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Abstract— This paper presents a 3D reactive collision avoid-
ance algorithm for vehicles with underactuated dynamics. The
underactuated states cannot be directly controlled, but are
controlled indirectly by steering the direction of the vehicle’s
velocity vector. This vector is made to point a constant avoid-
ance angle away from the obstacle, thus ensuring collision
avoidance, while the forward speed is kept constant to maintain
maneuverability. We choose an optimal pair of desired heading
and pitch angles during the maneuver, thus taking advantage
of the flexibility provided by operating in 3D. The algorithm
incorporates limits on both the allowed pitch angle and the
control inputs, which are limits that often are present in
practical scenarios. Finally, we provide a mathematical proof
that the collision avoidance maneuver is safe, and support the
analysis through several simulations.

I. INTRODUCTION

Unmanned vehicles often operate in unknown and dy-
namic environments with little or no manned supervision.
In such scenarios, it is of vital importance that the vehicle
is able to avoid collisions with any obstacles it encounters.
Collision avoidance can become particularly demanding for
underactuated vehicles, such as most autonomous underwater
vehicles (AUVs), as not all degrees of freedom can be
controlled independently. The underactuation will gener-
ally introduce second-order nonholonomic constraints, which
make it necessary to consider the underactuated dynamics [1]
in the analysis and control design of such vehicles.

There are several existing collision avoidance (CA) algo-
rithms [2]–[4], particularly in 2D. The different approaches
can be divided into reactive algorithms and motion plan-
ning algorithms. Motion planning for vehicles with complex
dynamics operating in dynamic environments can be too
expensive for vehicles with limited processing power, par-
ticularly in 3D which has significantly added computational
complexity. This necessitates the use of reactive algorithms.

The family of artificial potential field algorithms [5]–[7]
is a much used approach to CA, and can be intuitively inter-
preded and easily extended. There is, however, an underlying
assumption that the vehicle is always able to follow the
gradient of the field, and neither nonholonomic constraints
nor vehicle dynamics tend to be considered in the analysis.
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The dynamic window algorithm [8] considers vehicle
dynamics and constraints by searching through a set of
valid trajectories to find an optimal control output, and is
extended to an underactuated vehicle in [9]. However, since
the algorithm is based on a computational search through a
set of generated trajectories, it can become intractable in 3D.

The velocity obstacle [10] and collision cone [11] ap-
proaches are equivalent algorithms for avoiding several mov-
ing obstacles in the plane. The velocity obstacle approach
has been extended to include acceleration constraints and
nonholonomic constraints [12], [13], and has been used with
much success. However, for vehicles with very limited speed
envelopes, it can become too restrictive.

The problem of finding a safe velocity in 3D is elegantly
solved in [14] and [15], which extend velocity obstacles to
3D by dividing the 3D space into a discrete set of planes.
The vehicle can then choose the best safe velocity among
the multiple planes. Vehicle dynamics are, however, not
considered, and there is a possibility of oscillations when
switching between different avoidance planes.

In [16], the collision cone framework is used to make
a system of 3D vehicles remain provably collision free if
it starts in a conflict-free state. The result is very strong
and general, and incorporates speed and acceleration con-
straints. However, while the vehicle’s dynamics are implicitly
included using a robustness analysis, they are not explicitly
accounted for. Furthermore, the deconfliction algorithm for
vehicles on a collision course is in 2D.

The algorithm presented by [17] makes the vehicle avoid
a moving obstacle by keeping a constant avoidance angle to
it. The kinematic vehicle model incorporates nonholonomic
constraints, and avoidance is mathematically proved. How-
ever, the algorithm can require significant forward acceler-
ation of the vehicle, and can make it almost stop. This is
unfortunate for example for many marine vehicles, which
loses maneuverability at low speed and spends much energy
during forward acceleration. Furthermore, the algorithm has
a singularity for some obstacle speeds.

In [18] the algorithm in [17] is extended to 3D by creating
a plane using the vehicle’s velocity vector and the obstacle
center, and then employing the 2D algorithm in this plane.
This is an intuitive extension, and it is again proved that the
algorithm is safe. However, the algorithm suffers from the
same problems as [17], and does not fully make use of the
flexibility offered by operating in 3D.

The algorithm proposed in [19] extends the work of [17]
to accommodate vehicles that must move within a limited
speed envelope, and removes the singularity. Specifically,



the algorithm makes the vehicle provably avoid obstacles
by steering the vehicle heading, leaving the forward speed
to be freely designed to accommodate other objectives. This
feature is utilized in [20], where the algorithm is extended
to a marine 2D vehicle with underactuated dynamics. When
such a vehicle turns, a sideways speed is induced, which
can drive the vehicle towards the obstacle. Thus, a purely
kinematic model cannot be employed for control design and
analysis. In [20], this is solved by steering the direction of the
vehicle’s velocity vector. Actuator constraints are, however,
not directly incorporated in the analysis.

In [21], the algorithm of [19] is extended to 3D collision
avoidance for nonholonomic vehicles by introducing a 3D
vision cone from the vehicle to the obstacle. The vision
cone is extended by a constant avoidance angle, and the
vehicle will follow one of the rays of this extended vision
cone in order to avoid the obstacle. The algorithm makes use
of the flexibility offered by moving in 3D, and in particular
chooses an optimal pair of desired heading and pitch to avoid
the obstacle using minimum control effort. Furthermore, the
algorithm can incorporate vehicle pitch limitations, which is
often an important safety feature of vehicles operating in 3D.

The main contribution of this paper is an extension of
the 3D algorithm in [21] to underactuated marine vehicles.
Such vehicles have underactuated sway and heave dynamics,
which can only be indirectly controlled through the actuated
states. Like in [20], these underactuated dynamics need to
be considered in the control design and analysis, preventing
the use of the purely kinematic model used in [21]. In this
paper, we will steer the direction of the vehicle’s velocity
vector in 3D, which is not straightforward due to the presence
of composite rotations. Specifically, we derive a method for
converting a desired angular velocity of the vehicle velocity
vector into control inputs of the vehicle, while maintaining
actuator constraints. Furthermore, we show that the sway and
heave dynamics are bounded during the maneuver, and we
show how to include constraints in the controllers. Finally,
we derive conditions under which it is mathematically proved
that the obstacle will be avoided while keeping a constant
surge speed and upholding limits on the pitch of the velocity
vector.

The remainder of this paper is organized as follows. Some
mathematical definitions are presented in Section II, while
the vehicle model is presented in Section III, which also
states the sensor requirements and the control objective of the
system. Section IV states the controllers for the direction of
the velocity vector, as well as the guidance laws employed to
steer the vehicle towards a target when it is not in CA mode.
Section V describes the CA algorithm, which is analyzed
in Section VI. The analysis is validated by simulations in
Section VII. Finally, concluding remarks and thoughts on
future work are given in Section VIII.

II. MATHEMATICAL PRELIMINARIES

The trigonometric functions sin(·), cos(·) and tan(·) will
be denoted s(·), c(·) and t(·), respectively.

A point p and vector v in a reference frame a are denoted
pa and va, respectively. The rotation matrix from reference
frame a to a frame b is denoted Rb

a, so that vb = Rb
av

a.
The rotation matrix RRRzyx(ϕ, θ, ψ) represents a com-

posite rotation using the zyx convention, and we define
RRRzy(θ, ψ) , RRRzyx(0, θ, ψ) and RRRz(ψ) , RRRzyx(0, 0, ψ).

We define the following functions converting the vector
v = [vx, vy, vz]

T into a heading and pitch angle:

Ψ(v) = atan2(vy, vx), (1)

Θ(v) = − sin−1( vz
||v|| ). (2)

III. SYSTEM DESCRIPTION

A. Vehicle model

The vehicle is modeled in 5 degrees of freedom using
the Euler angles yaw (ψv) and pitch (θv) to transform the
vehicle velocity from the Body frame b to the North-east-
down (NED) frame n.

Assumption 1: The vehicle is passively stabilized in roll.
The vehicle is directly actuated in surge uv , yaw rv and

pitch qv , but has no actuation in sway vv and heave wv .
Hence, the sway and heave dynamics have to be included in
the model, while the surge, yaw and pitch dynamics can be
removed by Assumption 2.

Assumption 2: The Body-fixed surge speed uv and angu-
lar velocities in yaw, rv , and pitch, qv , are assumed to be
directly controlled. The surge speed is kept constant, while

rv ∈ [−rvmax, rvmax], (3a)
qv ∈ [−qvmax, qvmax], (3b)

where rvmax > 0 and qvmax > 0 are constant parameters.
The vehicle model is then:

ṗnv = RRRzy(θv, ψv)ν
b
v , (4a)

θ̇v = qv, (4b)

ψ̇v = rv
cos(θv)

, (4c)

v̇v = Xvrv + Yvvv, (4d)
ẇv = Xwqv + Ywwv + Zw sin(θv), (4e)

where pnv is the vehicle position in the NED frame and
νbv = [uv, vv, wv]

T , i.e. the surge, sway and heave speed
of the vehicle, respectively. The parameters Xv , Yv , Xw, Yw
and Zw are constants derived from the mass and damping
parameters of the vehicle [22], [23].

To ensure that the vehicle is nominally stable in sway and
heave, we make the following assumption:

Assumption 3: The parameters Yv and Yw are negative.
This assumption holds for most marine vehicles by design.
We also define a Body-fixed reference frame nv , which

is oriented along the NED frame, which is useful for repre-
senting positions relative to the vehicle.

B. The Flow frame

To avoid an obstacle we will steer the vehicle’s velocity
vector. To this end, we represent the vehicle model (4) in
the Flow frame f [22], such that ṗnv = RRRnf (θv, ψv)ν

f
v ,



where νfv , [Uv, 0, 0]T and Uv , ‖νbv‖. The Flow frame
is obtained as described in [22] as

RRRfb , RRRzy(αv,−βv), (5)

where βv , atan2(vv, uw) is the vehicle sideslip, αv ,
atan2(wv, uv) is the vehicle angle of attack and uw ,√
u2v + w2

v . The vehicle kinematics can then be written as

ṗnv = RRRzy(θv, ψv)RRRzy(αv,−βv)Tνfv . (6)

The Euler angles of the f frame can be found using the
procedure from [22] as

ϕf = tan−1 [s(βv)t(γv)] , (7)

θf = sin−1 [c(βv)s(γv)] , (8)

ψf = tan−1
(
c(γv)s(ψv)c(βv)+c(ψv)s(βv)
c(γv)s(ψv)c(βv)+c(ψv)s(βv)

)
, (9)

where γv , θv − αv . The Euler angle derivatives areϕ̇fθ̇f
ψ̇f

 =

1 s(ϕf )t(θf ) c(ϕf )t(θf )
0 c(ϕf ) −s(ϕf )
0 s(ϕf )/c(θf ) c(ϕf )/c(θf )

ωωωfnf . (10)

The angular velocity vector ωωωfnf is found as [24]:

ωωωfnf = ωωωfnb +ωωωfbf = RRRzy(αv,−βv)ωωωbnb +ωωωfbf , (11)

where ωωωfnf , [pf , qf , rf ]T , ωωωbnb = [0, qv, rv]
T and ωωωfbf can

be found as ωωωfbf = [−β̇v sin(αv),−α̇v, β̇v cos(αv)].
Inserting for α̇v and β̇v in (6)-(11) and rearranging gives[

qf
rf

]
= AAAf

[
qv
rv

]
+BBBf , (12)

where

AAAf ,

[
c(βv)− Xwuv

u2
w

−s(βv)s(αv)
c(αv)

Xwwvvv
uwU2

v
c(αv)

uwXv+U
2
v

U2
v

]
, (13)

and

BBBf ,
[
c(βv)− Xwuv

u2
w

vvc(αv)
Zws(θv)wv+Yvu

2
w+Yww

2
v

uwU2
v

]T
.

(14)
It can be shown that AAAf is nonsingular when the following
assumption is met:

Assumption 4: The parameters Xv and Xw satisfy Xv +
uv > 0 and −Xw + uv > 0.
This assumption ensures that a change in θv or ψv changes
θf or ψf , respectively, and holds for most AUVs by design.

C. Analysis model

The qv − qf and rv − rf couplings in (12) complicate the
analysis in Section VI. However, if the angles αv and βv
can be assumed to be small, we can make the small angle
approximations c(αv) ≈ 1, c(βv) ≈ 1 and s(αv)s(βv) ≈ 0.
Furthermore, βv ≈ atan2(vv, uv). Equation (12) can then be
reduced to

qf ≈ qv − α̇v (15)

rf ≈ rv + β̇v. (16)
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Fig. 1. A sample of rays (dotted black) from the vision cone from the
vehicle (yellow) to the obstacle (red).

The sway and heave dynamics in (4d) and (4e) can then be
rewritten in terms of qf and rf as

v̇v ≈ u2
v+v

2
v

Xvuv+u2
v+v

2
v

(Xvrf + Yvvv) , (17)

ẇv ≈ u2
w

u2
w−Xwuv

(Xwqf + Ywwv + Zw sin(θv)) . (18)

The small angle assumption for αv and βv holds for vehicles
where the hydrodynamic damping and rudder saturation
ensures that turning rate is not too large, which is the case
of most AUVs at maneuvering speed.

D. Obstacle model

The obstacle is modeled as a sphere with radius Ro. The
obstacle position in the NED frame is denoted pno .

Remark 1: The algorithm can also be applied to non-
spherical obstacles. However, an analysis containing such
obstacles is beyond the scope of this paper.

E. Sensing model

We require that the vehicle is able to measure the distance
do to the obstacle, as well as the angles to the edge of the
obstacle. These angles define a three-dimensional vision cone
Vo, which is illustrated in Fig. 1. For underwater vehicles, a
sensor such as a forward looking sonar can give both do and
Vo. The apex angle of Vo is 2γa, where

γa , sin−1(
Ro

Ro + do
). (19)

F. Control objectives

The control system and CA algorithm should make the
vehicle come within an acceptance distance da ≥ uv/rvmax
of a target position pnt , i.e.

∃tf ∈ [0,∞) s.t. ||pnvt (tf)|| ≤ da, (20)

where pnvt = pnt − pnv is the target position in nv .
At all times, the distance do between the vehicle and the

obstacle should satisfy

do(t) ≥ dsafe > 0 ∀t ∈ [t0, tf ], (21)

where the safety distance dsafe is a design parameter.
Many AUVs have pitch limitations to ensure that they do

not move too fast towards the sea floor or the surface. For



this reason, we require that the control system bounds the
pitch of the vehicle in the Flow frame as:

θf (t) ∈ [θfmin, θfmax] ∀t ∈ [t0, tf ], (22)

where θfmin ∈ (−π/2, 0) and θfmax ∈ (0, π/2) are constant
design parameters.

IV. CONTROL SYSTEM

The control system can be either in guidance mode or
in CA mode. In this section we describe the guidance laws
used in guidance mode, as well as the controllers used to
steer the Flow frame of the vehicle. The CA law is described
in Section V, while the rule for switching between the two
modes is given in Section V-B.

A. Flow frame control

To account for the underactuated dynamics, we will steer
the direction of the vehicle’s velocity vector, i.e. we will
control θ̇f and ψ̇f . To this end, we use (12) to obtain[

qv
rv

]
= AAA−1f

([
qf
rf

]
−BBBf

)
. (23)

The Flow frame angular rates qf and rf are obtained as

qf = c(ϕf )θ̇f + c(θf )s(ϕf )ψ̇f , (24)

rf = −s(ϕf )θ̇f + c(θf )c(ϕf )ψ̇f . (25)

We design the controller to turn the vehicle velocity vector
at a maximum rate towards the desired direction, to reach it
as soon as possible, and we thus choose:

θ̇f (θd) , sign(θ̃f )θ̇fmax, (26a)

ψ̇f (ψd) , sign(ψ̃f )ψ̇fmax, (26b)

where θ̃f , θv − θd and ψ̃f , ψf − ψd. We define the
error variables to lie in the interval (−π, π] to ensure that
the vehicle makes the shortest turn towards ψd and θd. The
desired heading ψd and pitch θd are given in Section IV-
B when the control system is in guidance mode, and in
Section V when the control system is in CA mode.

B. Guidance laws

In guidance mode, a pure pursuit guidance law [25] is
used to set θd and ψd. The desired heading ψdg in guidance
mode is thus chosen as:

ψdg , Ψ(pnvt ), (27)

where Ψ is defined in (1).
The desired pitch θdg in guidance mode is saturated to

ensure that control objective (22) is met:

θdg =


θfmax Θ(pnvt ) > θfmax,

Θ(pnvt ) Θ(pnvt ) ∈ [θfmin, θfmax],

θfmin Θ(pnvt ) < θfmin,

(28)

where Θ is defined in (2). If Θ(pnvt ) /∈ [θmin, θmax], the
guidance law will drive the vehicle towards the target at
maximum or minimum pitch, and then make the vehicle

circle up or down until ||pnvt (tf)|| ≤ da, and control objective
(20) is met.

The desired velocity vector in guidance mode, vnvdg , is then
found from the guidance laws (27) and (28) as:

vnvdg , RRRzy(θdg, ψdg)
[
Uv 0 0

]T
. (29)

V. COLLISION AVOIDANCE ALGORITHM
In this section we define the CA algorithm and the rule

for switching into and out of CA mode.

A. Algorithm definition

To get a cone from the vehicle to the obstacle where each
ray has an avoidance angle αo ∈ [0, π/2) to the obstacle,
the vision cone Vo is extended to a cone Ve with apex angle
2(γa + αo) := 2γe, as illustrated in Fig. 2.
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Fig. 2. The extended vision cone (green) from the vehicle to the obstacle

Remark 2: If the obstacle is non-spherical, each ray of the
vision cone is rotated αo radians in the direction normal to
the obstacle surface.

To make the vehicle keep a constant avoidance angle to
the obstacle, and thus avoid it, we will make the x-axis of
the Flow frame point along a ray ρ of Ve. To this end, we
will find the heading and pitch of each ray represented in the
nv frame. We do this by first representing the ray in a Body-
fixed frame bvo, where the x-axis points from the vehicle to
the obstacle, and then perform a rotation to move from the
bvo to the nv frame. The direction of any ray ρ in the nv
frame can then be parametrized as the unit vector unvρ (φ):

unvρ (φ) = RRRzyx(φ,Θ(pnvo ),Ψ(pnvo ))RRRz(γe)ux, (30)

where the parameter φ ∈ [0, 2π), pnvo is the position of the
obstacle in the nv frame and ux , [1, 0, 0]T . A vehicle, an
obstacle and four rays of Ve are shown in the bvo frame in
Fig. 3. The velocity direction required to follow a ray are
defined by

ψVe(φ) , Ψ(unvρ (φ)), (31a)

θVe(φ) , Θ(unvρ (φ)). (31b)

Every direction along Ve are suitable candidates for CA.
This gives us flexibility, which we will utilize by choosing
a direction that minimize a cost function C, defined as

C ,

{
|eVe |∞ θVe ∈ [θfmin, θfmax]

|eVe |∞ + 2π θVe /∈ [θfmin, θfmax],
(32)
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Fig. 3. Four rays of Ve in the bvo frame.

where eVe(φ) , [ψ̃Ve(φ), θ̃Ve(φ)]T and

ψ̃Ve(φ) , ψv − ψVe(φ), ψ̃Ve(φ) ∈ (−π, π], (33a)

θ̃Ve(φ) , θv − θVe(φ), θ̃Ve(φ) ∈ (−π, π]. (33b)

Let φca , arg minφ C(eVe(φ)). The desired heading and
pitch angle in collision avoidance are

〈θdca, ψdca〉 , 〈θVe(φca), ψVe(φca)〉 . (34)

We thus make the vehicle use both its control inputs to avoid
the obstacle, while we at the same time ensure that the pitch
of the Flow frame stays within limit.

B. Switching rule

We define that the vehicle enters CA mode at a time t1
if the obstacle is closer than or equal to a chosen range,
dswitch, and the desired velocity vector vnvdg (t1) (29) from the
nominal guidance laws (27) and (28) is within the extended
vision cone Ve(t1):

vnvdg (t1) ∈ Ve(t1), (35a)

do(t1) ≤ dswitch ∈ (dsafe, dsense]. (35b)

Nominal guidance towards the target will resume at a time
t2 when vnvdg (t2) moves outside Ve(t2):

vnvdg (t2) /∈ Ve(t2). (36)

VI. ANALYSIS

This section analyses the CA algorithm presented in
Section V when applied to the vehicle model in Section III-
A. The Flow frame f of the vehicle is steered using the
controllers (26a) and (26b). When in guidance mode, the ve-
hicle moves towards a target position pnt using the guidance
laws (27) and (28). When the vehicle encounters an obstacle,
it switches into CA mode using the switching criterion in
Section V-B, and avoids the obstacle by steering the direction
of the velocity vector according to (34).

A. Sway and heave bounds

In order to bound Uv , qf and rf , we need to bound the
sway and heave velocities. This is done by using the analysis
model (15)-(18) in the following lemma:

Lemma 1: Let the sway and heave velocities be modeled
by (17) and (18), and let |qf | ≤ qfmax > 0 and |rf | ≤
rfmax > 0. Furthermore, let vv(0) ≤ vfmax and wv(0) ≤
wfmax, where

vfmax =
|Xv|
|Yv|

rfmax, (37)

wfmax =
|Xw|
|Yw|

qfmax +
|Zw|
|Yw|

. (38)

Then, for all t ≥ 0, we have that vv(t) ≤ vfmax and wv(t) ≤
wfmax.

Proof: Consider the Lyapunov function candidate
V (wv) = 0.5w2

v of (18). The time derivative of V is upper
bounded by

V̇ ≤ u2
w

u2
w−Xwuv

(
|Xw||wv|qfmax + |Yw||wv|2 + |Zw|

)
.
(39)

Let the set ΩV be defined as

ΩV , {wv ∈ R | V ≤ 1
2w

2
fmax}, (40)

which is a level set of V with wv = wfmax on the boundary.
On the boundary of ΩV , the definition of wfmax (38) ensures
that V̇ ≤ 0. Hence, any solution of wv starting in ΩV cannot
leave it, which concludes the proof for wfmax. The proof for
vfmax is equivalent.

B. Flow frame angular rates

To find values of qfmax and rfmax which do not violate
Assumption 2, we use (15)-(16) to obtain the inequalities

(u2v + w2
fmax)qfmax + |Yw|uvwfmax + uv|Zw|

uv(uv −Xw)
≤ qvmax,

(41)
(u2v + v2fmax)rfmax + |Yv|uvvfmax

uv(Xw + uv)
≤ rvmax.

(42)

Assumption 4 ensures that these inequalities have a positive
solution for qfmax and rfmax, which can be found graphically
by inserting for vfmax (37) and wfmax (38). From (24) and
(25) we see that the bounds on qf and rf are upheld if
θ̇fmax ≤ min{qf , rf} and ψ̇fmax ≤ min{qf , rf}.

C. Safety distance

To ensure that the vehicle stays at least a minimum
safety distance dsafe away from the obstacle during the CA
maneuver, the avoidance angle αo needs to be lower bounded
as shown in Lemma 2.

Lemma 2: If

αo ≥ cos−1
(

Ro
Ro+dsafe

)
, (43)

the initial obstacle distance do(t0) ≥ dsafe, and the vehicle
follows the CA law (34), then do(t) ≥ dsafe for all t ≥ t0.

Proof: When the vehicle’s velocity vector points along
a ray of the extended vision cone, ḋo can be found as:

ḋo = −Uv cos(γa(t) + αo). (44)



When γa(t) = π/2− αo, ḋo = 0. This occurs when

do(t) = domin , Ro
cos(αo)

−Ro. (45)

Furthermore, when do(t) < domin, ḋo(t) > 0, while when
do(t) > domin, ḋo(t) < 0. It follows that if dsafe = domin
and do(t0) ≥ dsafe, then a vehicle following (34) will not get
closer than dsafe to the obstacle.

D. Safe avoidance

We now show that if the vehicle velocity is aligned with
the extended vision cone at some time t2, then the vehicle
is guaranteed to be safe from collision as long as it is in CA
mode.

Lemma 3: Consider a vehicle modeled by (4) and gov-
erned by the controllers (26), the guidance laws (27) and
(28) and the CA law (34). Let there exist a time t2 when
the vehicle is in CA mode, do(t2) ≥ dsafe, ψf (t2) = ψdca
and θf (t2) = θdca. Finally, let there be a time t3 > t2 at
which the vehicle exits CA mode. Then, the distance to the
obstacle satisfies

do(t) ≥ dsafe ∀t ∈ [t2, t3]. (46)
Proof: Fig. 4 shows a plane Pρ containing the ray ρ

the vehicle is aligned with at time t2, the vehicle and the
obstacle center. Without loss of generality, let the x-axis of
the Flow frame, denoted xf in the figure, lie in Pρ. The angle
from the x-axis of Pρ to b is denoted ψρ, while the angle to
ρ is denoted γρ, which can be decomposed as

γρ = γo + γa + α0. (47)
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Fig. 4. The vehicle and the obstacle in the plane Pρ containing the ray ρ
and the obstacle center.

It follows from (47) that

γ̇ρ = γ̇o + γ̇a. (48)

The angular velocity of γo can be found geometrically as

γ̇o = − Uv
Ro+do

sin(ψρ − γo). (49)

while
γ̇a = −ḋo

Ro

(Ro+do)
√

(Ro+do)2−R2
o
, (50)

where ḋo = −Uv cos(ψρ − γo).
We define the error variable ψ̃ρ , ψρ−γρ. The dynamics

of ψ̃ρ are obtained from (49) and (50) as

˙̃
ψρ = ψ̇ρ − γ̇ρ = ψ̇ρ +

Uv sin(ψ̃ρ+α0)√
(Ro+do)2−R2

o
, (51)

where ψ̇ρ is set by the controllers in (26). When ψ̃ρ = 0,

˙̃
ψρ = ψ̇ρ +

Uv sin(α0)√
(Ro + do)2 −R2

o

. (52)

The rightmost term is positive since α0 ∈ (0, π2 ), while

ψ̇ρ ∈ [−ψ̇ρmax, ψ̇ρmax], where ψ̇ρmax ,
√
r2fmax + q2fmax. If

γ̇ρ > ψ̇ρmax, it follows from (52) that ˙̃
ψρ > 0. Hence, the

vehicle direction will drift away from the extended vision
cone Ve and the vehicle will move away from the obstacle
by Lemma 2. This can be seen from Figure 4, where it is
clear that a direction outside of ρ will lead the vehicle further
away from the obstacle than following ρ.

If the desired direction from minimizing the cost function
C(eVe(φ)) in (32) makes the vehicle move away from the
plane Pρ, the vehicle direction will still glide away from Ve
since the obstacle is convex. Hence, as long as there is a
time t2 when the vehicle is aligned with a ray of Ve, the
vehicle distance is guaranteed to be greater than dsafe while
the vehicle is in CA mode.

E. Safe navigation

In this section we prove that the vehicle will safely traverse
an environment containing an obstacle and reach the target
position. This is the main theorem of the paper. Before we
state the theorem, we make the assumptions that the vehicle
is able to start safely, and that the obstacle does not cover
the target.

Assumption 5:

θf (t0) ∈ [θfmin, θfmax]. (53)
Assumption 6:

do(t0) > dswitch. (54)
Assumption 7: The distance do,t from the obstacle to the

target position pnt satisfies

do,t >
Ro

cos(αo)
−Ro. (55)

Theorem 1: Let Assumptions 1-7 hold, the avoidance an-
gle αo satisfy

αo ∈
[
cos−1

(
Ro

Ro+dsafe

)
, π2

)
, (56)

and the switching distance satisfy

dswitch ≥ Uvmax/ψ̇fmax + dsafe. (57)

Furthermore, let the vehicle kinematics be be modeled by
(4a)-(4c), the sway and heave dynamics modeled by (17)-
(18), and the vehicle governed by the controllers (26), the
guidance laws (27) and (28) and the CA law (34). Then,
there exists a time tf ≥ t0 such that

||pnvt (tf)|| ≤ da. (58)

Moreover,
do(t) ≥ dsafe ∀t ∈ [t0, tf ], (59)

and
θf (t) ∈ [θfmin, θfmax] ∀t ∈ [t0, tf ]. (60)

Hence, the control objectives (20), (21) and (22) are met.



Proof: Consider a time t1 ≥ t0, at which the vehicle
enters CA mode in accordance with (35). The vehicle then
chooses a direction which minimizes the cost function C,
and starts turning towards this direction.

The turning radius of the vehicle is largest when the pitch
limitations forces it to only use the horizontal control intput.
The heading change required to avoid the obstacle is then
upper bounded by π/2 rad, which gives a turning radius of
Uvmax/ψ̇fmax, where Uvmax , ‖[uv, vfmax, wfmax]T ‖. Hence,
the vehicle will move a maximum distance of Uvmax/ψ̇fmax
towards the obstacle before reaching the extended vision
cone Ve. The minimum switching distance given by (57) thus
ensures that there is a time t2 > t1 at which the vehicle is
aligned with a ray of Ve, and that

do(t) ≥ dsafe ∀t ∈ [t0, t2]. (61)

At time t2, the conditions of Lemma 3 are met. Hence, the
obstacle distance will not be less than dsafe until a time t3 >
t2, when the direction towards the target comes outside Ve.
By the switching rule in Section V-B, the control system
now enters guidance mode. Lemma 2 implies that do ≥ dsafe
when the vehicle velocity vector points outside Ve. Hence it
is ensured that condition (59) is fulfilled.

The guidance laws in (27) and (28) steers the vehicle
towards the target at maximum turning rate. Hence, it is
ensured that there exist a finite time tf when ||pnvt (tf)|| ≤ da,
fulfilling condition (58).

While the definition of C ensures that θdca ∈ [θfmin, θfmax],
the definition of the pitch guidance law (28) ensures that
θdg ∈ [θfmin, θfmax]. Assumption 5 and the pitch control law
(26a) then ensure that condition (60) is fulfilled.

Remark 3: This proof also holds for a scenario with
multiple obstacles, under the condition that the separation
distance is at least 2dswitch.

VII. SIMULATIONS

In this section, we present numerical simulations of the
HUGIN AUV [26] to validate the analysis in Section VI.
The simulation parameters are shown in Table I.

TABLE I
SIMULATION PARAMETERS

rvmax 1 rad/s θfmin −35 ◦

qvmax 1.5 rad/s θfmax 35 ◦

uv 2m/s pnv (t0) [0, 0, 0]T (m)
Ro 20m pnt (t0) [150, 0, 0]T (m)
dsafe 5m da 20m

The Flow frame maximum angular rates are set to qfmax =
rfmax = θ̇fmax = ψ̇fmax =0.11 rad/s. Using Lemma 1 we
find that vfmax = 0.16 and wfmax = 0.24, which gives
αv ≤0.12 rad and βv ≤0.08 rad, which satisfies the small
angle assumption used in the analysis model. Note, however,
that the more precise model for sway and heave dynamics
in (4d)-(4e) is used in the simulation.

The avoidance angle αo was set using (56) to 36.9 ◦, while
the switching distance was set using (57) to dswitch= 23.4 m.
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Fig. 5. A scenario where yo,sim = −4m and zo,sim −4m. The vehicle is
the yellow polyhedron, and the obstacle is the red sphere. The blue line is
the vehicle trajectory, while the target is marked by an ’X’.

The obstacle position was set to pno = [70, yo,sim, zo,sim]T

(m), where yo,sim and zo,sim increased incrementally from
−20 m to 20 m in steps of 2 m for each run. The results
are summarized in Table II.

TABLE II
SIMULATION RESULTS

Min domin 5.8m Max domin 12.1m
Min tf − t0 66.2 s Max tf − t0 73.5 s
Max qv 0.76 rad/s Max rv 0.56 rad/s

Here, do,min denotes the minimum obstacle distance dur-
ing a simulation.

The results in Table II verify the results of Theorem 1 in
that the vehicle always reaches the target and that the safety
distance is never violated. Furthermore, the bounds on qv and
rv are not exceeded, and the maximum error in the angular
rates of the analysis model is small.

An example scenario is shown in Fig. 5, where yo,sim =
zo,sim = −4 m. Thus, the cost function C makes the vehicle
move down and to the right. The pitch of the Flow frame
is limited by θfmin and θfmax during the simulation, which
makes the vehicle employ slightly more horizontal movement
than vertical movement when circumventing the obstacle.
When the line of sight to the target comes outside Ve,
the vehicle exits CA mode and continues under nominal
guidance towards the target position.

The magnitude of the error resulting from using the
analysis model in (15)-(16) to obtain qv and rv are shown in
Figure 6. The error remains small throughout the simulation,
justifying the small angle approximation employed to find the
bounds on qfmax and rfmax in Section VI-B.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has presented a 3D reactive collision avoidance
algorithm for vehicles with underactuated dynamics in sway
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Fig. 6. The error resulting from using the analysis model to find qv and
rv .

and heave. The underactuated states are accounted for by
steering the direction of the vehicle’s velocity vector, rather
than the vehicle’s attitude. To achieve this, a transformation
between the angular rates of the vehicle’s attitude and the
angular rates of the vehicle’s velocity has been derived.
Furthermore, it is shown how the latter can be constrained
in order to ensure that any given bounds on attitude rates are
not exceeded.

During the collision avoidance maneuver, the algorithm
makes the vehicle keep a constant avoidance angle to the
obstacle. Safety bounds on the pitch of the velocity vector are
incorporated in the algorithm. Such bounds are commonly
seen in real life scenarios involving, for example, fixed wing
aircraft or AUVs. Furthermore, an optimization criterion is
presented in order to chose the best safe velocity direction in
some sense. We have chosen the safe velocity vector which
minimizes the maximum change in the heading and pitch of
the vehicle’s velocity vector. However, the criterion is easily
extendible to such features as different weights on horizontal
and vertical turning maneuvers, or compliance with rules of
the road.

The main theorem of the paper gives explicit expressions
for the minimum switching distance and avoidance angle
required in order to ensure that the vehicle never comes
within the a safety distance from the obstacle. Furthermore,
it is shown how the underactuated dynamics can be bounded
when applying the controllers derived in this paper. The
results are verified by several simulations.

The analysis in this paper holds for scenarios with multiple
obstacles, provided that the inter-obstacle distance is large
enough to let the vehicle consider one obstacle at a time.
In a scenario with dense clusters of obstacles, the different
extended vision cones will have to be merged. This is a topic
for further work, as is the inclusion of moving obstacles.
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