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Abstract—We develop a new distributed algorithm to solve
the ridge regression problem with feature partitioning of the
observation matrix. The proposed algorithm, named D-Ridge, is
based on the alternating direction method of multipliers (ADMM)
and estimates the parameters when the observation matrix is
distributed among different agents with feature (or vertical) par-
titioning. We formulate the associated ridge regression problem as
a distributed convex optimization problem and utilize the ADMM
to obtain an iterative solution. Numerical results demonstrate
that D-Ridge converges faster than its diffusion-based contender
does.

I. INTRODUCTION

With the recent advances in technology, ever-growing

amounts of data are constantly collected and stored on

electronic devices, which are often geographically dispersed.

Transporting the entire data to a central processing unit is often

unfeasible due to energy constraints or privacy concerns. In

addition, concentrating the data in a central hub can create

a single point of failure. Hence, we need algorithms that are

capable of processing data spread across multiple agents. They

ought to operate in a distributed fashion relying only on the

available local information [1]–[10].

Distributed solutions for learning, inference, or prediction

using sensor data are highly demanded in many of today’s data

analysis tasks pertaining to statistics, signal processing and

machine learning. In this context, an important data analysis

tool is the distributed multivariate linear regression.

In recent years, there have been several works describing

algorithms to distribute regression problems, i.e., [5]–[19]. In

particular, shrinkage methods such as ridge regression and

lasso have attracted a lot of attention since they play an

important role in preventing the problem from being ill-posed

due to possible rank deficiency of the observation matrix.

Moreover, such methods regularize the regression parameters

by imposing a penalty on their size or density to avoid

overfitting [6], [8], [19]–[21]. Example applications are in

wireless sensor networks operating under strict power budget

constraints where agents collecting and processing data are

distributed over a large geographical area [8].

A central issue in distributed regression is how the data

are distributed among agents. Horizontal partitioning of data

refers to the case when the data samples containing all features
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are distributed over the network. On the other hand, when

subsets of features of all data samples are distributed over the

agents, we have feature (vertical) partitioning of data [22].

Regression problems with horizontally partitioned data have

been considered for example in [7], [8], [23]. In the framework

of vertically partitioned data, some applications related to

clustering and classification have been considered in [24],

[25]. The regression problem with feature partitioning has

also previously been considered in [6], [19]–[21]. However,

works of [20], [21] assume a proper coloring scheme of the

network and cannot be extended to a general graph labeling.

The algorithm proposed in [19] is not truly distributed since

its consensus constraints involve the entire network instead of

each agent’s local neighborhood. The algorithm in [6] is fully

distributed and based on the diffusion strategy [26]. However,

as we will show later on, it converges relatively slowly.

In this paper, we solve the ridge regression problem with

feature partitioning of the observation matrix in a distributed

fashion using the alternating direction method of multipliers

(ADMM). The proposed algorithm, called D-Ridge, is fully

distributed and requires communications only among neigh-

boring agents. It also converges faster than the diffusion-

based algorithm of [6] and has a per-iteration per-agent

computational complexity order that is linear in the sample

size. In addition, D-Ridge does not require the agents to share

their local data or dual variables with the other agents but

only the primal variables, which are the estimate solutions of

the corresponding local optimization subproblems. Hence, D-

Ridge respects the possible data privacy of the agents. We

verify the convergence of D-Ridge to the centralized solution

at all agents through both theoretical analysis and simulations.

Our experiments with a verity of network topologies show that

D-Ridge outperforms its diffusion-based contender in terms of

convergence rate.

II. SYSTEM MODEL

We consider a network with K ∈ N agents modeled

as an undirected graph G(K, E) where the set of vertices

K := {1, . . . ,K} corresponds to the agents and the edge set

E represents the bidirectional communication links between

the pairs of agents. Agent k ∈ K can communicate with the

agents in its neighborhood set Nk whose cardinality is denoted

by |Nk|. The set Nk includes the agent k as well.

Let us denote the network-wide observations as an obser-

vation matrix X ∈ R
N×P and a response vector y ∈ R

N×1



where N is the number of data samples and P is the number

of features in each sample. The data collected at each agent k

are stored in the matrix Xk ∈ R
N×Pk where

∑K

k=1
Pk = P .

Due to feature partitioning, the observation matrix X ∈ R
N×P

consists of K submatrices Xk, i.e., X = [X1,X2, . . . ,XK ].
Accordingly, the parameter vector β ∈ R

P×1 that establishes

a linear regression between X and y is a stack of K subvectors

βk ∈ R
Pk×1, i.e., β =

[

βT
1
,βT

2
, . . . ,βT

K

]T
.

In the centralized approach, a ridge regression estimator of

β is given by

β̂o = argmin
β

{‖y −Xβ‖2
2
+ η ‖β‖2

2
} (1)

where η > 0 is the regularization parameter. From the normal

equation associated with (1), the centralized estimate is given

by

β̂o = XT(XXT + ηIN )−1y (2)

where IN indicates the N ×N identity matrix.

Since computing a centralized solution of (1) over a network

may be inefficient, we propose a distributed algorithm for this

purpose in the following section.

III. DISTRIBUTED RIDGE REGRESSION VIA ADMM

We first discuss the consensus-based reformulation of the

ridge regression problem whose solution allows us to find a

distributed solution to (1) via the ADMM. Then, we describe

the construction steps and main properties of the proposed

algorithm for solving the resulting constrained minimization

problem. Finally, we establish the global convergence of D-

Ridge theoretically.

A. Consensus-Based Reformulation of Ridge Regression

Let us define a vector fo ∈ R
N×1 as

fo = (XXT + ηIN )−1y.

From (2), the part of βo corresponding to agent k can be

calculated as

β̂o
k = XT

kf
o. (3)

For computing fo at all agents using only in-network process-

ing of the locally available data, we propose a consensus-based

distributed algorithm. Note that fo is the unique minimizer of

the quadratic global cost function J (f) defined as

J (f) =
1

2
fT(XXT + ηIN )f − fTy. (4)

Since XXT =
∑K

k=1
XkX

T
k, fo is given by

fo = argmin
f

K
∑

k=1

Jk(f) (5)

where

Jk(f) =
1

2
fT
(

XkX
T
k +

η

K
IN

)

f −
δk

B
fTy, (6)

B ∈ N is the number of agents having access to y, and δk = 1
if y is available at agent k and δk = 0 otherwise.

We introduce the local variables F := {fk}
K
k=1

representing

the local copies of fo at the agents. Then, we reformulate

the unconstrained optimization problem (5) as the following

convex constrained minimization problem:

{fok}
K
k=1

= argmin
{fk}

K
∑

k=1

1

2
fT
k

(

XkX
T
k +

η

K
IN

)

fk −
δk

B
fT
ky

s.t. fk = fl, l ∈ Nk, k ∈ K. (7)

The equality constraints enforce local consensus over {fk}
across each agent’s neighborhood.

To solve (7) in a distributed fashion, we use the ADMM

[5]. Hence, we introduce the auxiliary local variables A :=
{gl

k}l∈Nk
and rewrite the problem (7) as

argmin
{fk}

K
∑

k=1

1

2
fT
k

(

XkX
T
k +

η

K
IN

)

fk −
δk

B
fT
ky

s.t. fk = gl
k, fl = gl

k, l ∈ Nk, k ∈ K, k 6= l. (8)

Using the auxiliary variables A yields an equivalent alter-

native representation of the constraints in (7). These vari-

ables are only used to derive the local recursions and are

eventually eliminated. Associating the Lagrange multipliers

V := {{µl
k}l∈Nk

, {λl
k}l∈Nk

}Kk=1
with the constraints in (8),

we have the following augmented Lagrangian function:

Lρ(F ,A,V) =
K
∑

k=1

(1

2
fT
k

(

XkX
T
k +

η

K
IN

)

fk −
δk

B
fT
ky

)

+
K
∑

k=1

∑

l∈Nk

(

(µl
k)

T(fk − gl
k) + (λl

k)
T(fl − gl

k)
)

+
ρ

2

K
∑

k=1

∑

l∈Nk

(

∥

∥fk − gl
k

∥

∥

2

2
+

∥

∥fl − gl
k

∥

∥

2

2

)

(9)

where the constant ρ > 0 is the penalty parameter.

Minimizing (7) through ADMM entails an iterative process

that is described in the next section.

B. Algorithm Description

The D-Ridge algorithm consists of three steps at each

iteration. First, the augmented Lagrangian function Lρ is

minimized with respect to F . Second, Lρ is minimized with

respect to A. Finally, the Lagrange multipliers in V are updated

through gradient-ascent [27].

Thanks to the reformulation of the original problem (5) as

(8), the augmented Lagrangian in (9) is decomposable both

with respect to variables in F , A and across agents.

Setting µk(m) = 2
∑

l∈Nk
µl

k(m), and using the Karush-

Kuhn-Tucker conditions of optimality [28] for (8), the aux-

iliary local variables A and multipliers V can be eliminated.



Algorithm 1 D-Ridge

At all agents k ∈ K, initialize fk(0), µk(0) to zero vectors,

and run locally

for m = 0, 1, . . . ,M do

Receive fk(m) from neighbors in Nk.

Update µk(m) as in (10).

Update fk(m+ 1) as in (11).

end for

Estimate β̂k = XT
kfk(M + 1).

Hence, the D-Ridge algorithm reduces to the following itera-

tive updates that are carried out locally at every agent:

µk(m) =µk(m− 1) + ρ
∑

l∈Nk

[fk(m)− fl(m)] (10)

fk(m+ 1) =argmin
{fk}

{1

2
fT
k

(

XkX
T
k +

η

K
IN

)

fk −
δk

B
fT
ky

+µT
k(m)fk + ρ

∑

l∈Nk

∥

∥

∥

∥

fk −
fk(m) + fl(m)

2

∥

∥

∥

∥

2

2

}

=
[

XkX
T
k +

( η

K
+ 2ρ|Nk|

)

IN

]−1

(δk

B
y − µk(m) + ρ|Nk|fk(m) + ρ

∑

l∈Nk

fl(m)
)

(11)

where m is the iteration index and all initial values

{fk(0)}k∈K, {µk(0)}k∈K are set to zero. The proposed ap-

proach is summarized in Algorithm 1.

Note that fk(m) is the only vector that is shared between the

agents at every iteration. The computation of (11) has a per-

iteration per-agent complexity of O(N3 +N2Pk). It involves

the inversion of the N ×N matrix XkX
T
k+

(

η
K
+2ρ|Nk|

)

IN

that may be computationally demanding for N ≫ Pk. How-

ever, this operation can be carried out off-line before running

the algorithm. We can also use the matrix inversion lemma to

obtain (XkX
T
k+cIN )−1 = c−1[IN−Xk(cIPk

+XT
kXk)

−1XT
k]

where c = η
K
+2ρ|Nk|. Hence, the dimensions of the matrix to

be inverted become Pk×Pk entailing a per-iteration per-agent

computational complexity of O(NP 2

k + P 3

k ).
In the next subsection, we show that D-Ridge generates

sequences of local iterates fk(m), k = 1, . . . ,K, that, at each

agent k, converge to the global centralized solution fo as m →
∞.

C. Convergence Analysis

Convergence of the proposed algorithm is established by

verifying that both conditions for the ADMM to converge are

fulfilled, namely, for each agent k ∈ K, the cost function

Jk(f) is strongly convex and its gradient ∇fJk(f) is Lipschitz

continuous [29].

The function Jk(f) is strongly convex since it is twice

continuously differentiable and has a positive-definite Hessian

matrix:

∇2

f
Jk(f) = XkX

T
k +

η

K
IN ≻ 0.
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Fig. 1. Topology of the considered multi-agent network.

Moreover, ∇fJk(f) is a linear function of f . Therefore, it

is Lipschitz continuous [30] with a Lipschitz constant being

the operator norm of ∇2

f
Jk(f).

IV. SIMULATIONS

The D-Ridge algorithm is tested here on a network of

K = 10 agents with the topology as shown in Fig. 1. Each

agent holds the data for two features. Therefore, Pk = 2,

k = 1, ...,K, and P = 20. The observation data matrix X

has N = 50 regressor vectors with independent zero-mean

multivariate Gaussian distribution as its rows. The relationship

between the entries of y, denoted by yn ∈ R, and the rows of

X, denoted by xn ∈ R
1×P , with n = 1, . . . , N , is governed

by

yn =
K
∑

k=1

xn,kβk + ǫn

where xn,k ∈ R
1×Pk is the part of xn that is available at agent

k and ǫn ∈ R is the zero-mean Gaussian noise with variance

σ2

ǫ = 0.1. The penalty parameter is set to ρ = 4 and, as in

[6], the regularization parameter is set to η = 10−3.

In Figs. 2-4, we plot the normalized mean squared er-

ror (MSE) versus the iteration index for D-Ridge and the

diffusion-based algorithm of [6] with different values of the

step-size µ.

The normalized MSE is defined as

nMSE(m) =

∑K

k=1
‖βk(m)− βk‖

2

2

‖β‖2
2

where βk is given by (3) and βk(m) = XT
kfk(m).

The results in Figs. 2-4 are obtained by averaging over 100

independent trials. The number of agents having access to y,

i.e., B affects the convergence speed of D-Ridge, while it

does not have any significant effect on the performance of

the diffusion-based algorithm [6]. In Figs. 2-4, the regression

vector is placed in the agent k with the greatest |Nk| if B = 1,

while it is randomly placed over the network if B > 1.

Fig. 2 shows that D-Ridge converges significantly faster

than the diffusion-based algorithm, especially when all agents

have access to y, i.e., B = 10. Fig. 3 shows that the D-Ridge

algorithm converges faster as the number of agents that have

access to y increases. Fig. 4 shows that D-Ridge converges

faster than the diffusion-based algorithm irrespective of the
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Fig. 2. Normalized MSE of D-Ridge and the diffusion-based algorithm with
different values of the step-size µ when one or all agents have access to y.
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Fig. 3. Normalized MSE of D-Ridge for different values of B.

network topology. The performance of the algorithm with the

topology shown in Fig. 1 is compared to a linear topology with

the same number of agents where the agents are connected one

after the other, hence |Nk| = 3 for 1 < k < K and |Nk| = 2
for k = 1 and k = K.

V. CONCLUSION

In this paper, we developed a new consensus-based algo-

rithm for distributed solution of the ridge regression problem

with feature partitioning of the observation matrix. To this

end, we recast the ridge regression problem into an equivalent

constrained separable form, whose structure is suitable for

distributed implementation through ADMM. In the proposed
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Fig. 4. Normalized MSE of D-Ridge and the diffusion-based algorithm for
the considered network topology and for the linear topology (L.T.).

algorithm, D-Ridge, the agents exchange messages only within

their neighborhoods. Simulation results showed that the se-

quences of local iterates generated by D-Ridge converge to the

centralized solution faster than the diffusion-based algorithm

does.
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