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ABSTRACT

We study privacy-preserving precoder design for decentralized es-

timation in wireless sensor networks where the sensor nodes want

their local information such as the channel state information, obser-

vation matrices, and observation covariance matrices to be private.

We propose a distributed algorithm with closed form expressions to

design the precoders and fusion rule that minimize the estimation

error by exchanging messages which do not reveal the local infor-

mation. We derive the privacy limits offered by the proposed algo-

rithm and prove that the algorithm is privacy-preserving. Simulation

results illustrate the trade-off between privacy and estimation accu-

racy of the proposed algorithm.

1. INTRODUCTION

Wireless sensor networks (WSN) are widely employed for event de-

tection, tracking, and estimation with applications in security, envi-

ronmental monitoring, and smart infrastructure. In the decentralized

estimation, sensor nodes transmit their observations of the source

to the fusion center (FC), which estimates the parameter of inter-

est. The observation noise and the noisy fading wireless channel

between the sensors and FC degrades the estimation accuracy. How-

ever, transceivers can be designed to minimize these ill effects by uti-

lizing the knowledge of channel state information (CSI) and sensor

observation model information. Precoding enables us to exploit the

multiple access channel (MAC) to coherently combine the transmis-

sions from the sensor nodes over the channel, and thus leading to di-

versity and array gain, which enhance the estimation accuracy [1–5].

However, the local sensor information and the sensor measure-

ments are sensitive and must be protected from leaking to unautho-

rized agents. Conventional cryptographic security solutions are pro-

hibitively demanding in resources to employ them in WSNs. Hence,

low complex physical layer security and privacy for WSNs has gar-

nered significant attention recently. In [6] and [7], the authors stud-

ied secure distributed detection in presence of an malicious eaves-

dropper. Linear precoding was proposed in [8] to protect private

hypothesis being inferred from a curious FC. In [9] and [10], pre-

coding techniques were investigated for secure remote estimation in

presence of an eavesdropper. Optimal encoding of parameter was

considered in [11] to minimize the estimation error at the FC while

ensuring the accuracy at eavesdropper to be greater than a threshold.

In many applications the sensors might be unwilling to share

their observation models and CSI due to privacy and security con-

cerns. For instance, in radar sensor networks the observation ma-

trices contain sensitive information such as codes, timing, and lo-

cation [12–14], which cannot be revealed to other entities. In such
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scenarios, it is imperative that the network designs the precoders and

the fusion rule with information privacy requirements i.e. without

sharing the CSI, observations or observation models directly.

To that end, we propose an iterative distributed algorithm to

compute the precoders and fusion rule while protecting the privacy

of the sensor nodes. As the minimum mean square error (MMSE)

estimation framework results in a non-convex and non-separable ob-

jective function, we derive an upper bound on the optimal MMSE

error, which is convex and separable across the network. This bound

is used to optimize the WSN. To ensure information privacy, we

employ alternating direction method of multipliers (ADMM) and

privacy-preserving average consensus to solve the dual of the MSE

minimization problem in a distributed manner.

In this approach, at each iteration, the sensor nodes update their

precoder and shares the local perturbed dual variable to their neigh-

boring nodes. We derive closed form expressions to update the pre-

coders as well as the dual variables. In the proposed method, FC can

determine the fusion rule using only a scalar quantity fed back from

the sensors without acquiring any global information. We prove that

the proposed algorithm is privacy-preserving and derive limits on

privacy guaranteed for the sensor nodes. Simulation results are pre-

sented to demonstrate the estimation performance and the trade-off

between privacy and estimation error of the proposed method.

Operators (·)T , (·)H , (·)† and tr(·) denote transpose, Hermitian,

pseudo-inverse, and trace of a matrix, respectively. R(·) represents

the real part of a complex quantity and ‖·‖ represents the L2 norm.

In denotes an identity matrix of size n and ⊗ stands for the Kro-

necker product. vec(A) forms a column vector from a matrix A by

stacking its column vectors. diag(a) denotes a diagonal matrix with

elements of vector a on the principal diagonal.

2. SYSTEM MODEL

We consider a WSN with a FC employing r antennas and L sensor

nodes, each employing t antennas. The WSN is modeled as an undi-

rected graph G = (V, C) where the set of vertices V = {1, . . . , L}
corresponds to the sensor nodes and the set C represents the commu-

nication links between the pair of nodes. Node i ∈ V can commu-

nicate with the nodes in its neighborhood Ni. The adjacency matrix

E of the WSN is defined as [E]ij = 1 if (i, j) ∈ C, 0 otherwise.

The sensor nodes measure the parameter θ ∈ Cp having statis-

tics θ ∼ CN (0,Rθ). The observations xi ∈ Cm at the ith node

can be modeled as
xi = Aiθ + ni,

where Ai∈Cm×p is the observation matrix and ni∈Cm is the Gaus-

sian observation noise with zero mean and covariance matrix Σi.

In the decentralized estimation setting, the sensors transmit

linearly-precoded observations to the FC over a wireless MAC. Let

Bi ∈ Ct×m denote the precoding matrix at node i. The received



data yFC ∈ Cr×1 at the FC can be expressed as

yFC =

L
∑

i=1

HiBixi + vFC =

L
∑

i=1

HiBi(Aiθ + ni) + vFC, (1)

where Hi ∈ Cr×t is the channel matrix between the ith node and

the FC, xi represents the observation at node i, and vFC ∈ Cr×1 ∼
CN (0,RFC) is the receiver noise at the FC. The transmit power at

the ith sensor is limited by

E
[

‖Bixi‖
2] = tr(Bi(AiRθA

H
i +Σi)B

H
i ) ≤ Pi, (2)

where Pi is the power available for data transmission.

The FC estimates the parameter θ using the fusion rule W ∈

Cp×r as θ̂ = WHyFC. Our objective is to compute {Bi}
L
i=1 and

W to maximize the estimation accuracy while guaranteeing privacy

of the sensor information.

3. PRIVACY-PRESERVING PRECODER COMPUTATION

Substituting for yFC({Bi}
L
i=1) from (1), we can write the MMSE

error E({Bi},W) = E[‖θ −WHyFC({Bi}
L
i=1)‖

2] as

E({Bi},W) = tr

(

Rθ +W
H
RFCW −Rθ

(

L
∑

i=1

HiBiAi

)H

W

−W
H
(

L
∑

i=1

HiBiAi

)

Rθ +
L
∑

i=1

W
H
HiBiΣiB

H
i H

H
i W

+W
H
(

L
∑

i=1

HiBiAi

)

Rθ

(

L
∑

j=1

HjBjAj

)H

W

)

. (3)

It can be seen that the objective function E({Bi},W) is not sep-

arable and non-convex in {Bi}
L
i=1 and W. Hence, computing the

optimal precoders and fusion rule that minimize the MMSE error

with information privacy is intractable.

To overcome this, we constrain the precoders such that the re-

sponse
∑L

i=1HiBiAi = αD and the fusion rule WH = (1/α)D†,

where α ∈ R is the gain that needs to be optimized and D ∈ Cr×p

is a predefined matrix known to the FC and sensor nodes.

We can now upper bound the error E({Bi}
L
i=1,W) by

EU({Bi}, α)=
L
∑

i=1

tr(D†
HiBiΣiB

H
i H

H
i (D†)H) +

σ2
FC

α2
, (4)

which is convex and separable, and σ2
FC = tr((D†)HRFCD

†). The

optimization problem to calculate {Bi}
L
i=1 and α that minimize

EU({Bi}, α) can be formulated as

min.
{Bi},α

EU({Bi}, α)

s. t.
∑L

i=1
HiBiAi = αD,

tr(Bi(AiRθA
H
i +Σi)B

H
i ) ≤ Pi, i = 1, . . . , L.

(5)

3.1. Distributed Precoder Design

Defining bi = vec(Bi) and exploiting the identity vec(AXB) =
(

BT ⊗A
)

vec(X), the equality constraint in (5) is recast as
∑L

i=1Gibi = αc, where Gi = AT
i ⊗Hi and c = vec(D). Define

µ and λi as the Lagrange multiplier for the complex equality con-

straint and the power constraint at the ith sensor node, respectively.

Employing the relation tr
(

AHBCDH
)

= vec(A)H((DH)T ⊗
B)vec(C) [15], the Lagrangian L({bi},µ, {λi}) for (5) can be

simplified as

L({bi},µ, {λi}) =
σ2
FC

α2
+

L
∑

i=1

b
H
i Ribi +R(µH(Gibi − αc))

+ λi(b
H
i Qibi − Pi), (6)

where Qi,(AiRθA
H
i +Σi)

T⊗It and Ri,ΣT
i ⊗HH

i (D†)HD†Hi.

From the Karush-Kuhn-Tucker (KKT) conditions ∇L({b∗
i },µ

∗,
{λ∗

i }) = 0 [16], the optimal b∗
i is given by

b
∗
i = (Ri + λ∗

iQi)
−1

G
H
i µ

∗. (7)

Further, the optimal precoder b∗
i must satisfy the complementary

slackness conditions λ∗
i ((b

∗
i )

HQib
∗
i − Pi) = 0, ∀i. Therefore,

substituting for b∗
i in slackness conditions, we compute the La-

grange multipliers λ∗
i by solving [17, App. A]

∥

∥Q
1

2

i (Ri + λiQi)
−1

G
H
i µ

∥

∥

2
= Pi. (8)

Next, from the KKT conditions ∂L/∂α∗ = 0, we can derive that

optimal gain α∗ as

α∗ =
(

σ2
FC/R(µ∗H

c)
)1/3

. (9)

From (7) and (9), it must be noted that the knowledge of µ∗ suf-

fices to compute {b∗
i }

L
i=1 at the sensor nodes. The optimal µ∗ can

be found from the dual problem of (5) given by max
µ,{λi}≥0

g(µ, {λi}),

where g(µ, {λi}) = inf
{bi}

L({bi},µ, {λi}) is the dual function. For

the given optimal λ∗
i , substituting the solution b∗

i from (7) into (6)

and determining g(µ, {λi}), the optimal dual can be obtained from

min.
µ

µ
H
(

L
∑

i=1

Gi(Ri + λ∗
iQi)

−1
G

H
i

)

µ− 2α∗
R(µH

c). (10)

Now, the above problem can be reformulated as

min.
µi,µ

L
∑

i=1

µ
H
i Gi(Ri + λ∗

iQi)
−1

G
H
i µi −

2α∗

L
R(µH

i c)

s. t. µi = µ, ∀i,

(11)

and it can be verified that both (10) and (11) have an identical solu-

tion. The constraint in (11) is the consensus constraint which forces

the local information µi at the ith node to be equal to the actual µ.

As the objective function in (11) is separable, the ith sensor node can

independently compute the optimal µi. For that purpose, we rely on

the ADMM technique to solve (11) in a distributed manner [18].

The augmented Lagrangian for problem (11) with the quadratic

penalty function for the constraint violations is formed as

Lρ(µi,yi,µ) =
L
∑

i=1

µ
H
i Gi(Ri + λiQi)

−1
G

H
i µi −

2α

L
R(µH

i c)

+R(yH
i (µi − µ)) +

ρ

2
‖µi − µ‖22, (12)

where ρ is the penalty parameter. Using the ADMM technique [18],

we obtain the following iterative steps at the ith node for (11)

{µ(k+1)
i } = arg min

{µi}
Lρ(µi,y

(k)
i ,µ(k)), (13)

µ
(k+1) = argmin

µ

Lρ(µ
(k+1)
i ,y

(k)
i ,µ), (14)

y
(k+1)
i = y

(k)
i + ρ(µ

(k+1)
i − µ

(k+1)). (15)



It is apparent that (13) and (14) are unconstrained convex

quadratic minimization problems. Thus, by computing the gra-

dient and equating it to zero [19, pg. 741], the optimal point at the

ith node is obtained as

µ
(k+1)
i =

(

Ψ
(k)
i +

ρ

2
Ipr

)−1 (ρ

2
µ

(k) +
α(k)

L
c−

1

2
y
(k)
i

)

, (16)

where Ψ
(k)
i = Gi(Ri + λ

(k)
i Qi)

−1GH
i and similarly the solution

to (14) is given by

µ
(k+1) =

1

L

L
∑

i=1

(

µ
(k+1)
i +

1

ρ
y
(k)
i

)

. (17)

Summing up the update step in (15) over all i and substituting

for µ(k+1) from (17), we find that

L
∑

i=1

y
(k+1)
i =

L
∑

i=1

y
(k)
i + ρ

L
∑

i=1

(

µ
(k+1)
i − µ

(k+1)
)

= 0,

which shows that the sum of dual variables yi is zero for k ≥ 1.

Therefore, updating the auxiliary variable simplifies to

µ
(k+1) =

1

L

L
∑

i=1

µ
(k+1)
i . (18)

The computational requirement at each sensor node to evaluate

(7) and (16) is O((mt)3+(pr)3) as the nodes must compute inverse

of matrices of dimension mt×mt and pr × pr. However, it should

be noted that if r ≫ t, then one may apply matrix inversion lemma

to (16) and reduce the complexity to O((mt)3).
From (16) and (18) it is evident that the sensor nodes need only

µ(k+1), which is an average of µ
(k+1)
i over the network, to solve

the optimization problem (5). The average µ(k+1) can be computed

in a distributed manner without privacy leakage.

3.2. Privacy-Preserving Consensus

Let γi(0) = µ
(k+1)
i denote the initial state at node i during the

kth ADMM update. At each iteration, node i communicates

with its neighbors and updates its local state as γi(n + 1) =
aiiγi(n) +

∑

j∈Ni
aijγi(n), where [A]ij = aij is the weight em-

ployed by node i for message received from node j. If the weighting

matrix A is chosen such that its eigenvalues λ1 ≥ λ2 ≥ λL satisfy

λ1 = 1 and λi < 1 for all i in addition to A1 = 1, then we have

lim
n→∞

γi(n)=
1
L

∑L
i=1 µ

(k+1)
i .

However, mischievous nodes may estimate µ
(k+1)
i from the

messages shared by its neighbors and then infer the local infor-

mation. To prevent this, we adapt the privacy-preserving aver-

age consensus algorithm proposed in [20] to compute µ(k+1) at

each node in a secure manner. First, the fusion center deter-

mines the node connectivity such that Ni ∪ {i} * Nj ∪ {j}
for all i 6= j, i, j = 1, . . . , L and weighting coefficient matrix

A = 1
L−1

(E − diag({L − 1 − |Ni|)}
L
i=1), and then feeds back

these information to the respective nodes.

Next, at consensus iteration n, the ith node generates a ran-

dom variable vi(n) with normal distribution CN (0, ηγi(n)) and

E[vi(l)vj(n)
H ] = 0 for l 6= n and i 6= j, where η is the privacy

parameter. Each node perturbs the message shared with its neighbor

by adding a noise wi(n) that is obtained as

wi(n) = φn
vi(n)− φn−1

vi(n− 1) (19)

Algorithm 1 Privacy-Preserving Distributed Precoder Design

At fusion center:

1: Determine neighborhood of the nodes such that Ni ∪ {i} *
Nj ∪ {j} for all i 6= j, i = 1, . . . , L, and j = 1, . . . , L.

2: Find weight matrix A = [a1, . . . ,aL] and feedback ai and

neighborhood Ni to node i.
3: Broadcast D to sensors and initialize 0 < φ < 1, α(0) = 1,

{λ(0)
i }Li=1 = 0, {y(0)

i }Li=1 = 0, and µ(0) = 0.

At node i:
4: for k = 0, 1, 2, . . . do

5: Determine µ
(k+1)
i from (16) and λ

(k+1)
i via (8).

6: Compute bi
(k+1) from (7) and α(k+1) from (9).

7: Set γi(0) = µ
(k+1)
i and vi(−1) = 0

8: for n = 0, 1, 2, . . . do

9: Generate vi(n) ∼ ηCN (0, ηdiag(γi(n)))
10: Obtain wi(n) = φnvi(n)− φn−1vi(n− 1)
11: Perturb the message γ+

i (n) = γi(n) +wi(n)
12: Receive γ+

j (n) from neighbors

13: Update γi(n+ 1) = aiiγ
+
i (n) +

∑

j∈Ni
aijγ

+
j (n)

14: end for

15: Update µ(k+1) = γi(n+ 1) and update y
(k+1)
i using (15).

16: end for

17: Forward α to FC and obtain {Bi}∈Ct×m from {bi}∈Ctm

and 0 < φ < 1 is a constant. Let us define the perturbed state as

γ+
i (n) = γi(n)+wi(n). The new state is updated through average

consensus protocol given by

γi(n+ 1) = aiiγ
+
i (n) +

∑

j∈Ni

aijγ
+
j (n), (20)

and at each node we have limn→∞ γi(n+ 1) = µ(k+1).

Finally, the nodes update their precoders according to (7) and

the fusion rule according to (9). It should be noted that the FC

only requires α∗ from the sensor nodes to calculate the fusion rule

WH = (1/α∗)D†.

The distributed algorithm described above is summarized in

Algorithm 1. To prove that the proposed algorithm is privacy-

preserving, without loss of generality, we consider node L as the

eavesdropper trying to infer the state of other nodes. The eavesdrop-

per computes a maximum likelihood estimate of µ
(k+1)
i , i 6= L,

given the information I(n) , {γL(0),γ
+
j1
(n), . . . ,γ+

j|NL|
(n)}

from its neighbors, where NL = {j1, . . . , j|NL|}, and the corre-

sponding estimation error covariance matrix is denoted by Ξi.

Definition 1. The privacy of node i is breached if the estimation

error covariance Ξi = 0 and the privacy measure of node i is ǫi ,
tr(Ξi) [20].

Theorem 1. Algorithm 1 is privacy-preserving i.e., tr(Ξi) > 0 for

i = 1, . . . , L−1 and it converges to the optimal solution in the mean

square sense.

Proof. Since Ni∪{i} * Nj ∪{j} for all i 6= j and i, j = 1, . . . , L

and limn→∞ E[
∑n

l1=0

∑n
l2=0 wi(l1)w

H
i (l2)] = 0, proof follows

from [20, Corollary 1] and [20, Theorem 5].

Define the reduced weighting matrix as Ã = A(1 : L − 1, 1 :
L − 1) ⊗ Irp, which is obtained after removing the Lth row and

column of matrix A, and denote A = (Irp(L−1) − Ã)−1. Let
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Fig. 1. (a) MSE vs. transmit power Pi = P, ∀i and η = 0.1, (b) Privacy vs η for P = 15 dB and L = 5 sensors, (c) MSE as a function of

privacy parameter η in the variables shared across nodes for P = 15 dB and L = 5 sensors.

C , [ej1 ⊗ Irp, . . . , ej|NL|
⊗ Irp]

T ∈ Rrp|NL|×rp(L−1), where

ej ∈ RL−1 is a vector whose jth entry equals unity with the rest of

the entries set to zero.

Define covariance matrix Γn , η diag([γT
1 (n), . . . ,γ

T
L(n)]

T ),

Un , CT (CΓnC
T )−1C, Vn , Irp(L−1) − Γ

1/2
n UnΓ

1/2
n , and

Sn , AUnA. The eigenvalue decomposition of matrix Sn is

given by

Sn = [Fn,1,Fn,2]diag(Λn,0)[Fn,1,Fn,2]
H ∈ Rrp(L−1)×rp(L−1),

where Fn,2 ∈ Crp(L−1)×rp(L−|NL|−1) is the matrix of eigenvectors

corresponding to eigenvalue zero. The next result derives the privacy

guarantees offered by Algorithm 1.

Theorem 2. The privacy measure for node i is given by ǫi =
tr(Ξi) = tr((eT

i ⊗ Irp)P(ei ⊗ Irp)), where ei ∈ RL−1 and

P = limn→∞ Pn is determined from the recursive equations

Pn = Fn,2

[

F
H
n,2AYnAFn,2

]−1

F
H
n,2, (21)

with Yn+1 = Y0 + φ−2Ã
[

Y+
n −Y+

n

(

φ2I+Y+
n

)−1
Y+

n

]

Ã,

Y+
n = Γ

1/2
n VnYnVnΓ

1/2
n , A = (Irp(L−1) − Ã)−1, and Y0 =

ÃUnÃ.

Proof. Follows from generalizing [20, Lemma 6] for a noise with

distribution vi(n) ∼ CN (0, ηdiag(γi(n))) with γi(n) converging

to a constant.

4. SIMULATION RESULTS

The simulation setup consists of a WSN with L sensors in ring topol-

ogy with each node having two neighbors. The sensor nodes employ

t = 2 antennas and the FC employs r = 2 antennas. We assume r×t
Rayleigh fading MIMO channel between the sensors and FC. The

FC noise covariance matrix is set as RFC = Ir . The parameter is as-

sumed to be Gaussian with θ ∼ CN (0, Ip) and p = 2. The sensor

nodes acquire observations of dimension m = 2. The elements of

the observation matrix {Ai} are generated as i.i.d. standard normal

random variables. The observation noise covariance matrix at the

sensor nodes {Σi} is set to 0.1Im. The response matrix D is chosen

as P Ip and ADMM penalty parameter is set to ρ = 4. The number

iterations for ADMM and average consensus is set to kmax = 30
and nmax = 40, respectively. The constant φ is set to 0.9.

We compare the mean square error (MSE) performance of the

proposed approach with the Bayesian Cramer-Rao bound (BCRB)

on parameter estimation in the ideal scenario when the observations

x = [xT
1 , . . . ,x

T
L ]

T are available perfectly at the FC. The BCRB is

given by [21]

BCRB = tr((R−1
θ +A

H
Σ

−1
A)−1), (22)

where Σ , diag(Σ1, . . . ,ΣL) denotes a block diagonal matrix

with matrices Σi on the ith diagonal and A , [AT
1 ,A

T
2 , . . . ,A

T
L ]

T .

Fig. 1a illustrates the MSE of the estimate at the FC for varying

transmit power at the sensor nodes Pi = P, ∀i and privacy param-

eter η = 0.1. We can observe that the distributed algorithm ap-

proaches the BCRB as the transmit power increases, which validates

that the approximation in (4) is tight for high transmit power. For

moderate to high transmit power, it shows that the proposed method

yields good accuracy in addition to privacy guarantees.

Fig. 1b shows the privacy guarantees offered by Algorithm 1

for a WSN with L = 5 sensors when the variance of perturbation

noise is controlled through privacy parameter η. The plot illustrates

that tr(Ξi) > 0, for all i, and hence no breach of privacy. More

importantly, it can been seen that as the number of hops between the

eavesdropper (node 5) and the target node increases, larger privacy

guarantees can be assured. The privacy value at node 1 is equal to

node 4 and at node 2 is equal to node 3 since they are reachable from

the eavesdropper with the same number of hops.

In Fig. 1c we plot the MSE achieved by the proposed method

as a function of privacy parameter η. It can be observed that higher

privacy results in poor estimation performance. The figure captures

the trade-off between security against eavesdropper and MSE when

the proposed method is employed for decentralized estimation.

5. CONCLUSION

We proposed a privacy-preserving precoding scheme for decentral-

ized estimation where the sensor nodes are not willing to share the

CSI and observation models with other entities in the network due

to privacy concerns. The proposed distributed algorithm computes

the precoders and fusion rule in a secure manner by exchanging per-

turbed dual variables to other nodes. Privacy limits offered by the

proposed algorithm are derived and the trade-off between privacy

and estimation accuracy is shown through numerical simulations.
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