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Giant vortices with higher phase winding than 2π are usually energetically unfavorable, but geometric
symmetry constraints on a superconductor in a magnetic field are known to stabilize such objects. Here, we
show via microscopic calculations that giant vortices can appear in intrinsically nonsuperconducting
materials, even without any applied magnetic field. The enabling mechanism is the proximity effect to a
host superconductor where a current flows, and we also demonstrate that antivortices can appear in this
setup. Our results open the possibility to study electrically controllable topological defects in unusual
environments, which do not have to be exposed to magnetic fields or intrinsically superconducting, but
instead display other types of order.
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Introduction.—It is well known that applying a magnetic
field to a type-II superconductor can lead to the formation
of Abrikosov vortices [1]. A gradient in the phase φ of
the superconducting order parameter Δ ¼ jΔjeiφ causes a
circulating supercurrent around such vortices, whereas
jΔj → 0 at their centers. Vortex excitations in supercon-
ductors [2,3] remains a vibrant research topic, not least
because it lies at the intersection of two major research
fields: superconductivity and topology in physics.
It was recently pointed out in Ref. [4] that it is also

possible to generate Josephson vortices without applying
magnetic fields. Such vortices are also characterized by a
quantized phase winding and a suppressed order parameter
at their core [5]. Motivated by this, we have performed
microscopic calculations using the quasiclassical theory of
superconductivity [6] on a normal metal enveloped by a
current-biased superconducting wire (Fig. 1). The idea
behind the device is simple: an external current source
forces a supercurrent through the wire, and this circulation
whirls the condensate in a proximitized normal metal as
well. Our objective has been to determine what type of
electrically controllable vortex physics then emerges. We
demonstrate here that both giant vortices and antivortices
appear in the nonsuperconducting region even in the
absence of any applied magnetic field. This provides an
alternative method of creating complex vortex patterns by
applying electric currents. Since these patterns are gen-
erated in a proximitized nonsuperconductor, this opens up
the intriguing prospect of studying unusual topological
vortex excitations in materials with other types of quantum
order, which do not have to be compatible with bulk
superconductivity. One example is a magnetic metal, where
the generation of odd-frequency triplet superconducting
order could reverse the chirality of some vortices, similarly

to the paramagnetic Meissner effect [7,8]. More funda-
mentally, it raises the intriguing question: what character-
izes a vortex in an odd-frequency order parameter?
Geometric effect and winding number.—Since a circu-

lating supercurrent requires a finite phase-gradient ∇φ, and
the analyticity of the superconducting wave function implies
integral winding numbers n ¼ Δφ=2π around any point, the
system is topologically coerced into nucleating vortices in
the normal metal region of Fig. 1. Assuming a thin-film
structure, the total charge current associated with this
circulation is small, and the magnetic field generated by
the circulation can safely be neglected. Note that in contrast
to the setup proposed in Ref. [4], our normal metal is
surrounded by a continuous superconducting wire on all
sides, instead of having two separate wires on the top and
bottom, which we will show fundamentally alters the vortex
physics in the system. Another important difference is that
we model the superconducting wire using an exact solution

FIG. 1. Conceptual sketch of the physical system. An external
current source is used to inject a current into a superconductor
(red). The circulating current also affects a proximitized
normal metal (yellow), causing an electrically controlled vortex
to emerge there.
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of the Usadel equation in the current-biased superconductor
and tunneling boundary conditions. As wewill demonstrate,
this is necessary to correctly describe qualitative changes
that the phase winding induces in, e.g., the density of states
(DOS).
When the current in the superconducting wire makes

a total winding number N > 1, there are multiple ways to
satisfy the boundary conditions. Among other possibil-
ities, we can get (i) N vortices with a winding 1 each,
(ii) N þM vortices with a winding þ1 and M antivortices
with winding −1, or (iii) just one giant vortex with a
winding N. The kinetic energy of an n-winding vortex
scales with n2, so the most energetically favorable is
configuration (i). Hence, giant vortices and antivortices
are seldom seen. However, since the superconducting
order parameter respects the symmetries of the underlying
geometry, vortices only nucleate along the symmetry axes
of the system. For highly symmetric geometries, these
additional constraints may force the appearance of giant
vortices or antivortices. The resulting interplay between
topological defects, geometric symmetries, and energy
minimization was previously studied in Refs. [9–12] using
the phenomenological Ginzburg-Landau formalism for
type-II superconductors in a magnetic field. Here, we
show that this effect also arises in proximitized normal
metals without magnetic fields. This generalization is
particularly important as it opens the possibility to study
novel vortex physics in materials featuring completely
different order than superconductors, e.g., ferromagnets or
topological insulators.
2D diffusive metal with phase-winding.—As shown in

Fig. 1, we consider a normal metal with a superconducting
loop grown on top. We describe the properties of the metal
in terms of quasiclassical propagators ĝ in Nambu and spin
space,

ĝðr; ϵÞ ¼
�

gðr;þϵÞσ0 fðr;þϵÞiσ2
−f�ðr;−ϵÞiσ2 −g�ðr;−ϵÞσ0

�
; ð1Þ

where the normal part g and anomalous part f are complex
scalar functions, subject to the normalization constraint
ĝ2 ¼ 1. Here, σ0 is the 2 × 2 identity matrix, and σ2 is the
second Pauli matrix. We assume that all length scales in the
problem are large compared to the Fermi wavelength and
mean free path; i.e., we take the quasiclassical diffusive
limit. The propagators ĝ are then governed by the Usadel
equation [6,13,14],

D∇ðĝ∇ĝÞ þ i½ϵτ̂3; ĝ� ¼ 0; ð2Þ

where D is the diffusion constant, ϵ the quasiparticle
energy, and τ̂3 ¼ diagðþσ0;−σ0Þ. Furthermore, we assume
that the normal region is connected to the superconducting
wire by a low-transparency interface. We may then use the
Kupriyanov-Lukichev boundary condition ζe⊥ ·∇ĝn ¼
½ĝn; ĝs�=ξ [15], where ζ parametrizes interface resistance,

e⊥ is the outwards-pointing interface normal vector, ĝn
and ĝs are propagators on the normal and superconducting
sides, and ξ the superconducting coherence length. The
propagators ĝs in the current-biased superconductors were
evaluated analytically. The applied current also creates a
magnetic field which penetrates the proximitized material.
Its strength depends on the total applied current, which
in turn depends on the pair density and dimensions of the
superconductor. However, since the field is perpendicular
to and roughly constant within the current loop, its only
effect is to slightly perturb the applied current for which
a given vortex pattern appears. We have neglected the
quantitative correction from the magnetic field herein.
In practice, the differential equations above are Riccati-

parametrized for stability [16], and then solved numerically
using a finite-element method on a two-dimensional mesh.
This lets us handle arbitrary sample geometries, such as the
regular polygons considered herein. For more information
about the numerical solution procedure itself, see Ref. [17].
Superconducting wire with a uniform current.—As

shown in Sec. II of the Supplemental Material [18], the
propagator ĝ in a current-biased bulk superconductor can
be written [23,24]

ĝ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − Θ2

p
� þϵσ0 Θeþiφiσ2
Θe−iφiσ2 −ϵσ0

�
; ð3Þ

where ΘðϵÞ parametrizes the strength of the superconduc-
tivity, and φ is the superconducting phase. The phase varies
linearly with the distance l along the wire. Defining
φð0Þ≡ 0, and parametrizing the variation using a winding
rate u≡ ξj∇φj, we therefore get φðlÞ ¼ ul=ξ. The func-
tion ΘðϵÞ is determined by

Θ ¼ jΔj
1þ u2=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ2 − ϵ2

p ; ð4Þ

jΔj ¼ 1

acoshωc

Z
ωc

0

dϵRe

�
Θffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2−Θ2
p

�
tanh

�
π

2eγ
ϵ

T

�
: ð5Þ

These equations have been written in a form where Θ, Δ, ϵ,
ωc are all normalized to the zero-current gap Δ0, while the
temperature T is normalized to the critical temperature Tc.
Here, ωc refers to the Debye cutoff, and γ is the Euler-
Mascheroni constant. The first of these equations is a
fixpoint iteration equation. This is easily solved by guess-
ing ΘðϵÞ ¼ 1 and jΔj ¼ 1, and applying Newton’s method
to the equation for a discretized set of energies from the
Debye cutoff ϵ ¼ ωc to zero energy ϵ ¼ 0. The second is a
self-consistency equation for the gap Δ, which is evaluated
by numerical integration of the results for ΘðϵÞ. We then
alternate between solving the fixpoint equation and self-
consistency equation until satisfactory convergence. The
solutions to the equations above are visualized in Fig. 2.
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When approaching the setup in Fig. 1 numerically, we
assumed that the superconducting wire suffers a negligible
inverse proximity effect from the normal metal. In this case,
we can use the analytical equation above for the super-
conducting wire, and reduce the superconductor to effective
boundary conditions for the normal metal. Furthermore, we
numerically only considered phase-winding rates u ≤ 0.5,
in which case Eq. (5) can be replaced by the approximation
jΔj ≈ 1. Note that since the phase-winding rate u cannot be
arbitrarily large, we need a system much larger than the
coherence length to obtain high winding numbers using a
current bias.
Quantifying vortices.—We can study the proximity-

induced superconductivity in a normal metal via the pair
correlation

ΨðrÞ∼
Z

ωc

0

dϵ ½fðr;þϵÞ− fðr;−ϵÞ� tanhðϵ=2TÞ; ð6Þ

which behaves like a complex order parameter. This pair
correlation can be decomposed as Ψ≡ jΨj expðiφÞ, and the
phase φ can then be extracted using φ¼arctanðImΨ=ReΨÞ.
As discussed in the introduction, the circulating current

in the enclosing superconductor creates a phase-winding
∇φ along the interface. However, the phase φ is uniquely
defined modulo 2π, which means that it is only possible
for the phase to vary continuously around the edges of the
normal metal if it increases by ΦI ¼ 2πN after having
traversed the entire circumference. In other words, we must
have a total vorticity

N ¼ ΦI

2π
≡ 1

2π

I
∂Ω
ð∇φÞ · dl; ð7Þ

where ∂Ω is the boundary of the normal metal. When we
have a finite vorticity N, the currents inside the normal

metal will form closed loops, leading to the appearance of
vortices. More precisely, the total vorticityN will be equal to
the sumof thewinding numbers n of all the induced vortices.
The vortices manifest as nodes in the pair correlation Ψ.
Numerical results.—In the upper row of Fig. 3, the

vortex pattern for increasing applied current winding ΦI is
shown. The winding of the individual vortices may be
determined graphically from the phase of the pair corre-
lation function φ, which is plotted in the bottom row of
Fig. 3. By using Eq. (7) with the replacements N → n and
∂Ω → C, where C is any contour encircling a single vortex,
one sees that n ≠ 0 only if the integration path crosses
discontinuities. Furthermore, each discontinuity contrib-
utes a value to the integral equal to the size of the jump.
For ΦI ¼ 2π, shown in Fig. 3(a), there is a single vortex in
the center of the normal metal, and any closed contour
around this point must traverse two jumps Δφ ¼ π, thus
showing that the vortex has a winding n ¼ þ1. We note
that the precise locations of these discontinuities depend on
the reference point for the phase of the superconductors,
and are hence not physically significant. The number of
times a closed loop crosses a discontinuity, however, is.
In Fig. 3(b), where ΦI ¼ 4π, there is still only a single
vortex in the system, but now the plot of φ shows four
discontinuities, from which it is inferred that this is a giant
vortex with n ¼ þ2.
For ΦI ¼ 6π, shown in Fig. 3(c), five vortices are found.

As the sum of the individual topological numbers should
add up to N ¼ þ3, in accordance with Eq. (7), one of these
vortices must be an antivortex. The phase plot shows that
this is indeed the case: the central vortex winds in the
opposite direction of other vortices. Hence, this configu-
ration consists of one central n ¼ −1 antivortex with four
surrounding n ¼ þ1 vortices. For ΦI ¼ 8π, there are four
regular n ¼ þ1 vortices along the diagonals, as shown in
Fig. 3(d). Since these vortex patterns arise from symmetry
constraints, they are naturally sensitive to asymmetries in

(a) (b)

FIG. 2. Visualization of a bulk superconductor with a uniform
current at zero temperature. (a) DOS for varying winding rates u,
as shown in the legends above. Note how the coherence peaks are
smoothed out for u > 0 and the gap closes as u → 1, illustrating a
qualitatively different behavior for u > 0. (b) Gap Δ and current
density J as functions of u, where the unit J0 ¼ eDN0Δ0=4ξ. As
long as u < 1=2, we see that Δ ≈ Δ0 and J ∼ u, and a non-self-
consistent solution is reasonably accurate. However, the current
becomes nonmonotonic for u > 2=3, so this regime is inacces-
sible in our proposed setup.

FIG. 3. Vortex nucleation patterns for various applied current
windings ΦI , for a quadratic normal metal with side lengths
L ¼ 12ξ. The top row shows the magnitude jΨj of the pair
correlation, where the minima indicate the vortices. The bottom
row shows the phase φ of the pair correlation, from which the
winding of individual vortices can be determined. The total
windings ΦI are listed below.
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the geometry. The giant vortex in Fig. 3(b) splits into two
n ¼ þ1 vortices as the geometry becomes rectangular.
However, the vortices continue to overlap strongly for
sufficiently small deviations, as shown in Sec. III of the
SupplementalMaterial [18]. This means that the giant vortex
could in practice be stabilized against deviations fromperfect
symmetryby creating a pinning potential at this location [25].
Since the vortex positions are also influenced by the applied
currents, another option is to fine-tune the currents to
experimentally realize the giant vortex. The pattern in
Fig. 3(c) is, on the other hand, stable against small deviations
in aspect ratio.The reason is thatwhen thegeometry becomes
increasingly rectangular, it eventually becomes energetically
favorable to satisfy N ¼ þ3 as three n ¼ þ1 vortices along
the longest axis. The transition to such a pattern can only
occur in awaywhich respects the symmetries of the rectangle,
and hence the central antivortex turns into a vortex, and
additional antivortices must appear so that the off-center
vortices can annihilate symmetrically [26].
Thevortices also create a spatialmodulationof theDOS: at

the vortex cores, superconductivity vanishes, and the mini-
gap disappears. This means that the vortices we predict can
be directly inferred via local STM measurements. In Fig. 4,
the DOS for ϵ ¼ 0 is plotted along the diagonal of the normal
metal (i.e., between two opposite corners). This confirms that
the normal-state result DOS ¼ 1 is recovered at the vortex
cores. For the n ¼ þ2 vortex produced by ΦI ¼ 4π, the
minigap is suppressed in a larger region around the vortex
than for ΦI ¼ 2π. For ΦI ¼ 6π, the normal region is larger
still, but this is likely due to the close proximity of three
vortices. For ΦI ¼ 8π, the vortices are sufficiently far apart
for a dip in the DOS to appear in between, providing an
observable signature.
The above can be understood by analyzing the pair

correlation. In Sec. I of the Supplemental Material [18], it is
shown that for small distances r from the vortex center,

Ψ ∼ ðr=2ξ0Þn=n!, where ξ0 is the Ginzburg-Landau coher-
ence length. For r < 2ξ0ðn!Þ1=n ≈ 2½1þ ðn − 1Þ=e�ξ0,
these correlations recover more slowly with increasing
winding n, and hence the minigap is increasingly sup-
pressed. The fact that the vortex size increases linearly with
n also in the diffusive limit can be motivated from Fig. 2.
There, we see that superconductivity vanishes entirely as
the phase-winding rate u≡ ξj∇φj → 1. Assuming that this
remains approximately valid in nonbulk materials, and
using that j∇φj ¼ jnj=r around an n-winding vortex, we
find that superconductivity vanishes for r < nξ. In other
words, we find that the core size of a giant vortex scales
linearly with its winding number n, providing an observa-
tional signature of giant vortices that can be seen via STM
measurements.
The vortex patterns of Fig. 3 may be deduced from

energy considerations. In general, the kinetic energy of a
vortex with a winding number n scales as n2. This is
because kinetic energy Ek ∼ v2, where v ∼∇φ ∼ n is the
velocity of the superconducting condensate. In Sec. I of the
Supplemental Material [18], we solve the linearized
Ginzburg-Landau equation near a vortex with winding
number n, and use this to confirm that the kinetic energy is
indeed proportional to n2. Similar n2 dependencies have
previously been noted for magnetic vortices in type-II
superconductors [27], and these properties are shared by
vortices in proximitized nonsuperconductors [5,28].
The above provides a simple prescription for predicting

the vortex nucleation pattern. When a total vorticity N is
introduced to the system, it splits into vortices with
individual windings ni in a way that satisfies N ¼ P

ini.
Among all patterns permitted by the symmetries of the
geometry, the energetically favored is the one that mini-
mizes E ¼ P

in
2
i . Note that ni can be either positive or

negative, allowing for antivortex nucleation.
In the geometry considered so far, off-center vortices can

only appear in a square formation without breaking the
symmetry of the system, as is seen in Fig. 3. This symmetry
constraint explains why it is possible to produce a vortex
with winding n ¼ þ2. A higher winding is, however, not
possible because it will always be energetically favorable to
introduce four new vortices away from the center, and,
potentially, an antivortex in the center. Similar results were
found for a mesoscopic superconductor in an applied
magnetic field [10–12]. The present analysis differs in that
the vortex patterns are generated in an intrinsically non-
superconducting material solely by an applying an electric
current. A regular polygon with a higher symmetry (larger
number of sides), will by the same reasoning as above
allow for a higher winding at the center, as any alternative
will require a larger number of of n ¼ þ1 vortices to be
distributed in a symmetrical fashion. Figure 5 shows the
pair correlation function for a hexagonal normal metal
surrounded by a superconductor with an applied current
equivalent to ΦI ¼ 6π. Here, we find a single vortex of

FIG. 4. DOS along the diagonal of the normal metal for various
applied current windings ΦI . Superconductivity is suppressed in
the vortex cores, and the normal-state DOS ¼ 1 is recovered.
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winding n ¼ þ3. Generally, a regular polygon withm sides
allows for a giant vortex with winding up to n ¼ bm=2c.
Conclusion.—We have used microscopic calculations to

show that one can induce giant vortices and antivortices in
nonsuperconducting materials in the absence of magnetic
fields. We also analyzed the vortex nucleation pattern using
arguments of symmetry and energy minimization. Our
results open the possibility to study novel topological defects
in unusual environments, which do not have to be intrinsi-
cally superconducting or exposed to magnetic fields.
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