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Abstract

This thesis derives the theory of distributions, starting with test functions as a ba-
sis. Distributions and their derivatives will be analysed and exemplified. Schwartz
functions are introduced, and the Fourier transform of Schwartz functions is anal-
ysed, creating the basis for Tempered distributions on which we also analyse the
Fourier transform. Weak derivatives and Sobolev spaces are defined, and from the
Fourier transform we define Sobolev spaces of non-integer order. The theory pre-
sented is applied to an initial value problem with a derivative of order one in time
and an arbitrary differentiation operator in space, and we take a look at conditions
for well-posedness under different differnetiation operators and present some minor
results. The Riesz representation theorem and the Lax–Milgram theorem are pre-
sented in order to offer a different perspective on the results from the initial value
problem.
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Sammendrag

Denne oppgaven utleder teori om distribusjoner ved å definere testfunksjoner og
analysere hvordan kontinuerlige lineære funksjonaler påvirker disse. Schwartz-
funksjoner og Fouriertransformasjonen blir så introdusert, og egenskapene til Fouri-
ertransformasjonen anvendt på Schwartz-funksjoner blir gjennomgått. Temperære
distribusjoner blir introdusert som elementer i dual-rommet til Schwartz-rommet,
og vi ser hvordan Fouriertransformasjonen påvirker disse. Svake deriverte og Sobolev-
rom blir definert, og gjennom Fouriertransformasjonen finner vi en alternativ måte
å definere svake deriverte, som lar oss introdusere Sobolevrom av fraksjonell orden.
Teorien blir så anvendt på et initialverdiproblem med førsteordens tidsderivert
og en vilkårlig derivasjonsoperator i rom. Det undersøkes under hvilke tilefeller
problemer er velstilt og noen mindre resultater presenteres. Så presenteres Riesz
representasjonsteorem og Lax–Milgram teoremet som i noen grad oppsumerer re-
sultatene fra initialverdiproblemet i form av at de begge påviser unik løsning under
gitte vilkår.
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Chapter 1

Distributions

Distributions, or "generalized functions", is a concept which, as implied, allows
us to expand the notion of a function. Take for instance the impulse created by
a baseball bat hitting a baseball, which, when we consider the force of impact to
occur at a singular instance in time, can not be described by a function, as it is a
multiple of Dirac’s delta, δ, which, as we shall see, is a distribution.

One of the main motivations for distributions is the way an integrable function
acts on bounded functions, when their product is integrated over Euclidean space
— such integrable functions define regular distributions. However, when one wants
to generalise this, allowing for derivatives of, say, non-integrable functions, one
gets inspiration from the chain rule, which for smooth and compactly supported
functions yields the equality∫

(Dαφ)ψ dx = (−1)|α|
∫
φ(Dαψ)dx, (1.1)

where support, as mentioned in the previous paragraph, is taken in the usual sense:

Definition Let Ω be a domain1. For f ∈ C(Ω),

suppf = {x ∈ Ω : f(x) 6= 0}

is called the support of f .

The "exchange of derivatives" in (1.1) can be used to define derivatives of functions
that are not differentiable, but only if we require that the test functions (ψ in (1.1))
have a corresponding degree of regularity and decay at infinity. This is the reason
for the definition of test functions in section 1.1, in which we will use a multi-index
notation:

1Throughout this paper, a domain will mean an open set in Rn.

11



12 CHAPTER 1. DISTRIBUTIONS

Definition When writing α ∈ Nn0 , we use a multi-index notation where α is the
n-tuple (α1, α2, α3, · · · , αn). The notation Dα is defined as

Dα =
∂α1

(∂x1)α1

∂α2

(∂x2)α2

∂α3

(∂x3)α3
· · · ∂αn

(∂xn)αn
,

and the size of α is defined as

|α| = α1 + α2 + α3 + · · ·+ αn.

Remark As we shall see, it is possible to extend this notion from integrable func-
tions to general objects (distributions) which act in essentially the same way on
test functions as integrable functions do. The space of test functions will therefore
always determine the corresponding space of distributions.

1.1 Test Functions

Definition Let Ω be a domain in Rn. Then the functions contained in

D(Ω) = {φ ∈ C∞(Ω) : supp φ compact in Ω}

are called test functions. A sequence {φj}∞j=1 ⊂ D(Ω) is said to be convergent in
D(Ω) to φ ∈ D(Ω) if there is a compact set K ⊂ Ω with

supp φj ⊂ K, j ∈ N

and
sup
K
|Dαφj −Dαφ| → 0 for all α in Nn0 .

The notation φj −→
D

φ means "convergent in D(Ω)".

1.2 Distributions

As stated in the introduction to the chapter, we can define distributions by how
they interact with test functions:

Definition Let Ω be a domain in Rn and let D(Ω) be defined as above. D′(Ω) is
the collection of all complex-valued linear continuous functionals T over D(Ω):

T : D(Ω)→ C, T : φ 7→ T (φ), φ ∈ D(Ω)

T (λ1φ1 + λ2φ2) = λ1T (φ1) + λ2T (φ2), λ1, λ2 ∈ C, φ1, φ2 ∈ D(Ω)

and
T (φj)→ T (φ) whenever φj −→

D
φ.
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Any T ∈ D′(Ω) is called a distribution. By

Tj → T in D′(Ω), Tj , T ∈ D′(Ω), j ∈ N

we mean that

Tj(φ)→ T (φ) in C, if j →∞ for any φ ∈ D(Ω).

Remark Instead of writing T (φ), where φ ∈ D(Ω), it is conventional to write
〈T, φ〉. A simple example is Dirac’s delta:

δ(φ) = 〈δ, φ〉 = φ(0).

Remark If f is locally integrable in a domain Ω, then the functional Tf defined
by

Tf (φ) =

∫
Ω

f(x)φ(x)dx

is said to be a regular distribution. A distribution that is not regular is said to be
singular.

Example Dirac’s delta, δ(φ), is singular

Proof. We consider the point distribution at x = 0: δ(φ) = φ(0). Let us first check
that δ really is a distribution. Is is clear that δ : D(Ω) → C, as for linearity, we
can check

δ(λ1φ1 + λ2φ2) = λ1φ1(0) + λ2φ2(0)

= λ1δ(φ1) + λ2δ(φ2).

Lastly,

δ(φj) = φj(0)

j→∞−−−→ φ(0)

= δ(φ)

whenever
sup
K
|φj − φ| → 0.

We need to show that there does not exist a locally integrable function, f , such
that ∫

R
fφ = φ(0) (1.2)

for all φ ∈ D(Ω). Consider the test function ρ(x) =

{
e
− 1

1−|x|2 if |x| < 1

0 if |x| ≥ 1.

It is clear that ρ(x) has compact support, and through some calculation it can be
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seen that it is infinitely differentiable. Thus, ρ(x) ∈ D(Ω). If we assume that the
locally integrable function in (1.2) exists, we would have∫

R
f(x)ρ(nx)dx = ρ(0), ∀ n ∈ N.

However,

1

e
= |ρ(0)|

= |
∫
R
f(x)ρ(nx)dx|

≤
∫
R
|f(x)||ρ(nx)|dx

=

∫ 1
n

− 1
n

|f(x)||ρ(nx)|dx

≤
∫ 1

n

− 1
n

|f(x)|dx

n→∞−−−−→ 0,

where the second inequality follows from |ρ(x)| ≤ 1 for all x. So, by contradiction
such an f can not exist.

Definition We define η ∈ D(Ω) to be

η(x) =

{
cηe
− 1

1−|x|2 if |x| < 1

0 if |x| ≥ 1,

where the positive constant cη is chosen such that
∫
Rn η(x)dx = 1. For every ε > 0,

let
ηε(x) =

1

εn
η(
x

ε
).

We call η the standard mollifier. The functions ηε are infinitely differentiable, and∫
Rn
ηεdx = 1, supp(ηε) = B(0, ε),

where B(0, ε) denotes the n-dimentional sphere centred at the origin and with
radius ε. Thus, ηε ∈ D(Rn).

Definition If u is a locally integrable function in Rn, we define its mollification

uε(x) =

∫
Rn
ηε(y)u(x− y)dy =

∫
Rn
ηε(x− y)u(y)dy.

Lemma 1.2.1. For any open set Ω ∈ Rn, D(Ω) is dense in Lp(Ω) for 1 ≤ p <∞.
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Proof. As any function in Lp(Ω) can be approximated by a step function,

g =

m∑
j=1

ajχQj , aj ∈ C,

where χQj are the characteristic functions of open cubes Qj with Qj ∈ Ω, it is
enough to show that χQ, the characteristic function of an arbitrary cube in Ω can
be approximated by functions in D(Ω).

For h <∞, (χQ)h(x) ∈ D(Ω), and

‖(χQ)h − χQ‖Lp(Ω) = ‖
∫
Rn
ηh(x− y)(χQ(y)− χQ(x))dy‖Lp(Ω)

= ‖ cη
hn

∫
B(x,h)

η(
x− y
h

)(χQ(y)− χQ(x))dy‖Lp(Ω)

≤ ‖ cη
hn

∫
B(x,h)

|χQ(y)− χQ(x)|dy‖Lp(Ω)

≤ ‖ 1

|B(x, h)|

∫
B(x,h)

c|χQ(y)− χQ(x)|dy‖Lp(Ω), (1.3)

where |B(x, h)| denotes the size of the ball B. By Lebesgue’s differentiation theo-
rem, (1.3) tends to the value of its integrand for every x as h goes to zero, and we
obtain

‖(χQ)h − χQ‖Lp(Ω) → 0,

where (χQ)h ∈ D(Ω), proving the lemma.

1.3 Distributional Derivative

While functions are limited in the sense that they do not necessarily have deriva-
tives which are functions (i.e. the derivative of the Heavyside function is not a
function), all distributions have derivatives which are in turn distributions. In-
spired by integration by parts we make the following definition for the derivative
of a distribution:

Definition Let α ∈ Nn0 and T ∈ D′(Ω). Then the derivative DαT is given by

DαT (φ) = (−1)|α|T (Dαφ)

or, by inner-product notation:

〈DαT, φ〉 = (−1)|α|〈T,Dαφ〉.
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Example of a distributional derivative
Let g(x) = |x|. We will look at dg

dx .

〈g′, φ〉 = −〈g, φ′〉

= −
∫
R
g(x)φ′(x)dx

= −
∫
R
|x|φ′(x)dx

=

∫ 0

−∞
xφ′(x)dx−

∫ ∞
0

xφ′(x)dx

= xφ(x)
∣∣0
−∞ −

∫ 0

−∞
φ(x)dx− xφ(x)

∣∣∞
0

+

∫ ∞
0

φ(x)dx

= −
∫ 0

−∞
φ(x)dx+

∫ ∞
0

φ(x)dx

= 〈sgn, φ〉.

Where

L1
loc 3 sgn(x) =

{
−1 if x < 0

1 if x > 0.

Thus, the derivative of the absolute value of x is the signum function, as one would
expect.



Chapter 2

Schwartz Space

When working with the Fourier transformation we require Ω = Rn. However,
D(Rn) is, in a sense, too small for for the Fourier transform, which also makes
D′(Rn) too large. For the purpose of the Fourier transformation, the Schwartz
spaces, S(Rn) (named in honour of Laurent Schwartz) and S′(Rn), as introduced
below, are optimally adapted in the sense that they are both closed under the
Fourier transform.

Definition For n ∈ N,

S(Rn) = {φ ∈ C∞(Rn) : sup
x∈Rn

(1 + |x|2)
k
2

∑
|α|≤l

|Dαφ(x)| <∞, for all k, l ∈ N0}

(2.1)
is called the Schwartz space of all rapidly decreasing infinitely differentiable func-
tions, or Schwartz space for short.

A sequence {φj}∞j=1 ⊂ S(Rn) is said to converge in S(Rn) to φ ∈ S(Rn) if

‖φj − φ‖k,l → 0 for j →∞ and all k, l ∈ N0.

Where
‖φ‖k,l = sup

x∈Rn
(1 + |x|2)

k
2

∑
|α|≤l

|Dαφ(x)|.

Proposition 2.0.1. The Schwartz space, S(Rn) is a subspace of Lp(Rn) for every
p in N.

Proof. For every function φ in S(Rn), there exists a constant K such that

|φ(x)| ≤ K

1 + |x|2

for every x in Rn. Thus,∫
Rn
|φ(x)|pdx ≤ Kp

∫
Rn

1

(1 + |x|2)p
dx <∞

17



18 CHAPTER 2. SCHWARTZ SPACE

for every p <∞. For p =∞, it follows from the definition, (2.1), that

sup
x∈Rn

|φ(x)| <∞,

and we conclude that S(Rn) ⊂ Lp(Rn) for every p in N.

Proposition 2.0.2. If φ ∈ S(Rn), so are both xαφ and Dαφ for α ∈ Nn0 .

Proof. This follows directly from the definition of S(Rn), (2.1). All functions φ ∈
S(Rn) are rapidly decreasing (i.e. go to zero when multiplied with an arbitrary
polynomial), and so do all of their derivatives.

2.1 The Fourier Transformation on S(Rn)

The Fourier transform, named after Joseph Fourier is an important tool, and it
has several applications in physics and engineering. As we shall see, it allows us
to, amongst others, transform differentiation operators in our regular dimension
(usually time in the applied sense) into polynomials in another dimension (usu-
ally frequency in the applied sense), a property of great use in solving differential
equations.

Definition For φ ∈ S(Rn), the Fourier transform, F , and the inverse Fourier,
F−1, are given by

(Fφ)(ξ) = (2π)−
n
2

∫
Rn
e−ixξφ(x)dx,

(F−1φ)(ξ) = (2π)−
n
2

∫
Rn
eixξφ(x)dx,

for ξ ∈ Rn.

Remark With the purpose of shortening notation, we will sometimes write

F(φ(x))(ξ) = φ̂(ξ).

Proposition 2.1.1. The Fourier transformation of Dαφ(x) is given by

F(Dα
xφ(x))(ξ) = i|α|ξαφ̂(ξ). (2.2)
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Proof. The proof for n = 1 is straightforward by calculation:

F(Dα
xφ(x))(ξ) = (2π)−

n
2

∫
R
e−ixξDα

xφ(x)dx

= Dα−1
x φ(x)e−ixξ

∣∣
∂R + (2π)−

n
2

∫
R
iξe−ixξDα−1

x φ(x)dx

= (2π)−
n
2

∫
R
iξe−ixξDα−1

x φ(x)dx

= (2π)−
n
2

∫
R

(iξ)2e−ixξDα−2
x φ(x)dx

...

= (2π)−
n
2

∫
R

(iξ)αe−ixξφ(x)dx

= (iξ)α(2π)−
n
2

∫
R
e−ixξφ(x)dx

= (iξ)αφ̂(ξ).

To extend to n > 1 we note that

F(Dα
xφ(x))(ξ) = (2π)−

n
2

∫
Rn
e−ixξDα

x (x)dx

= (2π)−
n
2

∫
R

∫
R
· · ·
∫
R
e−ixξDα

x (x)dx

= (iξ1)α1(iξ2)α2 · · · (iξn)αn φ̂(ξ)

= i|α|ξαφ̂(ξ)

Proposition 2.1.2. The Fourier transform of xαφ(x) is given by

F(xαφ(x)) = i|α|Dα
ξ φ̂(ξ). (2.3)

Proof. Again, the proof for n = 1 straightforward by calculation, but we start with
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the right hand side of (2.3).

(iDξ)
αφ̂(ξ) = iαDα

ξ (2π)−
n
2

∫
R
e−ixξφ(x)dx

= iα(2π)−
n
2

∫
R
Dα
ξ e
−ixξφ(x)dx

= iα(2π)−
n
2

∫
R
−ixDα−1

ξ e−ixξφ(x)dx

= iα(2π)−
n
2

∫
R

(−ix)2Dα−2
ξ e−ixξφ(x)dx

...

= iα(2π)−
n
2

∫
R

(−ix)αe−ixξφ(x)dx

= iα(−i)α(2π)−
n
2

∫
R
e−ixξxkφ(x)dx

= F(xkφ(x)).

We extend to n > 1 in the same manner as the previous preposition:

F(xkφ(x)) = (iDξ1)α1(iDξ2)α2 · · · (iDξn)αn φ̂(ξ)

= i|α|Dα
ξ φ̂(ξ).

Theorem 2.1.3. If φ ∈ S(Rn), so is Fφ and F−1φ.

Proof. We need to show that if φ ∈ S(Rn), then

sup
ξ∈Rn

(1 + |ξ|2)
k
2

∑
α≤l

|Dαφ̂(ξ)| <∞ for every k, l.

We look at each term in the series individually, so for every k, l in Nn0 :

sup
ξ∈Rn

ξk|Dl
ξφ̂(ξ)| = sup

ξ∈Rn
|ξ
k

il
F(xlφ(x))(ξ)| by (2.3)

= sup
ξ∈Rn

| 1

il+k
F(Dk

xx
αφ(x))| by (2.1.1)

= sup
ξ∈Rn

| 1

il+k
(2π)−

n
2

∫
Rn
e−ixξDk

x(xlφ(x))dx|

≤ sup
ξ∈Rn

| 1

il+k
(2π)−

n
2 |
∫
Rn
|e−ixξDl

x(xlφ(x))dx|

≤ sup
ξ∈Rn

(2π)−
n
2

∫
|Dk

x(xαφ(x))|dx.
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Now, by proposition 2.0.2, since φ(x) ∈ S(Rn), so is xαφ(x), and thus Dk
x(xαφ(x)),

and since S(Rn) ⊂ L1(Rn) by proposition 2.0.1, we conclude that φ̂ ∈ S(Rn).

Proposition 2.1.4. Let φ(x) = e−
ε2|x|2

2 where ε is a positive, real constant. The
Fourier transform of this Gaussian is given by

φ̂(ξ) = ε−ne−
|ξ|2

2ε2 .

Proof. Let us first consider the case n = 1, by propositions 2.1.1 and 2.3 we have

Dξφ̂(ξ) = F(
x

i
e−

ε2ξ2

2 )(ξ)

=
1

i
F(−ε−2 d

dx
e−

ε2x2

2 )(ξ)

= − 1

iε2
iξφ̂(ξ)

= − 1

ε2
ξφ̂(ξ).

We can rewrite this to
d

dξ
lnφ(ξ) = − 1

ε2
ξ.

By integrating both sides with respect to ξ and taking exponents, we obtain

φ̂(ξ) = Ce−
ξ2

2ε2 .

The constant C is obviously equal to φ̂(0), which we can find:

φ̂(0) = (2π)−
1
2

∫
R
e−

ε2|x|2
2 e−ix0dx

= (2π)−
1
2

∫
R
e−

ε2|x|2
2 dx

= (2π)−
1
2

√
2π

ε2
(2.4)

=
1

ε

where (2.4) follows from taking a contour integral and calculating residues. Thus,
we have for n = 1:

φ̂(ξ) =
1

ε
e−

ξ2

2ε2 .

For n > 1 we use the fact that |x|2 =
∑n
j=1(xj)

2 together with the properties of
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the exponential function:

φ̂(ξ) =

∫
Rn
e−

ε2|x|2
2 e−ixξdx

=

∫
Rn
e−

ε2

2

∑n
j=1(xj)

2

e−i
∑n
k=1 ξ

k
j x
k
j dx

=

∫
Rn

n∏
j=1

(
e−

ε2

2 (xj)
2

e−iξjxj
)
dx

=

n∏
j=1

(∫
R
e−

ε2

2 (xj)
2

e−iξjxjdx

)

=

n∏
j=1

ε−1e−
ξ2j

2ε2

= ε−ne−
1

2ε2

∑n
j=1ξ2

j

= ε−ne
|ξ|2

2ε2 .

Proposition 2.1.5. Both FF−1 and F−1F are identity operators on S(Rn),

φ = F−1Fφ = FF−1φ. (2.5)

Proof. Assuming φ, ψ ∈ S(Rn), Fubini’s theorem gives∫
Rn

(Fφ)(ξ)eixξψ(ξ)dξ = (2π)−
n
2

∫
Rn
φ(y)

∫
Rn
e−i(y−x)ξψ(ξ)dξdy

=

∫
Rn
φ(y)(Fψ)(y − x)dy

=

∫
Rn
φ(x+ y)(Fψ)(y)dy. (2.6)

By letting

ψ(x) = e−
ε2|x|2

2 , ε > 0, x ∈ Rn

we obtain

(Fψ)(y) = ε−n(Fe−
|x|2
2 )(

y

ε
)

= ε−ne−
|y|2

2ε2 (2.7)

by proposition 2.1.4. We then insert (2.7) into (2.6) and substitute y = εz:∫
Rn

(Fψ)(ξ)eixξe−
ε2|ξ|2

2 dξ =

∫
Rn
φ(x+ εz)e−

|z|2
2 dz.
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Finally we let ε→ 0 and obtain

(F−1Fφ)(x) = (2π)−
n
2

∫
Rn

(Fψ)(ξ)eixξdξ

= (2π)−
n
2 φ(x)

∫
Rn
e−
|z|2
2 dz

= (2π)−
n
2 (2π)

n
2 φ(x)

= φ(x).

Thus, F−1F is an identity operator on S(Rn), the same property can be shown for
FF−1 in a similar fashion.

Theorem 2.1.6. Both F and F−1 map S(Rn) one-to-one onto itself,

FS(Rn) = S(Rn), F−1S(Rn) = S(Rn). (2.8)

Proof. By applying (2.5) to φ = F−1ψ,

φ = F−1Fφ
= Fψ,

thus, FS(Rn) = S(Rn), and similarly one obtains F−1S(Rn) = S(Rn). In addition,
if Fφ1 = Fφ2, (2.5) yields φ1 = φ2, hence F and F−1 are one-to-one mappings of
S(Rn) onto itself.

2.2 Convolutions of Continuous Functions
Definition For two functions φ and ψ, both in C(Rn) and at least one of them
having compact support, the convolution (φ, ψ) 7→ φ ∗ ψ is defined through the
continuous function

Lemma 2.2.1. If either φ ∗ ψ or ψ ∗ φ exist, φ ∗ ψ = ψ ∗ φ.

(φ ∗ ψ)(x) =

∫
Rn
ψ(x− y)φ(y)dy.

Proof. The proof follows from a simple substitution:

(φ ∗ ψ)(x) =

∫
Rn
φ(x− y)ψ(y)dy, u = x− y, du = −dy

= −
∫
Rn
φ(u)ψ(x− u)du

=

∫
Rn
ψ(x− u)φ(u)du

= (ψ ∗ φ)(x).
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Theorem 2.2.2. Whenever f, g ∈ L1(Rn), and their convolution is defined, f̂ ∗ g =

(2π)
n
2 f̂ ĝ.

Proof. Because f∗g ∈ L1(R) and |e−ixξ| = 1, Fubini’s theorem implies that the Fourier
transformation is well-defined, and

F(f ∗ g)(ξ) = (2π)−
n
2

∫
Rn

(∫
Rn
f(x− y)g(y)dy

)
e−ixξdx

= (2π)−
n
2

∫
Rn

(∫
Rn
f(x− y)e−ixξdx

)
g(y)dy

= (2π)−
n
2

∫
Rn

(∫
Rn
f(z)e−i(z+y)ξdz

)
g(y)dy

= (2π)
n
2

(
(2π)−

n
2

∫
Rn
f(z)e−izξdz

)(
(2π)−

n
2

∫
Rn
g(y)e−iyξdy

)
= (2π)

n
2 Ff(ξ)Fg(ξ)

= (2π)
n
2 f̂ ĝ.

Lemma 2.2.3. With φ ∈ Cj and ψ ∈ Ck, we can, in the derivative of a convolution
as defined above, and with |α| ≤ j, |β| ≤ k interchange the derivative and the
convolution in the following way:

Dα+β(φ ∗ ψ) = (Dαφ ∗Dβψ).

Proof. From theorem 2.2.2, we have

F(φ ∗ ψ) = (2π)
n
2 F(φ)F(ψ),

and further,

F(Dα+β(φ ∗ ψ)) = i|α+β|xα+βF(φ ∗ ψ)(x)

= i|α+β|xα+β(2π)
n
2 F(φ)F(ψ)

= (2π)
n
2 i|α|xαF(φ)i|β|xβF(ψ)

= (2π)
n
2 F(Dαφ)F(Dβψ)

= F(Dαφ ∗Dβψ).

The proof is completed by the uniqueness of the Fourier-transform.
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Theorem 2.2.4. Let j, k ≥ 0. If φ ∈ Cj0 and ψ ∈ L1
loc, φ ∗ ψ ∈ Cj+k if ψ ∈ Ck.

Proof. Firstly, let f, g ∈ C0(Rn), g ∈ L1
loc(Rn = and either f or g have compact

support. We define h(x) = f ∗ g(x). We obtain

|h(x)− h(x+ δ)| = |
∫
Rn

(f(x− y)− f(x− y + δ))g(y)dy| (2.9)

≤
∫
Rn

(|f(x− y)− f(x− y + δ))||g(y)|dy (2.10)

≤
∫
Rn
ε|g(y)|dy (2.11)

≤ kε, (2.12)

for some k, thus the convolution of two continuous functions is a continuous func-
tion.

Next, let f ∈ C1(Rn), g ∈ L1
loc(Rn) ∩ C0(Rn) and either f or g have compact

support. Now,

h(x)− h(x0)

x− x0
=

∫
Rn

f(x− y)− f(x0 − y)

x− x0
g(x)dx.

We need to show that f(x−y)−f(x0−y)
x−x0

converges uniformly to f ′(x0 − y). By the
mean value theorem, we have

f(x− y)− f(x0 − y) =

∫ 1

0

df(x0 − y + t(x− x0))

dt
dt

=

(∫ 1

0

f ′(x0 − y + t(x− x0))dt

)
(x− x0).

Thus,

f(x− y)− f(x0)− y)

x− x0
− f ′(x0 − y) =

∫ 1

0

(f ′(x0 − y + t(x− x0))− f ′(x0 − y)) dt.

(2.13)

Because f ′ is continuous by assumption and has compact support, it is uniformly
continuous. Thus, for any ε > 0 there exists a δ > 0 such that if |x− x0| < δ, then

|f ′(x0 − y + t(x− x0))− f ′(x0 − y)| < ε. (2.14)

Thus, (2.13) tends to zero uniformly for all x0 and y and h ∈ C1(Rn). The assertion
then follows from induction on j or k fixed.

Theorem 2.2.5. If 0 5 φ ∈ C∞0 ,
∫
Rn φ(x)dx = 1, and u ∈ Cj0(Rn), then uφ =

u ∗ φ ∈ C∞0 (Rn) by theorem 2.2.4. Further,

sup |Dαu−Dαuφ| → 0 (2.15)

whenever supp φ→ {0} and |α| ≤ j.
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Proof. By using theorem 2.2.4 and lemma 2.2.3 and, it is sufficient to prove (2.15)
for α = 0. Let |y| < δ in supp φ, and we obtain

|u(x)− uφ(x)| = |
∫

(u(x)− u(x− y))φ(y)dy|

≤ sup
|y|<δ

|u(x)− u(x− y)|

δ→0−−−→ 0.

Theorem 2.2.6. If φ(x, y) ∈ C∞(X,Y ) where Y is an open set in Rn, and if there
is a compact set K ⊂ X such that φ(x, y) = 0 when x 6∈ K, then

y 7→ u(φ(·, y))

is a C∞ function of y if u ∈ D′(X), and

Dα
y u(φ(·, y)) = u(Dα

y (·, y)).

Proof. We fix y ∈ Y and use Taylor’s formula to obtain

φ(x, y + h) = φ(x) +
∑

hj
∂

∂yj
φ(x, y) + ψ(x, y, h),

where
sup
x
|Dα

xψ(x, y, h)| = O(|h|2), as h→ 0.

Hence,

u(φ(·, y + h)) = u(φ(·, y)) +
∑

hju(
∂

∂yj
φ(·, y)) +O(|h|2).

Thus, y 7→ u(φ(·, y)) is differentiable and

∂

∂yj
u(φ(·, y)) = u(

∂

∂yj
φ(·, y))

and the theorem is proved by iterating this argument.
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2.3 Tempered Distributions
In the same fashion as defining Distributions to be functionals acting on test func-
tions, we define a smaller set of functionals acting on Schwartz functions:

Definition Let S(Rn) be as previously defined. S′(Rn) is the collection of all
complex-valued linear continuous functionals T over S(Rn):

T : S(Rn)→ C, T : φ 7→ T (φ), φ ∈ S(Rn).

T (λ1φ1 + λ2φ2) = λ1T (φ1) + λ2T (φ2), λ1, λ2 ∈ C, φ1, φ2 ∈ S(Rn).

We furnish S′(Rn) with the the simple convergence topology

Tj → T in S′(Rn), Tj ∈ S′(Rn), j ∈ N, T ∈ S′(Rn),

means that
Tj(φ)→ T (φ) in C if j →∞ for any φ ∈ S(Rn).

Any T ∈ S′(Rn) is called a tempered distribution.

Remark All test functions are elements in the Schwartz space: D(Rn) ⊂ S(Rn).
It follows from this that S′(Rn) ⊂ D′(Rn). Thus, as implied by the name, every
tempered distribution is a distribution.

Definition Let T ∈ S′(Rn). Then the Fourier transform FT and its inverse F−1T
are given by

(FT )(φ) = T (Fφ), and (F−1T )(φ) = T (F−1φ), φ ∈ S(Rn). (2.16)

Theorem 2.3.1. The Fourier transform is a continuous linear one-to-one and
onto mapping on S′(R)n, and for all T in S′(Rn),

T = F−1FT = FF−1T (2.17)

Proof. The mapping T 7→ FT from S′(Rn) is clearly linear. And if Tn → 0 in
S′(Rn), then

〈FTn, φ〉 = 〈Tn,Fφ〉 → 0 as n→∞.

The same proof works for F−1. For all φ ∈ S(Rn).

〈FF−1T, φ〉 = 〈T,F−1Fφ〉
= 〈T,FF−1φ〉
= 〈F−1FT, φ〉
= 〈T, φ〉,

which proves (2.17). Thus, F and F−1 being one-to-one onto S′(Rn) follows from
F and F−1 being one-to-one on S(Rn).
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2.3.1 Example of Fourier Transformation of Distributions

Example 1
Let us first use our standard example: Dirac’s delta function. If we insert the
"function" into the classical definition of the Fourier transformation we obtain

F(δ(x))(ξ) = (2π)−
n
2

∫
Rn
e−ixξδ(x)dx

= (2π)−
n
2 e−i0ξ

= (2π)−
n
2 .

If we on the other hand use (2.16) we obtain

(Fδ)(φ) = δ(F(φ))

= F(φ)(0)

= (2π)−
n
2

∫
Rn
φ(x)e−ix0dx

= (2π)−
n
2

∫
Rn
φ(x)dx

= 〈(2π)−
n
2 , φ〉

Thus, we obtain

〈Fδ, φ〉 = 〈(2π)−
n
2 , φ〉,

obtaining the same result as in our more classical approach.

Example 2
Consider the constant function f(x) = 1. In the sense of functions, the Fourier
transform

F(1)(ξ) = (2π)−
n
2

∫
Rn
e−ixξ1dx

does not make sense, as e−ixξ /∈ L1(Rn). In the sense of distributions, however, we
have

〈1, φ〉 =

∫
Rn
φ(x)dx,
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giving us

〈F1, φ〉 = 〈1,Fφ〉

=

∫
Rn
φ̂(ξ)dξ

= (2π)−
n
2

∫
Rn

∫
Rn
e−ixξφ(x)dxdξ

= (2π)−
n
2

∫
Rn
ei0ξ

∫
Rn
e−ixξφ(x)dxdξ

= (2π)
n
2 F−1(F(φ))(0)

= (2π)
n
2 φ(0)

= 〈(2π)
n
2 δ, φ〉.

Thus,
F(1)(ξ) = (2π)

n
2 δ(ξ) (2.18)

Example 3
In this example we will consider the distribution eiαx.

F(eiαx)(ξ) = (2π)−
n
2

∫
Rn
e−ixξeiαxdx

= (2π)−
n
2

∫
Rn
eix(α−ξ)dx

= F(1)(ξ − α)

= (2π)
n
2 δ(ξ − α),

where we used (2.18).

Example 4
In this example we will use the result from example 3 to find the Fourier transform
of the trigonometric functions sin(αx) and cos(αx):

F(sin(αx)) = F
(
eiαx − e−iαx

2i

)
=

1

2i

(
F(eiαx)−F(e−iαx)

)
=

(2π)
n
2

2i
(δ(ξ − α)− δ(ξ + α)) .

And in similar fashion one finds

F(cos(αx)) =
(2π)

n
2

2
(δ(ξ − α) + δ(ξ + α)) .
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Example 5
Let T ∈ S′(Rn), then DαT ∈ S′(Rn). Let us find F(DαT ) and DαFT , analogous
to (2.1.1) and (2.3), and properties we will need in chapter 4.

〈D̂αT , φ〉 = 〈DαT, φ̂〉

= (−1)|α|〈T,Dαφ̂〉

= (−1)|α|〈T,F
(

(−i)|α|ξαφ
)
〉

= (−1)|α|〈T̂ , (−i)|α|ξαφ〉
= (−1)|α|〈(−i)|α|ξαT̂ , φ〉
= 〈i|α|ξαT̂ , φ〉.

〈DαT̂ , φ〉 = (−1)|α|〈T̂ , Dαφ〉

= (−1)|α|〈T, D̂αφ〉

= (−1)|α|〈T, i|α|ξαφ̂〉

= (−1)|α|〈i|α|ξαT, φ̂〉

= (−1)|α|〈 ̂i|α|ξαT , φ〉

= 〈(−i)|α|ξ̂αT , φ〉

Thus,
D̂αT = i|α|ξαT̂ , DαT̂ = (−i)|α|ξ̂αT . (2.19)

2.3.2 Convolutions with Tempered Distributions
In order to define the convolution for tempered distributions we start with a fixed
ψ ∈ S(Rn), we do this because products are not defined for all distributions, but
with one factor in S(Rn) this will not be a problem. A convolution with ψ is then
an operation which preserves S′(Rn), so to define ψ ∗ f for f ∈ S′(Rn) we find∫

ψ ∗ φ1(x)ψ2(x)dx =

∫ ∫
ψ(x− y)φ1(y)φ2(x)dydx.

Note that ∫
ψ(x− y)φ2(x)dx = ψ̃ ∗ φ2(y), ψ̃(x) = ψ(−x).

Thus, ∫
ψ ∗ φ1(x)φ2(x)dx =

∫
φ1(y)ψ̃ ∗ φ2(y)dy.

Definition We define ψ ∗ f , where ψ ∈ S(Rn) and f ∈ S′(Rn) by

〈ψ ∗ f, φ〉 = 〈f, ψ̃ ∗ φ〉.
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Lemma 2.3.2. The Fourier transform of the convolution between a tempered dis-
tribution and a Schwartz function is given by the product of their Fourier tranforms:

F(ψ ∗ f) = (2π)
n
2 ψ̂f̂ .

Proof.

〈F(ψ ∗ f), φ〉 = 〈ψ ∗ f, φ̂〉

= 〈f, ψ̃ ∗ φ̂〉

= 〈f̂ ,F−1(ψ̃ ∗ φ̂)〉

= 〈f̂ , (2π)
n
2 (F−1ψ̃)φ〉

= 〈(2π)
n
2 f̂ , ψ̂φ〉

= 〈(2π)
n
2 ψ̂f̂ , φ〉.

Example of convolution with a tempered distribution

If f = δ and ψ ∈ S(Rn),

〈ψ ∗ f, φ〉 = 〈ψ ∗ δ, φ〉
= 〈δ, ψ̃ ∗ φ〉
= (ψ̃ ∗ φ)(0)

=

∫
Rn
ψ(y)φ(y)dy

= 〈ψ, φ〉

Thus,
ψ ∗ δ = ψ.

We also note that
F(ψ ∗ δ) = (2π)

n
2 ψ̂δ̂ = ψ̂,

as δ̂ = (2π)−
n
2 .

Theorem 2.3.3. If u ∈ D′(Rn) and φ ∈ D(Rn), then u ∗ φ ∈ C∞(Rn) and

supp (u ∗ φ) ⊂ supp u+ supp φ.

For any multi-index α we have

Dα(u ∗ φ) = (Dαu) ∗ φ = u ∗ (Dαφ).
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Proof. By theorem 2.2.6, u ∗ φ ∈ C∞, and

Dα(u ∗ φ) = u ∗Dαφ.

proving the second equality.

Note that u ∗ φ(x) = 0 unless x − y ∈ supp φ for some y ∈ supp u. Thus,
x ∈ supp y + supp φ. And this is a closed set because supp φ is compact.

Theorem 2.3.4. Let 0 5 φ ∈ D(Rn) and
∫
Rn φdx = 1. If u ∈ D′(Rn), uφ =

u ∗ φ ∈ C∞(Rn) and uφ → u in D′(Rn) as supp φ→ {0}.

Proof. We have u(ψ) = u ∗ ψ̃(0) if ψ ∈ D(Rn), where again, ψ̃(x) = ψ(−x), giving

uφ(ψ) = uφ ∗ ψ̃(0)

= u ∗ φ ∗ ψ̃(0)

= u(φ̃ ∗ ψ).

Theorem 2.2.5 gives us that φ̃ ∗ ψ → ψ in C∞0 as supp φ → {0}. Thus, uφ(ψ) →
u(ψ).



Chapter 3

Sobolev Spaces

With the foundation of distributions and the Fourier transform we are almost
equipped with the tools necessary to define Sobolev spaces. A Sobolev space is
a vector space which is a combination of Lp norms of the function itself and its
derivatives up to a given order. However, for the obtained space to be a Banach
space, we need to look at the norm of its so-called weak derivatives:

Definition A function f in L1
loc(R) is called weakly differentiable if there exists a

function ∂xf in L1
loc(R) such that∫
Rn

(∂xf)φdx = −
∫
Rn
f∂xφ, for all φ ∈ D(R).

Furthermore, if for every k = 0, 1, · · · , n, there exists ∂kxf ∈ L1
loc(R) with∫

Rn
(∂kxf)φdx = (−1)k

∫
Rn
f∂kxφ, for all φ ∈ D(R)

we say that f is n times weakly differentiable with corresponding weak derivatives
∂kxf .

Definition For k ∈ Nn0 and 1 ≤ p <∞,

W k
p (Rn) = {f ∈ Lp(Rn) : Dαf ∈ Lp(Rn)∀α ∈ Nn0 , |α| ≤ k},

where the derivatives are taken in the weak sense. W p
k is then called a Sobolev

spaces. When furnished with the norm

‖f‖Wk
p (Rn) =

∑
|α|k

‖Dαf‖pLp(Rn)

 1
p

W k
p (Rn) becomes a Banach space. With the inner product

〈f, g〉Wk
2 (Rn) =

∑
|α|≤k

∫
Rn
Dαf(x)Dαg(x)dx

33
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W k
2 (Rn) become Hilbert spaces.

Remark The spaces mentioned thus far are connected in the following way:

D(Rn) ⊂ S(Rn) ⊂W k
p (Rn) ⊂ Lp(Rn) ⊂ S′(Rn) ⊂ D′(Rn). (3.1)

Theorem 3.0.5. D(Rn) is dense in D′(Rn).

Proof. We begin by choosing a sequence χj ∈ D(Ω) such that on any compact
subset of Ω we have χj = 1 for all sufficiently large j. Then we choose φj ∈ D(Rn)
satisfying theorem 2.3.4 and with small enough support to satisfy

supp φj + supp χj ⊂ Ω, |x| < 1

j
if x ∈ supp φj .

Since χju is a compactly supported distribution we can form

uj = (χju) ∗ φj ,

thus obtaining a function in D(Ω) by theorem 2.3.3 and theorem 2.3.4, and we
have as in the proof of theorem 2.3.4

uj(ψ) = (χju)(φ̃j ∗ ψ)

= u(χj(φ̃j ∗ ψ)).

Now, because supp φ̃j ∗ ψ belongs to any neighborhood of supp ψ whenever j is
large enough, and we obtain χj(φ̃jψ) = φ̃jψ for those same j. It follows that
uj(ψ)→ u(ψ) as required.

Remark Because D(Rn) is dense in D′(Rn), and all inclusions in (3.1) are con-
tinuously embedded, every inclusion in (3.1) is dense.

Lemma 3.0.6. If

(1 + |ξ|2)
n
2 g(ξ) ∈ L2(Rn), n ∈ N0,

there exists an n times weakly differentiable function f in L2(Rn) with f̂ = g and
weak derivatives in L2(Rn) such that

∂kxf
F−→ (iξ)kg(ξ) ∈ L2(Rn), k = 0, 1, · · · , n.

Proof. It is clear that g is in L2(Rn), as ξng is in L2(Rn), so there exists f ∈ L2(Rn)
and a sequence {φj}j∈Z>0

⊂ S(Rn) such that

lim
j→∞

‖f − φj‖2L2(Rn =
1

2π
lim
j→∞

‖g − φ̂j‖2L2(Rn) = 0.

Because (1 + |ξ|2)
n
2 g(ξ) is in L2(Rn), so is |ξ|kg(ξ) for k = 1, 2, · · · , n. From

Lebesgue’s dominated theorem we obtain

lim
j→∞

∫
|ξ|2k|g(ξ)− φ̂j(ξ)|dξ = 0
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since φ̂j → g and the convergent series {φ̂j}j is bounded. Thus (iξ)kφ̂j → (iξ)kg
in L2(Rn) and ∫

Rn
φj∂

k
xψdx = (−1)k

∫
Rn

(
∂kxφj

)
ψdx

= (−1)k
∫
Rn
F−1

(
(iξ)kg

)
ψdx,

which by definition make ∂kxφj , and hence also F−1((iξ)kg), weak derivatives.

Now that we have introduced a notation for derivatives that do not require integer-
order we can define Sobolev spaces of non-integer order.

Definition

Hs(Rn) = {f ∈ S′(Rn) : (1 + |x|2)
s
2Ff ∈ L2(Rn)}, s ∈ R

With the scalar product

〈f, g〉Hs(Rn) =

∫
Rn

(1 + |x|2)
s
2Ff(x)(1 + |x|2)

s
2Fg(x)dx

Hs(Rn) are Hilbert spaces. The associated norm is given by

‖f‖Hs(Rn =
√
〈f, f〉Hs(Rn)

=

(∫
Rn

(1 + |x|2)sf̂(x)f̂(x)dx

) 1
2

=

(∫
Rn

(1 + |x|2)s|f̂(x)|2dx
) 1

2

= ‖(1 + |x|2)
s
2 f̂(x)‖L2(R,

which is equivalent, in the sense of norms, to

‖f‖Hs(Rn) = ‖(1 + |x|s)f̂‖L2(Rn ,

which is the Hs-norm we will use in the next chapter.

Proposition 3.0.7. For natural numbers k, we have:

Hk(Rn) = W k
2 (Rn), k ∈ N0

Proof. If f is in Hs(Rn), then by Lemma 3.0.6, it is also on in W k
2 (Rn). Giving us

Hs(Rn) ⊆W k
2 (Rn).
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On the other hand, if f is in W k
2 (Rn), f and all its derivatives up to order k are in

L2(Rn). Thus,

Ff ∈ L2(Rn)

F(Dxf) = (2πiξ)f̂ ∈ L2(Rn)

F(D2
xf) = (2πiξ)2f̂ ∈ L2(Rn),

and so on. We conclude that

W k
2 (Rn) ⊆ Hs(Rn).

And the sets are equal.



Chapter 4

A Family of Initial Value
Problems

In this chapter we will attempt to apply the theory from the preceding chapters in
solving the following initial value problem:

ut(t, x) + f(D)u(t, x) = g(t, x), u(0, x) = u0(x) (4.1)

where t ∈ [0,∞), x ∈ R, and f(D) is an arbitrary differentiation operator in spatial
direction defined by

F(f(D)u(t, x)) = f(iξ)û(t, ξ).

Remark Note that for polynomials this definition of f is consistent with proposi-
tion 2.1.1.

We will refer to this equation as the initial value problem, and will often leave out
the initial value conditions in our notation to avoid writing them repeatedly.

4.0.3 Example of a Homogeneous Solution

For the sake of an example, and to obtain an understanding of the initial value
problem, let us work in R1, let g(t, x) = 0, and f(D) = 1 − D2

x, and let u0 be a
triangle with nodes in (−1, 0), (0, 1) and (1, 0). This gives us the following initial
value problem:

ut(t, x) + (1−D2
x)u(t, x) = 0,

u(0, x) = u0(x) = Tri(x) =

{
1 + x if − 1 < x < 0

1− x if 0 ≤ x < 1.

By taking the Fourier transformation we obtain

ût(t, ξ) + (1 + ξ2)û(t, ξ) = 0.

37
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We now have a first order partial differential equation with solution (with respect
to t)

û(t, ξ) = c(ξ)e−(1+ξ2)t,

where c is some function of ξ. By the initial value condition we find

û(0, ξ) = c(ξ)

= û0(ξ).

Giving us
û(t, ξ) = û0(ξ)e−(1+ξ2)t.

This is a solution on the Fourier side, in order to obtain a transformation, we note
that it is a product of two functions. By letting F(K)(t, ξ) = e−(1+ξ2)t we can use
theorem 2.2.2 to obtain a solution:

u(t, x) = F−1 (F(u0(0, x))F(K(t, x)))

= F−1 (F(u0 ∗K))(t, ξ))

= (u0 ∗K)(t, x). (4.2)

Where the convolution is done in the spatial direction and

K(x, t) = F−1(e−(1+ξ2)t)

=
1
√

2t
n e
− x24t −t,

by proposition 2.1.4. As K is a Schwartz-function and u0 is a compactly support
continuous function, the classical convolution yields

u(t, x) = (u0 ∗K)(t, x)

=

∫
R
u0(y)K(x− y)dy

=

∫ 0

−1

(1 + y)
1√
2t
e−

(y−x)2
4t −tdy +

∫ 1

0

(1− y)
1√
2t
e−

(y−x)2
4t −tdy.

We are left with a non-elementary function, u. In the proceeding sections of this
chapter we will pay more attention to the properties of the solution u, and less
attention to the explicit solution.

4.0.4 A Short Description of the General Homogeneous So-
lution

By general we refer to tempered distributions, the largest class for which we have
defined a Fourier transform. We will find a solution to the case g(t, x) = 0, where
ut and f(D)u(t, x) are tempered distributions:

ut(t, x) + f(Dx)u(t, x) = 0. (4.3)
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As in the example in the previous section we take the Fourier transformation to
obtain the partial differential equation

ût(t, ξ) + f(iξ)û(t, ξ) = 0,

which has the solution
û(t, ξ) = c(ξ)e−f(iξ)t.

And again, we see that
û(0, ξ) = c(ξ) = û0(ξ),

such that
û(t, ξ) = û0(ξ)e−f(iξ)t.

Now that we have an expression for û, we can write the solution,u, as either the
inverse Fourier transform of û:

u(t, x) = (2π)−
n
2

∫
Rn
eixξû0(ξ)e−f(iξ)tdξ,

or we can write it as a convolution, like we did in (4.2):

u(t, x) = u0 ∗K(t, x),

where K is the inverse-Fourier transform of e−f(iξ)t. Of course we have to make
assumptions on the Fourier transform or the convolution being defined, but even
then there are few properties we can observe, but, when analysing the general
case, it is hard to obtain strong results. As we shall see, when we make stronger
assumptions on f , we can find stronger results.

4.1 Polynomial Differential Operator

The more classical case of the problem occurs when f is a polynomial, as it is in
a lot of famous equations such as the heat equation or the Schrödinger equation.
For clarity in notation we will denote p(D) = f(D) when f is a polynomial, and
although we will work in R to avoid confusion between vectors and scalar deriva-
tives, and to allow ourselves to not use multi-index notation, the theory can be
extended to Rn. We are interested in how the initial value conditions affect the
solution, and for what polynomials, p, the problem is well-posed:

Definition We say that the problem is well-posed when

• A solution exists.

• The solution is unique.

• The solution is continuously dependent on the initial value conditions.
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As have seen, the existence of a solution follows from taking the Fourier transform,
solving for t and transforming back, the uniqueness of the solution then follows
from the Fourier transform being one-to-one for the spaces we work in, and from
the solution on the Fourier side being unique. The continuous dependency on initial
value conditions can be stated as

‖u− v‖X → 0 if ‖u0 − v0‖X → 0.

We will often come across an even stronger dependency on initial conditions, namely
Lipschitz continuity:

‖u− v‖X ≤ C‖u0 − v0‖X (4.4)

for elements in the space X. In a less general case, we can say that the solution is
continuously dependent on initial value conditions if

u0 ∈ X =⇒ u ∈ X,

Proposition 4.1.1. Let
f(λ) = ∓λ.

1. If u0 is in S(Rn), L2(Rn) or S′(Rn), the solution u will be in the same class as u0.

2. For u0 ∈ L2(R) and u0 ∈ Hs(R), the problem is well-posed.

Proof. The initial value problem now takes form

ut ∓ ux = 0, (4.5)

and we obtain solution on the Fourier-side

û(t, x) = e±iξtu0(ξ).

1.
We make use of the fact that |e±iξt| ≤ 1. If u0 is a Schwartz function, we have

u0 ∈ S(R) =⇒ û0 ∈ S(R)

=⇒ e±iξtu0 ∈ S(R)

=⇒ û ∈ S(R)

=⇒ u ∈ S(R).

If u0 ∈ L2(R), we have

u0 ∈ L2(R) =⇒ û0 ∈ L2(R)

=⇒ e±iξtu0 ∈ L2(R)

=⇒ û ∈ L2(R)

=⇒ u ∈ L2(R).
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And if u0 is a tempered distribution we have

u0 ∈ S′(R) =⇒ û0 ∈ S′(R)

=⇒ e±iξtu0 ∈ S′(R)

=⇒ û ∈ S′(R)

=⇒ u ∈ S′(R).

2.
The equation

û = e±iξtû0(ξ)

has solution

u =

∫
R
eixξe±iξtû0(ξ)dξ

=

∫
R
eiξ(x±t)ûu(ξ)dξ

= u0(x± t).

Thus,

‖u− v‖L2(R) = ‖u0 − v0‖L2(R),

and the problem is continuously dependent on initial value conditions.

In Hs(R),

‖u− v‖Hs(R) = ‖(1 + |ξ|s)(û− v̂)‖L2(R)

= ‖(1 + |ξ|s)(e±iξtû0 − e±iξtv̂0)‖L2(R)

≤ ‖(1 + |ξ|s)(û0 − v̂0)‖L2(R).

= ‖u0 − v0‖Hs(R).

Existence and uniquness of the solution follows from (4.1.1) being the unique so-
lution of (4.5), and the Fourier transformation being one-to-one on S′(R).

Proposition 4.1.2. If
p(λ) = −λ2,

u is a C∞ function for u0 ∈ S′(R), and u ∈ Hs′(R) whenever u0 ∈ Hs(R) and
s′ > s.

Proof. The initial value problem takes the form

ut −D2
xu = 0,

with solution on the Fourier-side:

û(t, ξ) = e−ξ
2tû0(ξ). (4.6)
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As e−ξ
2t is a Schwartz function, u can be expressed as a convolution between a

Schwartz function and a tempered distribution. As all Schwartz-functions are C∞,
so is the convolution, u. As for u ∈ Hs′(R) whenever u0 ∈ Hs(R), s′ > s,

‖u− v‖Hs′(R) = ‖(1 + |ξ|s
′
)(û− v̂)‖L2(R)

= ‖(1 + |ξ|s
′
)e−ξ

2t(û0 − v̂0)‖L2(R)

=

(∫
R
|(1 + |ξ|s)(û0 − v̂0)

1 + |ξ|s′

1 + |ξ|s
e−2ξ2t|2dξ

) 1
2

≤
(
M

∫
R
|(1 + |ξ|s)(û0 − v̂0)|2dξ

) 1
2

,

where M = maxξ∈R
1+|ξ|s

′

1+|ξ|s e
−ξ2t <∞ for all t > 0. Thus,

‖u− v‖Hs′(R) ≤M‖(1 + |ξ|s)(û0 − v̂0)‖L2(R)

= M‖u0 − v0‖Hs(R).

Remark Note that if we instead had written p(λ) = λ2 we would require û0 to
have extremely rapid decay, meaning we would have to put strict requirements on
u0, and the inverse Fourier transformation would not have made sense unless û0e

x2

was integrable. By a Paley-Wiener theorem, we would require u0 to be an entire
function, see ([8], p. 120-122). In his 1935 paper, Tikhonov proves uniqueness of
the heat equation if the solutions are not too large, and through a counter-example
of a solution growing extremely fast for x showed non-uniqueness in general [9].

Proposition 4.1.3. If

p(λ) = ∓λ3 and u0 ∈ H3(R),

the problem is well-posed and

u ∈ C([0,∞), H3(R)) ∩ C1([0,∞), L2(R)). (4.7)

Proof. The initial value takes the form

ut ∓D3
xu = 0.

By taking the Fourier transformation we obtain

ût ∓ iξ3û = 0,

with solution
û(t, ξ) = e±iξ

3tû0(ξ).



4.1. POLYNOMIAL DIFFERENTIAL OPERATOR 43

By taking the inverse Fourier transformation, we obtain

u(t, x) =

∫
R
eiξ(x±ξ

2t)û0(ξ)dξ. (4.8)

Now, as
|eiξ(x±ξ

2t)| ≤ 1,

we have
u0 ∈ L2(R)⇐⇒ eiξ

3tû0 ∈ L2(R). (4.9)

And because the Fourier transformation is a unitary operation on L2(Rn), we also
have u ∈ L2(Rn). Next, we have

∂̂tu = ∂tû

= ∂te
±iξ3tû0(ξ)

= ±(iξ)3e±iξ
3tû0(ξ),

so
∂tu ∈ L2(R)⇐⇒ ±ξ3e±iξ

3tû0(ξ) ∈ L2(R).

And,

| ± ξ3e±iξ
3tû0(ξ)| ≤ |ξ3û0|.

As for the function being C1 and its time-derivative being L2 whenever u0 is H3,

‖∂tu(t1)− ∂tu(t2)‖L2(R) = ‖F(∂tu(t1)− ∂tu(t2))‖L2(R)

= ‖∂tû(t1)− ∂tu(t1)‖L2(R)

= ‖∂te±iξ
3t1 û0 − ∂te±iξ

3t2 û0‖L2(R)

= ‖ ± (iξ3)e±iξ
3t1 û0 ∓ (iξ)3e±iξ

3t2 û0‖L2(R)

= ‖ξ3û0(e±iξ
3t1 − e±iξ

3t2)‖L2(R) (4.10)

≤ ‖2ξ3û0‖L2(R)

= ‖2∂3
xu0‖L2(R),

which is bounded as u0 ∈ H3(R). By Lebesgue’s dominated convergence theorem
(4.10) tends to zero as t2 → t1, and thus ∂tu is a continuous function from [0,∞)
to L2(R):

u0 ∈ H3(R) =⇒ u ∈ C1
t ([0,∞), L2(R)).

For the other part of the intersection, we look at

∂̂3
xu = ∓iξ3û

= ∓iξ3e±iξ
3tû0(ξ).
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Again,

|iξ3e±iξ
3tû0(ξ)| ≤ |ξ3û0(ξ)|.

And,

‖u(t1)− u(t2)‖H3(R) = ‖(1 + |ξ|3)(û(t1)− û(t2)‖L2(R)

= ‖(1 + |ξ|3)(e±iξ
3t1 − e±iξ

3t2)û0‖L2(R) (4.11)

≤ ‖2(1 + |ξ|2)û0‖L2(R)

= ‖2u0‖Hs(R)

which is bounded. Again, by Lebesgues dominated convergence theorem, as t2 →
t1, (4.11) tends to zero. Thus,

u ∈ C([0,∞), H3(R)) (4.12)

As for well-posedness, the problem is continuously dependent on initial value con-
ditions as

‖u− v‖H3(R) = ‖(1 + |ξ|3) ̂(u− v)‖L2(R)

= ‖(1 + |ξ|3)(û− v̂)‖L2(R)

= ‖(1 + |ξ|3)(e±iξ
3tû0 − e±iξ

3tv̂0)‖L2(R)

= ‖(1 + |ξ|3)e±iξ
3t(û0 − v̂0)‖L2(R)

≤ ‖(1 + |ξ|3)(û0 − v̂)‖L2(R)

= ‖u0 − v0‖H3(R).

The existence and uniqueness of a solution follows from the Fourier-transform being
one-to-one on S′(R) and the solution on the Fourier side being unique.

4.1.1 Polynomials of Order Four and Higher

Note that because p̂(D)u = iξû, increasing the exponent by one results in a 90-
degree rotation on the complex plane on the Fourier-side. And has we have seen,
p(λ) = ±λ share properties with p(λ) = ∓λ3 in the sense that |K| ≤ 1. In the
same sense, one would expect similarities between p(λ) = λ2 and p(λ) = λ4. For
p(λ) = λ4, one obtains the equation

ut +D4u = 0, (4.13)

and by the Fourier transform
ût + ξ4û = 0.

Solving in the usual manner, we obtain

û = û0(ξ)e−ξ
4t.
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As with the the quadratic polynomial, F−1(e−ξ
4t) ∈ S(R), and the solution shares

properties with the solution from the quadratic case.

If we were to continue increasing the exponent by one, we would obtain similar
results, in some sense, for all even exponents, and for all odd exponents. However,
results like (4.7) will vary depending on the exponent.

4.1.2 Superpositioning

As we have seen, the properties of the solution can, to some degree of precision, be
determined from whether the exponents in p are even or odd, but what happens
when p consists of more than one term? The initial value problems can be divided
into three different classes for polynomial differentiation operators. Let k be in
N>0:

1. If p(λ) = +λ4k−2 or p(λ) = −λ4k, û can be expressed as eξ
4k+2tû0(ξ) or

eξ
4ktû0 respectively.

2. If p(λ) = ±λ2k+1, û can be expressed as ei(∓ξ)
2k+1

û0(ξ).

3. If p(λ) = −λ4k+2 or p(λ) = +λ4k, û can be expressed as e−ξ
4k−2tû0(ξ) or

e−ξ
4ktû0 respectively.

Note that case 1 requires strict requirements in the sense of very rapid decay for
u0. Case 2 does not affect the norm of, in the sense that |û| = |û0|. Case 3 will
cause û to decay rapidly enough to yield u ∈ S(R) for all tempered distributions,
u0. One may think of case 1 to be the "worst" and case 3 to be the "nicest" in
terms of putting limitations on u0. If p consists of more than one term, terms from
case 1 will be dominant over cases 2 and 3, and case 3 will dominate case 2.

4.2 Duhamel’s principle

We have so far only considered the homogeneous case of the equation, but by using
the same methods we obtain a solution for the inhomogeneous equation.

Theorem 4.2.1. Whenever the homogeneous initial value problem,

ut − Lu = 0, u(0, x) = u0(x), (4.14)

has a solution operator T (t), such that

(T (t)u0)(x) = u(t, x),

the solution of the corresponding inhomogeneous initial value problem,

ut(t, x)− Lu(t, x) = g(t, x), u(0, x) = u0(x), (4.15)
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has solution

u(t, x) = (T (t)u0)(x) +

∫ t

0

(T (t− s)g(s))(x)ds. (4.16)

The existence of this solution is known as Duhamel’s principle.

Proof. Firstly, note that the initial condition is satisfied, as the integral equals zero
at t = 0. Also, as T (t) solves the homogeneous equation, ∂t − L applied to the
first term on the right hand side of (4.16) causes is to vanish as the term solves the
homogeneous equation. Thus,

(∂t − L)u(t, x) = (∂tu− Lu)(t, x)

= (∂t − L)

(
(T (t)u0)(x) +

∫ t

0

(T (t− s)g(s))(x)ds

)
= (∂t − L)

(∫ t

0

(T (t− s)g(s))(x)ds

)
= (T (0)g(t))(x) +

∫ t

0

(∂t − L)(T (t− s)g(s))(x)ds

= g(t, x).

4.2.1 Example of Duhamel’s Principle
To illustrate the previous theorem, we look at p(λ) = ∓λ3, with the homogeneous
problem

ut ∓D3
xu = 0, u(0, x) = u0(x).

From proposition 4.1.3, the homogeneous solution has form

uH(t, x) = F−1
(
e±iξ

3tû0

)
= (T (t)u0)(x). (4.17)

The inhomogeneous problem takes form

ut ∓D3
xu = g(t, x), u(0, x) = u0(x),

and from Duhamel’s principle we obtain the solution

u(t, x) = (T (t)u0)(x) +

∫ t

0

(T (t− s)g(s))(x)ds

= uH(t, x) +

∫ t

0

F−1
(
e±iξ

3(t−s)ĝ(ξ))
)
ds

= uH(t, x) +

∫ t

0

∫
Rn
eixξe±iξ

3(t−s)ĝ(ξ)dξds

= uH(t, x) +

∫ t

0

∫
Rn
eiξ(x±(t−s))ĝ(ξ)dξds.
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For the integral to be defined, the Fourier transform of g must exist, which it does
for g ∈ S′(R). If g is in the same class as u0, u will be in said class, or; u will be
in the same class as uH .

4.3 Non-Polynomial Differentiation Operators
So far we have only considered f as a polynomial, which yields ordinary differential
equations, but as we defined f by its Fourier transform, we could just as well use
non-polynomials. This does however bring us out of the comfort-zone of the well-
known theory of partial and ordinary differential equations. For instance, if we set
f(λ) = sin(λ), or initial value problem, in the homogeneous case becomes

ut + sin(D)u = 0, (4.18)

and the Fourier transformation yields

ût + sin(iξ)û = 0.

This has solution

û = e− sin(iξ)tû0

= e−i sinh(ξ)tû0.

From the inverse Fourier transform we obtain

u(t, x) =

∫
Rn
eixξe−i sinh(ξ)tû0(ξ)dξ

=

∫
Rn
ei(xξ−t sinh(ξ))û0(ξ)dξ.

Now, because sinh takes real values for real domains,

|e−i sinh(ξ)t| ≤ 1,

Thus, the same results as in proposition 4.1.1 hold. To connect non-polynomial dif-
ferential operators to classical polynomials differential operators, one can consider
the Taylor-expansion of the sinus function and consider the initial value problem
to take the form of an infinite-order differential equation, with an infinite amount
of differentiation terms. As the Taylor expansion of sin only involves terms with
odd expansion, it is analogous to case 2 in the superpositioning section, as

|û| ≤ |û0|.

In heuristic terms, if we were to look at f(λ) = cos(λ), the same property would
not be obtained, but a resemblance to polynomials of even-order would be evident
as the Taylor-expansion of f(λ) = cos(λ) only involves terms of even order, and
with signs corresponding to case 1. On the other hand, the Taylor expansion of
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f(λ) = − cos(λ) consists, with the exception of a constant term, only of terms from
case 3, which makes the initial value problem it defines allow for a large class of
initial value conditions. Taking this one step further, one could even analyse the
initial value problem for non-elementary functions, f , however, strong results and
proof of well-posedness would not come easily.



Chapter 5

The Riesz Representation
Theorem

The Riesz represnetation theorem guarantees a unique (weak) solution to initial
value problems under certain criteria.

Proposition 5.0.1. A linear functional L on a Banach space B is continuous if
and only if it is bounded, or if there exists a constant C such that

|L(v)| ≤ C‖v‖B for every v ∈ B.

Proof. A bounded linear function is Lipschitz continuous:

|L(u)− L(v)| = |(L(u− v)|
≤ C‖u− v‖B for all u, v ∈ B.

Conversely, suppose L is continuous, if it is not bounded there must exists a se-
quence {vn} in B such that

|L(vn)|
‖vn‖B

≥ n.

Through the normalization wn = vn
n‖vn‖B , so that |L(wn)| ≥ 1. But we have

‖wn‖B ≤ 1
n , so wn → 0, and by continuity of L we should have L(wn)→ 0, which

is a contradiction.

Corollary 5.0.2. For a continuous linear functional L on a Banach space B the
expression

‖L‖B′ = sup
06=v∈B

L(v)

‖v‖B

is always finite, and forms a norm on B′. It can be shown that B′ is complete with
respect to this norm, called the dual norm, so B′ is also a Banach space.

49
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Theorem 5.0.3 (The Riesz representation theorem). Any continuous linear func-
tional L on a Hilbert space H can be represented uniquely as L(v) = (u, v) for some
u ∈ H, and furthermore we have

‖L‖H′ = ‖u‖H ,

and thus H is isomorphic to H ′.

Proof. First, we show the uniqueness-property:

0 = L(u1 − u2)− L(u1 − u2)

= (u1, u1 − u2)− (u2, u1 − u2)

= (u1 − u2, u1 − u2),

and thus u1 = u2. Next, define

M = {v ∈ H : L(v) = 0}.

Obviously, M ⊂ H, so
H = M ⊕M⊥.

(See [2], p. 204-205, "the projection theorem")

If M⊥ = {0} we have M = H and we take u = 0.

If M⊥ 6= {0}, choose a non-zero z ∈M⊥, then L(z) 6= 0. For v ∈ H and β = L(v)
L(z)

we have
L(v − βz) = L(v)− βL(z) = 0,

or v−βz ∈M . Thus, v−βz ∈ PMv and βz ∈ PM⊥v. In particular, if v ∈M⊥, then
v = βz ∈ PM⊥ , which proves that M⊥ is one-dimensional. Now choose u = L(z)

‖z‖2H
z.

Note that u ∈M⊥ and we have

(u, v) = (u, (v − βz) + βz)

= (u, v − βz) + (u, βz)

= (u, βz), (u ∈M⊥, v − βz ∈M)

= β
L(z)

‖z‖2H
(z, z)

= βL(z)

= L(v).

So we choose u = L(z)
‖z‖2H

as our element in H.

It remains to prove that ‖L‖H′ = ‖u‖H . We observe that

‖u‖H =
|L(z)|
‖z‖H

.
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From the definition of the dual norm we have

‖L‖H′ = sup
0 6=v∈H

|L(v)|
‖v‖H

= sup
0 6=v∈H

|(u, v)|
‖v‖H

≤ ‖u‖H

=
|L(z)

‖z‖H
≤ ‖L‖H′ .

Thus, ‖u‖H = ‖L‖H′ .

5.1 Example of the Riesz Representation Theorem
In order to understand the application of the Riesz representation theorem, an
example is applied to the following Dirichlet problem:

−∆u+ u = g in Rn

u = 0 on ∂Rn.

Then u ∈ H1(Rn) is a weak solution if∫
Rn

(Du ·Dv + uv)dx = 〈g, v〉L2(Rn) for all v ∈ H1(Rn).

By defining (u, v)1 =
∫
Rn(Du ·Dv + uv)dx, this can be rewritten to

(u, v)1 = 〈g, v〉L2(Rn) for all v ∈ H1(Rn).

Now, (g, ·) is a continuous linear functional on H1(Rn) as∫
Rn
ĝ(ξ)v̂(ξ)dξ ≤ ‖ĝ‖L2(Rn)‖v̂‖L2(Rn

≤ ‖g‖L2(Rn)‖v‖H1(Rn).

Which follows from 1 ≤ (1 + |ξ|s). Thus, by the Riesz representation theorem,
there exists a unique u ∈ H1(Rn) solving this Dirichlet problem.
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Chapter 6

The Lax–Milgram Theorem

In an attempt to generalize the results found in chapter 5, we will prove the Lax-
Milgram theorem, but in order to get there we need to establish some definitions
and results.

Definition A bilinear form, a(·, ·), is a function on a normed linear space, H that
is linear in both arguments:

• a(u+ v, w) = a(u,w) + a(v, w).

• a(u, v + w) = a(u, v) + a(u,w).

• a(λu,w) = a(u, λv) = λu(v, w).

We say that the bilinear form is bounded and continuous if there exists a constant
c <∞ such that

|a(v, w)| ≤ c‖v‖H‖w‖H for all v, w ∈ H.

We say that the bilinear form is coercive on the subset V ⊂ H if there exists an
α > 0 such that

a(v, v) ≥ α‖v‖2H ,

and call α the coercivity of a on V .

We say that the bilinear form if symmetric on V if

a(v, w) = a(w, v) for all v, w ∈ H.

Proposition 6.0.1. If H is a Hilbert space and a(·, ·) is a symmetric bilinear form
on H which is coersive on a closed subset V ⊂ H, then (V, a(·, ·)) is a Hilbert space.
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Proof. Because a(·, ·) is coercive on V it is an an inner-product on V . Let ‖v‖E =√
a(v, v) and let {vn} be a Cauchy-sequence in (V, ‖ · ‖E). By coersivity, vn is also

a Cauchy-sequence in (H, ‖ · ‖H) and because H is complete there exists a v ∈ H
such that vn → v in ‖ · ‖H . Because V is closed in H, v ∈ V . Next, because a(·, ·)
is bounded we have that

‖v − vn‖H ≤
√
c1‖v − vn‖H ,

and thus vn → v in ‖ · ‖E , so (V, ‖ · ‖E) is complete.

Definition If

1. H is a Hilbert space

2. V is a closed subspace of H

3. a(·, ·) is a bounded, symmetric bilinear form on H that is coercive on V

the symmetrical variational problem is as follows:

Given F ∈ V ′, find u ∈ V such that

a(u, v) = F (v) for all v ∈ V. (6.1)

Theorem 6.0.2. Suppose points 1− 3 in the previous definition holds, then there
exists a unique u ∈ V solving the symmetrical variational problem.

Proof. By proposition 6.0.1, a(·, ·) is an inner-product on V , and (V, a(·, ·)) is a
Hilbert space, so by the Riesz representation theorem the theorem holds.

Definition Given a finite-dimensional subspace Vn ⊂ V ⊂ H, whereH is a Hilbert
space and F ∈ V ′, the problem of finding uh in Vh such that

a(uh, v) = F (v) for all v ∈ Vh,

is known as the Ritz–Galerkin approximation problem.

Theorem 6.0.3. Under conditions 1 − 3 of the symmetrical variational problem
there exists a unique uh that solves the Ritz–Galerkin approximation problem.

Proof. We know that (Vh, a(·, ·)) is a Hilbert space and that F ∈ V ′h, the result
follow from the Riesz representation theorem.

Remark If u solves the symmetrical variatonal problem and un solves the Ritz–
Galerkin approcimation problem, then we observe that

a(u− uh, v) = 0 for all v ∈ Vh.

And in the symmetric case, uh minimizes the quadratic functional

Q(v) = a(v, v)− 2F (v) for all v ∈ Vh.
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Theorem 6.0.4. For a Banach space, V , and a mapping T : V → V satisfying

‖Tv1 − Tv2‖ ≤M‖v1 − v2‖ for all v1, v2 ∈ V and fixed M : 0 ≤M < 1,

there exsts a unique v ∈ V such that

u = Tu.

In other words: The contraction mapping T has a unique fixed point, u.

Proof. We start by showing the existence of the fixed point: Let v0 ∈ V and define

v1 = Tv0, v2 = Tv1, · · · , vk+1 = Tvk.

Note that

‖vk+1 − vk‖ = ‖Tvk − Tvk−1‖
≤M‖vk − vk−1‖.

By induction,
‖vk − vk−1‖ ≤Mk−1‖v1 − v0‖.

Thus, for every N > n we have

‖vN − vn‖ = ‖
N∑

k=n+1

vk − vk−1‖

≤ ‖v1 − v0‖
N∑

k=n+1

Mk−1

≤ Mn

1−M
‖v1 − v0‖

=
Mn

1−M
‖Tv0 − v0‖.

From this it follows that {vn} is a Cauchy sequence. Because V is complete and
limn→∞ vn = v, we have

v = lim
n→∞

vn+1

= lim
n→∞

Tvn

= T ( lim
n→∞

vn)

= Tv,

so there exists a fixed point.
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Next, we want to prove that the fixed point is unique. Let Tv1 = v1 and Tv2 = v2,
since T is a contraction mapping we have

‖Tv1 − Tv2‖ ≤M‖v1 − v2‖

for some M between 0 and 1. But

‖Tv1 − Tv2‖ = ‖v1 − v2‖,

therefore
‖v1 − v2‖ ≤M‖v1 − v2‖,

giving us ‖v1 − v2‖ = 0 (otherwise we would require M ≥ 1).

Definition Under the conditions:

1. (H, (·, ·)) is a Hilbert space

2. V is a closed subspace of H

3. a(·, ·) is a continuous bilinear form on V

4. a(·, ·) is continuous (bounded) on V

5. a(·, ·) is coercive on V

The following problem is known as the non symmetric variational problem:

Given F ∈ V ′, find u ∈ V such that

a(u, v) = F (v) for all v ∈ V.

Theorem 6.0.5 (The Lax–Milgram theorem). Let (V, (·, ·)) be a Hilbert space and
a(·, ·) a continuous, coercive bilinear form on V . For F ∈ V ′, there exists a unique
u ∈ V such that

a(u, v) = F (v) for all v ∈ V. (6.2)

Proof. For any u ∈ V we define a functional Au(v) = a(u, v) for all v ∈ V . Au is
linear because

Au(λ1v1λ2v2) = a(u, λ1v1 + λ2v2)

= λ1a(u, v1) + λ2a(u, v2)

= λ1Au(v1) + λ2Au(v2) for all v1, v2 ∈ V, λ1, λ2 ∈ R.

Au is continuous because

|Au(v)| = |a(u, v)|
≤ C‖u‖‖v‖ for all v ∈ V.
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Thus,

‖Au(v)‖V ′ = sup
v 6=0

Au(v)

‖v‖
≤ C‖u‖
<∞.

Yielding Au ∈ V ′. In similar fashion one can show that the mapping u→ Au is a
linear map V → V ′.

By the Riesz representation theorem, for every φ ∈ V ′ there exists a unique τφ ∈ V
such that

φ(v) = (τφ, v) for all v ∈ V.
We need to find a unique u such that

Au(v) = F (v) for all v ∈ V,

in other words: We want to find a unique u such that

Au = f

in V ′, or
τAu = τF

in V , since τ : V ′ → V is a one-to-one mapping. By the contraction mapping
principle, we want to find a ρ 6= 0 such that the mapping T : V → V is a contraction
mapping when T is defined by

Tv = v − ρ(τAv − τF ) for all v ∈ V.

If T is a contraction mapping, then by the contraction mapping principle there ex-
ists a unique u ∈ V such that Tu = u−ρ(τAu−τF ) = u, that is: ρ(τAu−τF ) = 0
or τAu = τF . It remains to show that such a τ 6= 0 exists.

For every v1, v2 ∈ V , let v = v1 − v2, then

‖Tv1 − Tv2‖2 = ‖v1 − v2 − ρ(τAv1 − τAv2)‖2

= ‖v − ρ(τAv)‖2

= ‖v‖2 − 2ρ(τAv, v) + ρ2‖τAv‖2

= ‖v‖2 − 2ρAv(v) + ρ2Av(τAv)

= ‖v‖2 − 2ρa(v, v) + ρ2a(v, τAv)

≤ ‖v‖2 − 2ρα‖v‖2 + ρ2C‖v‖ · ‖τAv‖
≤ (1− 2ρα+ ρ2C2)‖v‖2

≤ (1− 2ρα+ ρ2C2)‖v1 − v2‖2

= M2‖v1 − v2‖2.



58 CHAPTER 6. THE LAX–MILGRAM THEOREM

Thus, we require 1−2ρα+ρ2C2 < 1 for some ρ, by choosing ρ ∈ (0, 2α
C2 ) we obtain

M < 1 and the proof is complete.

The Lax–Milgram theorem has great value in the field of differential equations, and
together with the Riesz representation theorem it does, to some extent, generalize
the results obtained in chapter 4. When applying the Lax–Milgram theorem, one
needs to check properties of the bilinear form and the functional defining a weak
solution, which will often be a lot easier than showing the existence of a unique
solution directly. For examples and applications of the Lax–Milgram theorem, see
[1].
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