
The Empirical Interpolation Method

Stian Kristoffersen

Master of Science in Physics and Mathematics

Supervisor: Einar Rønquist, MATH

Department of Mathematical Sciences

Submission date: June 2013

Norwegian University of Science and Technology

Summary

In this thesis we look at the Empirical Interpolation Method (EIM) [15] and how it can
be used in different applications. We propose a new formulation of EIM to make it easier
to perform analytical operations like differentiation and integration of the basis functions
as well as to apply EIM to a variety of problems. The new formulation is used to develop
quadrature rules for the circle and semicircle, as well as for arbitrary simple polygons.
The new formulation is also used to solve partial differential equations using a collocation
approach on various domains including the circle, semicircle and triangle. The framework
is briefly applied to compression of 3D animation in addition to recognition of images and
sound.

Several of the methods show great potential, with exponential convergence for quadrature
and collocation for regular problems. However, there are also serious issues that must be
addressed if the methods are to be developed further. These issues are related to making
the methods more robust and stable.

Sammendrag

I denne oppgaven ser vi på den empiriske interpolasjonsmetoden (EIM) [15] og hvordan
den kan benyttes i forskjellige anvendelser. Vi presenterer en ny formulering av EIM for
å gjøre det lettere å utføre analytiske operasjoner, som differensiering og integrasjon av
basisfunksjonene, i tillegg til å bruke EIM i en rekke anvendelser. Den nye formuleringen
brukes til å utvikle kvadraturregler for en sirkel og en halvsirkel, samt for vilkårlige enkle
polygoner. Den nye formuleringen blir også brukt til å løse partielle differensiallikninger,
via kollokasjon, på forskjellige domener inkludert en sirkel, en halvsirkel og en trekant.
Rammeverket anvendes kort på komprimering av 3D animasjon i tillegg til gjenkjenning
av bilder og lyd.

Flere av metodene virker lovende, med eksponentiell konvergens for kvadratur og kol-
lokasjon for regulære problemer. Men det er også betydelige utfordringer som må løses
hvis metodene skal utvikles videre. Disse utfordringene er relatert til å gjøre metodene
mer robuste og stabile.

i

Preface

This thesis concludes my master’s degree in Industrial Mathematics at the Norwegian
University of Science and Technology (NTNU). The work was carried out during the
spring of 2013.

I would like to thank my supervisor, Professor Einar M. Rønquist, for his encouragement,
ideas and advice. I am grateful for our many discussions, including choosing the topic for
this thesis, which I have found very exciting to work with.

Stian Kristoffersen
Trondheim

June 27, 2013

iii

Contents

Abstract i

Preface iii

Contents v

1 Introduction 1

2 The Empirical Interpolation Method 5
2.1 Introduction . 5
2.2 Derivation . 8
2.3 Properties . 10

2.3.1 Properties of the EIM algorithm 10
2.3.2 Computational cost . 10
2.3.3 Lebesgue constant . 11
2.3.4 A priori error . 12
2.3.5 A posteriori error . 12

2.4 Numerical results . 13

3 The semi-analytical formulation of EIM 25
3.1 Introduction . 25
3.2 Derivation . 26
3.3 Adapting EIM to various problems 29
3.4 Linear operators . 30
3.5 Choice of basis . 30
3.6 Computational cost . 30

4 Quadrature 31
4.1 Derivation . 31
4.2 Choice of integration rule . 35
4.3 Alternative derivation of the quadrature rule 35
4.4 Quadrature on simple polygons in 2D 36
4.5 Numerical results . 39

v

4.6 Issues . 40

5 Compression 53
5.1 Introduction . 53
5.2 Encoding . 54
5.3 Compression of 3D animation . 56
5.4 Field reconstruction . 59

6 Solving Partial Differential Equations 63
6.1 Derivation . 63
6.2 Numerical results . 65
6.3 Issues . 67

7 Inversion 73
7.1 Introduction . 73
7.2 Representing images . 74
7.3 Image recognition . 75
7.4 Representing sound . 75
7.5 Sound recognition . 76

8 Software implementation 79
8.1 General comments . 79
8.2 Acknowledgements . 80

9 Conclusions and final remarks 81

Bibliography 83

vi

Chapter 1

Introduction

How we represent functions can greatly impact what we are able to do with them
computationally. Some representations might leave us unable to perform basic
operations like integration, differentiation or even just sampling the function in
some point. There are for instance plenty of analytical integrals where an analytical
solution is not known. By first representing the function in a way that allows us to
perform basic operations we can more easily use the function in other applications
like solving partial differential equations. Interpolation is a common approach to
finding such a representation.

Interpolation, Figure 1.1, is a method to approximate a function on a domain by
requiring that the approximation is exact in a finite set of points called interpola-
tion points. The approximation is often a linear combination of a set of functions
called basis functions. The basis functions are typically defined on the whole do-
main, making it possible to sample the approximation in the whole domain, rather
than just in the interpolation points used to obtain the approximation. However,
in order to ensure that we obtain a good approximation outside the interpolation
points we must require that the function we wish to interpolate is analytical or
sufficiently regular. This is the case if we use polynomials as basis functions. Then
we can achieve exponentially decreasing error over the domain with the number of
interpolations points used [4]. This, together with that polynomials are easily dif-
ferentiated and integrated, makes polynomials a popular choice of basis functions.

Choosing good interpolation points is in general an open problem. The Gauss-
Lobatto Legendre (GLL) points [4] have good properties. Interpolation is achieved
by constructing polynomial basis functions through the GLL points. By integrating
the basis functions, a numerical integration rule called GLL quadrature can be
constructed. Furthermore, the GLL points, together with the polynomial basis
functions, are used in spectral methods to solve partial differential equations. All
three methods have exponential convergence given that the underlying functions

1

Figure 1.1: Interpolation (solid blue line) of a function f in the domain Ω = [−1, 1].
The interpolation is required to be exact in the interpolation points (red dots), i.e.
I[f](xi) = f(xi) for all interpolation points xi, i = 1, . . . ,M .

are analytical. A serious limitation, however, is that the GLL points are only
defined on the line, the square and other tensor product domains. If GLL points
are to be used in general domains, the problem must be mapped from the actual
domain over to a reference domain where the GLL points are defined. This can be
tedious or impractical.

An alternative to using high order polynomials as basis functions is to use piecewise
linear functions. The interpolation points might be equidistant or even arbitrary.
The trapezoidal rule for numerical integration, and the linear finite element method
to solve partial differential equations, can both be constructed in this way. While
these methods are more flexible in terms of what domains they can handle, their
convergence rates are algebraic (as low as O(M−2), using M sample points, for
the trapezoidal rule [13]). Hence, traditional methods involves a trade-off between
convergence rates and what domains they can easily handle.

The Empirical Interpolation Method (EIM) [15] was recently proposed to use as a
general multipurpose interpolation procedure. The EIM constructs both the inter-
polation points, called magic points, as well as the accompanying basis functions.
The EIM does not claim to be optimal, but it achieves exponential convergence
rate for analytical functions, and it works on non-standard domains such as trian-
gles and hexagons. Furthermore, the hierarchical nature of the EIM lets us add
an interpolation point without having to recompute all the existing points. This is

2

in contrast with GLL, where all the interpolation points must be recomputed each
time.

In [15] the authors suggested that EIM could be used for several applications includ-
ing image and pattern recognition, numerical integration, and data compression.
To our knowledge there have not been a lot of investigation into the feasibility of
EIM for these applications. Given the good properties of EIM, it would be in-
teresting to explore if EIM could solve the tradeoff between the convergence rate
and domain flexibility in numerical integration and when solving partial differential
equations.

In this thesis we will explore using the EIM to integrate functions numerically and
to solve partial differential equations numerically on different domains. We will also
look at the feasibility of applying the EIM to different problems including image
and sound recognition as well as compression.

3

Chapter 2

The Empirical Interpolation
Method

The EIM as it was presented in [15] is the cornerstone of this thesis. In this chapter
we will present the EIM and some of its properties. In the next chapter we will
present our own formulation of the EIM that will be convenient when applying the
EIM to various applications in later chapters.

2.1 Introduction

Interpolation is used to approximate a function f on a domain Ω, f : Ω → R by
requiring the approximation, IM [f] : Ω→ R, to be exact in a set ofM interpolation
points {xi}Mi=1,xi ∈ Ω

f(xi) = IM [f](xi) i = 1, . . . ,M. (2.1)

Interpolation can be useful because the underlying function is not known in all
points, or because approximating the function using well known functions such as
polynomials is more convenient. In short, interpolation is about finding a good
way to represent the underlying data. Polynomials are excellent to approximate
analytical functions. For well chosen interpolation points, the error decreases ex-
ponentially with the number of interpolation points [4, 22]. They are also easily
integrated and differentiated which we will exploit when developing quadrature
rules and solving partial differential equations later in this thesis. More generally
we will approximate the function f by finite sums of well chosen, pre-defined basis
functions qi,

5

2.1. Introduction

f(x) ≈ IM [f](x) =
M∑
i=1

βiqi(x). (2.2)

If the basis functions are 1 in one of the interpolation points and 0 in the others, then
the basis is said to be nodal, i.e. if qi(xj) = δij , where δij is the Kronecker delta.
This is called Lagrangian interpolation and is a classical way of approximating
functions.

Finding the best interpolation points xi and basis functions qi to minimize the
error is in general an open problem. One approach, using equidistant interpolation
points and a nodal piecewise linear basis function, is shown in Figure 2.1. Another
approach, using Gauss-Lobatto Legendre (GLL) points and nodal polynomial basis
functions, is shown in Figure 2.2. As mentioned previously, the piecewise linear
basis functions can be applied to a variety of domains, but typically yield algebraic
convergence. Using polynomial basis functions over the GLL points yields exponen-
tial convergence for analytical functions, but only works on simple domains. The
Empirical Interpolation Method (EIM) was proposed in [15] to find interpolation
points and basis functions for general problems. It does not claim to be optimal,
but works well in practice and can be shown to be well behaved under certain cir-
cumstances. Figure 2.3 shows interpolation points and a polynomial basis function
chosen by the EIM.

Figure 2.1: An example of a nodal basis function q(x) (solid line) that is piecewise
linear. Equidistant interpolation points are used (red dots).

6

2.1. Introduction

Figure 2.2: An example of a nodal polynomial basis function q(x) (solid line). GLL
distributed interpolation points are used (red dots).

Figure 2.3: An example of a polynomial basis function q(x) (solid line) and inter-
polation points (red dots) chosen by the EIM.

7

2.2. Derivation

The EIM was first introduced in [3] and extended in [11]. It was originally developed
to deal with non-affine functions in the Reduced Basis (RB) method [20]. The
Reduced Basis method is a way to approximate the solution of parametrized Partial
Differential Equations (PDEs). The solution u(x;µ) of parametrized PDEs does
not only depend on the spatial position x ∈ Ω but also on some parameter µ ∈
D, where D is a parameter domain. The parameter µ can for instance change
attributes of the underlying problem like material properties or length scales. EIM
was developed to approximate parametrized functions f(x;µ) as something that
is affine in the parameter dependence. EIM allows us to find functions φi and qi
such that

f(x;µ) ≈
M∑
i=1

φi(µ)qi(x). (2.3)

By exploiting this approximation, we can represent more functions in a way that is
compatible with the Reduced Basis method. Again, how we represent the function
is essential to what we are able to do with it. In the original version of EIM, the
approximation space was spanned by snapshots f(x;µi), given by the parameters
µi, of the function that was to be approximated. In [15] EIM was generalized to
use generic approximation spaces rather than to approximate a single parametrized
function f(x;µ). This decoupling of the approximation space and the problem
specific function f is essential to develop e.g. generic quadrature rules. In this
thesis we will make use of both generic function spaces as well as problem specific
function spaces.

In addition to the GLL points mentioned earlier, alternatives to EIM include “best
points” [16] and Fekete points [18]. These methods are not much used in practice.
We will therefore compare some of our EIM results with the GLL method, because
of its popularity and good properties.

2.2 Derivation

We recall that we want to approximate a function f over a domain Ω by a linear
combination of M pre-defined basis functions,

f(x) ≈ IM [f](x) =
M∑
i=1

βiqi(x). (2.4)

The basis functions used will span a space WM that is an approximation to the full
function space U that contain f , i.e. WM ⊆ U . We will assume that the functions
are at least continuous. Let G(·;µ) be a parametrized function that generate (span)
the full function space by choosing parameters µ from the parameter domain D,

8

2.2. Derivation

i.e. U = span{G(·;µ) : µ ∈ D}. When constructing WM we will choose functions
among a finite dimensional subset of dimensionM≥M , spanned by the generating
function, i.e. WM ⊆ span{G(·;µ) : µ ∈ Ξ}. Here, Ξ ⊆ D is of dimension M and
is called the training set. The snapshots G(·;µi) chosen by EIM to span WM is
represented by the associated magic parameter µi. An example of a generating
function is G(x;µ) = xµ, µ ∈ Ξ = [0, . . . ,M−1], or simply the firstM monomials.
We will often use all of the parameters in the training set to span our approximation
space, i.e. WM = span{G(·;µ) : µ ∈ Ξ}. The G(·; ·) abstraction is necessary in
order to easily apply EIM to different types of problems.

In order for the approximation to interpolate the function f in the interpolation
points we require

M∑
j=1

qj(xi)βj = f(xi) i = 1, . . . ,M, (2.5)

which on matrix form becomes

BMβ = f(x). (2.6)

The EIM is an algorithm for constructing interpolation points and basis functions.
EIM usually select the next interpolation point and basis function greedily. The
greedy EIM works iteratively by adding the next function and point that is the
worst approximated by the current approximation. It is listed in Algorithm 1.
First, we select the initial basis function, described by the magic parameter µ1,
and the corresponding magic point x1. Then the first basis function q1(x) is set
to be the snapshot G(x;µ1) of the generating function, normalized to 1 for the
magic point x1. Next, we use (2.5) to approximate each snapshot of the generating
function, choosing the parameter of the snapshot that is the worst approximated to
be µ2. The worst approximated point is then set as the corresponding magic point
x2. The snapshot G(x;µ2) is normalized to form the second basis function q2(x).
The algorithm continues to select the worst approximated function and point to
form the next basis function and magic point until the maximum number of magic
points is reached. In practice the discrete training sets Ω̄ ⊂ Ω and Ξ ⊂ D are used
rather than their continuous versions.

In some applications it can be desirable to select the basis functions in a pre-
determined manner rather than greedily. The GLL method uses polynomials of
ascending degree when increasing the order of the method. We can do the same with
the EIM by enforcing it to choose polynomials of ascending order. We will call this
ascending EIM and we will use it extensively later on. When the target function can
be approximated with exponential convergence using polynomials or trigonometric
functions, the contribution of each basis function, added ascendingly, will also
decrease exponentially [4, 5]. Therefore it makes sense to choose the ascending

9

2.3. Properties

Algorithm 1 Greedy EIM
µ1 = argmaxµ∈D ‖G(·;µ)‖L∞(Ω)
x1 = argmaxx∈Ω |G(x;µ1)|
q1 = G(·;µ1)/G(x1;µ1)
for m = 2 : M do
µm = argmaxµ∈D ‖G(·;µ)− Im−1[G(·;µ)]‖L∞(Ω)
xm = argmaxx∈Ω |G(x;µm)− Im−1[G(·;µm)](x)|
qm = G(·;µm)−Im−1[G(·;µm)]

G(xm;µm)−Im−1[G(·;µm)](xm)
end for

version of EIM when the approximation space is constructed using polynomials
and trigonometric functions.

2.3 Properties

2.3.1 Properties of the EIM algorithm

From [15] we have to following properties:

Lemma 2.1. Assume that the space WM = span{G(·;µ1), . . . ,G(·;µM)} is of di-
mension M and that the M ×M matrix BM with entries qj(xi) is invertible, then
we have IM [f] = f for any f ∈WM .

Theorem 2.1. Assume that M is chosen such that M < M; then, for any
m ≤ M , the space Xm =span{q1, . . . , qm} is of dimension m and coincides with
span{G(·;µ1), . . . ,G(·;µm)}. In addition, the matrix BM is lower triangular with
unity diagonal (hence it is invertible).

The interpolation using Algorithm 1 is thus exact for all function that lie in the
approximation space. The q-basis functions result in a nested lower triangular
system, which can be solved in O(M2) operations.

2.3.2 Computational cost

We look at the computational cost in two stages. The first, the offline stage, is the
work necessary to train EIM, i.e. finding the magic points and the accompanying
basis functions. Afterwards we can reuse the magic points and basis functions to
interpolate different functions, this is called the online stage. We will only consider
the dominating contributions to the overall cost.

10

2.3. Properties

Offline stage

We will first look at the computational cost of the greedy EIM. For each pair
of magic point and basis function we add, we iterate over the O(N) candidate
functions to include in the approximation space. Each candidate is approximated
by solving the lower triangular M × M system of linear equations at a cost of
O(M2). If we use discrete basis functions, we then find the function value in all
M points by a matrix vector product at a cost of O(MM), which dominates the
cost of solving the system of linear equations. The cost of adding each candidate
is thus O(MMN). The total cost, for M magic points, is then O(MNM2).
The ascending version of EIM does not need to look through the O(N) candidate
functions for each magic point, so the total cost is reduced to O(MM2). The
storage cost of each basis vector is O(M), for a total storage cost of O(MM). The
two versions of EIM only differ in how they compute the EIM bases, once computed
they are stored and used in the same way in the online stage.

Online stage

The interpolation is achieved by solving the lower triangular system at a cost of
O(M2). Evaluating the function inM points would add an extra cost of O(MM).

2.3.3 Lebesgue constant

Let f be the function we wish to approximate and f∗ be the best polynomial
approximation of f in the space WM , i.e

f∗ = arg inf
f∗∈WM

‖f − f∗‖L∞(Ω). (2.7)

The polynomial f∗ can be interpolated exactly by a polynomial interpolation,
I[f∗] = f∗. The Lebesgue constant can then be derived as in [18]

‖f − IM [f]‖L∞(Ω) = ‖f − f∗ + IM [f∗]− IM [f]‖L∞(Ω)

≤ ‖f − f∗‖L∞(Ω) + ‖IM‖L∞(Ω)‖f∗ − f‖L∞(Ω)

≤ (1 + ‖IM‖L∞(Ω))‖f∗ − f‖L∞(Ω)

By choosing the Lebesgue constant to be ΛM = ‖IM‖L∞(Ω) we arrive at the final
result in the Lemma 2.2.

11

2.3. Properties

Lemma 2.2. For any f ∈W , the interpolation error satisfies

‖f − IM [f]‖L∞(Ω) ≤ (1 + ΛM) inf
f∗∈WM

‖f − f∗‖L∞Ω. (2.8)

To actually compute the Lebesgue constant, we want to use the same method as
in [15] to be able to compare results. We therefore choose to interpolate u, where
‖u‖L∞(Ω) = 1, using nodal basis functions hi(·) =

∑M
j=1 qj(·)[B]−1

ji such that

‖IM [u]‖L∞(Ω) = ‖
M∑
i=1

uihi(x)‖L∞(Ω)

≤ ‖
M∑
i=1

hi(x)‖L∞(Ω) ≤
M∑
i=1
|hi(x)|.

The Lebesgue constant is a measure of how far from the best approximation f∗

our interpolation IM will be. Some Lebesgue constants involving different types of
interpolation points have been reproduced from [15] and shown in Figure 2.4. The
Lebesgue constants of the various EIM variations outperforms the uniform points
by far, while not being too far from that of the Chebyshev points. The distribution
of some of the interpolations points have also been reproduced from [15] and is
shown in Figure 2.5. The the magic points resemble the Chebyshev points more
than the equidistant points when looking at cos−1 of the distributions.

2.3.4 A priori error

An a priori error estimate is obtained in [15] and improved in [7]. The main re-
sults is that if there exists a finite-dimensional space allowing for an exponentially
converging approximation, then the EIM will achieve an exponential rate of con-
vergence.

2.3.5 A posteriori error

An approximation to the a posteriori error is given in [15]. Let εM be the interpo-
lation error of f using M magic points, εM = ‖f − IM [f]‖L∞(Ω). By refining the
interpolation by performing another iteration of EIM, the error can only decrease or
stay unchanged, i.e. εM ≥ ε̂M = ‖f−IM+1[f]‖L∞(Ω) = |f(xM+1)−IM [f](xM+1)|.
ε̂ is therefore a lower bound to the error ε, but if the error goes to 0 very fast, it
is not unreasonable to use ε̂ as an approximation to the error. A rigorous upper
bound of the interpolation error was presented in [8]. It requires the parametric
derivatives of the function to be approximated. A method to approximate these
derivatives is presented in [9].

12

2.4. Numerical results

Figure 2.4: These results are reproduced from [15]. The Lebesgue constant Λn+1
for n+ 1 interpolation points is given for monomial polynomials WP

n and Legendre
polynomialsWL

n . Case (i) refers to choosing the polynomials in an ascending order,
while case (ii) is choosing greedily. The Lebesgue constant is also given for the
Chebyshev points and equidistant points. The approximation spaces are spanned
by {x0, . . . , xn}, except in the case of greedy EIM where there approximation space
is spanned by n of the monomials {x0, . . . , x30}.

2.4 Numerical results

We have already motivated that we should use the ascending EIM when approx-
imating analytical functions with polynomials, because the contributions will de-
crease exponentially. In Figure 2.6 we show results that support this. In Table 2.2
we can see that the greedy EIM chooses high order polynomials early, which might
explain why the ascending EIM outperforms it in Figure 2.6. The computational
cost of the ascending EIM is also lower than that of the greedy version. We will
therefore use the ascending EIM whenever generic bases are used. Later, when
using problem specific bases, there is no natural ascending order of the candidate
functions, thus the greedy version of EIM is applied.

Because we will compute the magic points using a discrete domain Ω̄, it is interest-
ing to see how sensitive the EIM interpolation is to the resolution of the domain.
Figure 2.7 suggests that EIM interpolation is not sensitive to the location of the
magic points. When interpolating functions like ex, the EIM interpolation is actu-
ally even less sensitive. We will exploit this to use fairly coarse discrete domains

13

2.4. Numerical results

Figure 2.5: Reproduced results from [15]. We observe that cos−1 of the distribution
of the magic points from greedy EIM, using monomial basis functions, are more
similar to Chebyshev points than the equidistant points.

in the numerical results. The resolution will be given by the grid spacing ∆. The
points in the domain will not lie further apart than ∆ in each direction. In 2D
this means that the Euclidean distance between two neighbouring points will not
be greater than

√
2∆.

The rest of this chapter consists of various numerical results when applying EIM
to interpolation in both 1D and 2D. We will look at the basis functions that dif-
ferent versions of EIM produce, both graphically and as expressions like 0.50 +
0.50cos(πx). How this is achieved will become clear in later chapters. We observe
that the basis functions of the ascending EIM in Table 2.1 share some similarities
with the Legendre polynomials in Table 2.3.

The magic points from EIM on a square in Figure 2.13 show similarities with the
GLL points in Figure 2.14. Interpolation using monomial EIM shows similarities
with GLL interpolation in Figures 2.9 and 2.15. In Figure 2.11 trigonometric EIM
interpolation outperforms GLL interpolation, because trigonometric basis functions
are better suited than polynomials in that particular case.

So far the performance of the EIM interpolation is competitive with that of the
GLL interpolation. The distribution of the magic points show similarities with
both GLL points and Chebyshev points. In later chapters we will apply EIM to
domains where the GLL points are not directly applicable.

14

2.4. Numerical results

Index i Function qi(x)
1 1.00
2 0.50 + 0.50x
3 1.00 - 1.00x2

4 -2.60x + 2.60x3

5 1.25x + 2.17x2 - 1.25x3 - 2.17x4

Table 2.1: The five first basis functions qi(x) from ascending EIM using monomial
generating functions (xµ).

Index i Function qi(x)
1 1.00
2 0.50 + 0.50x
3 1.00 - 1.00x2

4 -1.17x + 1.17x29

5 0.58x + 0.66x2 - 0.58x29 - 0.66x30

Table 2.2: The five first basis functions qi(x) from greedy EIM using monomial
generating functions (xµ). The result depends on how large the function space is.
In this case M = 31 and the candidate functions are {x0, . . . , x30}.

Index Function
1 1.00
2 x
3 -0.50 + 1.50x2

4 -1.50x + 2.50x3

5 0.375 - 3.75x2 + 4.375x4

Table 2.3: The five first Legendre polynomials.

Index i Function qi(x)
1 1.00
2 0.50 + 0.50cos(πx)
3 1.00sin(πx)
4 0.25 - 0.50sin(πx) - 0.25cos(2πx)
5 -1.00sin(2πx)

Table 2.4: The five first basis functions qi(x) from greedy EIM using trigonometric
generating functions (sin(µx),cos(µx)).

15

2.4. Numerical results

Figure 2.6: We look at EIM interpolation of ex. The nested nature of EIM allows
us to interpolate using theM first monomials, selected ascendingly (red plus signs)
or greedily (green squares), from some larger space (W25 in this case). This may
produce a different convergence rate than using all of the M first monomials (blue
circles), from a space WM of dimension M . In this case the basis functions were
selected greedily, but when we use all of the basis functions, they will span the
same space as the ascending EIM. When interpolating ex we see that using the
polynomials {x0, . . . , xM−1} produce the best results, suggesting that the ascending
EIM is a good choice.

Index i Function qi(x, y)
1 1.00
2 0.50 + 0.50x
3 0.50 + 0.50y
4 1.00 - 1.00x2

5 0.25 - 0.25x + 0.25y - 0.25xy

Table 2.5: The five first basis functions qi(x, y) from ascending EIM on a square
using monomial generating functions (xmyn).

16

2.4. Numerical results

Figure 2.7: Interpolation error of 1/(1 + 2x2) for different number of points in
the domain Ω̄ when training EIM. The number of of magic points used in the
interpolation is 30. The error is computed in 300 equidistant points. We get
exponential convergence that yields good results for a training set Ω̄ that is only
2-3 times larger than the number of magic points used. This suggests that EIM is
not particularly sensitive to the location of the magic points, enabling us to use a
coarse grid when computing the discrete max.

17

2.4. Numerical results

Figure 2.8: The five first basis functions qi(x) from ascending EIM using monomial
generating functions (xµ) on Ω = [−1, 1].

Figure 2.9: Convergence of the interpolation error of ex as a function of interpola-
tion points M . EIM (blue circle) and GLL (red dots) converge at the same rate.
Here, Ω = [−1, 1] with a grid spacing of ∆ = 4 · 10−3.

18

2.4. Numerical results

Figure 2.10: The five first basis functions qi(x) from ascending EIM using trigono-
metric generating functions (sin(µx),cos(µx)) on Ω = [−1, 1].

19

2.4. Numerical results

Figure 2.11: Convergence of the interpolation error of sin(πcos(π(x+1))) as a func-
tion of the number of interpolation pointsM . Here, Ω = [−1, 1] with a grid spacing
of ∆ = 4 · 10−3. The trigonometric EIM performs the best (blue circles), while
GLL (red dots) performs somewhat better than monomial EIM (green crosses).

20

2.4. Numerical results

Figure 2.12: Spatial training set for a square domain with a grid spacing of ∆ =
10−1. All the primitive spatial training sets are built in the same way. First the
boundary is discretized by placing points along each segment of the boundary (red
dots). Then the interior is filled with a uniform grid (blue circles).

21

2.4. Numerical results

Figure 2.13: Distribution of the first 50 spatial magic points on a square domain.
The red dots show the first five magic points.

Figure 2.14: Distribution of the first 49 GLL points on a square domain.

22

2.4. Numerical results

Figure 2.15: Convergence of the interpolation error of exy as a function of interpo-
lation points M . The domain Ω is a square with a grid spacing of ∆ = 5 · 10−2.
The convergence rate of of GLL (red dots) is slightly better than that of EIM (blue
circles).

23

Chapter 3

The semi-analytical
formulation of EIM

The semi-analytical formulation of the EIM was developed to offer a practical
approach to apply EIM to a variety of problems. Its main advantage is the ability
to perform analytical operations on the basis functions which will prove useful when
performing quadrature and solving partial differential equations in later chapters.
Furthermore, it allows the software implementation of EIM to be abstract in much
the same way as the underlying mathematics. This makes it very easy to apply EIM
to a variety of problems. The difference between the semi-analytical formulation
and the usual formulation of EIM is essentially a change of basis, which in some
circumstances lead to an extra computational cost. In this chapter we present the
semi-analytical formulation of EIM and some of its properties.

3.1 Introduction

When working on this thesis it soon became clear that it would be desirable to have
a unified computational framework for the range of problems we wanted to look at.
We also wanted to be able to perform analytical operations on the basis functions.
While several implementations of EIM use discrete basis vectors, resulting from a
finite training set Ω̄ ⊂ Ω or as in Discrete EIM (DEIM) [6, 24], the semi-analytical
EIM treats the basis functions as functions, thus allowing analytical operations.
The the magic points, however, are typically computed by sampling the function
in a finite set of points. The max in Algorithm 1 could in some cases be computed
analytically, or at least numerically, but since the EIM method is quite accurate,
even for fairly coarse grids Ω̄, it is more practical to sample the function in a finite
set of points. This way we can easily handle any function, and is why we call

25

3.2. Derivation

it semi-analytical: we get the convenience of a discrete max, combined with the
flexibility of analytical basis functions.

The difference between the semi-analytical formulation and the standard formula-
tion of EIM is essentially that the basis functions q are stored in a different basis
spanned by snapshots of G(·; ·). In the previous chapter we computed the basis
functions q using EIM. If these basis functions were to be stored discretely, we
could loose the information of which functions actually span our approximation
space, and thus our ability to perform analytical operations on the basis functions.
This space is by construction spanned by the generating function G(·; ·) that was
introduced in the previous chapter. By representing everything using linear combi-
nations of instantiations of G(·; ·), we can isolate the functions that span the space.
If we can perform linear analytical operations on each of the functions that span
the space, then we can perform those operations on all the functions in the space.

An example is the fifth monomial basis function, q5(x, y) = 0.25− 0.25x+ 0.25y−
0.25xy, resulting from ascending EIM on a square. In the semi-analytical formu-
lation, this basis function is stored as pairs of coefficients and snapshots of the
generating function G(·; ·), i.e. (.25, 1), (−.25, x), (.25, y) and (−.25, xy). It is easy
to perform linear analytical operation on each of the functions, e.g. xy, and thus
on linear combinations of those functions. As long as each of the functions are easy
to work with separately we can combine them into an approximation space. In
this thesis we have used monomials as well as sine and cosine functions, but other
combinations of simple functions will work equally well.

Furthermore, if G(·; ·) is either compactly described, e.g. as monomials, xµ, or
already stored as e.g. discrete functions, then the extra cost of storing the basis
functions is limited to storing the basis coefficients and which snapshots of the
generating function they belong to. By hiding away the particulars of each problem
in G(·; ·) we can implement software that works with a generic generating function.
Changing the application will then be limited to changing the generating functions.
More about this in the Software Implementation chapter.

The key features when using the G(·, ·) basis are:

• Sampling of functions at arbitrary points in the domain

• Analytical integration and differentiation (and other linear operations)

• Concise storing of basis functions and coefficients

• A practical approach to adapt EIM to a variety of applications

3.2 Derivation

We recall that the standard version of EIM approximates a function f as

26

3.2. Derivation

f(x) ≈ IM [f](x) =
M∑
i=1

βiqi(x), (3.1)

by using magic points xi and basis functions qi obtained from Algorithm 1 and
solving

M∑
j=1

qj(xi)βj = f(xi) i = 1, . . . ,M. (3.2)

The basic idea of the semi-analytical approach is to always express functions as
a linear combination of the generating function G(·; ·), as opposed to storing the
linear combination as a single discrete vector. One immediate advantage is that if
we can perform linear operations analytically on G(·; ·), we can also perform those
operations on linear combinations of G(·; ·). This can involve sampling the function
anywhere in the domain, integration and differentiation. It will also prove useful
in compression, in producing human readable output of the solution, and to easily
apply EIM to a variety of applications.

Assuming that f is a linear combination of the generating function, given some
magic parameters, we can express it as

f(·) =
M∑
i=1

αfi G(·;µi). (3.3)

The snapshots of the generating function G(·; ·) does not need to be linearly in-
dependent. But the functions G(·;µi) should be linearly independent if they were
chosen by EIM. This is because of the property that EIM interpolates functions in
the approximation space exactly, so that only linearly independent snapshots are
selected. Algorithm 1 will, by construction, produce basis functions {qi}Mi=1 that
are linear combinations of the generating function G(·; ·). We can therefore write

qj =
M∑
i=1

αQijG(·;µi). (3.4)

By collecting all the coefficients in a transformation matrix TQ ∈ RM×M we can
make the connection to the usual collection of basis functions {qi}Mi=1 as columns
in the matrix Q. We thus rename the α-coefficients

TQij = αQij , (3.5)

and insert into (3.4)

27

3.2. Derivation

qj =
M∑
i=1

αQijG(·,µi) =
M∑
i=1

TQij G(·;µi). (3.6)

By introducing underline to indicate a vector of values, µ = [µ1 · · ·µM]T , and
writing a vector of functions as

G(·,µT) = [G(·;µ1) · · · G(·,µM)], (3.7)

we can write (3.6) in the more compact form

Q = G(·;µT)TQ. (3.8)

Written out this becomes

Q = [q1 · · · qM] = [G(·,µ1) · · · G(·,µM)]

 α
Q
11 · · · αQ1M
...

. . .
...

αQM1 · · · αQMM

 . (3.9)

The discrete version is obtained by sampling in a set of discrete points xtrain =
Ω̄ ⊂ Ω, G(xtrain;µT) ∈ RN×M , with N spatial points and M selected parameter
values,

G(xtrain;µT)ij = G(xtrain
i ;µj). (3.10)

The discrete version of Q, written Q̄, which uses discrete basis vectors rather than
functions, can thus be written

Q̄ = G(xtrain;µT)TQ, (3.11)

where each column is a discrete basis vector q̄. Written out we get

Q̄ = [q̄1 · · · q̄M] =

G(xtrain
1 ,µ1) · · · G(xtrain

1 ,µM)
...

. . .
...

G(xtrain
N ,µ1) · · · G(xtrain

N ,µM)

 α

Q
11 · · · αQ1M
...

. . .
...

αQM1 · · · αQMM

 .
(3.12)

To summarize we can write ourQ basis as a linear combination of functions from our
generating function G(·, ·). The underlying functions can be handled analytically,

28

3.3. Adapting EIM to various problems

but the magic points are generally computed discretely, hence the name semi-
analytical. The usual discrete representation can be obtained by sampling the
underlying generating function in a set of discrete points.

Sometimes it is useful to construct a nodal basis. We will use h to represent nodal
basis functions and require, hi(xj) = δij , where δij is the Kronecker delta. We can
express our H basis in a similar manner

hj =
M∑
i=1

αHijG(·,µi) =
M∑
i=1

THij G(·,µi) (3.13)

where

THij = αHij (3.14)

and we get

H = G(·,µT)TH . (3.15)

A change of basis from q to h is limited to computing TH ∈ RM×M and does not
affect our ability to perform analytical operations on the underlying generating
function.

3.3 Adapting EIM to various problems

By choosing the appropriate domain Ω, parameter domain D, and function space
W , EIM can be adapted to a variety of applications. The semi-analytic formulation
makes it easier to isolate these variations in practical software implementations by
abstracting the function space into the generating function G(·; ·). Examples are
given in Table 3.1. For both quadrature and collocation we use the generic bases.
The only difference between a polynomial basis on a triangle and a circle is the
domain Ω and that the polynomials xiyj are defined on the corresponding domain.

Application x ∈ Ω µ ∈ D G(x;µ) ∈W
Generic 1D Basis x = (x) µ = (i) xi, sin(ix), cos(ix)
Generic 2D Basis x = (x, y) µ = (i, j) xiyj

Generic 3D Basis x = (x, y, z) µ = (i, j, k) xiyjzk

Image recognition pixel in 2D image frame number look up pixel value
Animation vertex in 3D frame number look up displacement

Table 3.1: Overview of different applications of EIM.

29

3.4. Linear operators

3.4 Linear operators

Because all functions are expressed as a linear combination of instances of the gen-
erating function G(·, ·), as long as it is simple to perform linear analytical operations
on those functions, it will also be possible to perform analytical operations on the
linear combinations. This will prove useful when applying EIM to quadrature and
solving partial differential equations. Then it will be necessary to integrate and
differentiate the functions accurately.

3.5 Choice of basis

As mentioned earlier, the semi-analytical EIM stores the basis functions as linear
combinations of the generating function G(·; ·). However, we still use the q-basis
functions when computing the EIM basis, and when performing interpolation. Con-
version between the G-basis and q-basis is done with the transformation matrix TQ,
while TH is used to obtain the nodal h-basis functions. We could of course have
used the G-basis functions when computing the EIM basis and performing the in-
terpolation, but this would not lead to a lower triangular system of equations as
with the q-basis. Furthermore, using G directly seems to lead to ill-conditioned
system of linear equations.

3.6 Computational cost

To be able to sample a function, we have to find the α’s, even if we are using
the q- or h-basis functions. Converting is done by applying either TQ or TH as
described earlier. This is done at a cost of O(M3). Compared to only finding the
coefficients by solving the lower triangular system from before at a cost of O(M2),
this will incur an extra cost in both the offline and online stages. Previously, it
was sampling the functions in M points at a cost of O(MM) that dominated
solving the system of linear equations at a cost of O(M2). Now, computing the
coefficients will dominate as long as M < M2. We could of course use the G-
functions directly in EIM, but this would not result in a lower triangular system so
the cost of obtaining the α’s would still be O(M3). This is the cost of the added
flexibility and opportunities of the semi-analytical formulation of EIM.

The storage cost, given that we have already stored the generating function G,
is limited to the magic points and the magic parameters, thus O(M), which is
potentially much less expensive than the O(MM) cost when using discrete vectors.

30

Chapter 4

Quadrature

The need to evaluate integrals,
∫

Ω f dΩ, occur in many applications. Performing
the integration analytically can be prohibitive due to a complex function f or
domain Ω. Quadrature, i.e. numerical integration, offers computationally feasible
approximations. We will start by looking at some existing quadrature rules and
how we can use EIM to produce more flexible rules in terms of the domains it
can handle. As mentioned earlier GLL quadrature offers exponential convergence
for analytic integrands, but is only applicable to simple domains like a line, a
square and other tensor product domains. We will use EIM to develop quadrature
rules for simple polygons, the semicircle and the circle. We will combine the good
approximation property of the EIM interpolant together with exact integration
of the basis functions to achieve quadrature rules with exponential convergence
for analytic functions and a cost that scales linearly with the number of magic
points. We will compare the EIM quadrature to GLL quadrature on the line and
the square.

4.1 Derivation

Quadrature rules typically approximate the integral by a weighted sum of function
evaluations

∫
Ω
f(x) dΩ ≈

M∑
i=1

ρif(xi). (4.1)

This way we only need to be able to sample the function at a set of points to ap-
proximate the integral. GLL quadrature is one such method. It yields exponential
convergence for analytic integrands, but is only defined on a line, a square or other

31

4.1. Derivation

Figure 4.1: Mapping F from a reference domain Ω̂ to the domain Ω, i.e. Ω = F(Ω̂).

Figure 4.2: When integrating over a circular domain Ω, a common approach is to
first partition into five subdomains, and then map each of the subdomains Ωi from
the reference domain Ω̂, via the mapping Fi, i.e. Ωi = Fi(Ω̂), i = 1, . . . , 5.

tensor product domains. In general it is therefore necessary to map the domain
Ω to a reference domain Ω̂ as shown in Figure 4.1. Sometimes, we first need to
partition the domain into subdomains before we can map each of them to the refer-
ence domain separately, as shown in Figure 4.2. This can be achieved by applying
e.g. the Gordon-Hall algorithm [22]. However, the domain decomposition and the
corresponding mappings incur and additional complexity and an additional cost.

Monte Carlo integration is an alternative approach where random points in the
domain are sampled directly, before averaged and multiplied with the volume V of
the domain

∫
Ω
f(x) dΩ = V

1
M

M∑
i=1

f(xi). (4.2)

32

4.1. Derivation

The convergence rate, however, is only 1√
M
, which is only improved to 1

M in the
quasi-Monte Carlo method [13].

A desired improvement would be to obtain exponential convergence as the GLL
method, but only be required to sample points directly in the domain as in the
Monte Carlo method. We will develop such a quadrature rule using EIM in this
chapter. Using EIM to perform numerical integration was first suggested in [15], an
O(M2) rule was developed in [1] and reiterated in [10]. It is based on approximating
the desired integrand f by the usual EIM linear combination. The underlying basis
functions are then integrated and used as weights.

∫
Ω
f(x) dΩ ≈

∫
Ω
fM (x) dΩ (4.3)

=
∫

Ω

(M∑
j=0

βMj qj(x)
)

dΩ (4.4)

=
M∑
j=1

βMj

∫
Ω
qj(x) dΩ︸ ︷︷ ︸
ρj

(4.5)

=
M∑
j=1

βMj ρj (4.6)

=
∫

Ω
G(·;µT) dΩTQ︸ ︷︷ ︸

ρT

βM (4.7)

To compute (4.7), we need to obtain the interpolation coefficients β, which is done
in O(M2) operations because of the lower triangular structure of B. This is the
simplest version of the EIM quadrature, where we simply integrate the q-basis
functions to obtain the quadrature weights ρ:

1. Compute the q-basis functions using EIM.

2. The q-bases are actually stored as linear combinations of G, so the integrals
of the q-basis functions are computed by integrating the snapshots G(·;µi)
and applying the transformation matrix TQ to get the integrals of the q-basis
functions and thus the weights ρ.

3. Compute the EIM interpolation coefficients β.

4. Compute the the weighted sum of the coefficients β and the weights ρ to
obtain the final approximation.

An alternative approach to approximating integrals in inner products can be found
in [2]. Their goal is to efficiently estimate inner products of results from the Re-

33

4.1. Derivation

duced Basis method. Instead of using the q-basis functions they use nodal h-basis
functions. This allows samples of the integrand to be used directly without having
to solve for the β-basis coefficients. The result is that the online cost is reduced to
O(M). The framework applied is that of the Discrete EIM [6], which is a formula-
tion of EIM that uses vectors. Using the semi-analytical formulation presented in
the last chapter we can change the basis from q to h to achieve the same compu-
tational advantage as follows

∫
Ω
f(x) dΩ ≈

∫
Ω
G(·;µT) dΩTQβM (4.8)

=
∫

Ω
G(·;µT) dΩTH︸ ︷︷ ︸

ρT

f(x) (4.9)

We will refer to this version of the EIM quadrature as the one where we first change
to the h-basis and then integrate the basis functions.

1. Compute the q-basis functions using EIM.

2. Convert to h-basis functions.

3. The h-bases are actually stored as linear combinations of G, so the integrals
of the h-basis functions are computed by integrating the snapshots G(·;µi)
and applying the transformation matrix TH to get the integrals of the h-basis
functions and thus the weights ρ.

4. Compute the nodal interpolation coefficients by simply sampling the target
function in the magic points f(xi) .

5. Compute the the weighted sum of the coefficients f(x) and the weights ρ to
obtain the final approximation.

Changing basis from q to h has been numerically unstable in some of our experi-
ments using the semi-analytical EIM, therefore we will later present an alternative
approach.

The previous work [1, 10, 2] suggest that the basis functions can be integrated with
existing quadrature rules. This, of course, introduces the same limitations that we
wanted to avoid by developing a new quadrature rule. The cost of integrating the
basis functions is limited to the offline stage, and is therefore not critical for the
online performance. However, in some cases the semi-analytic EIM will make it
easier to compute these integrals. We will demonstrate its feasibility on arbitrary
simple polygons, i.e. polygons that are non-overlapping and without holes, and
on the circle and semicircle. Our focus will be on creating quadrature rules to
integrate analytical non-parametrized functions over domains where traditional
methods such as GLL quadrature is not well suited.

34

4.2. Choice of integration rule

4.2 Choice of integration rule

If we were to integrate the basis functions using an existing numerical method, the
trapezoidal rule and Simpson’s method would yield algebraic convergence in 1D.
GLL would yield exponential convergence for analytic integrands if we were able to
find a suitable mapping from the reference domain onto the target domain. Oth-
erwise we could triangulate the domain and approximate the target function over
each triangle as e.g. linear polynomials, but the convergence rate would again be
slow. In many cases we are therefore limited to algebraic convergence, which can be
very expensive if we want highly accurate quadrature rules. We will therefore look
at integrating each basis function analytically, or at least exactly. This is possible
with the semi-analytical EIM if we are able to integrate each of the snapshots of the
generating function G(·; ·) separately. If so, we are able to integrate any function in
the space it spans. We will use polynomials, e.g. xmyn to span our approximation
space. It is possible to integrate these polynomials analytically over the domains
we look at.

4.3 Alternative derivation of the quadrature rule

As mentioned before, the straight forward change of basis from q to h and inte-
grating the basis functions directly has been numerically unstable in practice when
the semi-analytic EIM. We can circumvent the problem with the change of basis
by implicitly integrating the basis functions. This is achieved by assuming that the
generating functions selected by EIM, G(·;µi), can be integrated exactly using a
quadrature rule on the form

∫
Ω
G(·;µi) dΩ =

M∑
i=1

ρiG(xi;µi), (4.10)

where the weights ρi are computed from nodal basis functions hi,

ρi =
∫

Ω
hi(x) dΩ i = 1, . . . ,M. (4.11)

The nodal basis functions h can be found explicitly by a change of basis as in the
quadrature rule defined earlier. However, what we want is the weight ρi given by
the integral of hi, not the function hi itself. Inaccuracies from first finding q and
then h may be the problem with the first version of the quadrature rule. Because
we know h exist and span{hi} = span{G(·;µi)}, then we know that using the hi
basis would interpolate the generating functions exactly, and that (4.10) will thus
integrate exactly. In addition, we assume that the generating function G(·; ·) can
be integrated analytically, as is the idea behind the semi-analytical formulation of

35

4.4. Quadrature on simple polygons in 2D

EIM. We can therefore build a system of linear equations where the weights ρi are
the unknowns and the basis functions hi are used implicitly

∫
Ω
G(·;µi) dΩ =

∫
Ω

(M∑
j=0
G(xj ;µi)hj(x)

)
dΩ i = 1, . . . ,M (4.12)

=
M∑
j=0
G(xj ;µi)

∫
Ω
hj(x) dΩ i = 1, . . . ,M (4.13)

which written out becomes

 G(x1;µ1) · · · G(xM ;µ1)
...

. . .
...

G(x1;µM) · · · G(xM ;µM)

∫

Ω h1(x) dΩ
...∫

Ω hM (x) dΩ

 =

∫

Ω G(·;µ1) dΩ
...∫

Ω G(·;µM) dΩ

 , (4.14)

or Aρ = b where Aij = G(xj ;µi), ρj =
∫

Ω hj(x) dΩ and bi =
∫

Ω G(x;µi) dΩ. We
will refer to this version of the EIM quadrature as the one where we compute the
weights in the h-basis implicitly.

1. Compute the q-basis functions using EIM.

2. Throw away the q-basis functions, but use the underlying snapshots G(·;µi) to
compute the integrals of the h-basis function and thus the weights ρ implicitly.

3. Compute the nodal interpolation coefficients by simply sampling the target
function in the magic points f(xi) .

4. Compute the the weighted sum of the coefficients f(x) and the weights ρ to
obtain the final approximation.

4.4 Quadrature on simple polygons in 2D

We have now presented three ways of performing quadrature using the semi-
analytical framework. All of the variations require us to be able integrate the
generating function G(·; ·) over the domain, i.e. we need to be able to integrate

∫
Ω
G(x;µi) dΩ, i = 1, . . . ,M. (4.15)

Even when using polynomials as basis functions this might not always be straight
forward, not even when dealing with polygon domains. To integrate over simple

36

4.4. Quadrature on simple polygons in 2D

polygons, i.e. non-overlapping polygons without holes, we might need to partition
the domain in order to obtain more manageable subdomains to integrate over. An
alternative approach is to use Green’s theorem to integrate over the boundary in-
stead, see Figure 4.3. We will use Green’s theorem to develop a method to integrate
polynomials exactly over arbitrary simple polygons. By using this method in our
EIM quadrature, we can develop quadrature rules for arbitrary simple polygons.
Later we will demonstrate this method in practice on three polygonal domains:
a triangle, a square and a flag. While the semicircle and circle require different
analytical integration of the generating function G(·; ·), all the polygons will share
the same integration rule, which we now develop.

Figure 4.3: In order to integrate over a polygonal domain Ω we might want to
partition the domain into subdomains Ωi, i = 1, 2, 3, that would lead to simpler
limits in the integrals. By exploiting Green’s theorem we can instead convert the
integral over the domain to an integral over the boundary segments Γi, i = 1, . . . , 5.

We will apply Green’s theorem to convert the integral in (4.15) to an integral over
the boundary ∂Ω rather than over the domain Ω. In the case of polygons this will
produce an exact integration rule for arbitrary simple polygons.

We start by stating Green’s theorem [14]

∫
Ω

(∇× F) · k̂ dΩ =
∮
∂Ω
F · t̂dγ, (4.16)

where k̂ is the unit vector in the same direction as ∇× F , and t̂ is the tangential
unit vector. In order to apply Green’s theorem we construct the artificial vector
field F , with two components L and G,

F =
[
L
G

]
. (4.17)

We want to integrate G(x;µi) over the domain using (4.16) and therefore need our

37

4.4. Quadrature on simple polygons in 2D

artificial vector field F to fulfil (∇× F) · k̂ = G(x;µi) = g(x, y), which is achieved
by choosing

F =
[

1∫
g(x, y) dx

]
=
[

1
G

]
(4.18)

By applying Green’s theorem and integrating over each boundary segment Γk sep-
arately we get

∫
Ω
G(x;µi) dΩ =

∫
Ω

(∇× F) · k̂ dΩ (4.19)

=
K∑
k=1

∮
Γk

F · t̂dγ (4.20)

=
K∑
k=1

∫
Γk

(t̂x +Gt̂y) dγ (4.21)

=
K∑
k=1

∫ 1

−1
(t̂x +G(xΓk

(s)) t̂y)dγ
ds ds (4.22)

In the last step a change of variable is made by parametrizing each boundary
segment Γk using xΓk

(s). We have now changed the original integral over the
domain to instead integrate, using a single variable, over each boundary segment.
It is worth noting that the result so far is not limited to polynomial generating
functions and polygonal domains. However, applying the result to other generating
functions and domains can be more difficult in terms of dealing with the integrals
and the mapping xΓk

, which is why we now focus on polynomials.

When choosing G(·, ·) = xmyn as the generating function,
∫
g(x, y) dx can be found

analytically and G(x(s)) will be a polynomial of degree of at most 2M + 1, , so
GLL quadrature of orderM+1 will integrate it exactly [4]. Computing the integral
analytically can be a bit tedious, which is why we choose to use GLL quadrature
instead. Our exact integration rule for xmyn on arbitrary simple polygons in 2D
is thus

∫
Ω
G(x;µi) dΩ =

K∑
k=1

|Γk|
2

M+1∑
j=1

ωj(t̂x +G(xΓk
(sj)) t̂y) (4.23)

where K is the total number of edges, |Γk| the length of edge k, ωj is the jth
GLL weight, and sj the jth GLL point. Similar results might be possible in higher
dimensions by via Stoke’s theorem.

38

4.5. Numerical results

Index i Function qi(x, y)
1 1.00
2 0.50 + 0.50x
3 0.50 + 0.50y
4 1.00 - 1.00x2

5 1.00 + 1.00x + 1.00y + 1.00xy

Table 4.1: The five first basis functions qi(x, y) from ascending EIM on a triangular
domain using monomial generating functions (xmyn).

Index i Function qi(x, y)
1 1.00
2 0.50 + 0.50x
3 1.00y
4 1.00 - 1.00y - 1.00x2

5 2.00xy

Table 4.2: The five first basis functions qi(x, y) from ascending EIM on a semicir-
cular domain using monomial generating functions (xmyn).

4.5 Numerical results

We will apply EIM quadrature to a line, a square, a semicircle, a circle and a flag.
For the domains that have not been used in previous results, we will also include
their magic points, basis functions and EIM interpolation error.

It is interesting to observe that, in Figure 4.5, EIM reaches machine precision in
about 4 times as many interpolation points as GLL in 2D. Compared to Figure
4.4, we see that in 1D the ratio is a bit less than 2. It would be interesting to
see if this has anything to do with GLL quadrature being exact for polynomials of
degree 2M + 1, while the EIM method is only exact for polynomials of degree M .

The different plateaus of the convergence in e.g. Figure 4.7 suggests that some of
the basis functions do not contribute to decrease the error further. We will look at
a way to remove superfluous basis functions when discussing encoding in the next
chapter.

The main takeaway from the numerical results is that both EIM interpolation
and EIM quadrature works with exponential convergence for the various domains.
However, the integration rule introduced for arbitrary simple polygons seems to
introduce some rounding error as shown in Figure 4.8. A more serious problem
is that EIM chooses the same magic point twice for both the triangle and the
semicircle. This will be discussed further in the next section.

39

4.6. Issues

Figure 4.4: Convergence of the quadrature error when approximating
∫ 1
−1 e

x dx
with M quadrature points. Standard semi-analytical EIM quadrature (green
crosses) is unstable. The alternative semi-analytical EIM (blue circle) is stable
but not as good as GLL (red dots). Some of the GLL marks are missing because
the error is 0 to machine precision in those points. The grid spacing is ∆ = 4 ·10−3.

4.6 Issues

Initially, the semi-analytical implementation of EIM seemed to produce good results
for various applications. That is, the method yielded exponential convergence for
the various test cases, even down to machine precision given enough magic points.
However, when the final results where to be produced issues started to occur when
the error approached machine precision. When looking into the issues it became
clear that the error was quite severe in certain cases.

As mentioned, the semi-analytical implementation of EIM produces exponential
convergence down to machine precision for many test cases. Such results would
normally not be possible with even small implementation issues. It was therefore
reasonable to believe that the implementation was correct. The triangular domain
turned out to cause problems both when performing numerical integration and
when solving partial differential equations. The interpolation error in the magic
points should, by construction, be zero. This is because we require our approxima-
tion to be equal to the function we are interpolating in the magic points. Figure
4.18 show that the error is far from zero for the triangular domain. The error is so

40

4.6. Issues

Figure 4.5: Convergence of the quadrature error when approximating
∫

Ω e
xydΩ on

a square domain using M quadrature points. GLL quadrature (red dots) performs
better than the EIM quadrature (blue circles). The missing GLL point is because
the error is zero to machine precision. The grid spacing is ∆ = 5 · 10−2.

severe in the magic points that when training the EIM on the triangle, the error
in the magic points are occasionally larger than elsewhere in the training set. The
EIM will then choose some of the magic points more than once. This should of
course never happen, but leads to singular matrices in a couple of the applications.
The EIM could be implemented not to choose the same magic point more than
once, but this would not solve the problem of large errors. The reason why chang-
ing basis from q to the nodal basis h and then integrating the basis functions does
not work might also be due to the same issues. Early computations using discrete
basis vectors did seem to work fine when changing the basis.

The error in Figure 4.18 starts at zero and increases gradually. This is to be
expected if the error is related to accumulation of round-off errors. The semi-
analytical formulation is centred around the generating function G(·, ·) rather than
the q basis functions which are used in the traditional formulation. To express a sin-
gle q-basis function we therefore need to take a linear combination of the generating
functions. We recall from (3.4) that this could be written qj =

∑M
i=1 α

Q
ijG(·;µi). If

this way of dealing with the basis functions introduces round-off errors, the error
should be reduced if the generating functions are used directly rather than using
the q basis functions. As Figure 4.19 shows, this is indeed the case for the triangle.
Figures 4.20 and 4.21 show that this is also the case for the square shaped domain.

41

4.6. Issues

Figure 4.6: Distribution of the first 50 spatial magic points on a triangular domain.
The red dots mark the first five magic points.

Using the generating functions directly seems to solve several of problems encoun-
tered: no duplicate magic points are chosen and the convergence seems to be better
behaved for the cases tested. It does not, however, solve the problem in general
as the error is still large when using the generating functions directly. It is worth
noting that when using G(·; ·) directly in the computations, the systems of linear
equations are ill-condition, which could introduce the errors that are observed.

Another potential source of issues is that the approximations spaces in 2D are gen-
erated by all polynomials xmyn of degree m+n ≤ N1, but some of the polynomials
are missing due to a bug. The bug added the extra requirement m,n ≤ N2, where
N2 < N1 causing polynomials like x0yN1 to be missing. The missing polynomials

Index i Function qi(x, y)
1 1.00
2 0.50 - 0.50x
3 -1.00y
4 0.50 + 0.50y - 0.50x2

5 -2.00xy

Table 4.3: The five first basis functions qi(x, y) from ascending EIM on a circular
domain using monomial generating functions (xmyn).

42

4.6. Issues

Figure 4.7: Convergence of the interpolation error of exy on a triangular domain
as a function of magic points M . The grid spacing is ∆ = 5 · 10−2.

would be replaced by higher degree polynomials.

This is an issue that deserves further investigation, but time did not allow us to
do so here. The reader should keep in mind that some of the figures are deceiving
when it comes to the problems highlighted in this section which is why they were
discovered so late.

Index i Function qi(x, y)
1 1.00
2 0.50 + 0.25x
3 0.50 + 0.50y
4 1 - 0.25x2

5 0.25 - 0.125x + 0.25y - 0.125xy

Table 4.4: The five first basis functions qi(x, y) from ascending EIM on a flag-
shaped domain using monomial generating functions (xmyn).

43

4.6. Issues

Figure 4.8: Convergence of the quadrature error of
∫

Ω e
xydΩ on a triangular domain

as a function of magic points M . The initial EIM quadrature using the h-basis
functions (red triangles) is unstable. The alternative EIM quadrature using the
h-basis functions implicitly (green crosses) does not work here because the EIM
basis is faulty (it chose the same magic point twice). Better results are achieved
when interpolating and integrating the q-basis functions directly using the generic
polygon domain integration (blue circles) or analytically for the triangle (cyan
squares). The grid spacing is ∆ = 5 · 10−2.

44

4.6. Issues

Figure 4.9: Distribution of the first 50 spatial magic points on a semicircular do-
main. The red dots mark the first five magic points.

Figure 4.10: Convergence of the interpolation error of exy on a semicircular domain
as a function of magic points M . The grid spacing is ∆ = 5 · 10−2.

45

4.6. Issues

Figure 4.11: Convergence of the quadrature error of
∫

Ω e
xydΩ on a semicircular

domain as a function of magic points M . The alternative EIM quadrature, using
the h-basis functions implicitly (green crosses) fails due to a faulty EIM basis (EIM
chose the same magic point twice). However, interpolating and integrating the q-
basis functions directly (blue circles) works. The grid spacing is ∆ = 5 · 10−2.

46

4.6. Issues

Figure 4.12: Distribution of the first 50 spatial magic points on a circular domain.
The red dots mark the first five magic points.

Figure 4.13: Convergence of the interpolation error exy on a circular domain as a
function of magic points M . The grid spacing is ∆ = 5 · 10−2.

47

4.6. Issues

Figure 4.14: Convergence of the quadrature error of
∫

Ω e
xydΩ on a circular domain

as a function of the magic points M . Both the alternative EIM quadrature (green
crosses) and integrating the q-basis functions directly (blue circles) works well. The
grid spacing is ∆ = 5 · 10−2.

48

4.6. Issues

Figure 4.15: Distribution of the first 50 spatial magic points on a flag-shaped
domain. The red dots mark the first five magic points.

Figure 4.16: Convergence of the interpolation error of exy on a flag-shaped domain
as a function of magic points M . The grid spacing is ∆ = 2 · 10−2.

49

4.6. Issues

Figure 4.17: Convergence of the quadrature error of
∫

Ω e
xydΩ on a flag-shaped

domain as a function of the magic points M . Both the alternative EIM quadrature
(green crosses) and integrating the q-basis functions directly (blue circles) works
well, except that they seem to converge at a higher error level than the other
domains. The grid spacing is ∆ = 2 · 10−2.

50

4.6. Issues

Figure 4.18: Interpolation error in the magic points for EIM using q-basis functions
on a triangular domain. The grid spacing is ∆ = 5 · 10−2.

Figure 4.19: Interpolation error in the magic points for EIM using G-basis functions
on a triangular domain. The grid spacing is ∆ = 5 · 10−2.

51

4.6. Issues

Figure 4.20: Interpolation error in the magic points for EIM using q-basis functions
on a square domain. The grid spacing is ∆ = 5 · 10−2.

Figure 4.21: Interpolation error in the magic points for EIM using G-basis functions
on a square domain. The grid spacing is ∆ = 5 · 10−2.

52

Chapter 5

Compression

Compression can be desirable in the presence of limited bandwidth, storage or
computational resources. One scenario is transmitting data from a server to a client
where resources may be limited or even varying. Another is storing large amounts
of data, and a third can be to manage complex models by pre-computing results and
storing them in an efficient manner. Our model problem will be from 3D animation,
but as usual our only assumption is that the underlying data is sufficiently smooth.
At the end of the chapter we will suggest how the semi-analytical framework could
be used in field reconstruction, e.g. to make a computational surrogate of 3D
animation that could be sampled continuously in time and space.

5.1 Introduction

It was suggested that EIM could be applied to animation in [15]. For the first
time in this thesis we will construct our approximation space from the data we
want to approximate. As mentioned, EIM was initially developed to approximate
parametrized functions f(x;µ), using snapshots of the function itself to generate
the approximation space. We will view the 3D animation as nothing more than a
parametrized function that deforms a 3D model in time (the parameter) and space
(the domain). The generating function G(x; t) is thus the displacement in time,
given by t, and space, given by x. By approximating the displacement using EIM,
we can view each snapshot in time as a linear combination of some other snapshots
that were chosen by EIM. The only benefit the semi-analytical framework could
have, apart from making the compression simple to implement, is that if we have
already stored the generating function G(·; ·) we can reuse those snapshots directly
(by taking linear combinations of them) rather than storing new basis functions
q. The semi-analytical framework is thus of limited use, but it will play a more
important role in the field reconstruction presented at the end of this chapter.

53

5.2. Encoding

There is of course nothing special with 3D animation, and the generating function
could just as easily describe other sufficiently smooth data.

5.2 Encoding

Before looking specifically at compression of 3D animation we will look at com-
pression in general. In particular, we will look at how data can be encoded (rep-
resented), using the semi-analytical EIM framework, to achieve reductions in the
computational costs at different stages. Because approximations produced by EIM
are written

f(·) ≈
M∑
i=1

αfi G(·;µi), (5.1)

where G(·; ·) can both be continuous or discrete, we can approximate a function
without having access to B, TQ or TH . All we need are the coefficients αf and the
corresponding magic parameters µ. The tuple (α,µ)MGM

is referred to as the encod-
ing of f using the basis GM and all M coefficients. An approximation (α,µ)mGM

,
m < M is given by omitting (M −m) pairs (α,µ) that contribute the least to the
approximation of f . Some of the α’s might be very small or even zero, so that a
sufficient accuracy can be obtained without including them. By sorting the α’s,
taking the maximum of each corresponding basis function into account, the least
significant contributions can be removed.

The potential savings of this approach is particularly visible when encoding an
even trigonometric function as shown in Table 5.1. The most significant contri-
butions are made by even functions with an odd number of periods. These types
of functions make up a fourth of the total approximation space, and their con-
tributions decrease exponentially. Good approximations can thus be achieved by
omitting coefficients after the function has been interpolated. This illustrates that
the bases, especially the generic ones, can contain information that is not useful for
the particular function we want to approximate. Encoding can help remove some
of this superfluous data.

We now have four levels of reducing the computational cost:

1. When computing the EIM basis, fewer magic points/basis functions can be
included, i.e. by exiting the algorithm early.

2. When interpolating, the nested structure of EIM enables us to easily use
fewer magic points/basis functions.

3. When encoding, the coefficients from the interpolation are sorted by contri-
bution and only the most significant can be stored/transmitted.

54

5.2. Encoding

Contribution α Snapshot of G(·; ·)
6.7e-01 cos(3πx)
5.7e-01 cos(πx)
1.0e-01 cos(5πx)
6.8e-03 cos(7πx)
2.5e-04 cos(9πx)
5.9e-06 cos(11πx)
9.5e-08 cos(13πx)
1.1e-09 cos(15πx)
1.1e-11 cos(17πx)
7.7e-14 cos(19πx)

Table 5.1: The most significant contributions to the encoding of sin(πcos(π(x+1))).
The function itself is even and all of the most significant contributions are also even,
with an odd number of periods. EIM was trained on both sine and cosine functions.

Figure 5.1: Server client model. The server is usually resourceful, but is serving
multiple clients, each of which may have very limited resources.

4. When sampling, the least significant coefficients from the encoding can be
omitted (because they were sorted in the last step).

The server client model is illustrated in Figure 5.1. One scenario can be to compute
an animation on the server and transmit it for viewing on the clients. The server
is resourceful and can manage the full animation, while the clients can only receive
and playback data of limited complexity. The server computes the animation and
compresses it using steps 1 through 3. The reduction in computational cost in
these steps can vary with the available resources of both the server and the clients
from time to time. The resulting encoding of the animation is then transmitted to
one or more of the clients. If a client is unable to receive the whole encoding, or
does not have time to process the whole encoding, step 4 can be applied to reduce
the complexity further.

55

5.3. Compression of 3D animation

5.3 Compression of 3D animation

We will now apply EIM to compression of 3D animation. Our domain will be
the flag used earlier. The flag itself is a discrete polygon in 2D (Figure 5.2), but
it is deformed in 3D (Figure 5.3). The animation is also discrete in time. The
displacement for a given point t in time is given by G(·; t) : Ω → R3, where the
domain Ω is the reference flag in 2D and the displacement is given as a vector in 3D.
The greedy version of EIM will select the snapshots in time that best represent the
whole sequence. The EIM will be applied separately in each spatial direction. The
flag was modelled and animated, using a wind simulation, in a software package
used to create 3D animation for films and games. However, the initial results were
not particularly good. The problem might have been that the spatial or temporal
resolution was not sufficient for the simulation to produce sufficiently smooth data,
but we did not have time to look into this, so we will only present some results using
synthetic animation. Each animation will be a sequence of displacement snapshots
in time called frames. The error is measured as the maximum error in any vertex
in any frame of the sequence.

Figure 5.2: The flag model shown in its neutral pose.

The synthetic animations is designed to show the feasibility of applying EIM to
animation. The first example displaces each vertex in time as a phase shifted
trigonometric function. Each component (x, y and z) of the displacement is given
by a simple sine or cosine that is phase shifted with time. As expected, the com-
pression converges with 3 magic points in each dimension as show in Figure 5.4.

56

5.3. Compression of 3D animation

Figure 5.3: The flag model displaced synthetically in 3D.

Figure 5.4: Convergence of the compression error of a simple synthetic flag ani-
mation as the number of magic points M in each of the 3 dimensions. The error
is measured as the maximum error in each vertex and over all the frames in the
sequence. The synthetic animation sequence consists of 100 frames. As expected,
the compression converges in 3 magic points.

57

5.3. Compression of 3D animation

The second example is also based on phase shifted trigonometric functions, but this
time the amplitude has an exponential dependency to make the convergence rate
slower. The convergence of the error is shown in Figure 5.5. The accompanying
magic points are shown Figure 5.6. Although the convergence looks good, EIM
actually selects the same magic point twice towards the end. This also happened
for the square and semicircular domains earlier. But this time it might not be as
severe because the problem only occurred after machine precision was reached. In
this case it might therefore be enough to limit EIM from selecting the same magic
point twice.

Figure 5.5: Convergence of the compression error of a synthetic flag animation as
the number of magic points M in each of the 3 dimensions. The error is measured
as the maximum error in each vertex and over all the frames in the sequence. The
synthetic animation sequence consists of 200 frames.

The EIM has the potential of compressing 3D animation with an exponentially
decreasing error with the number of magic points. Combined with the encoding
and transmission protocol outlined in the previous section, this could be useful in
practical applications. Another benefit of representing the animation using EIM
can be to automatically detect loops by only comparing the EIM coefficients. Cre-
ating animation loops can be desirable in games and virtual reality to reduce the
cost of some repeating animation.

58

5.4. Field reconstruction

Figure 5.6: The spatial magic points of a synthetic flag animation with 200 frames.
EIM chooses different magic points for each of the 3 dimensions, x (blue circles),
y (red plus signs), z (green crosses).

5.4 Field reconstruction

In what follows, we will use 3D animation as an example, but the ideas extend
to other types of problems. The parameter space will be time and the domain
will be related to physical space. The animation might have been computed at
some discrete time steps and in some discrete spatial points. This was the case
in the compression example. We might want to create a surrogate of the original
animation, with the possibility to sample continuously in time and space. By
describing the surface as a function in space rather than as a discrete polygon we
can avoid sharp edges showing up if the surface is supposed to be smooth. By
being able to sample continuously in time we are able to change the playback rate
of the animation. But more importantly, this could be used to create computational
surrogates for any sufficiently smooth parametric function G(·; ·). It was proposed
to apply EIM to this application in [15]. The computational surrogates could be
cheaper to use than the original model making them ideal for e.g. optimization and
real time applications. It might even be possible to construct good approximations
to parametrized partial differential equations. EIM would thus be applied to the
same problem as the Reduced Basis method, which EIM was originally developed to
solve a sub-problem of. We will now sketch out how the semi-analytical framework
could be used to create computational surrogates.

Let us again look at the flag animation. The displacement for a given point t in

59

5.4. Field reconstruction

time is given by G(·; t) : Ω → R3. Previously, a discrete domain Ω̂ that consisted
of the vertices in the triangulation was used. We now want to use the continuous
domain Ω instead in order to be able to sample the displacement in any point. In
the quadrature chapter we developed interpolation over the flag-shaped domain.
By using the same semi-analytical EIM basis functions and magic points we can
interpolate the displacement separately in each spatial dimension, x, y and z. The
only difference is that we want to interpolate a component of the displacement,
e.g. Gx rather than the function exy. The resulting approximation will enable us
to sample the animation in any spatial point for a given point in time. With 3
components and M magic points, this will require 3M coefficients for each point
in time. This should be cheaper than using a fine discrete grid with M points
and a storage cost of 3M. Let N be the original number of snapshots in time. If
the development in time of the spatial coefficients are sufficiently smooth, then we
can interpolate each of the 3M coefficients separately in time. By training EIM in
1D, as with interpolation and quadrature, we can find basis functions and magic
points to interpolate each coefficient. Using N magic points in time for each spatial
coefficients will require 3MN temporal coefficients in total. The ratio between the
storage cost of the continuous and discrete versions is thus MN

MN . To sample the
function at a given point in time and space, we first use the temporal coefficients to
compute the values of the spatial coefficients. We then use the spatial coefficients to
recover the actual displacement. Implementing the method mainly involves reuse
of the existing EIM functionality and bookkeeping of the coefficients. The work
was started, but we did not have time to test the method properly.

To summarize, we have reused the generic results when interpolating over the flag-
shaped domain and in 1D to be able to sample continuously in space and time. The
magic points in 1D are used to decide at what points in time the spatial coefficients
should be computed. The spatial coefficients are computed using EIM on the flag-
shaped domain. The spatial coefficient are then interpolated in time to produce N
temporal coefficients for each spatial coefficient. Sampling the surrogate in space
and time is done by first using the temporal coefficients to approximate the spatial
coefficient, which are again used to sample the actual geometry. By changing the
spatial domain (flag) and parameter domain (1D time), the same method could be
used for other sufficiently smooth parametrized functions.

If the different components of the generating function G(·;µ) : Ω → R3 are not
independent, then it might be possible to find alternative ways to using 3 separate
approximations as we have done until now. One approach could be to relax the
requirement that EIM is to interpolate exactly in each magic point and rather
formulate the selection of the coefficients β as an optimization problem. So instead
of solving

M∑
j=1

qj(xi)βj = f(xi) i = 1, . . . ,M. (5.2)

60

5.4. Field reconstruction

where qi are basis functions, f is the target function, xi is the magic points and β
is the desired coefficients, it might work to solve

β = arg min
β∈RM

max
xi∈x

∥∥∥∥ M∑
j=1

qj(xi)βj − f(xi)
∥∥∥∥
L2(Ω)

(5.3)

where x are the magic points.

61

Chapter 6

Solving Partial Differential
Equations

In this chapter we present a new collocation method to solve partial differential
equations directly on arbitrary domains by using bases given by the semi-analytical
formulation of EIM. The required system of linear equations is easy and inexpensive
to set up and yields exponential convergence, for smooth problems, in the number
of magic points used. Because the procedure uses the strong formulation of the
problem, it is straight forward to change the governing equation and the boundary
conditions.

6.1 Derivation

Finite Element Methods (FEM) and Spectral methods are two common approaches
for solving partial differential equations that both utilize a weak formulation and a
Galerkin projection [21]. The weak formulation lowers the smoothness requirement
on the basis functions, allowing e.g. the Poisson problem to be solved with linear
basis functions. The weak formulation also allows for easy stitching of subdomains.
Linear FEM is easily applied to a variety of domains but it has a slow convergence
rate. Spectral methods have fast convergence, but might require complex parti-
tioning and mapping of the domain to a reference domain.

Collocation is an alternative method to weak formulations, where the system of
linear equations are built by requiring the problem to be satisfied directly in a
set of points. Difference methods, where the derivatives are approximating using
simple difference schemes involving neighbouring points, is a similar approach,
only that the solution is exclusively given in the points. Collocation methods,
however, typically use polynomials over the domain, so that the solution can be

63

6.1. Derivation

sampled on the whole domain as is the case with finite element and spectral element
based methods. The use of collocation is often limited to simple domains such as
squares or tensor product domains. Stitching together multiple domains can also
be challenging if a point lie on the boundary of two or more subdomains. This
is due to the fact that continuity of the derivatives also needs to be enforced for
second order-problems.

In this chapter we present a new collocation method based on the semi-analytical
formulation of EIM. It will be defined globally on the whole domain and yields
exponential convergence for sufficiently smooth problems. Because the method
is defined globally there is no need, given of course that the domain is not too
complicated, to partition the domain or to map it to a reference domain. We will
require the approximation produced by EIM to fulfil the problem in the magic
points. Because our basis functions often are analytical, we can easily obtain
the necessary differentiation related to the governing equation or the boundary
conditions. We will now demonstrate the method in the domain Ω by solving
Poisson’s equation, but because we use the strong formulation directly it is straight
forward to change the governing equation. We consider

−∇2u = f (6.1)

with Dirichlet boundary condition

u|ΓD
= gD, (6.2)

and Neumann boundary condition

∂u

∂n
|ΓN

= gN . (6.3)

This can be expressed succinctly as

Ψu = g (6.4)

with

Ψi =

−∇2 if xi ∈ Ω\∂Ω
I if xi ∈ ΓD
∂
∂n if xi ∈ ΓN

, (6.5)

where I is the identity operator, i.e. Iu = u, and

64

6.2. Numerical results

gi =

f if xi ∈ Ω\∂Ω
gD if xi ∈ ΓD
gN if xi ∈ ΓN

. (6.6)

The collocation method is straight forward requiring the governing equation and
boundary conditions to be satisfied in the magic points given by the EIM. We start
by assuming that the solution u can be approximated with

u ≈ uM =
M∑
i=1

αiG(·;µi), (6.7)

and insert uM in the problem stated above

 Ψ1G(x1;µ1) · · · Ψ1G(x1;µM)
...

. . .
...

ΨMG(xM ;µ1) · · · ΨMG(xM ;µM)

 α1

...
αM

 =

 g1(x1)
...

gM (xM)

 (6.8)

where Ψi is the operator given by the governing equation or boundary conditions
at magic point xi, with the accompanying load function gi.

Changing the differential operator Ψi and load function gi to other types of gov-
erning equations or boundary conditions is straight forward, as long as we are able
to evaluate the result in the magic points. Changing the domain is only related to
applying the EIM to the new domain.

Remark 6.1. We choose to use the generating function G(·; ·) directly rather than
the q or h-basis functions since the semi-analytical EIM ultimately uses this basis.
This results in cheaper evaluation of the basis function because they consist of
only a single function rather than a linear combination, and we avoid any round off
error that could occur in the change of basis. The computational cost of building
the system of linear equations is thus O(M2) function evaluations. And with
exponential convergence in M , the actual cost of building and solving the system
of linear equations will be quite inexpensive. However, as before this system is
prone to be ill-conditioned.

6.2 Numerical results

A simple test problem is to construct a 1D problem with the analytical solution
u(x) = 1 − x. This was done by letting f = 0, with homogeneous Dirichlet
boundary condition at x = 1 and Neumann boundary condition at x = −1. The
The grid spacing was set to ∆ = 2 · 10−2. As expected, EIM solves this to machine

65

6.2. Numerical results

precision with 2 magic points. In 2D the problem with the analytical solution
u(x, y) = x(1−x)y(1−y) is solved to machine precision with 15 magic points. It was
solved on a square domain with the grid spacing set to ∆ = 5 ·10−2. Homogeneous
Dirichlet boundary conditions were used. Including more magic points can lead to
rounding errors. In both the 1D and 2D examples we can easily print the solution
as e.g. u(x) = 1.00 − 1.00x, in the same way we print the basis functions. This
could be used to find suggestions for the analytical solution of simple problems.

We observe that the EIM collocation is competitive with that of a spectral method
in both 1D and 2D in Figures 6.1 and 6.2. Both cases use inhomogeneous Dirich-
let boundary conditions. The collocation is then applied to a line, a square, a
semicircle, a circle and a flag. The examples uses inhomogeneous Dirichlet bound-
ary condition. In the collocation framework it is simple to apply other types of
boundary conditions, which is why an example using mixed Dirichlet and Neumann
boundary conditions is included in Figure 6.9.

Overall the results look promising with exponential convergence down to machine
precision, but as with the quadrature there are some issues. These will be discussed
in the next section.

Figure 6.1: The performance of EIM collocation (blue circles) is comparable to that
of a spectral method (red dots) in 1D. Homogeneous Dirichlet boundary conditions
were used.

66

6.3. Issues

Figure 6.2: The performance of EIM collocation (blue circles) is comparable to that
of a spectral method based on tensor product GLL-points (red dots) on a square.
Homogeneous Dirichlet boundary conditions were used.

6.3 Issues

The EIM collocation uses the same EIM bases as the EIM quadrature, the only
difference is how they are used. The problems experienced earlier, with EIM choos-
ing the same magic points twice is therefore also present here. This will lead to
singular collocation matrices for the triangle and the semicircle. However, there is
also another serious problem as shown in Figure 6.10, the error suddenly spikes in
the convergence plot. As with the quadrature, this can partially be mitigated, as
shown in Figures 6.11 and 6.12, by using EIM with G-basis functions rather than
the q-basis functions. However, this does not solve the problem and is one of the
issues that must be addressed if the method is to be developed further.

67

6.3. Issues

Figure 6.3: Convergence of the collocation error on a line as a function of magic
points M . The solution is u(x) = exsin(x), the load function and inhomogeneous
Dirichlet boundary conditions are chosen accordingly.

Figure 6.4: Convergence of the collocation error on a square domain as a function
of magic points M . The solution is u(x, y) = exsin(y), the load function and
inhomogeneous Dirichlet boundary conditions are chosen accordingly.

68

6.3. Issues

Figure 6.5: Convergence of the collocation error on a triangular domain as a func-
tion of magic points M . The solution is u(x, y) = exsin(y), the load function and
inhomogeneous Dirichlet boundary conditions are chosen accordingly.

Figure 6.6: Convergence of the collocation error on a semicircular domain as a
function of magic points M . The solution is u(x, y) = exsin(y), the load function
and inhomogeneous Dirichlet boundary conditions are chosen accordingly.

69

6.3. Issues

Figure 6.7: Convergence of the collocation error on a circular domain as a function
of magic points M . The solution is u(x, y) = exsin(y), the load function and
inhomogeneous Dirichlet boundary conditions are chosen accordingly.

Figure 6.8: Convergence of the collocation error on a flag-shaped domain as a
function of magic points M . The solution is u(x, y) = exsin(y), the load function
and inhomogeneous Dirichlet boundary conditions are chosen accordingly.

70

6.3. Issues

Figure 6.9: Convergence of the collocation error on a square domain with mixed
Dirichlet and Neumann boundary conditions. The solution is u(x, y) = exsin(y),
the load function and boundary conditions are chosen accordingly.

Figure 6.10: Detailed convergence of the collocation error on a triangular domain
using EIM with q-basis functions.

71

6.3. Issues

Figure 6.11: Detailed convergence of the collocation error on a triangular domain
using EIM with G-basis functions.

Figure 6.12: Detailed convergence of the collocation error on a circular domain
using EIM with G-basis functions.

72

Chapter 7

Inversion

In this chapter we will briefly look at two types of inversion. This to illustrate
that the EIM might not be limited to the uses previously discussed. The first
type of inversion will construct an EIM basis that is independent of the target
data, and then compare the EIM representation of the target data to find the best
match. It will be applied to image recognition. The second approach will assume
that we can build an EIM basis that will interpolate our data exactly. The EIM
representation will thus give the desired answer directly. This approach will be
applied to sound recognition. Although the methods show some potential, they
also seem very sensitive to noise.

7.1 Introduction

Inversion is the process of finding µ given the output f(·;µ). In many cases f−1

is not given explicitly. One approach to find the approximation to the inverse is to
compute f(·;µ) for a set of µ’s, storing each pair (f(·;µi),µi) in the set of pairs
S = {(f(·;µi),µi)}∀i. The solution µi is given by the closest match

µi = arg min
µi∈Ξ

‖f(·;µ)− f(·;µi)‖L∞(Ω) (7.1)

if the difference is less than a tolerance tol

min
µi∈Ξ

‖f(·;µ)− f(·;µi)‖L∞(Ω) ≤ tol (7.2)

otherwise there is no solution. An alternative to comparing f directly is to compute
the EIM representation, i.e. f(·) ≈

∑M
i=1 αiG(·;µi) and the compare coefficients

αi instead. We will apply this method to image recognition along the lines of [17].

73

7.2. Representing images

The second approach assumes that the interpolation is exact

f(·) =
M∑
i=1

αiG(·;µi). (7.3)

This is a serious limitations, but it allows us to only train the system on the under-
lying functions G(·;µi) we expect to find. In the case of noise free electromagnetic
or sound waves we only have to train with the sine and cosine functions in the
desired frequency range. Due to phase shifts, we need 2N different magic points
to exactly interpolate N frequencies. This is regardless of the target frequencies,
because our EIM is only trained for those frequencies. Because EIM interpolates
functions in the approximation space exactly, we should be able to reconstruct noise
free signals exactly. It should also be possible to train EIM using more complex
combinations of sine and cosine or other functions, but phase shifts might become
an issue.

7.2 Representing images

Images are often represented as an array of color squares called pixels as shown in
Figure 7.1. When training EIM, sampling a function G(x;µ) will be to select an
image based on the parameter µ and then select a pixel in the given image given
by the point x. The domain is thus the uniform 2D square given by an image,
while the parameter space is the index in the set of images.

Figure 7.1: Images are often represented as an array of individual squares of colors
called pixels.

74

7.3. Image recognition

7.3 Image recognition

We will here apply EIM to image recognition along the lines of [17]. We therefore
use the same library of face images, which is from [23]. The library consists of
10 variations of 40 different subjects. We will use all 10 variations of the 20 first
subjects to train EIM. We will then use a single variation of the remaining 20
subjects to create a coefficient profile, which we will compare the remaining 180
images (9 variations, 20 subjects) against.

If we choose the closest match of all 180 images, using the L1(Ω)-norm, then 59
out of 180 images was labelled correctly or a 33% success ratio. The L1(Ω)-norm
seemed to produce better answers than the L∞(Ω)-norm.

In practice it would be more desirable to set a tolerance, as in (7.2), and only
accept those images where the error is lower than the tolerance. We can achieve
that all images within the tolerance is recognized correctly, but then only 7 images
out of 180 are chosen or 4%. We have no good way of selecting the tolerance a
priori, making it quite likely that false positives will be introduced. Choosing the
tolerance will thus become a trade-off between how many faces are recognized and
how many faces that are incorrectly recognized. At at a certain level we are able to
recognize 34 faces correctly or (19%), but we also have 33 images that are falsely
identified.

In [17] they crop the images before they are processed. In Figure 7.2 we can see
that a lot of the magic points lie in the vicinity of the ears or even where the clothes
show up in the images. This can act as an distraction away from the core features,
and thus if the selection criteria was fine tuned together with cropping the images,
EIM might become a more viable alternative.

7.4 Representing sound

A pure tone can be represented with a sine function, and to account for phase
shifts, we can represent it as a linear combination of sine and cosine, see Figure
7.3. In practice sound is sampled discretely at uniform time intervals. A common
sampling rate is 44100 samples per second (44100Hz). This is because humans can
hear sounds up to about 20kHz, and, by the Nyquist sampling theorem, we then
need to sample at twice that rate. We will generate the sound synthetically and
sample it at 44100Hz.

Each pure tone is included in the EIM training set as a pair of sine and cosine
functions. Since we have two functions per frequency, we use an index set to
describe the sounds in our parameter space rather than using the frequencies. The
domain is time. Sampling a function G(t;µ) is thus the same as first choosing the
sound µ and then its contribution at time t.

75

7.5. Sound recognition

Figure 7.2: Distribution of the first 50 spatial magic points (first five marked
with red dots) of the face sequence consisting of 20 subjects and 10 variations per
subject. There are clusters of points around the eyes, nose and mouth in the center
of the plot, but the majority of points lie nearby the ears, neck and shoulders which
include some of the clothing the subjects are wearing.

7.5 Sound recognition

Our synthetic sounds will be the fundamental frequency of keys on a piano. The
fundamental frequency of the nth key of a piano is given by

f(n) = 2
n−49

12 · 440Hz. (7.4)

By applying a moving window in time we can achieve temporal resolution. This
is done by first looking at the samples 1 through 441, then 2 through 442 and so
on. Because the window size is 441, we train EIM on a domain with 441 points.
Where there is silence or in the transition between different tones, there will be
an area that does not just consist of pure tones but a mix of silence and different
tones: within a single window there is first one or more tones then silence before
some other tones. EIM is very sensitive to noise in the data, and the situation just
described will not work properly. Therefore, a filter step is included: we assume
that no more than say N instruments contribute significantly (more than some
threshold) at any given time. If that is the case, we enforce that no instrument is
contributing. By training on the forth octave of a piano, containing 12 keys from

76

7.5. Sound recognition

Figure 7.3: Pure tones can be represented as sine waves. The frequency is equal
to the number of periods per second, which in this case makes the frequency 2Hz.
Phase shifts (dashed line compared to solid line) can be represented as a linear
combination of sine and cosine waves.

C4 at 262Hz to B4 at 494Hz, using 12 pairs of sine and cosine to account for phase
shifts, and applying the filtering rule that no more than 6 tones should be playing
at any one time we get the results in Figure 7.4. Except that we use 441 samples to
produce a single point in the figure, the inversion reproduces the synthetic signal
correctly.

This application has just been a frequency analysis of a simple signal. In principle
we could choose a more complex generating function. It could perhaps be extended
to recognize musical instruments rather than just pure tones. Actual musical in-
struments are of course more complex with a fundamental frequency, overtones and
other variations.

Both of the inversion applications are very sensitive to noise, the work done in [19]
to perform noisy regression using EIM, might be useful for further work in this
area. It could be interesting to compare existing frequency analysis methods such
as the Discrete Fourier Transform (DFT) to the one using EIM.

77

7.5. Sound recognition

Figure 7.4: Tones recognized at different points in time by EIM inversion.

78

Chapter 8

Software implementation

8.1 General comments

The computational framework was developed alongside the semi-analytical rep-
resentation of EIM, and many of the abstractions are equivalent with the actual
implementation. This is achieved through extensive use of object orientation. Ob-
ject oriented programming is a paradigm where variables and functions that are
related are grouped into classes. EIM itself is implemented once, and all of the
different applications looked at in this thesis is achieved by changing the spatial
domain, parameter domain and function space according to the problem. Addi-
tional functionality, like collocation, then made use of the single implementation of
EIM. This made it possible to quickly implement new applications.

The EIM implementation knows how to work with an abstract notion of the spatial
domain, parameter domain and function space. Each specific implementation of
e.g. the domain has to conform to the abstract domain. In object orientated
programming this is called interfaces. This way each function space knows how to
integrate and differentiate the functions in its space. This creates a clear division
between EIM and the problem specific code. Furthermore, the function space
was implemented using the fundamental principle of functional programming: that
calling a function has no side effects and that the input is the only thing that affects
the output. This is, of course, the same as with mathematical functions and made
a lot of sense when implementing a function space. The key practical advantage
with this is that a function space will not change after its creation, so as long as
all parties have access to the function space, they will be able to send meaningful
messages using the encoding (α,µ) describe earlier. Any information related to
EIM or particular applications like compression is not needed.

The encoding of functions as (α,µ) offers a simple way to represent the function
as human readable text. This was exploited to generate the tables containing basis

79

8.2. Acknowledgements

FunctionSpace:
sample(alphas,mus,points)
max(alphas,mus,omega)
differentiate(alphas,mus,points)
integrate(alphas,mus,omega)
printFunction(alphas,mus)

SpatialDomain:
numPoints()
getPoint(index)
numSurfaces()
sampleSurface(index,t)
discretize(numPoints)

ParameterDomain:
numParameters()
getParameter(index)

EIM:
interpolate{Q,H}(f)
sample{Q,H}(coefficients,points)
[alphas mus] = encode{Q,H}(f)
sample(alphas,points)
greedy(numPoints)
ascending(numPoints)

Figure 8.1: An overview of some of the main classes and functions. The
ParameterDomain, SpatialDomain and ParameterDomain classes act as interfaces
to abstract their respective functionalities. This is done so that a single implemen-
tation of the EIM class can work with all the different problems presented in this
thesis. The α-coefficients are central in the implementation of FunctionSpace.
This is to isolate the functions that span the space in order to make it easier to
perform analytical operations.

functions for the various domains in this thesis.

Some of the operations are suited for parallelization. Sampling a function in a
set of points are independent of each other, so is finding max when training EIM.
Some use of parallelization was applied to produce results faster in this thesis, and
is definitely something that should be explored if developing the semi-analytical
framework further.

8.2 Acknowledgements

Almost all of the code and results have been developed using MathWorks MATLAB.
Maplesoft Maple was used to obtain some of the analytical results. MATLAB code
related to GLL and spectral methods were adapted from code handed out in the
course MA8502 at the Norwegian University of Science and Technology [15]. The
flag from the compression chapter was modelled and animated using Autodesk
Maya and exported via the OBJ format. The animation was never used (it was
replaced by synthetic animation in order to have greater control), but the geometry
was used. The code to handle 3D objects in the OBJ format in MATLAB was
written by Dirk-Jan Kroon and downloaded from the MATLAB file exchange. All
other code was written in MATLAB for the purpose of this thesis.

80

Chapter 9

Conclusions and final
remarks

This thesis have been based on the Empirical Interpolation Method and some of
the suggested applications presented in [15]. We have proposed a new practical ap-
proach to deal with basis functions analytically called the semi-analytic formulation
of EIM. Based on this formulation we have developed new ways to deal with the in-
tegration of basis functions when developing EIM quadrature rules. This included
integrating polynomials exactly over arbitrary simple polygons. We also propose a
new way to solve partial differential equations by combining EIM and collocation.
While the results from both the quadrature and collocation are promising, with ex-
ponential convergence for sufficiently smooth problems, there are also issues with
the error that must be addressed if these methods are developed further. In the
case of collocation, we have no measure as to how many points we need to include
for the problem to make sense, i.e. have enough points in the interior and at the
boundary to fulfil the governing equation and boundary conditions. Regardless of
the application, the interpolation error in the magic points seems to grow as the
number of magic points increases. This is quite alarming as the error should be
zero in the magic points by construction. At this point it is unknown whether
these issues are related to round-off errors, ill-conditioned matrices, implementa-
tion bugs, or some other error. These issues must be investigated if the methods
are to be developed further. In addition, the test cases are quite simple and do not
test the limits of what functions and domains the EIM can handle.

In addition to enable basis functions to be handled analytically, the semi-analytic
EIM makes it easy to apply EIM to a variety of problems. We have looked at
compression of 3D animation, which yields exponential convergence for sufficiently
smooth data. The method should work equally well for other types of smooth data.
EIM was also applied to image recognition and signal recognition. Both methods

81

did work to some extent, but was not flexible in what data they can work with.
This suggests that the smoothness requirement of EIM might be too strict for EIM
to work properly for some practical applications, especially with noisy data. The
methods would need to be further developed and compared to existing solutions to
say something conclusive.

Field reconstruction was briefly mentioned in the compression chapter. The semi-
analytic EIM could offer ways to create computational surrogates that can be
sampled continuously in time and space. If the system to be modelled has a vector
output, e.g. a displacement in 3D, then the dimensions could be handled separately
by applying EIM once for each dimension. Alternatively, EIM could perhaps be
changed to choose the closest interpolation via optimization rather than requiring
the interpolation to be exact in the interpolation points.

Handling the basis functions of the EIM analytically shows great potential if the
issues encountered can be fixed. Alternatively, it might be possible to circumvent
them by working only with polynomials rather than any function generated by
G(·; ·).

If we want to reduce the computational cost there are several techniques that might
help. In [10], the parameter domain is partitioned into subdomains before EIM is
trained separately on each subdomain. This can lead to smaller EIM bases, but
requires us to know which one to use when interpolating. This is straight forward
when using EIM in the traditional way, i.e. when the approximation space is
spanned by the parametric function to be interpolated, but it is not obvious if this
would work for generic bases as well. An approach to deal with greedy algorithms in
higher dimensions is presented in [12]. Practical implementations can be improved
further by using optimizations like parallelization.

82

Bibliography

[1] T. O. Aanonsen, Empirical interpolation with application to reduced basis
approximations, Master Thesis, Norwegian University of Science and Technol-
ogy, (2009).

[2] H. Antil, S. E. Field, F. Herrmann, R. H. Nochetto, and
M. Tiglio, Two-step greedy algorithm for reduced order quadratures, CoRR,
abs/1210.0577 (2012).

[3] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ‘empir-
ical interpolation’ method: application to efficient reduced-basis discretization
of partial differential equations, Comptes Rendus Mathematique, 339 (2004),
pp. 667 – 672.

[4] C. Bernardi and Y. Maday, Spectral Methods. In Handbook of Numerical
Analysis. Volume V: Techniques of Scientific Computing (Part 2), Elsevier,
1997.

[5] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods
in Fluid Dynamics, Springer, 1993.

[6] S. Chaturantabut and D. C. Sorensen, Discrete empirical interpolation
for nonlinear model reduction, in Decision and Control, 2009 held jointly with
the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of
the 48th IEEE Conference on, IEEE, 2009, pp. 4316–4321.

[7] P. Chen, A. Quarteroni, and G. Rozza, A weighted empirical interpola-
tion method: a priori convergence analysis and applications, (2013).

[8] J. L. Eftang, M. A. Grepl, and A. T. Patera, A posteriori error bounds
for the empirical interpolation method, Comptes Rendus Mathematique, 348
(2010), pp. 575–579.

[9] J. L. Eftang, M. A. Grepl, A. T. Patera, and E. M. Rønquist, Ap-
proximation of parametric derivatives by the empirical interpolation method,
Foundations of Computational Mathematics, (2011), pp. 1–25.

83

Bibliography

[10] J. L. Eftang and B. Stamm, Parameter multi-domain ‘hp’empirical in-
terpolation, International Journal for Numerical Methods in Engineering, 90
(2012), pp. 412–428.

[11] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera, Efficient
reduced-basis treatment of nonaffine and nonlinear partial differential equa-
tions, ESAIM: Mathematical Modelling and Numerical Analysis, 41 (2007),
pp. 575–605.

[12] J. S. Hesthaven, B. Stamm, and S. Zhang, Efficient greedy algorithms for
high-dimensional parameter spaces with applications to empirical interpolation
and reduced basis methods, tech. rep., DTIC Document, 2011.

[13] F. James, Monte carlo theory and practice, Reports on Progress in Physics,
43 (1980), p. 1145.

[14] E. Kreyszig, Advanced Engineering Mathematics, 9 ed., 2006.

[15] Y. Maday, N. C. Nguyen, A. T. Patera, and G. S. H. Pau, A general
multipurpose interpolation procedure: the magic points, Communications on
pure and applied analysis, Volume 8, Number 1, January 2009.

[16] N. Nguyen, A. Patera, and J. Peraire, A ‘best points’ interpolation
method for efficient approximation of parametrized functions, International
journal for numerical methods in engineering, 73 (2008), pp. 521–543.

[17] N. Nguyen and J. Peraire, An interpolation method for the reconstruction
and recognition of face images, tech. rep., DTIC Document, 2007.

[18] R. Pasquetti and F. Rapetti, Spectral element methods on unstructured
meshes: which interpolation points?, Numer. Algorithms, 55 (2010), pp. 349–
366.

[19] A. T. Patera and E. M. Rønquist, Regression on parametric manifolds:
Estimation of spatial fields, functional outputs, and parameters from noisy
data., C. R., Math., Acad. Sci. Paris, 350 (2012), pp. 543–547.

[20] A. T. Patera and G. Rozza, Reduced basis approximation and a poste-
riori error estimation for parametrized partial differential equations, Version
1.0, Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo
Graduate Monographs in Mechanical Engineering.

[21] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differ-
ential Equations, Springer, 1994.

[22] E. M. Rønquist, Numerical solution of partial differential equations. Lecture
Notes (course MA8502), 2012.

[23] F. Samaria and A. Harter, Parameterisation of a stochastic model for
human face identification, 2nd IEEE Workshop on Applications of Computer
Vision, (1994).

84

Bibliography

[24] D. Wirtz, D. C. Sorensen, and B. Haasdonk, A-posteriori error estima-
tion for DEIM reduced nonlinear dynamical systems, SRC SimTech Preprint
Series, (2012).

85

	Abstract
	Preface
	Contents
	Introduction
	The Empirical Interpolation Method
	Introduction
	Derivation
	Properties
	Properties of the EIM algorithm
	Computational cost
	Lebesgue constant
	A priori error
	A posteriori error

	Numerical results

	The semi-analytical formulation of EIM
	Introduction
	Derivation
	Adapting EIM to various problems
	Linear operators
	Choice of basis
	Computational cost

	Quadrature
	Derivation
	Choice of integration rule
	Alternative derivation of the quadrature rule
	Quadrature on simple polygons in 2D
	Numerical results
	Issues

	Compression
	Introduction
	Encoding
	Compression of 3D animation
	Field reconstruction

	Solving Partial Differential Equations
	Derivation
	Numerical results
	Issues

	Inversion
	Introduction
	Representing images
	Image recognition
	Representing sound
	Sound recognition

	Software implementation
	General comments
	Acknowledgements

	Conclusions and final remarks
	Bibliography

