jumps that increase (decrease) the skewness of the marginal demand
density.

Proposition 2. The skewness of the marginal demand density of the jump model increases in the
median jump e€”. For T < 0 the resulting decrease in skewness offsets the increase resulting from jump
volatility, and may result in the skewness of the marginal demand density of the jump model being
lower than that of the constant-volatility approximation.

Proposition 3. The skewness of the marginal demand density of the jump model increases in the
gump volatility ¢ both absolutely and relative to the constant-volatility approximation for T > 0 as long
as jumps are relatively infrequent.

The residual value for a blank jersey not sold during the demand period is described as 89% of the
acquisition cost, which results in the relatively high target service level of 92%. Even though the right

tail of the marginal demand density for the full decision lead time under positive jumps is heavy, only
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8% of the density lies to the right of what the order quantity should cover. A lower residual value
reduces the critical fractile. In Figure 3 we vary the residual value from 0% to 50% to (the actual)
89% to 99% of acquisition cost and derive the Cost-Premium Frontier assuming positive jumps. From
the figure we observe that as the critical fractile decreases with the reduction in residual value, the
cost premium worth paying to reduce the decision lead time substantially increases.

We next consider the impact of changes in the critical fractile due to changes in price or cost rather
than residual value. In Figure 4 we explore how the justified cost premium to eliminate decision lead
time varies as the critical fractile increases from 0.5 to 1.0 when a jump is expected to increase median
demand by 40%. In each curve, we vary one element of the critical fractile and hold the other two
constant: price (solid curve), cost (dashed curve), and residual value (dashed and dotted curve). The
solid curve shows that the justified cost premium for a full lead-time reduction increases when the
critical fractile increases because of an increase in price. The dashed line shows that the justified cost
premium for an elimination of decision lead time first increases, then decreases, as the critical fractile
increases because of a reduction in cost. The dashed and dotted curve shows that the justified cost
premium for an elimination of decision lead time decreases as the critical fractile increases because of

an increase in residual value.

3.2. Estimating general-model parameter values from time-series data

In this section, we fit the general model to time-series data. We had access to point-of-sale data
for 4000 products from a large supermarket retail chain, from which we chose two products at random
and considered daily sales over 100 days. Product 1 had four standardized residuals that were over
three standard deviations from zero (4%). Product 2 had no standardized residuals more than three
standard deviations from zero, but four that were at least 2.52 standard deviations from zero: The
decision maker would need to use judgment in deciding whether these demand values arose from white
noise in a constant-volatility process or indicated a jump. For both products, we fit a SARIMA model
to the demand data, replaced the four outliers (potential outliers) by SARIMA forecast values, then
used the outliers to estimate the parameters of a jump model. The next step was to compare the

Cost-Premium Frontier under the two assumptions with critical fractiles of 99.5% and 70%. For both
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Figure 3: IMPACT OF RESIDUAL VALUE ON THE COST-PREMIUM FRONTIER

In this figure, we explore the impact of residual value on the justified cost premium assuming positive jumps (the top
curve that we saw in Figure 2, the same relationship holds for negative jumps). We hold constant the original Reebok
parameter values for price and cost, and vary the residual value of an unsold unit of product as a percent of
acquisition cost from 0 to 99%. The second curve from the bottom corresponds to the top curve in Figure 2, with the
actual residual value 89% of acquisition cost. As the residual value decreases, the cost premium worth paying to

reduce the decision lead time increases.

products, the Cost-Premium Frontier was considerably higher when outliers were treated as jumps
rather than white noise when the critical fractile was very high. When the critical fractile was a
more modest 70%, counting outliers as jumps had little impact on the frontier. In fact, because the
revised SARIMA model provided a more accurate forecast for Product 1, the justified cost premium
decreased slightly for the 70% critical fractile. The detailed calculations are provided in Appendix F.

Analysis of these two products suggests that when the service level is high, the value of respon-
siveness depends critically on how demand values that approach three-standard-deviation limits are

interpreted. We thus propose:
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Figure 4: IMPACT OF CRITICAL FRACTILE ON THE JUSTIFIED COST PREMIUM

The justified cost premium for a full elimination of decision lead time varies both in the critical fractile, and in the
type of mismatch risk that dominates in the critical-fractile calculation. This figure shows the justified cost premium
for a complete elimination of decision lead time for a jump that is expected to increase median demand by 40%. In
each curve we hold constant two parameter values and vary the third to generate critical fractiles that vary from 0.5
to 1.0. The solid curve represents the case where price is varied between $10.54 and $100, and the unit cost of
purchasing from the long-lead-time supplier and the residual value are fixed: The justified cost premium increases
with the critical fractile. The dashed curve represents the case where the unit cost of purchasing from the
long-lead-time supplier is varied between $8.50 and $15.03, and the price and residual value are fixed: The justified
cost premium increases then decreases with the critical fractile. The dashed-and-dotted curve represents the case
where the residual value is varied between -$2.60 and $9.40, and the price and the unit cost of purchasing from a
long-lead-time supplier are fixed: The justified cost premium decreases with the critical fractile. Note that reducing
the critical fractile to 0.5 via the residual value implies a negative residual value, such that the company must pay to

eliminate leftover inventory.

Proposition 4. For very high service levels, the threshold used to define outliers substantially impacts
the premium worth paying to reduce the decision lead time.

Our approach contrasts with more traditional treatment of outliers in demand data. That outliers
arising from demand shocks can lead to an overstatement of underlying volatility is well understood.

In demand forecasting, techniques such as winsorization have historically been used in practice to
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avoid such overestimation of volatility. Winsorization involves defining some maximum percentile
(e.g., 95%), then replacing the demand value by the value at that threshold. Such approaches focus
on the body of the marginal demand density, and do not make use of information provided by outliers.
Our results suggest that—especially for high critical fractiles—the information provided by outliers

may be of value.

4. Special case 1: The demand-loss model

In this section we develop the first special case of a jump-diffusion model in which there is a risk
that demand would fall to zero. We continue our analysis of the Reebok case and explore the situation
where a team suddenly changes its jersey, reducing the value of stock of the old jersey held by Reebok
to zero.!!

We now apply our model to Reebok’s risk of jerseys losing their value following a jersey change.
As in the previous section, demand volatility in the absence of jumps is ¢ = 0.22, the price received
for the blank jersey is $21.60, the cost for production in Asia is $9.50, and the residual value is $8.46.

There are 32 NFL teams. Uniform changes are permitted every 5 years, suggesting a maximum
jump intensity of 20%. In recent years, one to three teams have changed their uniform each year
(http://goo.gl/GbRvfk), suggesting that jump intensities of 3% to 10% are worth incorporating into
analysis of demand uncertainty. We vary the probability of a change of jersey A from 0% (no risk of
a jersey change, constant instantaneous volatility only) to 20%.

Figure 5 illustrates how the cost premium that Reebok should be willing to pay to avoid demand
certainty increases in the probability of a sudden change in team jersey. Here, we are not comparing
the jump model to a modified model as we did in the general case. Rather, we are demonstrating
the understatement of the justified cost premium for reducing decision lead time that occurs when
the risk of a complete loss of demand is not included in decision making. As the probability increases

to 10% or 20%, the cost premium justified by the mismatch cost increases enough to make local

HThe theoretical results developed in this section have been applied to tender-loss risk (as described in de Treville
et al. 2014a, which cites an early version of this paper).
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Figure 5: IMPACT OF THE RISK OF COMPLETE DEMAND LOSS ON THE VALUE OF LEAD-TIME REDUCTION

The unit price received for a blank jersey is $21.60, the unit cost to $9.50, and the unit residual value is $8.46. The
constant instantaneous volatility without jumps o = 0.22. We vary A from 0% to 20%.

production competitive. The R tool that is available at https://r.erim.eur.nl/r-apps/bicer/

permits exploration of different jump intensity and constant-volatility combinations.

5. Special case 2: Making a single adjustment to the forecast

In this section, we consider a single adjustment to the forecast, such as occurs when early sales
are used to update a demand forecast, as discussed by authors such as Fisher and Raman (1996) in
considering how to allocate production between reactive and speculative capacity, and exemplified in
the classic Sport Obermeyer case (Fisher and Raman 1996, Hammond and Raman 1995). De Treville
et al. (2014b) extended analysis of the Sport Obermeyer case to consider lead time as a decision vari-

able, modeling the observation of early sales either as a reduction of stochasticity in the instantaneous
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volatility, or as a one-time reduction in the right-tail heaviness of the marginal demand density. Here
we consider a third alternative, where median demand is adjusted to take into consideration the up-
dated information by being multiplied by a factor that follows an independent lognormal distribution
Y with parameters 7 and ¢. The median value of the factor is e” and the expected value is e /2.
Demand uncertainty is thus composed of 1) the constant instantaneous volatility ¢ that holds after
the forecast is adjusted to take early sales into consideration, 2) the median €™ of the factor by which
the forecast is multiplied based on the early sales, and 3) the volatility < of the factor.

This special case of the model allows us to estimate the justified cost premium taking into con-
sideration the possibility that a team would win the Super Bowl. Figure 6 shows the cost premium
that Reebok should be willing to pay to postpone their production commitment to incorporate the
demand uncertainty arising from a possible Super-Bowl win. The dashed line shows the calculation
assuming that all demand uncertainty comes from a constant-volatility model, and the solid line sep-
arates out the demand uncertainty coming from the Super Bowl. As the Super Bowl date approaches,
some uncertainty will be resolved, but—as was observed in 2017—much remains until the last second
of the game. Therefore, we will simplify the model to combine a constant-volatility process with a
single update at a relative lead time of 0.05, just before the end of the demand period. The constant
volatility is again 22%, the price remains at $21.60, the long-lead-time unit cost at $9.50, and the unit
residual value at $8.46.

We follow betting markets in assigning the probability of the New England Patriots winning the
Super Bowl at 10% at the time when an order would need to be placed to the distant supplier. If a
Super Bowl win is expected to increase demand by 200% and the probability of winning is estimated

to be 10%, then the possible jump increases expected demand by 20%. The standard deviation

changes by a factor of 1/(0.1 x 32 + 0.9 x 12) — 1.22 = 0.6, so the coefficient of variation is 0.5, which
corresponds to a volatility of /log(0.52 + 1) = 0.47, justifying a cost premium of between 12 and
15%. The available R tool that lets readers experiment with their own parameter values is available
at https://r.erim.eur.nl/r-apps/bicer/.

In our experience, managers are typically not able to estimate what the impact of a Super-Bowl
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win will be on demand, but are able to answer questions like, “Do you expect that a Super-Bowl win
would at least double demand?” The model makes it possible to identify the demand impact that
suffices to make a given cost premium required for local responsive production worth paying, making

it easier for managers to quantify their intuition.
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Figure 6: THE JUSTIFIED COST PREMIUM GIVEN A POSSIBLE SUPER-BOWL WIN

The figure compares the cost differential worth paying to postpone the production decision enough to observe who wins
the Super Bowl under the jump and constant-volatility assumptions. The probability of winning the Super Bowl at the
time that an offshore order would need to be placed is set to 10%, and demand for jerseys is expected to triple for the
winning team. If demand uncertainty is assumed to come from a constant-volatility process, then the cost premium
worth paying to eliminate decision lead time is less than 6%. When correctly modeled as coming from a jump process,
the cost premium worth paying to reduce decision lead time enough to know who won the Super Bowl more than
doubles, but the premium to reduce decision lead time less than what is required to observe the Super Bowl is close to
Zero.

6. Conclusion

Although it is not traditional to include forecast evolution in calculating the supply-demand mis-

match cost, research is increasingly demonstrating the importance of including this dynamic in supply-
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chain analysis. We contribute to this stream of research by exploring the impact of jumps on the cost
premium worth paying to reduce decision lead time. We ask: If forecast uncertainty evolves according
to a jump process but we make the simplifying assumption that the forecast evolves according to a
constant volatility, how much will our decision be affected? Option pricing has been used for many
decades in finance: Although the constant-volatility assumption is often violated and tools have been
developed that allow an accurate portrayal of the evolution process, results from models that assume
a constant volatility are often good enough for practical purposes. In the supply-chain domain, does
the same hold? Is correct incorporation of the forecast-evolution process likely to change key decisions
about how much or where to produce, or whether to buffer with inventory or capacity?

We fit our general model to two data sets, first to published demand data for Reebok NFL replica
jerseys, then to time-series data from a supermarket chain. We then model and explore using the
Reebok data the risk that demand would drop to zero at some point during the decision lead time,
then a one-time adjustment to median demand at an expected point in time. The empirical analysis
demonstrates that consideration of jumps has a substantial impact on how much the company should
be willing to invest in responsiveness when a jump is expected to increase median demand, but little
impact when a jump is expected to reduce median demand. This in turn has far-reaching implications
for the production-location decision.

The field of operations and supply-chain management has access to a wide variety of analytical
models. Many of these models have the potential to be useful to decision makers, but are not used
because implementation is left to the users. And, many of these models have the potential to lead
decision makers into error: It is only in observing what happens when we apply these models to a
real problem that we see potential inconsistencies. Neglecting model implementation in research thus
results in models that are less used and useful than they could be, and a sharper-than-needed divide
between practice and theory. Our primary contribution lies neither in the analytical model nor in
its ability to generalize empirically, but rather in the interaction between model development and
its impact on decision making in a typical application. For this reason, we focus in the body of the

paper on the research question that lies at this intersection: Does the valuation of responsiveness
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change enough when using a model that accurately captures jumps in the forecast-evolution process
to compensate for increased model complexity? The model that we have developed to address that
question is made available for users through an online calculator at https://r.erim.eur.nl/r-apps/
bicer/. Model development is described in detail in the appendices, but is not given center stage as
would be typical were the model to be the primary contribution. Similarly, although the two cases
that we examine are realistic, we make no claims about the prevalence of jumps: Our focus is on how
decision making changes when our model is used in an empirical setting where demand jumps are

considered to be possible.

Appendix A Development of the general model

The general model combines a compound Poisson and constant-volatility process to explore how
jumps affect the mismatch cost, following the jump-diffusion option-pricing model developed by Mer-
ton (1976). We normalize lead time using the longest lead time under consideration: Actual demand
is realized at t = 1 and the supplier with the longest decision lead time requires an order-quantity
decision at relative lead time ¢ = 0.

We normalize the demand forecast using median demand. The instantaneous volatility (assumed
here to be constant) is denoted by o. The standard Brownian motion process is denoted by Z;. The
jump intensity A is captured by a Poisson process N;. Consistent with jump models from quantitative
finance (Merton 1976), we assume the jump Y; to follow a lognormal distribution with parameters
(1,¢2). A jump at time ¢ changes the demand forecast from D; to D,Y;, where E(Y;) = e75°/2, We
offset the impact of jumps on the drift rate by adding the term —\(1 — E(Y;)) = —A(e7"°/2 — 1).

Demand follows the process:

dD, = —\(e™*/* —1)Dydt + 0 D,dZ, + (Y; — 1) DydN,, (1)
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Applying Ito’s lemma, the log-demand process can be formulated as follows:

2 1
d(log(Dy)) = <—>\(eT+< 1) — §a2> dt + 0dZ; + log(Y;)d Ny,

Ny

log(D;) = log(Dy) + (—A(ef+<2/2 —1)— 502) t+0Z+ Y log(Yy). (2)

i=1

The demand processes Dy and D; have the same expected demand (E(D{) = E(D7)) and the
same instantaneous volatility: Dy evolves according to a constant-volatility process, and D adds a

jump-diffusion process to Dy

dD? = oD?dZ, (3)

dD] = —\kD]dt+oD]dZ, + (Y, —1)D]dN,. (4)

We simulate demand values from the jump process and fit a lognormal density to those values,

defining a modified process DM
dDM = &DMdZ, (5)

with modified volatility & > ¢ and where D and D{ have the same mean and variance.

We lack an explicit form for the demand density f(.) arising from the general jump-diffusion model
given in Equation (4). When A\? = 0 and 7 and ¢ are small, f(.) is close enough to a lognormal that it
can be approximated using an Edgeworth expansion, as described in Jarrow and Rudd (1982). This
makes it possible to prove Propositions 1 to 3 for the Edgeworth case. Numerical analysis using larger
values suggests that the same relationships continue to hold.

Proposition 1: The cost premium worth paying to reduce decision lead time will be underes-
timated (overestimated) when demand uncertainty is approximated by a constant-volatility model
and true demand uncertainty includes jumps that increase (decrease) the skewness of the marginal

demand density.
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Proof.

where (D) is a lognormal density used as the approximating density of demand, and o(D?) is the
third-order approximation error (Jarrow and Rudd 1982). The term r;(h), the i’th cumulant for a

given probability distribution h € {f, ¢}, is given by:

m) = [ Dh(D)YD = E(D), (7)
) = (D —E(D))*h(D)dD. ®)
) = [ (D —E(D))*h(D)dD. (9)

The expected mismatch cost at time ¢ is

MC(Q) = (p— OE(D) - Vi(Q),
~ (-9 [ (D-@fD)D + (e~ 5)Q-ED)). (10)

Q

where V;(Q) is given by Equation (28).
Combining Equations (6) and (10), the third-order approximation of the mismatch cost is formu-

lated as

Ma@) = M0¢<Q>+e-f<l—t><p—s>{ /Q T gl =) PdD),,
= k3(f) — k3 B3p(D 5
_/Q D — ) <>3! (¢)) awzga)dD}“(Q \ "

where MCy(Q) is the true value of the mismatch cost, and MC,(Q) the mismatch-cost value based
on the assumption that demand has a lognormal distribution. As D; and DM are constructed to have

the same variance, then ka(f) = k2(), and the second term drops out of the equation.
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Jarrow and Rudd (1982) showed that for a lognormal distribution:

) (12)

h (D)
/Q (D=5 4P = g5

Y

2=Q

Combining Equations (11) and (12) we obtain:

MCHQ) = MC,(Q)+e 0 (p— S){ ~ (ks(S) ; K3()) &g(xx)

mQ} +0(Q%). (13)

From Equation (13) we see that the mismatch cost from the jump model exceeds that of the

modified model when:

90(Q)
oD, < 0, and
r3(f) > k(o). (15)

The first derivative of a lognormal density with parameters n and v is

dp(z) B 1 G—W ( _log(@) —n 1) so that (16)
" ’

8x r=Q B Q2 \/W
(17)

Ip(Q) n—y?
oD, <0 & @Q>e¢ )

As v =7, the first derivative of the lognormal density is negative for an order quantity ) = e
times median demand, corresponding to a service level of ®(—7). As this is below median demand,
we can infer that the first condition holds whenever an effort is made to match supply to demand.

The second condition (15) states that the mismatch cost is higher for the jump model when the
third cumulant—the skewness—is greater for the jump than the lognormal model (k3(f) > k(p)),
thus completing the proof based on asymptotic analysis. m

That making a constant-volatility assumption—using the modified model-—understates the justi-
fied cost premium for positive jumps and understates it for negative jumps stems from the impact of

the two jump types on skewness. A positive jump increases the skewness of the demand density, and
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a negative jump decreases it. More generally, the skewness of the demand density is increasing in 7.
We thus propose:

Proposition 2: The skewness of the marginal demand density of the jump model increases in
the median jump e”. For 7 < 0 the resulting decrease in skewness offsets the increase resulting from
jump volatility, and may result in the skewness of the marginal demand density of the jump model
being lower than that of the modified model.

Proof. The second and third cumulants of the modified model are formulated as:

Ra(plT) = 7 — 1, (18)

r3lolr) = (7 +2)(7 —1)% (19)

The marginal density for the jump model has the same variance as that of the modified model such

that:

ra(lT) = ra(fl7), (20)

2 2

e = AT (e — 1) e
Integrating Equation (21) into Equation (19) yields:
Ra(plr) = (7 +2)(e7 — 1)2 + 33X (X — 1)(e — 1) (22)

for A2 ~ 0. The relative skewness equates to:

ka(fIT) — ka(plr) = AT (e 1 2) (e —1)2 = 3N (2 —1)(e” — 1), (23)

A ) (ef+<2/2(e<2 1 2)(e —1) — 3(e* — 1)). (24)

For 7 < 0, the first part in the parenthesis of Equation (24) reduces to zero, making the relative

skewness negative. This result together with Equation (26) completes the proof of Proposition 2. m
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We use numerical analysis to explore whether Propositions 1 and 2—proved by asymptotic analysis—
continue to hold for parameter values like those that we observe in practice. In Table 1 we use the
cost parameters from the Reebok case (p = $21.60, ¢ = $9.50, s = $8.46, yielding a critical fractile of
92.1%). The first nine runs assume a jump intensity of 0.05, rising to 0.2 for the second nine runs.
We vary the jump volatility ¢ from 0.05 to 0.8. From Table 1 we see that the results continue to
hold for the parameter values tested. The modified model overstates the true justified cost premium
C P, for negative jumps, and understates it for positive jumps. From these results, it is also useful
to observe that the Edgeworth approximation is reasonably accurate for small values of A\ and ¢, but
is inaccurate as ¢ increases even though A is limited to 0.05. In finance the Edgeworth approximation
is often close enough for use in estimation, but our numerical analysis demonstrates that this does

not hold for parameter values that are typical in the supply-chain context.

Run | o A T S EY] -1 | CPyue | CPedgeworth | T CP
1] 0.22 | 0.05 | -0.64 | 0.05 | -0.472 5.52% 5.22% 0.2602 | 6.33%
210221005 ]|-064 | 0.1 -0471 5.52% 5.22% 0.2638 | 6.44%
31022005 ]-064]02 |-0.462 551% | 5.24% 0.2664 | 6.51%
41 0.22 | 0.05 | -0.64 | 0.3 -0.449 5.51% 5.28% 0.2707 | 6.63%
510221005 |-064 |04 |-0.429 5.52% | 5.37% 0.2796 | 6.89%
6| 022|005 |-064 |05 |-0.403 557% | 5.58% 0.2834 | 7.00%
71022 0.05|-0.64 |06 |-0.369 5.67% | 6.04% 0.2932 | 7.29%
810221 0.05|-0.64 | 0.7 -0.326 5.84% 7.15% 0.3046 | 7.63%
91022 0.05]-064]|08 |-0.274 6.08% | 9.91% 0.3177 | 8.03%
10 { 0.22 | 0.05 | O 0.05 | 0.0013 5.22% 5.22% 0.2202 | 5.22%
11 | 0.22 | 0.05 | 0 0.1 | 0.005 5.25% | 5.23% 0.2205 | 5.23%
12 { 0.22 | 0.05 | O 0.2 0.0202 5.36% 5.31% 0.2243 | 5.30%
13 1022|0050 0.3 | 0.046 5.56% | 5.50% 0.2298 | 5.48%
14 |1 0.22 | 0.05 | 0 0.4 0.0833 5.86% 5.96% 0.2388 | 5.73%
151022 | 0.05 |0 0.5 | 0.1331 6.24% | 7.10% 0.2475 | 5.98%
16 | 0.22 | 0.05 | O 0.6 0.1972 6.70% 9.87% 0.2576 | 6.26%
17 1022 | 0.05 |0 0.7 | 0.2776 7.27% | 16.80% 0.2695 | 6.60%
18 {1 0.22 | 0.05 | O 0.8 0.3771 7.94% 34.60% 0.2834 | 7.00%

Table 1: The actual justified cost premium is compared to the estimated justified cost premium first using the Edgeworth
approximation and then using the modified model. The price, cost, and salvage values are taken from the Reebok case.
We hold A constant at 0.05, and o constant at 0.22. The first nine lines of the table represent negative jumps with
7 = —0.64, and the bottom nine lines represent positive jumps with 7 = 0. The results are consistent with Propositions
1 and 2: The justified cost premium is understated by the modified model for positive jumps, and overstated by the
modified model for negative jumps. The results in the table further illustrate that the Edgeworth approximation does
not provide a good estimate of the justified cost premium for larger values of ¢, even though A is relatively small in this
example.

When jumps are relatively infrequent (A < 0.3), increases in ¢ lead to increases both absolutely
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and relative to the modified model. As jumps become more frequent (A > 0.5), they impact the body
of the demand density as well as the tail, so their impact is better captured by the modified model.
We thus propose:

Proposition 3: The skewness of the marginal demand density of the jump model increases in
the jump volatility ¢—absolutely and relative to the modified model—for 7 > 0 as long as the jump
intensity is such that jumps are relatively infrequent.

Proof. The second and third cumulants for the jump-diffusion model are formulated as:

ra(f]7) = AT (e — 1)+ 7 — 1, (25)

Rs(fIT) = (7 +2)(e” = 1)2 + AP (e ) (e — 1)2 (26)

Equation (26) completes the proof of Proposition 3. m

For our numerical analysis of Proposition 3, we use a higher critical fractile (p = $100.00, ¢ = $1.00,
and s = $0.00 to yield a critical fractile of 99%) to better explore the region under the right tail.
The results are shown in Table 2. This table only considers positive jumps, as negative jumps reduce
skewness. We have removed the column with the Edgeworth approximation because our focus here
is on parameters values that go outside of its useful range. We have added a column with the ratio
of the true justified cost premium to that estimated using the modified model. The first nine runs
have a jump intensity A = 0.05, increasing to 0.2 and then 0.5 for the next two sets of nine runs.
As predicted by our asymptotic analysis, the ratio of the true justified cost premium to that of the
modified model increases in ¢ for all values of A. As we increase A from 0.2 to 0.5, we see that %
decreases. To permit further exploration of how skewness changes in jump volatility—absolutely and
relative to the skewness of the modified model—for given constant volatility and jump intensity, we

have created an R tool that is available at https://goo.gl/xkIVS8!2.

12In this tool 7 is set to 0, so that a median jump leaves median demand unchanged. We recall from Proposition 2
that skewness increases in 7, holding all else constant.
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Run | o A T g E[Y] -1 | CPiye o CP %
1102200501 0.05]| 0.0013 76.00% 0.2202 | 75.86% 1.002
210220050 0.1 0.005 76.49% 0.2205 | 75.99% 1.006
31022100501 0.2 0.0202 79.65% 0.2243 | 76.20% 1.045
4102210050103 0.046 87.84% 0.2298 | 79.07% 1.11
510221005004 0.0833 102.60% | 0.2388 | 84.19% 1.22
610221005 |0]|0.5 0.1331 124.54% | 0.2475 | 88.16% 1.41
710221005 (0] 0.6 0.1972 154.02% | 0.2576 | 92.85% 1.66
810221005 |01|0.7 0.2776 191.61% | 0.2695 | 98.50% 1.95
91022]005]0]0.8 0.3771 238.19% | 0.2834 | 105.29% | 2.26

10 | 0.22 | 0.2 0 | 0.05 | 0.0013 76.39% 0.221 76.31% 1.001
11 | 0.22 | 0.2 010.1 0.005 78.31% 0.225 78.05% 1.003
12 1 0.22 | 0.2 010.2 0.0202 89.86% 0.237 83.38% 1.078
13 |1 0.22 | 0.2 0103 0.046 116.19% | 0.257 92.57% 1.25
14 | 0.22 | 0.2 004 0.0833 157.83% | 0.283 105.09% | 1.50
15| 0.22 | 0.2 01 0.5 0.1331 213.42% | 0.314 120.92% | 1.76
16 | 0.22 | 0.2 01 0.6 0.1972 283.85% | 0.347 138.88% | 2.04
17 1 0.22 | 0.2 0| 0.7 0.2776 372.07% | 0.382 159.27% | 2.34
18 1 0.22 | 0.2 0108 0.3771 482.18% | 0.416 180.44% | 2.67
19 | 0.22 | 0.5 0 | 0.05 | 0.0013 77.17% 0.221 76.30% 1.011
20 | 0.22 | 0.5 0101 0.005 81.84% 0.234 82.03% 0.997
21 |1 0.22 | 0.5 01 0.2 0.0202 106.81% | 0.261 94.45% 1.13
22 1 0.22 | 0.5 0103 0.046 154.36% | 0.301 114.16% | 1.35
23 1 0.22 | 0.5 0|04 0.0833 222.24% | 0.350 140.58% | 1.58
24 1 0.22 | 0.5 0105 0.1331 312.51% | 0.401 170.93% | 1.83
25 1 0.22 | 0.5 01 0.6 0.1972 430.42% | 0.475 220.59% | 1.95
26 | 0.22 | 0.5 01 0.7 0.2776 583.09% | 0.551 279.20% | 2.08
27 1 0.22 | 0.5 0108 0.3771 779.47% | 0.613 333.24% | 2.34

Table 2: The actual justified cost premium is compared to the estimated justified cost premium using the modified
model. The price, cost, and salvage values are p = $100, ¢ = $1, and s = $0 to yield a critical fractile of 99%. We hold
7 constant at 0, and o constant at 0.22. The first nine lines of the table represent low jump intensity with A = 0.05; the
next nine lines represent moderate jump intensity with A = 0.2; and the last nine lines represent high jump intensity
with A = 0.5. The results are consistent with Proposition 3. The actual justified cost premium relative to the modified
model increases in jump volatility.

Appendix B Derivation of the newsvendor profit-maximizing order quantity and ex-

pected profit by Fourier transform

Because the demand density arising from the general model is too complex to be presented in
an explicit form, in this appendix we demonstrate the use of a Fourier transform to calculate the
newsvendor profit-maximizing order quantity (e.g., Carr and Madan 1999, Lee 2004, Bakshi and
Madan 2000). The Fourier transform is widely used in finance to derive option-pricing formulas when
asset prices follow complex, non-Gaussian processes. Applying the Fourier transform, an integral over

a probability distribution is first transformed from probability space to Fourier space. The explicit
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form of the integral is then obtained by the inverse Fourier theorem.

Let D; be a random variable denoting demand at time ¢, p the retail price of the product per unit,

¢ the cost of the product per unit, and s the salvage value per unit. We denote by f(.) the probability

density function of demand. We normalize the total time length in that demand forecasts evolve over

t € [0,1] and actual demand is realized at time t = 1. The newsvendor profit function for an order

quantity @ is given by:
m(D1,Q) = (p—c)Q—(p—s)Emax(Q — Dy,0)].
The expected profit for the demand period is
Q
V@ = 6-9Q- (-5 [ Q- DFDID)D.
0

where f(D|Dy) is the density function of demand conditional on D.

We recall that demand follows the process:
dDy = —X(e™*°? = 1)Dydt + 0D, dZ; + (Y; — 1) DydN,,
The log-demand process is then:

: 1
d(log(Dy)) = (—A(w< 2_1)— §a2> dt + odZ, + log(Y;)dN;,

Ny
2 1
log(D,) = log(Dy) + (_)\(e‘r+§ 2_1)— 502) t+oZ; + Zlog(Y;).

=1

We rewrite log(D;) as the sum of four parts by defining &/ = log(Dy), & = (—/\k‘ —

€ =07, and 2 = SN log(V;).

The characteristic function of log(D;) is created from these four parts as follows:

Prog(Dn) (W) = by (W) X dz(w) X dg(w) X Pg(w),
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with

bu(w) = Di, dulw) = #(HIN g () = T gy (w) = MO,

) 2,2
where ¢;(w) is the characteristic function of log(Y;), and ¢g(w) = e(mf 2 )

Theorem 1. If demand forecasts follow a process with a characteristic function ¢(.), the optimal
order quantity QQ* satisfies the equation:

BQ* — e—alog(Q*) /+OO Re efiwlog(Q*) ¢(w — (Oé + 1)7') dw (32)
T 0 —(iw+a+1) ’

where § = ﬁ—:z is the newsvendor critical fractile, Re(.) is an operator that gives the real part of

a complex number, i = \/—1, and « is a damping factor required to permit square integrability as
described in Carr and Madan (1999) (as explained below).

To apply the Fourier transform to the expected net present value of the profit, we rewrite Equation

(28) by change of variables:

q

Vilg) = e (p—c)e? — (p—s)e " / (e — ") f (yilye)dyn, (33)

—0o0

where y; = log(D;), and g = log(Q). Let P(q) denote the integral in Equation (33).

Plg) = / " (et — ) ). (34)

—00

The term P(q) in Equation (34) tends to +o00 as ¢ — 400, thus P(q) is not square-integrable.

Carr and Madan (1999) note that the sufficient condition for square integration is

/ " () dg < . (35)

—00

and suggest to work instead with

p(q) = e*P(q), (36)
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where ov < —1 serves as a damping factor that makes p(q) square integrable.

The Fourier transform of p(q) is:

400 q
blw) = / / (&0 — %) f(yaly)dynda, (37)

o0 —00

¢(w — (o + 1)i)
4+ a—w+iwa+1)’

where ¢(.) is the characteristic function of the random variable y;. Using the inverse Fourier transform,

Equation (34) becomes

e~

+oo
Plg) = / &4 () o, (39)

2m 00

where ¥ (w) is given by Equation (38). Since P(q) is a real number without any imaginary part (Carr

and Madan 1999), Equation (39) can be rewritten as

e

P(q) = - / N Re (e ) (w)) dw = e:q /0 N Re (e (w)) dw. (40)

2 J_

The expected net value of the profit, given by Equation (33), in terms of ¢ = log(Q) becomes

—aq

Vila) = 0ot = (- s)e 00 (4
m

/0 m Re (e7")(w)) dw) : (41)

Equation (41) gives the expected profit function in terms of the characteristic function of demand.

Let ¢* denote the value of ¢ that maximizes V;(q):

qg- = arg max Vi(q) (42)

D p-ager— - 952 o (43)
_ e~od  [Foo g d(w— (a+1)i)

et = - /0 Re (e B Sy ) dw. (44)

The profit-maximizing order quantity for a full lead time is:
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@ _ R R —iwgy ¢(W - (a + 1)Z)
Bre®d = - /0 Re <e ot at D) > dw, (45)

This yields the full-lead-time expected profit assuming a profit-maximizing order quantity:

e~

™

Vilailer) = (=t — o) (S [ Re e ) ), (16)

For lead time T — ¢, we iterate to find the unit cost that yields an equivalent maximum profit:

o = {c[Vilg;le) = Volgglew)} (47)

The cost premium C'P worth paying to obtain the reduced demand-risk exposure resulting from

reducing the lead time from T to T' — t is then:

CP=c¢/cy — 1. (48)

Appendix C Development of the Demand-Loss Model

Demand forecasting here has two components: a jump-to-zero component where demand or sales
is lost, and constant volatility otherwise. We represent the demand-loss process using the stochastic
differential equation given by Equation (49).* The demand forecast at time ¢ is denoted by Dy, o
the instantaneous volatility (assumed to be constant), Z; the standard Brownian motion process, and

N,; a Poisson process with intensity A. We again assume that the supplier with the longest lead time

13This equation is used in the quantitative finance literature to model the default risk of assets (for a complete review
of this jump-to-default model, see Gatheral 2006).
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requires that the order be placed at t = 0, with actual demand realized at t = 1.
th = )\Dtdt + O'DtdZt - Dtht. (49)

The drift rate in Equation (49) is adjusted by adding A to offset the effects of the jumps on the
drift, thereby making the absolute drift rate equal to zero. Under Equation (49), a jump reduces
demand to zero, and its value remains at zero after the jump. If no jump occurs, demand forecasts
follow a geometric Brownian motion with a drift rate of A and an instantaneous volatility of o. The

log-demand process can be formulated as

1
d(log(Dy)) = ()\ - 502) dt + odZ; +1og(0)dNy,

log(Do) + (A= 16®)t+02z, ift<t,
log(Dy) = ( 2 ) (50)

log(0) otherwise,

where ¢ is the time of the first jump. The density function of demand conditional on the demand

forecast at time t can be written as follows:

f(D1|Dy=0) = 4&(Dy), (51)
1— e—A(l—t), D1 —0
f(Di|Dy > 0) = _ (og(Dy)—log(Dy)—(A=0?/2)(1-1))? (52)
e_A(l_t)ée 202(1—t) _D1 > 0
Dio\/(1—t)V2r ’
where 0(D;) is the Dirac delta function:
oo, if D1 = O,
6(Dy) = (53)
0, otherwise.

Equation (51) implies that D; = D, = 0 if a jump occurs between 0 and t. Otherwise, the point
density of demand at D; = 0 is equal to the probability of observing a jump between ¢ and 1. If there

is no jump occurring between ¢ and 1, the value of demand would be larger than 0 (D; > 0), and the
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demand follows a lognormal distribution as given in Equation (52).

Appendix D Development of the Early-Sales Model

We combine the geometric Brownian motion process with a single jump at time tpg as follows:
dD, = (1—e™*?\Dydt + oDydZ; + (Y — 1)Dyd6, (54)

where

O, is a deterministic time, discrete-state process:

1 ift=tgg,
0, = s (55)

0 otherwise.

In Equation (54), we add a drift term with a rate of 1 — e™t*/2 to offset the effect of the jump
on the drift. Demand forecasts now follow a geometric Brownian motion process with a drift rate
of 1 — e™™/2 and an instantaneous volatility of ¢ when ¢t < tgg. At t = tgg, the demand forecast
jumps from D; to et/ 2Dy, and then follows the geometric Brownian motion with the parameters

1 — e™"/2 and 0. The log-demand process can be written as:
T+¢2/2 1 2 2
log(Dy) = log(Dy) + | (1 =€) = oo™ | (1 =t) + 0Zp—py + (7 +/2) p<tpsy,  (56)
where ¢ € [0,1], and 1,.3(t) is an indicator function such that

1 ift < tgs,
Ltctpsy =
0 otherwise.

The distribution of a demand forecast made at time ¢ € [0, 1] and realized at time ¢ = 1 will be

log(D1)|Dy ~ J\/’(log(Dt) +(1- €T+€2/2) —0?/2)(1—1t),0°(1 —t) + §21{t<tEs}>' (57)
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From Equation (57) we can see that the log variance of the conditional distribution of demand before
observing the early sales (i.e., t < tgg) is simply the weighted average of the squared jump and
constant volatilities, and the median is the product of the median under constant volatility times the

expected value of the jump factor.

Appendix E Review of the Cost-Differential Frontier

Here we review the calculation of the cost differential that underlies the constant instantaneous-
volatility version of the Cost-Differential Frontier (de Treville et al. 2014b,a). In its simplest form,
the Cost-Differential Frontier represents evolution of demand forecasts from time ¢ = 0 to t = T by
a geometric Brownian motion. Actual demand is realized at time ¢ = T". The total time period T is
normalized by the longest lead time under consideration, which is equivalent to setting 7' = 1. The
volatility parameter o is then calibrated using the volatility for the full lead time.

Let D; denote the initial demand forecast at time ¢, o the constant instantaneous volatility, u the
rate at which median demand approaches average demand as t approaches 1, and (Z;);>0 a standard

Brownian motion. Then,
th = MDtdt + O'DtdZt. (58)
The demand forecast at time ¢ € [0, 1] follows a lognormal distribution with the following parameters:
log(D1)| Dy ~ N (log(D) + (1 = 0*/2)(1 = 1), 6*(1 = 1)). (59)

The expected value of the newsvendor profit for an order quantity @ is given by:
Q
EIR(QID) = (=)@~ (=5) [ (@ D)f(DiID)Dy (60)
0

where f(:]-) denotes the conditional demand density that follows a lognormal distribution given by

Equation (59) for a geometric Brownian motion process with a drift of y and a volatility of 0. The
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optimal value of () maximizing Equation (60) is found by the critical-fractile approach:

« _ po1(P—C
=] o
r log(Q*/Dy) — (1 — 02/2>(1 - t)‘ (62)

ov1—t

Then,

Q
Em(@)|D) = (-9) / Dy f(Dy|D,)dD:,

= (p—s)De" I 0P(2* — 01 —1). (63)

Now, we consider a situation in which the decision maker places the profit-maximizing order quantity

when t = 0 (i.e., full lead time) at a unit cost of ¢;. Thus,
E[r(@)|Do] = (p—s)Doe"®(z — o). (64)

If the decision maker places the profit-maximizing order quantity when ¢ > 0 (i.e., with a shorter lead

time) at a unit cost ¢s > ¢, the expected profit becomes
Elr(@)ID] = (p—s)Diet' (2 — ov/T—1). (65)
It follows from the equality of Equations (64) and (65):
2=z —0o(1l-V1-1). (66)

As time ¢ increases from 0 (the order is placed the full lead time before knowing demand) to 1
(the order is placed with full knowledge of demand), the volatility of demand will decrease from o to
0. Expected demand is Dgye* for all values of ¢t because the process is a martingale. Median demand
is Doet="/2 when t = 0, then increases to the mean as ¢ approaches 1.

By normalizing the median of the initial demand forecast density to one by setting Dy = 1 and
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p = 02/2 we are able to work with expected demand, expected sales, the order quantity, and expected

leftover inventory as multiples of median demand. Median demand approaches expected demand as

t approaches 1 at a rate of 02/2, so median demand at ¢ will be e7*%/2,

The quantity ordered at ¢t = 0 (i.e., with a full lead time) is set to achieve a target service level 6,
corresponding to z = ®~!(#) multiplicative standard deviations above the median, where ®(-) is the
standard normal distribution function and ®~!(-) is the inverse of ®(-).

The order quantity as a multiple of the median demand forecast at ¢ = 0 then becomes:

The fill rate will be (for a derivation of the fill rate, see de Treville et al. 2014a):
Qz,0) = B(z—0)+e7 5 (1 B(2)). (67)
Expected demand as a multiple of median demand at ¢ = 0 will be:
E[Demand] = e” /2. (68)
Expected sales will be:
E[Sales] = e /2Q(z,0). (69)
Expected leftover inventory will be the difference between the order quantity and expected sales:
E[Leftover inventory] = €% — e” /2Q(z, ). (70)

If an order is placed based on exact information as to the quantity demanded, the expected profit
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per unit of expected demand ()= will be:

(Wt)tzl =D — Cs, (71)

where p denotes the retail price, and ¢, is the short-lead-time cost of the product per unit. We then

solve for the breakeven long-lead-time cost ¢:
p—c = (p—a)z0) = (=)= Q(z,0), (72)

where s denotes the salvage value per unit. The cost differential that must be offered by the long-
lead-time supplier to compensate for the mismatch cost is 1 — ¢;/¢,. Similarly, the cost premium a
retailer is willing to pay at most to reduce lead time is ¢5/¢; — 1. By definition, both cost differential

and cost premium are positively correlated with the mismatch cost:

E[Mismatch cost] = (p — ¢)E[Lost sales|] + (¢; — s)E[Leftover inventory],
= (p — ¢)(E[Demand] — E[Sales]) + (¢; — s)E[Leftover inventory],

= (p—a)e” P1=Q(2,0)) + (¢ — 8)(e*” — 7 ?Q(z,0)). (73)

Appendix F Fitting a jump model from time-series data

In this section we apply prescriptive analytics to raw data to explore the kinds of jumps that
are routinely encountered in analyzing time-series data. We randomly chose two products from a
set of 4000 products sold by a large supermarket chain for which we have point-of-sale data. The
first product exhibited behavior strongly suggestive of jumps, while the other was consistent with a
constant-volatility assumption. We use the first product to illustrate how one estimates jump-model
parameters from time-series demand data, then use the second to explore the implications of force
fitting a jump model in the absence of obvious jumps. We only considered these two products. In
future research, it would be interesting to observe the jumps that occur over the entire range of

products for this data set and compare those values to other product types to gain an idea of the
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range of jumps that one might expect to encounter across a wide variety of demand settings.

For the two products, we considered demand over 100 days. We followed the protocol recom-
mended by Shumway and Stoffer (2011, following the protocol presented in Tables 3.1 and 3.3) to fit
a model that combines seasonal (S), autoregressive (AR), integrated (I), and moving average (MA)
components. The resulting SARIMA model is parameterized as ARIM A(a,b,c)(z,y, 2),. The sea-
sonality n is estimated by observing cycles that show up in the data. The first parameter values a
and z specify the number of lags included in the autoregressive component (AR), first for the orig-
inal values and then for those values after a lag of n periods, referred to as the seasonality. These
autoregressive parameter values are estimated by observing when partial autocorrelations disappear.
The second parameter values b and y specify the differencing (I) required to compensate for any trend
in the data: When time-series data shows a trend, differencing the data points in sequence yields a
stationary process (Az; = x; — x4_1). Differencing can be applied several times for non-linear trends
(denoted by Adz; for d applications of differencing). The third parameter values ¢ and z specify the
number of lags included in the moving average (MA) component.

This SARIMA model allows us to replace extreme values of demand by a forecast. The extreme

values are then used to fit the jump portion of the model.

F.1  Product 1

Figure 7 shows the autocorrelation (panel a) and partial autocorrelation (panel b) for the natural
log of daily sales over 100 days for Product 1. The autocorrelation plot of the log of the daily sales
shows continuous decay for daily and weekly autocorrelations. The weekly partial autocorrelations
disappear after one lag, suggesting an AR1 model type. There does not appear to be a moving-average
effect. These graphs suggest clear weekly seasonality, so we capture the seasonality (S) component of
the SARIMA model by setting n = 7. As our time-series data does not show a trend we set b =y = 0.
The resulting SARIMA model is of type ARIMA(1,0,0)(1,0,0);.

Figure 8 shows the standard output from the R package made available by Shumway and Stoffer
(2011). The standardized residuals are shown in panel a. From panel b of Figure 8 we see that most

autocorrelation values fall within 95% confidence intervals for a white-noise process, suggesting that
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Figure 7: Autocorrelation and partial autocorrelation plots for the natural logarithm of daily sales for Product 1

The top panel (panel a) shows autocorrelations of the natural logarithm of daily sales. The weekly autocorrelations
suggest a seasonality effect for a lag of 7 days. The daily autocorrelations do not show a consistent pattern. The
bottom panel (panel b) shows the partial autocorrelations. Error bounds are set to + 2/4/n = +0.2, corresponding to
a 95% confidence interval for both panels. The weekly partial autocorrelations cut off after one lag: A partial
autocorrelation that exceeds the lower error bound on day 8, for example, is followed by one that is close to zero on
day 9, so that a = x = 1. The time-series data shows neither a trend, nor a moving average, and has a seasonality of 7
days, so we fit a SARIMA model of type ARIM A(1,0,0)(1,0,0)7.

the SARIMA model of type ARIM A(1,0,0)(1,0,0)7 provides a good fit to the data.*

Although the model fit based on assuming that all variation in daily demand comes from a constant-
volatility paradigm, the Normal Q-Q plot shown in panel ¢ of Figure 8 shows kurtosis. This suggests
that the demand data has some extreme values. The standardized residuals are shown in Figure
9. Four of 100 residuals were more than three standard deviations from zero, which corresponds

to A = 0.04 in our jump model. To explore the impact of these extremes on development of the

14 As usually occurs, the Ljung-Box test p values—applied to data cleansed from seasonality and AR1 effects as shown
in Figure 8, panel d—are too high to permit rejecting the null hypothesis that residuals are independent for most lags.
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Figure 8: Fitting a time-series model for Product 1

In this figure we analyze the goodness of fit of the SARIMA model of type ARIMA(1,0,0)(1,0,0)7. The top panel
(panel a) shows the standardized residuals. The middle-left panel (panel b) shows the autocorrelation values for these
residuals. The error bounds given in panel b correspond to a 95% confidence interval: The majority of autocorrelation
values lie within these bounds, suggesting that the time-series model is a good fit with the sales data and that it
explains all the autocorrelation in the original data. The middle-right panel (panel ¢) shows the Q-Q plot of residuals,
which suggests that residuals follow a normal distribution for the kurtosis to the far right. The bottom panel (panel
d) shows the p-values for the Ljung-Box test statistics. The null hypothesis of this test is that the residuals are not
correlated for most lags. Panel d shows that the null hypothesis cannot be rejected.

cost-premium frontier, we fit a revised SARIMA model based on the assumption that such outliers
represent jumps rather than normal volatility. The revised autocorrelation plot shown in Figure 10
(panel a) shows a cutoff point after 4 lags for daily sales, suggesting an MA4 model. The revised
partial autocorrelation plot shown in Figure 10 (panel b) no longer shows a cutoff point for daily
sales, and cuts off after one lag for weekly sales. The type of SARIMA model thus changes from
ARIMA(1,0,0)(1,0,0)7 to ARIMA(0,0,4)(1,0,0)7 with the new interpretation of the four outliers.
The SARIMA model based on the adjusted data performs better than the original SARIMA model.

We thus note that the outliers had hidden a strong 4-day moving-average effect. The revised SARIMA
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Figure 9: Outliers of the standardized residuals

The top panel (panel a) shows outliers that are more than three standard deviations from zero. The bottom panel
(panel b) shows the impact over time of these outliers on the standardized residuals. The outlier that occurs right
before day 60, for example, affects subsequent residuals for almost a week. Thus, interpreting an outlier as white noise

may well reduce the forecasting ability of the model.

model performed better in forecasting daily demand than did the original model that included the
extremes.

After replacing each outlier by the SARIMA forecast for that day, we analyzed the adjusted time-
series data as shown in Figure 11. Note that this eliminates the kurtosis. The demand volatility
was re-estimated using the adjusted data: Modeling the outliers as jumps rather than as white noise
reduced the estimate of volatility from 0.169 to 0.11. The four outliers were used to estimate the
parameters of the jump model, with 7 = 0.28 and ¢ = 0.54. The parameters for the continuous
volatility and jump versions of the SARIMA model are summarized in Table 3.

In Figure 12a, we present the cost-premium frontiers for a jump and a constant-volatility forecast-

ing model using the parameters given in Table 3 assuming a high critical fractile (99.5%). Whether
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Figure 10: Autocorrelation and partial autocorrelation plots after correcting for the outliers for Product 1

The top panel (panel a) shows autocorrelations of the natural logarithm of daily sales for the adjusted model. The
daily autocorrelations suggest seasonality effect of lag 7. The weekly autocorrelations decay continuously, whereas the
daily autocorrelations cut off after lag 4. The bottom panel shows partial autocorrelations. The weekly partial
autocorrelations cut off after one lag. We also observe that the daily partial autocorrelations do not show a regular
pattern. Therefore, we selected a SARIMA model of type ARIMA(0, 0,4)(1,0,0).

Model o A T S SARIMA parameters
Constant Volatility | 0.169 | N/A | N/A | N/A | ARIMA(1,0,0)(1,0,0);
Jump diffusion 0.11 |0.04 | 0.28 | 0.54 | ARIMA(0,0, 4)(1,0,0)s

Table 3: Estimation of constant volatility and jump parameters for Product 1

In this table, we summarize the parameters of the constant-volatility and jump models. We used the standardized
residuals given in Figure 8 to estimate the o value of the constant-volatility model. Then, we used the outliers given

in Figure 9 and the standardized residuals given in Figure 11 to estimate the parameters of the jump model.

outliers are assumed to represent jumps or white noise has a substantial impact on the value of re-
sponsiveness: The premium worth paying to postpone the production enough to obtain full demand

information is around 23% in the case of jumps, and just over 5% in the case of a constant-volatility
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Figure 11: Fitting a time-series model after the outliers were replaced by the forecast

In this figure we analyze the goodness of fit of the SARIMA model of type ARIMA(0,0,4)(1,0,0)7 to the natural
logarithm of daily sales data after the outliers were replaced by their forecasts. The top panel (panel a) shows the
standardized residuals. The middle-left panel (panel b) shows the autocorrelation values for these residuals. The error
bounds given in panel b correspond to a 95% confidence interval: The majority of autocorrelation values lie within
these bounds, suggesting that the time-series model is a good fit with the sales data and that it explains all the
autocorrelation in the original data. The middle-right panel (panel c) shows the Q-Q plot of residuals, which suggests
that residuals follow a normal distribution. The bottom panel (panel d) shows the p-values for the Ljung-Box test
statistics. The null hypothesis of this test is that the residuals are not correlated for most lags. The p values are less
than 0.05 so that we can reject the null hypothesis. However, we saw from panel c¢ that the selected model fits well to
the data.

assumption.

Figure 12b shows the cost-premium frontiers for a jump and a constant-volatility forecasting model
using the parameters given in Table 3 assuming a lower critical fractile (70%). Paradoxically, modeling
the outliers as jumps reduces the justified cost premium when the target service level is lower: That
the adjusted SARIMA model provides an improved forecast combines with the less-ambitious service

level to reduce the premium that a decision maker should be willing to pay to reduce the decision
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Figure 12: Cost-premium frontiers for Product 1, assuming high and moderate critical fractiles

Panel a shows the cost-premium frontier for a jump and a constant-volatility forecasting model using the parameters
given in Table 3 and assuming a high critical fractile of 99.5%, obtained by normalizing the unit price to 100, then
setting the cost of the unresponsive supplier to 5% of the unit price, and the residual value to 4.5% of the unit price.
The analysis in panel a shows that for this example, Whether outliers are assumed to represent jumps or white noise
has a substantial impact on the value of responsiveness: The premium worth paying to postpone the production
enough to obtain full demand information is around 23% in the case of jumps, and just over 5% in the case of a
constant-volatility assumption. Other combinations of price, cost, and residual that yield the same critical fractile
result in a very similar cost-premium frontier. Panel b shows the cost-premium frontier for a jump and a
constant-volatility forecasting model using the parameters given in Table 3, but now assuming a lower critical fractile
of 70%, obtained by again normalizing the unit price to 100, then setting the cost of the unresponsive supplier to 30%
of the unit price, and the residual value to 0. Here we see that the cost-premium frontiers are very close to each other,
so treating the outliers as jumps or as white noise makes little difference. Other price, cost, and residual value
combinations again result in very similar cost-premium frontiers. In fact, because the adjusted SARIMA model
forecasts better than the original model, accounting for jumps actually slightly lowers the cost-premium frontier when
the service-level target is modest.

lead time.

This example demonstrates how to estimate jump parameter values from time-series data in a
case where a SARIMA model is an appropriate choice. It also shows that the extra step of fitting the
jump model provides useful information to consider in estimating the value of responsiveness. This
was the first product that we examined, chosen randomly from 4000 products available in our data

base, which suggests that extreme values may be routinely encountered.
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F.2  Product 2

As with Product 1, we fit a SARIMA model to the natural logarithm of daily sales over 100
days. The autocorrelation plot shown in Figure 13, panel a indicates that daily and weekly auto-
correlations decay continuously: The moving-average effect does not appear to be significant. This
panel also shows clear weekly seasonality. The partial autocorrelations (Figure 13, panel b) disappear

after one lag, consistent with a model of type AR1. Thus, we again fit a SARIMA model of type
ARIMA(1,0,0)(1,0,0);.

Series: ts_daily
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Figure 13: Autocorrelation and partial autocorrelation plots for Buttergipfel

The top panel (panel a) shows autocorrelations of the natural logarithm of daily sales. The weekly autocorrelations
suggest a seasonality effect for a lag of 7 days. The daily autocorrelations do not show a consistent pattern. The
bottom panel (panel b) shows partial autocorrelations. The weekly partial autocorrelations cut off after one lag. We
also observe a strong partial autocorrelation on day 8, and it cuts off on day 9. Therefore, we selected the SARIMA
model of type ARIM A(1,0,0)(1,0,0)7. In both panels, error bounds correspond to a 95% confidence interval.

Figure 14, panel b shows that the autocorrelation of residuals is low for different lags.'® Given

15 As with the first product and as usually occurs, the Ljung-Box test statistics do not let us reject the null hypothesis
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that the autocorrelation values for the first 20 lags are also very low the SARIMA model of type
ARIMA(1,0,0)(1,0,0)7 provides a good fit to the Product 2 data. All of the residuals lie within
three standard deviations of zero and the Q-Q plot does not suggest kurtosis. In contrast to the first
product analyzed, this demand data does not suggest jumps.

What happens to the Cost-Premium Frontier when an enthusiastic user is determined to fit a
jump model even though the demand data is not suggestive of jumps? We explored this scenario
by reducing the threshold for defining outliers from three to 2.52 standard deviations, which was the
number of standard deviations that resulted in exactly four outliers, so that A = 0.04 as for the first
product analyzed. The revised threshold and resulting outliers are shown in Figure 15. We then used
these outliers—replaced by the SARIMA forecast—to fit a jump model as described for Product 1.
The revised time-series model is developed as shown in Figure 16. The parameter values for both
versions of the SARIMA model are given in Table 4. The form of the SARIMA model remained
ARIMA(1,0,0)(1,0,0); whether the four outliers were treated as jumps or as white noise.

Figure 17a shows the cost-premium frontiers for a jump and a constant-volatility forecasting model
using the parameters given in Table 4 assuming a high critical fractile (99.5%). As in Figure 12a,
whether outliers are assumed to represent jumps or white noise has a substantial impact on the value
of responsiveness. Interpretation thus calls for judgment on the part of decision makers as to whether
the outliers should be interpreted as emerging from a constant-volatility process or as evidence of a

jump when the critical fractile is very high.

Model o A T S SARIMA parameters
Constant volatility | 0.123 | N/JA | N/A | N/A | ARIMA(1,0,0)(1,0,0)7
Jump diffusion 0.111 | 0.04 | 0.14 | 0.248 | ARIMA(1,0,0)(1,0,0);

Table 4: Estimation of constant-volatility and jump parameters for Product 2

In this table, we summarize the parameters of the constant-volatility and jump models. We used the standardized
residuals given in Figure 14 to estimate the o value of the constant-volatility model. Then, we used the standardized

residuals given in Figure 16 and the outliers given in Figure 15 to estimate the parameters of the jump model.

that the residuals are not correlated for most lags.
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In Figure 17b, we show the cost-premium frontiers for a jump and a constant-volatility forecasting
model using the parameters given in Table 4 assuming a lower critical fractile (70%). The cost-

premium frontiers are very close to each other.

Model: (1,0,0) (1,0,0) [7] Standardized Residuals

ACF of Residuals Normal Q-Q Plot of Std Residuals

ACF

-02 0.0 0.2 0.4
Sample Quantiles

LAG Theoretical Quantiles

p values for Ljung-Box statistic

p value
02 04 06 08 10

0.0

Figure 14: Fitting a time-series model to daily sales of Product 2

In this figure we analyze the goodness of fit of the SARIMA model of type ARIMA(1,0,0)(1,0,0)7. The top panel
(panel a) shows the standardized residuals. The middle-left panel (panel b) shows the autocorrelation values for these
residuals. The error bounds given in panel b correspond to a 95% confidence interval: All of the autocorrelations lie
within these bounds, suggesting that the time-series model is a good fit with the sales data and that it explains all the
autocorrelation in the original data. The middle-right panel (panel c¢) shows the Q-Q plot of residuals, which suggests
that residuals follow a normal distribution. The bottom panel (panel d) shows the p-values for the Ljung-Box test
statistics. The null hypothesis of this test is that the residuals are independent for most lags. The p values are too

high to allow us to reject the null hypothesis.
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Figure 15: Outliers of the standardized residuals for Product 2
The top panel (panel a) shows outliers that are more than 2.52 standard deviations from zero. The bottom panel

(panel b) shows the impact over time of these outliers on the standardized residuals. The outlier that occurs on day

50, for example, slightly affects subsequent residuals for almost a week.
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Model: (1,0,0) (1,0,0) [7] Standardized Residuals
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Figure 16: Fitting a time-series model after the outliers were replaced by the forecast for Product 2

In this figure we analyze the goodness of fit of the SARIMA model of type ARIMA(1,0,0)(1,0,0)7 to the natural
logarithm of daily sales data after the outliers were replaced by their forecasts. The top panel (panel a) shows the
standardized residuals. The middle-left panel (panel b) shows the autocorrelation values for these residuals. The error
bounds given in panel b correspond to a 95% confidence interval: All of autocorrelation values lie within these
bounds, suggesting that the time-series model is a good fit with the sales data and that it explains all the
autocorrelation in the original data. The middle-right panel (panel ¢) shows the Q-Q plot of residuals, which suggests
that residuals follow a normal distribution. The bottom panel (panel d) shows the p-values for the Ljung-Box test
statistics. The null hypothesis of this test is that the residuals are not correlated for most lags. The p values are too

high to allow us to reject the null hypothesis. The results are not significantly different from those given in Figure 14.
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Figure 17: Cost-premium frontiers for Product 2

In panel A, we plot the cost-premium frontier for a jump and a constant-volatility forecasting model using the

parameters given in Table 4 assuming a high critical fractile (99.5%). We normalize the unit price to 100. The cost of

the unresponsive supplier is 5% of the unit price, and the residual value is 4.5% of the unit price. Whether outliers are

assumed to represent jumps or white noise has a substantial impact on the value of responsiveness: The premium

worth paying to postpone the production enough to obtain full demand information is around 18% in the case of

jumps, and just around 4% in the case of a constant-volatility assumption. Other combinations of price, cost, and

residual that yield the same critical fractile result in a very similar cost-premium frontier. In panel B, we plot the

cost-premium frontier for a jump and a constant-volatility forecasting model using the parameters given in Table 4

assuming a lower critical fractile (70%). The unit price is normalized to 100, the cost of the unresponsive supplier is

30% of the unit price, and the residual value is 0. We see that the cost-premium frontiers are very close to each other.

Other price, cost, and residual value combinations again result in very similar cost-premium frontiers.
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