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Abstract Backlash error occurs in a machining center may lead to a series of changes in the geometry of the 
components and subsequently deteriorate the overall performance of the equipment. Due to the uncertainty 
of mechanical wear between kinematic pairs, it is challenging to predict backlash error through physical 
models directly. An alternative method is to leverage data-driven models to map the degradation. This paper 
proposes a data-driven method for backlash error predication through Deep Belief Network (DBN). The 
proposed method focuses on the assessment of both current and future geometric errors for backlash error 
prediction and subsequent maintenance in machining centers. During the process of prognosis, a DBN via 
stacking Restricted Boltzmann Machines is constructed for backlash error prediction. Energy-based models 
enable DBN to mine information hidden behind highly coupled inputs, which makes DBN a feasible method 
for fault diagnosis and prognosis when the target condition is beyond the historical data. In the experiment, 
to confirm the effectiveness of deep learning for backlash error prediction, similar popular regression methods, 
including Support Vector Machine Regression and Back Propagation Neural Network, are employed to 
present a comprehensive comparison in both diagnosis and prognosis. The experimental results show that the 
performances of all these regression methods are acceptable in the diagnostic stage. In the prognostic stage, 
DBN demonstrates its superiority and significantly outperforms the other models for backlash error prediction 
in machining centers. 
Keywords Data mining · Machining Centers · Data-driven Method · Deep Belief Network · Backlash Error 

1. Introduction 

In recent years, machining centers are widely utilized as vital manufacturing equipment in modern production. 

Their application can be found everywhere in modern production; from large mechanical parts to miniature 

medical equipment, from mould making to aerospace manufacturing and from daily repair tools to scientific 

research instruments, for their excellent orientation ability, high material removal rate, and lower production 
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cost (Zhang et al. 2013). The term “machining center” can be used to describe any Computer Numerical 

Control (CNC) milling and drilling machine that includes an automatic toolchanger and a table that clamps 

the workpiece in place. Geometric errors that occur in a machining centers are the errors on account of the 

inaccuracies built in during assembly and from the components used in the machine. The errors may be 

affected by many error sources (Lee and Yang 2013; Zhu et al. 2012; Stryczek 2016; Cheng et al. 2015). 

These error sources may cause a series of changes in the geometry of the components and present in the 

structural loop, including the spindle shaft, the ball screws, the bearings, the housing, the guideways and 

frame, and work-holding fixtures. The errors may not only cause significant quality and accuracy degradation 

but also fatal breakdown of machines, which can lead to serious economic loss (Aydın et al. 2015). Therefore, 

it is especially crucial to accurately detect the existence of geometric errors as early as possible and predict 

the error in a period of working time (Zhong et al. 2015; Siguenza-Guzman et al. 2015; Cheng et al. 2014). 

Schwenke et al. (2008) reviewed various technologies to evaluate the geometric errors of machines and their 

basic characteristics. As reported in that paper, backlash usually affect uncertainties in the measured 

parameters since they are not modelled adequately. The uncertainties may cause correlations or just erroneous 

estimations. Therefore, many companies choose the preventive maintenance for backlash error in machining 

centers, which means the error would be checked and eliminated from time to time following planned 

guidelines. However, this strategy is both costly and time-consuming.  

During the last few decades, many researchers have studied methods to monitor, model and control 

backlash error for mechanical systems, and many diagnosis approaches have been proposed (Chen et al. 2016; 

Fines and Agah 2008; Liu et al. 2010; Prasanga et al. 2013; Slamani et al. 2012). Prasanga et al. (2013) 

proposed a method to compensate the backlash error through two parallel thrust wires without any encoder 

or force sensor at the end effector. Slamani et al. (2012) evaluated the backlash error of an industrial serial 

robot under various conditions using a laser interferometer measurement instrument and represent the 

relationship between the backlash error and the robot configuration with a polynomial model. All these 

methods require additional measurement equipment or system along with elaborate engineering and 

considerable domain expertise. 
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Nowadays, with the trend of smart manufacturing, companies are increasingly using sensors and wireless 

technologies to capture data at all stages of a product’s life (Kusiak 2017). For this reason, “Big Data” has 

attracted not only researchers’ but also manufacturers’ attention along with the development of data-driven 

methods from various perspectives such as product lifecycle management (Li et al. 2015), manufacturing 

(Tao et al. 2017), and maintenance (Mosallam et al. 2016). Some machine learning and artificial intelligence 

approaches, such as neural networks, support vector machine and fuzzy logic systems, also have been applied 

in backlash error evaluation or prediction. Chen et al. (2016) compensated the backlash nonlinearity by a 

smooth backlash inverse with the help of parameter estimations and fuzzy logic system-based approximation 

for an active vibration isolation system. Fines and Agah (2008) applied artificial neural network for 

positioning error compensation in a machine tool, and proved the feasibility to calculate compensation values. 

Liu et al. (2010) employed back-propagation neural network to map the backlash error in a vertical machining 

center and compared the result with polynomial models.   

However, most of these researches only focus on the diagnosis or evaluation of current or historical 

backlash error. It still lacks a method with high generalization for backlash error prediction, especially when 

the target condition is beyond the historical data. Therefore, this paper presents a data-driven method for 

backlash error detection and predication for machining centers based on Deep Belief Network (DBN). The 

research focuses on the assessment of both current and future geometric errors for backlash error 

compensation and subsequent maintenance in machining centers. During diagnosis stage, the missing prior 

data including the historical data and current backlash error will be interpreted, while the prognosis stage is 

responsible for the prediction of future backlash error based on the prior data provided by the former stage 

through a deep neural network. 

The remaining part of this paper is organized as follows. Section 2 briefly introduces the sources and 

effects of backlash error in machining centers. Section 3 details the theory of deep learning, Restricted 

Boltzmann Machines (RBMs) and DBN. Section 4 proposes a novel hierarchical diagnosis and prognosis 

system (HDPS) for backlash error prediction with deep learning algorithm. Section 5 reports the experiment 

for backlash error detection and prediction during our research in detail and conforms the effectiveness and 

feasibility of the proposed method. Section 6 compares and discusses the performances of several intelligent 
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regression approaches in backlash error prediction. Conclusions and future work are summarized in the last 

section of this paper. 

2. Backlash Error in Machining centers 

In order to perform an error mapping and subsequent compensation for backlash error, an understanding of 

the sources and effects of backlash error in machining centers are necessary. In mechanical engineering, 

backlash is a kind of nonlinear position dependent-error caused by the existence of clearance between two 

mechanical elements. It may occur in a rotational mechanical element as well as in a translational mechanical 

element (Kao et al. 1996). Normally, a machining center is equipped with various high-precision sensors such 

as gratings, rotary encoders, current sensors, temperature sensors, and linear scales to guarantee the accuracy 

through closed or half closed loop control. Many parameters such as machine temperature, geometric position 

of ball screw, torque and current, can be obtained directly from the control system. In machining centers, 

backlash error can be acquired through some extra methods, most of which are either time-costly such as 

laser interferometer or only yield the maximum value (Liu et al. 2010).  

In a machining center, backlash error occurs when there exists a gap between the ball screw and spindle 

at the kinematic pair. As shown in Fig. 1, when the direction of motion reversed, the spindle will not move 

until the gap is taken up in the opposite direction. The distance that the ball screw travels before the table will 

move again is the geometric error caused by backlash, which is also called as backlash error. In general, all 

loosely connected elements in the driving mechanism may influence the backlash error of the system.  

Backlash error varies at different axis positions and depends on the moving direction. In addition, the 

error affects the contouring accuracy and increases over time due to wear in the machining center, which 

means it is almost impossible to establish an accurate physical model for backlash error prediction. Therefore, 

it is significant and necessary to apply machine-learning approaches to monitor, model, and predict backlash 

error in mechanical systems to maintain the desired level of accuracy. 
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Fig. 1 Backlash error in machining centers 

In our pioneer work (Wang et al. 2015), we applied back-propagation networks to map the relationship 

between backlash error and axis positons of the spindle. It proved the feasibility to apply machine-learning 

approaches to detect backlash error. However, that paper did not take nature wear into consideration, since 

conventional machine learning methods require elaborate feature extractors before applying learning models 

(Zhang et al. 2017), and it is impractical to fulfill this requirement without exact parameters from future 

condition in this case. Therefore, this paper focuses on the application of deep learning approach to map the 

future backlash error while the important parameters to map the backlash error is missing. In addition, a 

hierarchical diagnosis and prognosis system based on DBN is also constructed in this paper. 

3. DBN 

3.1 Deep Learning 

As a branch of machine learning, deep learning is a series of algorithms which can be applied to model, 

approximate, or map high level abstractions in data. The essence of deep learning is about how to compute 

hierarchical features or representations from the objective data. The family of deep learning approaches have 

been growing increasingly richer, encompassing variety of neural networks with multiple processing layers, 

hierarchical probabilistic models, and kinds of unsupervised or supervised feature learning algorithms (Deng 

and Yu 2014). Schmidhuber (2015) summarized all relevant work about deep learning in neural networks 

and distinguished the Shallow and Deep Learners by the depth of their credit assignment paths. 
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As reported by LeCun et al. (2015), conventional machine-learning techniques were usually limited by 

their ability to process natural data in their raw form. For decades, to construct a machine learning system 

required elaborate engineering and considerable domain expertise to design a feature extractor that 

transformed the raw data into a suitable internal representation or feature vector from which the learning 

subsystem, often a classifier, could detect or classify patterns in the input. More recently, deep learning, as a 

latest research area of machine learning, has accelerated its application in fault diagnosis and prognosis (Gan 

and Wang 2016). The key advantage of deep learning is that the features are not designed by human engineers 

but learned from data itself through a generalized self-learning procedure. Various deep learning algorithms, 

such as deep belief networks (Hinton and Salakhutdinov 2006) and convolutional neural network (LeCun et 

al. 1998), have been applied successfully in the field of computer vision (Krizhevsky et al. 2012; Tompson 

et al. 2014; Zhou et al. 2010; Ribeiro et al. 2011), speech recognition (Hinton et al. 2012; Sainath et al. 2013; 

Seltzer et al. 2013), sentence modelling (Er et al. 2016) and proved the good performance in predicting the 

activity of potential drug molecules (Hermann et al. 2015), analysing particle accelerator data (Ciodaro et al. 

2012), reconstructing brain circuits (Helmstaedter et al. 2013), and predicting the effects of mutations in non-

coding DNA on gene expression and disease (Xiong et al. 2015). In this paper, the deep neural network is 

constructed via the stacked of RBMs, which also called as DBN. A DBN is a deep neural network composed 

of multiple layers of RBMs (Hinton et al. 2006).  

3.2 RBMs 

A Restricted Boltzmann Machine (RBM) is a special type of Markov Random Field (MRF), which consists 

of two layers, one with stochastic visible or observable units and the other with stochastic hidden units 

(Keyvanrad and Homayounpour 2014). RBMs can be represented as bipartite graphs as shown in Figure 2, 

where all visible units v are connected to all hidden units h, and there are no visible-visible or hidden-hidden 

connections (Yu and Deng 2011). wij represents the interaction term between visible unit vi and hidden unit 

hj, while vector a and b are bias terms for hidden units and visible units respectively. 
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Fig. 2 Structure of RBMs 

The energy of the joint configuration with bias in RBMs is defined as equation (1): 

𝐸𝐸(𝒗𝒗,𝒉𝒉;𝑾𝑾,𝒂𝒂,𝒃𝒃) = −𝒗𝒗𝑇𝑇𝑾𝑾𝒉𝒉− 𝒃𝒃𝑇𝑇𝒗𝒗 − 𝒂𝒂𝑇𝑇𝒉𝒉
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Where W is the concurrent weights between visible and hidden units. I and J represent the numbers of visible 

and hidden units. Then the joint probability distribution for all visible and hidden pairs can be defined as 

follows: 

𝑝𝑝(𝒗𝒗,𝒉𝒉;𝑾𝑾,𝒂𝒂,𝒃𝒃) = 𝑍𝑍−1𝑒𝑒−𝐸𝐸(𝒗𝒗,𝒉𝒉;𝑾𝑾,𝒂𝒂,𝒃𝒃)                          (2) 

Where Z is the partition, which can be obtained by summing all possible pairs of visible and hidden units as 

equation (3): 

𝑍𝑍

= ��𝑒𝑒−𝐸𝐸(𝒗𝒗,𝒉𝒉;𝑾𝑾,𝒂𝒂,𝒃𝒃)

𝒉𝒉𝒗𝒗

                                                                             (3  

Then, the probability assigned from the network for the visible vector v can be obtained by marginalizing 

out the hidden vector: 

 

𝑝𝑝(𝒗𝒗;𝑾𝑾,𝒂𝒂,𝒃𝒃) = �𝑝𝑝(𝒗𝒗,𝒉𝒉;𝑾𝑾,𝒂𝒂,𝒃𝒃)
ℎ

=  𝑍𝑍−1�𝑒𝑒−𝐸𝐸(𝒗𝒗,𝒉𝒉;𝑾𝑾,𝒂𝒂,𝒃𝒃)

𝒉𝒉

                                (4) 
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Due to the specific structure of RBM, there are no direct connection between hidden units. Therefore, all 

the visible and hidden units are conditionally independent (Hinton 2010), and the conditional probabilities 

can be efficiently calculated as equation (5) and (6): 

𝑝𝑝�ℎ𝑖𝑖 = 1|𝒗𝒗;𝑾𝑾,𝒂𝒂,𝒃𝒃�

= 𝑆𝑆 �𝑎𝑎𝑖𝑖 + �𝑣𝑣𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖=1

�                                                               (5) 

𝑝𝑝(𝑣𝑣𝑖𝑖 = 1|𝒉𝒉;𝑾𝑾,𝒂𝒂,𝒃𝒃)

= 𝑆𝑆 �𝑏𝑏𝑖𝑖 + �ℎ𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖

𝐽𝐽

𝑖𝑖=1

�                                                               (6) 

Where 𝑆𝑆(𝑥𝑥) is the logistic sigmoid function 𝑆𝑆(𝑥𝑥) = 1/(1 + 𝑒𝑒−𝑥𝑥) 

Then, the RBM model with binary units can be learned through negative log-likelihood gradients (Gan 

and Wang 2016). The derivative of the log probability of a training vector can be obtained as follows: 

 
𝜕𝜕 log𝑝𝑝(𝒗𝒗;𝑾𝑾,𝒂𝒂,𝒃𝒃)

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖
= 〈𝑣𝑣𝑖𝑖ℎ𝑖𝑖〉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

− 〈𝑣𝑣𝑖𝑖ℎ𝑖𝑖〉𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚                                                        (7) 

 

𝜕𝜕 log𝑝𝑝(𝒗𝒗;𝑾𝑾,𝒂𝒂,𝒃𝒃)
𝜕𝜕𝒂𝒂

= 〈ℎ𝑖𝑖〉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

− 〈ℎ𝑖𝑖〉𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚                                                      (8) 

 

𝜕𝜕 log𝑝𝑝(𝒗𝒗;𝑾𝑾,𝒂𝒂,𝒃𝒃)
𝜕𝜕𝒃𝒃

= 〈𝑣𝑣𝑖𝑖〉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

− 〈𝑣𝑣𝑖𝑖〉𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚                                                      (9) 

 

Where the angle brackets denote the expectations with the distribution specified by the subscript that follows. 

Then the learning rule for all parameters can be obtained as follows: 
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∆𝑤𝑤𝑖𝑖𝑖𝑖

= ℰ𝑤𝑤�〈𝑣𝑣𝑖𝑖ℎ𝑖𝑖〉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

− 〈𝑣𝑣𝑖𝑖ℎ𝑖𝑖〉𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 �                                                         (10) 

 

∆𝑎𝑎𝑖𝑖𝑖𝑖

= ℰ𝑑𝑑�〈ℎ𝑖𝑖〉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

− 〈ℎ𝑖𝑖〉𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 �                                                                  (11) 

 

∆𝑏𝑏𝑖𝑖𝑖𝑖

= ℰ𝑏𝑏(〈𝑣𝑣𝑖𝑖〉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

− 〈𝑣𝑣𝑖𝑖〉𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 )                                                                  (12) 

 

Where ℰ𝑤𝑤 , ℰ𝑑𝑑 and ℰ𝑏𝑏 represent learning rate of weight, hidden bias and visible bias, respectively. 

According to the previously mentioned RBM property, an unbiased sample of 〈 . 〉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑with the respect to 

the data distribution can be easily obtained, while attaining an unbiased sample of 〈 . 〉𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 is intractable, 

since it can be done through starting from any random state of the visible units and performing sequential 

Gibbs sampling for a long time (Keyvanrad and Homayounpour 2014). Therefore, the Contrastive 

Divergence (CD) method (Hinton 2002) is applied to approximate the gradient objective function, where 

〈 . 〉𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 is replaced by k iterations of Gibbs sampling. During Gibbs sampling, each iteration updates all 

hidden units according to equation (11), followed by updating of all visible unites through equation (12), as 

shown in Fig. 3. Although CD method is not a perfect gradient computation method, the results has been 

proved acceptable (Carreira-Perpinan and Hinton 2005).  
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Fig. 3 Contrastive Divergence Training 

3.3 DBN Construction for Fault Diagnosis and Prognosis  

As mentioned above, A DBN can be constructed through stacking RBMs, each of which contains one visible 

layer and one hidden layer respectably. As one of the major technologies of deep learning, DBN has excelled 

in AI areas with notable success (Wang and Jiang 2017). The construction process of DBN is well described 

in (Hinton et al. 2012). Each RBM is pre-trained with their own training data by CD training algorithm, and 

its output serves as the training data for the next RBM layer. As shown in Fig. 4, the input layer and the first 

hidden layer h1 construct the first RBM. Then the states of the binary hidden units of the first trained RBM is 

used to train the next hidden layer h2, then hidden layer h1 and hidden layer h2 form the second RBM. These 

layer by layer unsupervised training method can effectively pre-train the DBN. 

 
 Fig. 4 Overall construction of DBN 
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To achieve high classification or regression performance for fault diagnosis and prognosis, a final decision 

layer with variables, which represent the desired outputs or labels, is added to the stacked RBM. The final 

structure of DBN for fault diagnosis and prognosis in shown in Fig. 5, which is composed of several 

successive RBM layers and a final decision layer for faults clustering, faulty component’s identity, or 

evaluation of potential failures. Once the DBN is initialized, the back propagation (BP) algorithm, which is 

a supervised learning method and applied in Back-propagation Neural Network (BPNN), can be employed 

to adjust the weights. 

Because Deep Belief Networks are based on RBMs, which are particular energy-based models, the 

learning process corresponds to modifying that energy function so that its shape has desirable properties 

(Bengio 2009). In a DBN, each RBM is trained to encode in its weight matrix a probability distribution that 

predicts the activity of the visible layer through the hidden layer. By stacking such models, and letting each 

layer predict the activity of the layer below, higher RBMs learn increasingly abstract representations of 

sensory inputs (O'Connor et al. 2013). Due to the layer-by-layer unsurprised learning process with fine-tuning 

procedure, DBN has the superiority to capture intrinsic characteristics and discover discriminative 

information about potential failures from massive data. Therefore, DBN can be leveraged to establish 

diagnosis and prognosis models with high generalization for backlash error detection and prediction. 

 

 

Fig. 5 DBN for fault diagnosis and prognosis

4. Hierarchical Diagnosis and Prognosis System 

As mentioned above, since it is intractable to establish physical model for backlash error, and the backlash 

error varies with different axis positions, most company chooses to check and eliminate backlash according 

to the planned guidelines, which is both costly and time-consuming. Therefore, it still lacks method to predict 
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the backlash error instead of detecting from time to time. In this section, a novel HDPS is proposed for 

backlash error detection and predication in machining centers based on DBN models. The purpose of the 

system is to make maintenance decision based on the result of faults diagnosis and prognosis. With the help 

of HDPS, the maintenance team can prevent occurrence and development of failures effectively, ensure the 

safety of equipment and personnel, and reduce economic loss caused by failures. It can use fault diagnosis, 

performance assessment of degrading level, fault prognosis models to reach near-zero-breakdown 

performance and improve productivity for a company.  

As shown in Fig. 6, HDPS proposed in this paper can be divided into three layers, which are Data 

Acquisition Layer, Diagnosis Layer and Prognosis Layer. In Data Acquisition Layer, the data, including all 

the information we may require during the diagnosis and prognosis, is collected from machining centers. This 

is the first step to achieve diagnosis and prognosis based on data mining for machine centers. The first task 

of this layer is to select and collect suitable parameters which can represent the current working condition or 

install additional sensors for this purpose. Then, the backlash error at current axis position can be calculated 

form geometric measurement information through backlash error interpretation method, which will be 

introduced in next section. Then, all the measured parameters and obtained backlash error are stored in the 

data warehouse. 

As mentioned before, since backlash error varies at different axis positions and the measurement is both 

costly and time-consuming, it is almost impracticable to collect the backlash error at all positions. Therefore, 

in Data Acquisition Layer, only one or several axis positions’ backlash error may be acquired, and the 

Diagnosis Layer is responsible to fill up the others. At first, training samples require to be selected from the 

data warehouse and divided into groups for training and testing the diagnosis model. Several data-driven 

models like BPNN, Support Vector Machine Regression (SVMR) and DBN, can be applied as diagnosis 

model here according to the user. Once the diagnosis model is trained by historical data, it can be used to 

detect current backlash error in all position and fill up all missing backlash errors back to the data warehouse. 
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Fig. 6 Structure of HDPS 

In Prognosis Layer, the historical data will be selected from the data warehouse to train the prognosis 

model. Then the data can be used to pre-train the RBMs in an unsupervised method as we discussed in section 

3. The DBN model can be constructed by stacking these RBMs and a final decision layer, which may adjust 

the weight of the network according to the target values. Once the prognosis is trained, it can be applied to 

predict the backlash error in the future through the current working condition. In next section, the experiment 

for backlash error detection and prediction during our research is introduced in detail to illustrate how the 

HDPN and deep learning approach can work for backlash error detection and prediction in machining centers. 

And the results conform the effectiveness and feasibility of the proposed method.

5. Backlash Error Detection and Prediction Experiment 

5.1 Experiment Set Up 

In order to measure the backlash error in a machining center, at least two geometric measurements are 

required: displacement of the ball screw and the linear position of the spindle. In our experiment, the 
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displacement of the ball screw is measured through a rotary encoder in the motor. It records the rotation angle 

and converts the signal into linear displacement. The position of the spindle is acquired by a calibrated linear 

scale. Figure 7 shows the setup of the measurement system, in which the linear scale records the direct 

position of the spindle x1, and rotary encoder measures the displacement of the ball screw (the indirect 

position of the spindle x2). 

 

 

Fig. 7 Setup of the measurement system 

5.2 Backlash Error Interpretation 

According to the definition, the geometric error caused by backlash error can be interpreted as the difference 

between the displacements of the spindle and ball screw when the direction is reversed. Simply described as 

the following equations: 

 

𝐵𝐵[𝑝𝑝] = ∫ 𝑓𝑓1(𝑡𝑡)𝑑𝑑∗

𝑑𝑑𝑏𝑏 𝑑𝑑𝑡𝑡 − ∫ 𝑓𝑓2(𝑡𝑡)𝑑𝑑∗

𝑑𝑑𝑏𝑏 𝑑𝑑𝑡𝑡                             (13) 

𝑝𝑝 = 𝑥𝑥1�𝑡𝑡𝑏𝑏�,                                        (14) 

 

Where: 

𝑓𝑓1(𝑡𝑡) is the velocity of the spindle with time, recorded by linear scale. 

𝑓𝑓2(𝑡𝑡) is the velocity of the ball screw with time, recorded by rotary encoder. 

𝑥𝑥1(𝑡𝑡) is the direct position of the spindle with time, recorded in linear scale. 

𝑝𝑝 is the position on linear scale, where backlash occurs. 

𝐵𝐵[𝑝𝑝] is the geometric error caused by backlash at position 𝑝𝑝. 
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𝑡𝑡𝑏𝑏 is the time when backlash occurs. 

𝑡𝑡∗ is the time when backlash disappears (the gap is taken occurs) 

However, due to the uncertainty of backlash, it is almost impossible to capture the exact time when the 

gap is filled, which means 𝑡𝑡∗ in the equation (1) is unavailable or with low precision. Therefore, during the 

measurement, we extended the measurement distance and let backlash occurred three times in one sample to 

eliminate the measurement error. As shown in figure 8, three blocks of geometric error, caused by backlash, 

can be recognized during one sampling process. The time interval between each sampling units is two 

milliseconds. 

 

Fig. 8 Three blocks of backlash in one sample 

The position of spindle and ball screw can be decomposed into the amount of feed and return, the initial 

position, and backlash error, as shown in the following equation: 

𝑥𝑥1(𝑡𝑡′) = 𝑥𝑥1(𝑡𝑡0) + ∫ 𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑(𝑡𝑡)𝑑𝑑′

𝑑𝑑0 𝑑𝑑𝑡𝑡 + ∫ 𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏(𝑡𝑡)𝑑𝑑′

𝑑𝑑0 𝑑𝑑𝑡𝑡 + ∑𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏ℎ                  (15) 

𝑥𝑥2(𝑡𝑡′) = 𝑥𝑥2(𝑡𝑡0) + ∫ 𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑(𝑡𝑡)𝑑𝑑′

𝑑𝑑0 𝑑𝑑𝑡𝑡 +

∫ 𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏(𝑡𝑡)𝑑𝑑′

𝑑𝑑0 𝑑𝑑𝑡𝑡                                          (16)  

Where: 
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𝑥𝑥2(𝑡𝑡) is the position of ball screw with time, recorded in rotary encoder. 

𝑡𝑡0 The initial time of the measurement. 

𝑡𝑡′ The end time of the measurement. 

𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑(𝑡𝑡) The feed rate at t, which is equal to zero if not under feed movement. 
𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏(𝑡𝑡) The return rate at t, which is equal to zero if not under return movement. 

Since the backlash errors occur in very close positions, we consider the difference of the value is approach 

to zero. Therefore, the backlash error can be calculated according to equation (17): 

𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏ℎ = [𝑥𝑥1(𝑡𝑡′)− 𝑥𝑥1(𝑡𝑡0)]− [𝑥𝑥2(𝑡𝑡′)−𝑥𝑥2(𝑡𝑡0)]              (17) 

5.3 Data Acquisition 

To investigate the actual performance of proposed system, the experiment was carried out on a Pietro 

Carnaghi AC 16 TM vertical machining center with a collection of 25 weeks’ data, from the 7th week to 31st 

since the last maintenance. The machining center is placed in a plant with some manufacturing tasks every 

day. During the data collection period, data was collected through a very rigorous testing procedure after 

daily work to ensure all the data collected is under a similar condition. The collected parameters are shown 

in Table 1. 

During the experiment, we divided the moving distance into 24 points with the interval of 20 mm from 

1090 to 1550 mm according to the calibrated linear scale. Then, all the backlash errors with current parameters 

can be calculated through backlash error interpretation method, which was introduced in the Section 5.2. Fig. 

9 shows the obtained backlash error only with working weeks and axis position (It is more than a 3-dimension 

issue, but according to empirical knowledge, it is intuitive to visualize the backlash error with working weeks 

and axis position). 

 

Table 1 Parameters collected from a vertical machining center 

Parameters Meaning 
𝑥𝑥1 Direct position measured by linear scale 
𝑥𝑥2 Displacement recorded by rotary encoder 
𝑤𝑤 Number of weeks since the last maintenance 
𝑇𝑇1 Temperature of the coolant tank 
𝑇𝑇2 Temperature of the machining center 
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𝑇𝑇3 Ambient temperature 
𝑇𝑇𝑇𝑇𝑇𝑇 Machining torque 
𝑡𝑡 Sampling units during the testing procedure 
𝑃𝑃 Axis position of the spindle 

 

 

Fig. 9 Backlash error with working time and axis position 

5.4 Diagnosis for Detection 

As mentioned above, backlash errors in some positions may be missed in Data Acquisition Layer. So 

Diagnosis Layer requires to detect and fill up the current backlash error in all positions through the collected 

parameters. Actually, the essence of the diagnosis model is to deal with a nonlinear regression problem, in 

which all the variables are collected or mapped under the same working condition. The regression function 

𝐹𝐹 can be simply shown as equation (18):  

𝑏𝑏𝑑𝑑

≈ 𝐹𝐹(𝑇𝑇1,𝑇𝑇2,𝑇𝑇3, 𝑡𝑡,𝑇𝑇𝑇𝑇𝑇𝑇,𝑝𝑝𝑟𝑟 , 𝑏𝑏𝑟𝑟,𝑝𝑝𝑑𝑑)                                                        (18) 
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Where 𝑏𝑏𝑑𝑑 is the backlash error at target position, 𝑝𝑝𝑟𝑟 represents the backlash error at reference position, 

which is obtained and interpreted in Data Acquisition Layer. 𝑝𝑝𝑑𝑑  and 𝑏𝑏𝑟𝑟  mean the target position and 

reference position, respectively. 

In Diagnosis Layer, the diagnosis is first trained through the historical data, and responsible to map the 

backlash error in all positions through the data collected under current working condition. During the 

experiment, a selection of 1152 samples was applied to train the regression model. We employed three 

methods including BPNN, SVMR, and DBN as the regression model, and compared the results as shown in 

Table 2, where Maximum Error (ME), Mean Squared Error (MSE) and training time of each model are listed.  

Table 2 Diagnosis result of BPNN, DBN, and SVMR 

Model BPNN DBN SVMR 

Structure 50 nodes in the 

hidden layer 

4 layers, 50 

nodes in each 

Gaussian Kernel 

Function 

MSE (μm) 0.01148 0.01056 0.00964 

ME (μm) 0.2758 0.2807 0.2812 

Training time Instantly 30 mins Instantly 

 

The result shows that all three methods has the capacity to deal with the diagnosis problem when all the 

relative parameters were obtained. In addition, both BPNN and SVMR can finish the training process 

instantly, and DBN is relatively time-consuming. 

5.5 Prognosis for Backlash Error 

As mentioned above, Prognosis Layer is responsible to predict future backlash error according to the 

historical data and current working condition of the machining center. Actually, it can also be considered as 

a regression problem, though all the parameters that can be used to represent the working condition are 

missing since we never know the exact values of these parameters in the future. Therefore, we applied the 

deep learning approach to predict the backlash error first, and then tested other methods to compare the 

effectiveness. Table 3 shows the input variables of the prognosis model. 

Table 3 Inputs for Prognosis 
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Inputs Meaning 

𝑤𝑤 Number of weeks since the last maintenance 

𝑇𝑇1 Temperature of coolant tank 

𝑇𝑇2 Temperature of machine 

𝑇𝑇3 Ambient temperature 

𝑇𝑇𝑇𝑇𝑇𝑇 Machine torque 

𝑃𝑃 Axis position 

𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏ℎ𝑤𝑤–1,𝑃𝑃−1 Backlash Error in 

𝑤𝑤– 1 weeks at 𝑃𝑃 − 1 position 

𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏ℎ𝑤𝑤–2,𝑃𝑃−2 Backlash Error in 

𝑤𝑤 − 2 weeks at 𝑃𝑃 − 2 position 

During the experiment, it is supposed that prognosis model is established at week 29th and employed to 

predict the backlash error in the future, which means the backlash errors in week 30th and 31st are beyond the 

training data. According to the author’s empirical knowledge, this problem is common and challenging since 

in many situations, one may not have the data under faults. Some machines may run several years without 

any failures. However, it may exist potential faults that would occur one day. When they happen, they may 

cause terrible disasters in both economy and personal safety. This is the reason why it is also crucial to 

evaluate potential failures or degradations beyond the historical data. During the experiment, the applied 

DBN model is constructed through stacking four RBMs. The structure for the utilized DBN is shown in Table 

4 along with the parameters of each Restricted Boltzmann Machine. 

During the training process, samples are randomly divided into two groups, 80 percent for training and 

20 percent for testing. Fig. 10 shows the training result, in which the best MSE from week 9th to week 29th is 

0.012207 μm at the 14075th epochs. 

 

 

Table 4 parameters for utilized DNB 

Parameters RBM1 RBM2 RBM3 RBM4 
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Type Bernoulli Bernoulli Bernoulli Bernoulli 

Number of neurons 50 50 30 30 

Learning rate 0.01 0.01 0.01 0.01 

Number of epochs 500 500 300 300 

 

Fig. 10 Training result of DBN  

 

Fig. 11 and Fig. 12 compared the actual backlash error and predicted backlash error in week 30th and 31st 

respectively. The MSE of backlash error prediction in week 30th and 31st is 0.0102 μm and 0.0142 μm with 

0.1808 and 0.2275 as ME, respectively. In this case, the Maximum Permissible Error (MPE) for the backlash 

error is set as 16μm. In week 29th, we can predict that the backlash error in week 31st may exceed the MPE 

considering about the mean prediction error, which means the fault could be forecasted two weeks in advance. 

Then, subsequent maintenance should be arranged in week 30th to prevent the error from growing up and 

finally exceeding the MPS.  
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Fig. 11 Predicted backlash error in week 30th    

 

Fig. 12 Predicted backlash error in week 31st     

6. Discussion 

During the experiment, to confirm the effectiveness of deep learning for backlash error prediction, two other 

widely used regression methods, SVMR and BPNN, are employed for comparison. The BPNN applied in the 

experiment consisted of one hidden layer with 50 neurons. The Levenberg-Marquard optimization rule is 

applied as training algorithm for the BPNN. For the SVMR, Gaussian Function is applied as the kernel 

function. As mentioned above, all the training samples are randomly selected. In order to obtain more accurate 

and comprehensive evaluation results, we did this random selection for 20 times. The prediction results of 

each algorithm with their best performance over the 20 runs are summarized in Table 5.  

 

 

Table 5 Prediction results of BPNN, DBN, and SVMR 

Model BPNN DBN SVMR 

Structure 50 nodes in the 

hidden layer 

4 layers, 50 * 

50 * 30 * 30 

Gaussian Kernel 

Function 

Training MSE (μm)  0.020894 0.012207 0.0102 

MSE in week 30th  0.2566 0.0102 1.2335 

MSE in week 31st  1.6450 0.0142 2.8029 



  
 

22 

 

ME in week 30st 0.9904 0.1808 1.3669 

ME in week 31st 1.6338 0.2275 1.8969 

Training time Instantly 40 mins instantly 

Through observation, DBN outperforms other two methods with better performance in both MSE and ME 

for backlash error prediction. The numerical result indicates that DBN can effectively deal with the backlash 

error prediction issue with better stability and accuracy compared with the conventional methods, when the 

target condition is beyond the training data. To be more specific, energy-based models enable DBN to mine 

information hidden behind highly coupled inputs, which makes DBN a suitable method to predict backlash 

error in the future through current condition. Although DBN requires more training time and higher 

computational complexity compared with conventional machine learning algorithms, the outstanding 

performance in prediction outweighs this shortage. 

As to BPNN and SVMR, both of them have good performances in fault diagnosis if all the necessary 

parameters can be obtained. In addition, compared with DBN, they showed the advantage in learning speed 

during the experiment. However, it is also obvious that neither of them has the ability to predict future 

backlash error when the important information in target condition is missing. The experiment also 

demonstrated the necessity and feasibility of applying DBN as the prognosis model for backlash error 

prediction in the proposed HDPS. 

7. Conclusion and future work 

This paper presents a novel hierarchical diagnosis and prognosis system for backlash error detection and 

prediction in machining centers based on DBN. The method builds on unsupervised pre-training process 

through energy-based models, which can help to predict future backlash error through current condition. The 

proposed system mainly includes three layers, Data Acquisition Layer, Diagnosis Layer and Prognosis Layer. 

In Data Acquisition Layer, important parameters including geometric measurement information, temperature, 

and machine torque is obtained from machining centers. Diagnosis Layer is responsible to detect the current 

error in all position and fill up all missing backlash errors back to the data warehouse through diagnosis model. 
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In the Prognosis Layer, the backlash error in the future can be predicted with the help of Deep Learning 

approach. 

The performance of the proposed method is evaluated during the experiment. To provide a comprehensive 

evidence for the effectiveness HDPS, two other intelligent algorithms, BPNN and SVMR, are also applied to 

replace the DBN as the prognosis model. The numerical results demonstrate the superiority to apply deep 

learning method for backlash error prediction, when the target condition is beyond the training data.  

Future work may focus on the following two points:  

1. Due to the limitation of data source, the authors only verify the effectiveness of HDPS for backlash 

error prediction in 25 weeks. Further research can be made when the observation time extends. 

2. The proposed method may be utilized and tested for other failures or errors. 
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