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Abstract

In this study a bivariate Bayesian model averaging (BMA) and Ensem-
ble model output statistics (EMOS) technique for ensemble temperature
forecasts are proposed to account for lead time dependencies between er-
rors. Also univariate BMA and EMOS techniques are applied to generate
calibrated normal predictive density functions. For univariate models,
Maximum likelihood estimation (MLE) and minimum Continuous rank
probability score (minCRPS) estimation are compared. In addition to the
MLE, a sample method to simplify the minimum Energy score (minES)
estimation is proposed for bivariate models. In a case study of 2-m surface
temperature in Trondheim – Voll between year 2007 and 2011, using the
European Center for Medium-Range Weather Forecasts (ECMWF) fore-
cast ensembles, the BMA technique using minCRPS estimation shows the
most calibrated and sharpest post-processed probabilistic forecasts. The
bivariate EMOS model using minES estimation gives the best score and
shows that there is lead time dependencies between errors.
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Sammendrag

I dette studiet foresl̊ar vi bivariate versjoner av de to teknikkene Bayesian
model averaging (BMA) og Ensemble model output statistics (EMOS) for
ensemble-temperaturvarsler, der vi har tatt hensyn til ledetid-avhengighet
i feilen. Vi bruker ogs̊a univariate BMA og EMOS teknikker for å generere
kalibrerte normalfordelte prediktive tetthetsfunksjoner. For univariate
modeller sammenligner vi metodene Maximum likelihood estimering (MLE)
og minimum Continuous rank probability score (minCRPS). I tillegg til at
vi bruker MLE, foresl̊ar vi en sampling-metode for å forenkle minimum En-
ergy score (minES) estimeringen for bivariate modeller. I et casestudie ser
vi p̊a temperatur i Trondheim – Voll for årene 2007 – 2011, der vi bruker
European Center for Medium-Range Weather Forecasts (ECMWF) sine
varsel-ensembler. Her viser vi at BMA teknikken med minCRPS estimer-
ing gir de best kalibrerte og skarpeste post-prosesserte sannsynlighetsvars-
lene. Den bivariate EMOS modellen med minES estimering gir den beste
scoren og viser at det er ledetid-avhengighet i feilen.
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Glossary of notations

Notation Meaning

t Time for which a forecast is issued.
l Lead time.
n One given day.
yt+l Observational data at issue time t and lead time l.
xm,t,l Ensemble member number m at issue time t and lead time l.
x̄t,l Ensemble mean at issue time t and lead time l.

yt−k,l Training data at issue time t− k and lead time l
w Weight.
T Total number of times a forecast has been issued

for one lead time, l.
M Total number of members of an ensemble forecast.
K Total number of training days.
N Total number of days.

p(.) Probability density function (pdf).
F(.) Cumulative distribution function (cdf).
η Mean.
µ Predictive mean.
τ2 Variance.
σ2 Predictive variance.

Table 1: Summary of notations used in this study.
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1. Introduction

Will you need an umbrella tomorrow? Can you go windsurfing next week-
end? It has always been of great interest to forecast the weather. Weather
forecasts are of importance in that for example airlines get information
about the weather conditions in order to schedule flights, farmers can
plan the planting and harvesting of their crops, and electricity suppliers
can make decisions related to electricity pricing. However, how good is
today’s forecast likely to be? Since the early 1990s, probabilistic forecasts
have been increasingly used for weather predictions at many weather cen-
tres [22]. Probabilistic forecasts provide a probability distribution and
give an estimate for how accurate the forecast is. Deterministic forecasts,
on the other hand, do not account for risk or uncertainty. Still, would you
bring an umbrella if the forecasts says that there is a 30% chance of rain
today? Should we warn a city if there is a 5% chance for storm to occur
tomorrow? Probabilistic forecasts are of importance to better understand
and evaluate uncertainty when making decisions.

Current research have shown that including spatial dependencies between
different observation sites give significantly better performance than uni-
variate models [3]. Also bivariate models for wind vectors, where the
spatial relationship between the components is taken into account, have
shown improvements [27, 28]. However, to our knowledge, there has been
few studies which accounts for lead time dependencies between errors. A
lead time is the delay between the issue time of e.g. a weather forecast
and the time for when the weather forecast says it will occur. An is-
sue time is the time when the forecasts are made. Nowadays, lead times
are considered to be time independent when forecasting a weather event.
However, according to Palmer [24] many economical losses could be saved
in making better decisions related to the weather. Forecasts without time
dependency can, for example, lead to forecasting smaller chances for frost
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1. Introduction

tomorrow than there actually are. This can have huge economical conse-
quences for e.g. winter road maintenance. Between 1992 and 2004 Sno-
qualmie Pass on Interstate Highway 90 (I-90) was closed 120 hours per
year on average because of road maintenance, resulting in an annual loss
of at least 17.5 million dollars [4]. This motivates us to develop a model
that accounts for lead time dependencies between errors.

Different forecasts are made from different forecasters. However, which
forecaster should we trust? The forecaster saying that there is a 30%
chance for rain tomorrow? Or the one which says that the chance for
rain tomorrow is only 5%? According to Gneiting et al. [12], the goal is
to make the probability forecasts as sharp as possible subject to its cali-
bration. Calibration refers to the reliability of the forecast in that there
is statistical consistency between the probabilistic forecast and the corre-
sponding observations. We have a perfectly calibrated ensemble forecast
when a weather event that is predicted to occur with probability P actu-
ally is observed with a relative frequency P in the long run. Sharpness
refers to the concentration of the predictive distributions, meaning that
under the condition that all forecasts are calibrated, we define the sharpest
to be the best. In other words, the sharper a calibrated predictive distri-
bution, the less uncertainty and the better its performance.

Probabilistic weather forecasts are often based on models which create
a collection of M forecasts considered at the same time. These multiple
forecasts are so called ensemble forecasts and can for instance be obtained
by running a model several times with different initial conditions, or by
running different model physics [14]. Each single forecast in the ensem-
ble forecast is referred to as an ensemble member. Let us assume that
these ensemble members are predicted by M different weather forecast
providers. By comparing the forecasts a forecaster then can tell you how
likely it is that a particular weather event will occur. If the forecasts vary
a lot, the forecaster knows that the weather is uncertain. In contrast, if
the forecasts are similar, they will have more confidence in predicting a
particular event. To measure the performance of each provider in forecast-
ing, all providers maintain their ”place” in the ensemble each time they
make new forecasts. However, in this study we have only one provider,
the European Center for Medium-Range Weather Forecasts (ECMWF),
who supplies all the M ensemble members by using one specific model.

4



1. Introduction

This model is run several times with different initial conditions. Thus, the
ensemble members are exchangeable in that the ordering of the ensemble
members does not matter [5]. In other words, ensemble member m issued
today is not correlated with ensemble member m issued yesterday.

In order to get more information from an ensemble forecast, probabilistic
forecasts in form of predictive probability density functions (pdf) have to
be generated. Furthermore, studies have shown that ensemble forecasts
often tend to be underdispersive in that the observed value far too of-
ten lies outside the ensemble range [6, 14, 17, 19]. In order to address
these issues, post-processing techniques can be applied. The most com-
mon approaches are Bayesian model average (BMA) [26] and Ensemble
model output statistics (EMOS) [16]. These models convert ensemble fore-
casts into calibrated and sharp probability forecasts. BMA makes use of
mixture distributions, in which each ensemble member corresponds to its
own probability component. EMOS is based on multiple linear regression.
Both methods can be applied to a number of different weather variables
like temperature, precipitation, air pressure or wind speed for univariate
models. In this thesis we propose extended versions of bivariate BMA and
EMOS models for ensemble temperature forecasts to accounts for lead
time dependencies between errors.

A common technique for estimation of the BMA and EMOS model pa-
rameters is Maximum likelihood estimation (MLE) [26]. Additionally,
Gneiting et al. [16] proposed the use of minimum CRPS (minCRPS) es-
timation, where the parameters found minimize the CRPS value for the
training data. In order to find out which of these estimation methods lead
to best post-processing performance, we consider both methods. However,
minCRPS is an estimation method for univariate models. For bivariate
models we therefore propose minimum ES (minES) estimation, where sam-
pling is used to simplify the estimation process.

Scoring functions, such as mean absolute error (MAE) and root mean
square error (RMSE) are often sufficient methods to evaluate the quality
of the deterministic forecasts. These evaluation methods depend both on
the deterministic forecast and the realization, and assess the quality of the
predictions [11]. The score is negatively oriented, meaning the smaller, the
better. However, in order to assess probabilistic forecasts we need to eval-
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1. Introduction

uate both the calibration and the sharpness [26]. An often used scoring
rule for a joint assessment of calibration and sharpness is the continuous
ranked probability score (CRPS) [7, 15, 20]. It is a widely used strictly
proper scoring rule, meaning that the forecaster gets the best score by
forecasting his or her true beliefs, although it may be possible to get the
same score by using a different forecast [15]. As for scoring functions, scor-
ing rules are negatively orientated. In order to assess the calibration of a
forecast, we also consider probability integral transform (PIT) histograms
[12] for predictive distributions.

In this Master’s thesis we compare univariate BMA and EMOS post-
processing techniques and propose an extended version for bivariate mod-
els. Both the univariate and bivariate BMA and EMOS models are ap-
plied to temperature data from Trondheim – Voll, which are provided by
ECMWF. According to Raftery et al. [26], a normal distribution is con-
sidered to be appropriate for temperature data. We apply the methods
on forecasts of 6-hourly intervals up to +42 hours. Hence, 8 different
lead times are evaluated. For bivariate models only lead time 5 and 6 are
considered. Additionally, two different estimation methods are compared:
MLE and minCRPS for univariate model. For bivariate models we pro-
pose the minES method in addition to use MLE.

This thesis is organized as follows. In the next chapter we introduce
the data used in the case study done. Chapter 3 we give a brief review
of univariate post-processing techniques. Additionally, estimation and as-
sessment methods are explained in this chapter. We describe an extended
version of the BMA and EMOS models in Chapter 4. A simulation study
is done in Chapter 5 to see if the parameters are consistent. In a case
study in Chapter 6, we decide on the length of training period before we
apply both the univariate and extended bivariate BMA and EMOS tech-
niques to ECMWF data and make use of the assessment methods. The
thesis is concluded with a discussion in Chapter 7, where we summarize
the results and suggest possible ideas for further work.
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2. Data and case

This chapter serves an overview of the data used in a case study in Chap-
ter 6. In the first section, temperature observation data and ensemble
forecasts available are introduced. Explanatory analysis of these are de-
scribed in the second section.

2.1. Available observations and forecasts

In this study we consider the observation station, Voll, located in the
Trondheim area in the Trøndelag district of central Norway, see Fig-
ure 2.1. The Trondheim region is situated close to the Trondheimsfjord
and is characterized by lowland with small hills up to 500 meters above
sea level. Voll is located in Trondheim municipality, 127 meters above sea
level with coordinates (63.4106◦N, 10.4536◦E). It is situated 3.7 km away
from centred Trondheim and was established in January 1923. Tempera-
ture observations are provided by the Norwegian Meteorological Institute
(MET) between January 1st 2007 and December 31st 2011 through eK-
lima (http://eklima.met.no), where hourly data is available. The temper-
ature is measured daily in 2-m height above the ground. In our analysis,
6-hourly intervals observations are considered, starting at 00:00 Coordi-
nates Universal Time (UTC). UTC is the primary time standard by which
the world regulates clocks and time.

Ensemble forecasts for temperature are obtained from the European Cen-
ter for Medium-Range Weather Forecasts (ECMWF) between January 1st
2007 and December 31st 2011 through TIGGE (http://tigge-portal.ecmwf.int).
ECMWF is an international meteorological organization, founded in Eng-
land in 1975. They develop numerical methods for medium-range weather
forecasting. Ensemble forecasts are created by running numerical weather
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2.1. Available observations and forecasts 2. Data and case

Figure 2.1: Map over northern Europe. The yellow dots indicate the grid
of downloaded ensemble forecast data. The red dot indicates the location of
Trondheim – Voll in Norway.

prediction models a number of times with slightly different starting con-
ditions. The model is based on deterministic simulation models that rep-
resent the physics of the atmosphere. One ensemble forecast consists of
M = 50 separate forecasts made by the same computer mode. The spread
between ensemble members indicates the uncertainty of the ensemble fore-
cast.

The forecasts start at 00:00 UTC and are available at 6-hourly intervals up
to +384 hours. They are calculated on a grid of resolutions 0.5×0.5. Each
ensemble forecast is downloaded on a 3×3 grid from ECMWF with coordi-
nates (63◦N-64◦N, 10◦E-11◦E). For further calculations, the forecasts for
the coordinate (63.5◦N, 10.5◦E) are used. We choose the forecasts from
this coordinate because this point only is 10.6 kilometers North-West from
the observation station at Voll.
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2. Data and case 2.2. Explanatory analysis

In this study we look at 6-hourly forecasts predicted up to 42-hours ahead
of surface temperature, initialized at 00:00 UTC. For each 6-hourly inter-
val we step one lead time forward, and in total 8 different lead times are
considered. A list of lead times and the corresponding predicted hours
ahead is given in Table 2.1. Also the observational time is listed.

Lead time (l) 0 1 2 3 4 5 6 7

Hours predicted ahead 0 6 12 18 24 30 36 42

Observational time (UTC) (t) 00 06 12 18 00 06 12 18

Table 2.1: Lead time, corresponding hours predicted ahead and correspond-
ing observational time.

We have n = 1,...,N number of days. Four times a day, at time t = 00,
06, 12, 18 UTC, the temperature is observed, and new forecasts are issued
for 8 different lead times. For simplicity, we denote the observation time
during one day for λ ∈ {1, 2, 3, 4}. Hence, the observations observed day
n at time λ are denoted as yn,λ.

2.2. Explanatory analysis

The climate in Trondheim – Voll is characterized by a seasonal variation
in temperature. This can be observed in Figure 2.2, where daily mean
observed temperature, ȳn = 1

4

∑4
λ=1 yn,λ, between January 1st 2007 and

December 1st is plotted. In order to give a better overview of these trends,
we only plot the daily mean observed temperature, ȳn, for year 2011, see
Figure 2.3. ȳn seems to be seasonally stationary, in that the mean temper-
ature seems to be the same every year. However, 2010 was a colder year
with ȳn up to almost 3 degrees lower than the other years, see Table 2.2.

In order to see if there is variation in temperature during the day, we
subtract ȳn from yn,λ, δn = yn,λ− ȳn, see Figur 2.4. We observe that there
is less variation in temperature at time 06:00 UTC and 12:00 UTC (λ =
2, 3) than at time 00:00 UTC and 18:00 UTC (λ = 1, 4). Furthermore,
we note an outlier at almost -15◦C at time 00:00 UTC. This indicates that
there was large variation in temperature that day.
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2.2. Explanatory analysis 2. Data and case

Figure 2.2: Daily mean observed temperature, ȳn = 1
4

∑4
λ=1 yn,λ, between

year 2007 and 2011. The blue dots represent the daily mean observed tem-
perature. The red line represent the mean temperature between 2007 and
2011 which is 5.86◦C

Figure 2.3: Daily mean observed temperature, ȳn = 1
4

∑4
λ=1 yn,λ, year

2011. The blue dots represent the daily mean observed temperature. The
red line represent the mean temperature for year 2011 and is 6.80◦C.
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2. Data and case 2.2. Explanatory analysis

Mean temp. (◦C) UCT

Year 00:00 06:00 12:00 18:00

2007 4.83 4.87 7.51 6.72
2008 5.37 5.35 8.15 7.51
2009 5.04 4.98 7.67 6.89
2010 2.66 2.56 5.24 4.53
2011 5.68 5.76 8.34 7.43

Table 2.2: Observed mean temperature at time 00:00, 06:00, 12:00 and
18:00 UTC for each year.

Figure 2.4: δn = yn,λ− ȳn, showing the variation of observed temperature
during the day for year 2007 to 2011. The blue box shows the 25-75%
quartile, the red line the median and the red crosses the outliers.

An illustration of the ensemble forecasts, xt,2, for lead time 2 January
2011 is shown in Figure 2.5. Each ensemble member, xm,t,2, is plot-
ted as a blue circle. The red circle denotes the corresponding observa-
tion. We observe that in this example, the ensemble length, xlengtht,2 =
max(xm,t,2)−min(xm,t,2), is between 1◦C and 6◦C. Further, we note that
the observations lie mostly above the ensemble range.
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2.2. Explanatory analysis 2. Data and case

Figure 2.5: Plot of ensemble forecasts at l = 2 and corresponding obser-
vations at 12:00 UCT for January 2011.

For l = 0 the ensemble forecasts are issued at 00:00 UTC. Since the en-
semble forecasts are made at the same time as they are observed, small
ensemble intervals are expected. We plot the length of all ensemble fore-
cast intervals, xlengtht,l , between year 2007 and 2011 to verify that this is
true for our data, see Figure 2.6. However, we observe that the lengths
make a jump around June 2010 where xlengtht,l becomes larger. The reason
is that there has been done changes in the initial perturbations [21]. On
the 22nd of June a new configuration was implemented which has a more
reliable spread in the short range.

Table 2.3 shows the error between the observational mean and the en-
semble mean, e = ȳn − x̄t,l. We observe a positive error. This indicates
that the observational mean almost is consistently larger than the ensem-
ble mean. The bold numbers in the table denote the largest error for lead
time l. We note that the error is larger in 6 of 8 lead times in year 2010.
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2. Data and case 2.2. Explanatory analysis

Figure 2.6: Length of ensemble intervals, xlengtht,0 = max(xm,t,0) −
min(xm,t,0) between year 2007 and 2011 for l = 0.

Year / Error (◦C) l=0 l=1 l=2 l=3

2007 1.04 1.30 1.06 1.45
2008 1.37 1.83 1.40 2.14
2009 1.46 1.97 1.53 2.25
2010 0.81 2.24 1.50 2.92
2011 0.55 1.41 0.65 1.74

l=4 l=5 l=6 l=7

2007 1.52 1.44 1.18 1.61
2008 2.40 2.10 1.40 2.18
2009 2.66 2.23 1.66 2.39
2010 3.60 2.83 1.66 3.00
2011 2.30 2.05 1.08 2.03

Table 2.3: Error between the observational mean and the ensemble mean,
e = ȳn − x̄t,l, for each year and each lead time. The bold numbers in the
table denote the largest error for lead time l.
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2.2. Explanatory analysis 2. Data and case

In order to see if there is variation in temperature forecasts during the
day, we divide the lead times into two days, Day a and Day b. Let l = 0,
1, 2, 3 correspond to time 00:00, 06:00, 12:00 and 18:00 UTC Day a,
and l = 4, 5, 6, 7 correspond to time 00:00, 06:00, 12:00 and 18:00 UTC
Day b. The mean of each ensemble forecast at lead time l is given as
x̄t,l = 1

M

∑M
m=1 xm,t,l. Let then the mean of x̄t,l for Day a be defined as

¯̄xan = 1
4

∑3
l=0 x̄l. For Day b the mean of x̄t,l is defined as ¯̄xa = 1

4

∑7
l=4 x̄t,l.

Subtracting ¯̄xan from x̄t,l for l = 0, 1, 2 ,3, and ¯̄xbn from x̄t,l for l = 4, 5, 6,
7 shows the variation in temperature ensemble forecasts during the day,
see Figure 2.7. We observe that the variation in ensemble forecasts during
the day is quite similar to the variation in observed temperature during
the day, see Figure 2.4. Furthermore, we note that there is less variation
at 06:00 UTC and 12:00 UTC than at 00:00 UTC and 18:00 UTC, as we
also observed for the observed temperature.
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2. Data and case 2.2. Explanatory analysis

Day a

Day b

Figure 2.7: Spread for temperature ensemble forecast during the day for
year 2007 to 2011. The blue box shows the 25-75% quartile, the red line the
median and the red crosses the outliers. Day a contains data from lead time
0, 1, 2 and 3, and Day b contains data from lead time 4, 5, 6 and 7.
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2.2. Explanatory analysis 2. Data and case

16



3. Background

This chapter gives a brief review of two different post-processing tech-
niques for producing calibrated ensemble forecasts for univariate models.
How to evaluate the models is explained in section 3, and in section 4 we
describe two different parameter estimation methods.

As introduced in the previous chapter, we consider ensemble forecasts
for 8 different lead times for several days. Each ensemble forecast consists
of M ensemble member forecasts. Let t be the issue time, l the lead time
and m the number of an ensemble member in an ensemble forecast. An
ensemble member forecast can then be denoted as xm,t,l. However, in this
chapter we only consider one lead time at one issue time, which simplifies
the notation to xm.

3.1. Bayesian Model Averaging

Raftery et al. [26] introduced Bayesian model averaging (BMA) as a
method for generating calibrated predictive probability density functions
(pdf) from ensemble forecasts. It allows for combination of different
dynamical models, such as numerical weather prediction models, and
treats each ensemble member forecast as a statistical model. For non-
exchangeable ensemble forecasts, where the ordering of the ensemble mem-
bers is set, each ensemble member forecast is associated with a pdf, pm(y|xm, θbmam ).
Here y is the quantity of interest and θbmam are the parameters of the m’ th
component pdf. The ensemble BMA predictive model is then given by a
mixture of the pdf’s,

p(y|x1, ..., xM ; θbma1 , ..., θbmaM ) =

M∑
m=1

wmpm(y|xm, θbmam ), (3.1)

17



3.1. Bayesian Model Averaging 3. Background

where M is the total number of forecasts in an ensemble forecast. The
weights wm can be interpreted as posterior probabilities based on ensem-
ble member m’s relative performance in the training period. These are
assumed to be non-negative with

∑M
i=1wm = 1 [9, 26]. The choice of pdf,

pm depends on the weather variable of interest. Raftery et al. [26] consider
normal distribution to be appropriate for temperature. This seems to be
reasonable because temperature often has normal distributed errors [9, 26].
The distribution is centred so that the conditional pdf, pm(y|xm, θbmam ) is
a normal pdf with mean ηm = αm + βmxm and standard deviation τm.
The mean can be viewed as a simple linear bias-correction of the ensemble
member forecasts.

In this study all the ensemble members are exchangeable. Hence, the
BMA weights wm and model parameters θbmam can be considered to be
equal for all ensemble members, x1, ..., xM . The BMA predictive model in
Eq. 3.1 can therefore be rewritten as

p(y|x1, ..., xM , θbma) =

M∑
m=1

wpm(y|xm, θbma), (3.2)

where θbma = {α, β, τ} and the weights, w = 1/M , are constant. The
distribution is centred so that the conditional pdf, pm(y|xm, θbma) is a
normal pdf with mean ηm = α+ βxm and standard deviation τ , where α
and β are the bias-correction parameters. This can be denoted as

pm(y|xm, θbma) ∼ N (α+ βxm, τ
2). (3.3)

An illustration of the BMA predictive pdf is given in Figure 3.1. The
predictive pdf is a weighted sum of five normal distributed pdf’s (the thin
blue lines). Also the observation (black vertical line), the values of the raw
ensemble members (black circles) and the bias-corrected ensemble mem-
ber forecasts (black crosses) are shown. In this example the ensemble
members are exchangeable. Hence, the parameters α = 1.71, β = 0.92,
τ = 0.98 and the weights w = 1/5 are the same for all ensemble member
forecasts. We observe that the raw ensemble member forecasts mostly lie
outside the predictive pdf, and that the corrected ensemble members are
much more calibrated in that the observation falls within the ensemble

18



3. Background 3.1. Bayesian Model Averaging

Figure 3.1: BMA predictive pdf (thick curve) and its five components (thin
curves) for January 31st 2008. Parameter estimates are α = 1.71, β = 0.92,
τ = 0.98 and w = 1/5. Each circle is one of the five raw ensemble members,
the crosses are the bias-corrected ensemble members and the solid vertical
line is the observation.

range. The BMA predictive pdf is a result of the blue single pdf’s. We
observe that the observation almost is in the center of the predictive pdf.

The BMA predictive mean, µbma =
∑M

m=1w(α + βxm) can also be used
as a deterministic forecast and can be compared with the mean of the raw
ensemble forecasts. The BMA predicted variance can be written as [25]

σbma
2

=
M∑
m=1

w

(
(α+ βxm)−

M∑
i=1

w(α+ βxi)

)2

+ τ2. (3.4)
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3.2. Ensemble Model Output Statistics 3. Background

3.2. Ensemble Model Output Statistics

Ensemble model output statistics (EMOS) is a post-processing technique
based on multiple linear regression. It is easy to implement and corrects
the forecast bias and underdispersion. For temperature it fits a normal
distribution to the ensemble member forecasts. EMOS was first proposed
by Gneiting et al. [16] and is an extension to the Model Output Statistics
(MOS) technique developed by Glahn and Lowry [10].

The EMOS predictive pdf’s are normal distributed with predictive mean
µ = a + b1x1 + ... + bMxM and predictive variance σ2 = c + dS2. In
this approach, the predictive mean is a bias-corrected weighted average
of the ensemble forecasts, where a is a bias-correction and b1, ..., bM are
regression coefficients. The predictive variance is modeled as a linear func-
tion of the ensemble forecast variance S2 = 1

M

∑M
m=1(xm − x̄)2, where

x̄ = 1
M

∑M
m=1 xm is the mean of the ensemble forecast. Hence, the normal

predictive distribution for the variable of interest, y can then be written as

p(y|x1, ..., xM , θemos) ∼ N (a+ b1x1 + ...+ bMxM , c+ dS2). (3.5)

However, in this study we have exchangeable ensemble member forecasts.
Thus, the EMOS technique is simplified so that the predictive mean of
the normal distribution becomes a linear function, µ = a + bx̄. We can
therefore rewrite the normal predictive distribution given in Eq. 3.5 as

p(y|x̄, θemos) ∼ N (a+ bx̄, c+ dS2), (3.6)

where θemos = {a, b, c, d}. We note that the EMOS approach only condi-
tions on a single model considered to be the best one. Thus, it yields one
predictive pdf [16]. In contrast, the BMA approach makes use of multiple
models and fits a mixture density distribution as predictive pdf [26].
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3.3. Assessment methods

In this section we present assessment methods to evaluate the perfor-
mance of univariate and bivariate BMA and EMOS models. Evaluation
of predictions is an important step in any forecast process. For deter-
ministic forecasts, score functions, such as mean absolute error (MAE) or
root mean square error (RMSE) are sufficient methods for evaluating the
quality of the forecasts. However, according to Gneiting et al. [12], the
goal is to make the ensemble forecasts as sharp as possible subject to its
calibration. Calibration is a measure of statistical consistency between
observations and ensemble forecasts. For example, if an event is predicted
to occur with probability 60%, on average it should happen in about 60%
in the long run. Sharpness measures the concentration of the predictive
distribution, meaning that the sharper a calibrated predictive distribution
is, the less uncertainty and the better its performance. The continuous
ranked probability score (CRPS) is often used to evaluate the calibration
and sharpness of probabilistic forecasts [15]. In order to assess the cali-
bration of a forecast, we will also consider probability integral transform
(PIT) histograms [12] for predictive distribution.

3.3.1. Assessing calibration

There are several ways to assess calibration. For ensemble forecasts the
verification rank histogram (VRH) [1, 7, 19] can be used to evaluate the
raw ensemble forecasts. In order to compute VRH, one arranges the en-
semble forecasts and the corresponding observation y in increasing order.
Hence, it is possible to check which index the verifying observation be-
comes in the range from 1 to M +1. In a calibrated ensemble, the verifying
observation is equally likely to get any of the indexes. In the long run the
VRH should therefore be uniform if the predictive pdf is calibrated.

A continuous analog of the VRH is the probability integral transform
(PIT) histogram. It is a common tool used to evaluate the calibration of a
univariate predictive forecast distribution [8, 12]. Let F be the predictive
cdf of the observation y, then the probability integral transform is defined
by

PIT = F (y) ∼ U [0, 1]. (3.7)
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Here, PIT is a number between 0 and 1. PIT’s interpretation is the same
as for the VRH, meaning that the PIT histogram should be closely to
uniform when it is calibrated.

a)

b)

Figure 3.2: a) Hypothetical verification rank histograms for a well
calibrated (N (0, 1)), an underdispersive (N (0, 0.5)), an overdispersive
(N (0, 2)), and a biased (N (1, 1)) predictive distribution are plotted. b) The
corresponding predictive distribution. φ denotes the pdf.
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An illustration of a PIT-histogram for different hypothetical distributions
is shown in Figure 3.2. In this example, all data points are random sam-
ples from a standard normal, N (0, 1) distribution. A U-shaped histogram
indicates that the ensemble forecasts are underdispersed in that the ob-
servations too often lie outside of the ensemble range. A hump-shaped
diagram indicates that the variance is too wide, meaning that the ensem-
ble forecasts are overdispersed. A triangle-shaped histogram indicates that
the ensemble forecasts are biased, while a nearly flat histogram suggests
calibration.

3.3.2. Assessing sharpness

Although the PIT-histogram is a good tool for evaluating calibration
of probabilistic forecasts, it is not sufficient to tell if a post-processing
technique is useful or not. As mentioned in the introduction, we want
the ensemble forecasts to be as sharp as possible subject to its calibra-
tion [12]. We therefore need to combine evaluation of calibration with
assessing sharpness to identify if the BMA and EMOS approaches yield
both well calibrated and sharp ensemble forecasts. In this study we use
proper scoring rules to assess both sharpness and calibration.

Proper scoring rules

A scoring rule is said to be a strictly proper scoring rule when the forecaster
gets the best score by forecasting his or her true beliefs, although it may be
possible to get the same score by using a different forecast [15]. A widely
used proper scoring rule in the assessment of the quality of probabilistic
forecasts is the Continuous rank probability score (CRPS) [7, 15, 20]. The
CRPS gives a joint assessment of calibration and sharpness and is nega-
tively orientated, such that a smaller CRPS means a better forecast. A
perfect forecast gives CRPS score of 0. The CRPS is sensitive to distance
in that it is penalizing predictions that are far away from the actual ob-
servation. Let F be the cumulative distribution function (cdf) and yt+l
the observed quantity, which in our case is the 2-m temperature at issue
time t and lead time l. The CRPS measures the difference between the
predicted and the occurred cdf’s. For a univariate forecast the standard
form is defined as
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CRPSt(F, yt) =

∫ ∞
−∞

[F (ξ)−H(ξ − y)]2 dξ, (3.8)

where t is the issue time and H is the Heaviside function,

H(ξ − y) =

{
0 for ξ < y

1 for ξ ≥ y.
(3.9)

Gneiting et al.[15] show that the CRPS for one lead time also can be writ-
ten as

CRPSt(F, yt) = E|xm,t − yt| −
1

2
E|xm,t − x∗m,t|, (3.10)

where xm,t and x∗m,t are independent random variables with cdf F, and E
denotes the expectation. Hence, it is possible to calculate CRPS from the
predictive cdf from an ensemble forecast of size M :

CRPSt(Fens, yt) =
1

M

M∑
m=1

|xm,t − yt| −
1

2M2

M∑
m=1

M∑
n=1

|xm,t − xn,t|, (3.11)

where yt is the observation and xm,t the ensemble members. Fens is a
discrete predictive distribution from a forecast ensemble of size M. The
CRPS can also be estimated by sampling. To evaluate a forecast proce-
dure we average the CRPSt over T forecast-observation pairs,

CRPS =
1

T

T∑
t=1

CRPSt. (3.12)

For a deterministic forecast the CRPS reduces to Mean absolute error
(MAE). MAE is a scoring function used for evaluating deterministic fore-
casts. It measures how the values of the forecasts differ from the values of
the observations and is defined as

MAE =
1

T

T∑
t=1

|yt+l − x̄t,l|. (3.13)
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Here y t+l is the observation and x̄t,l is the mean of the ensemble forecast
at issue time t and lead time l. T is the total number of days evaluated.

The integral in Eq. 3.10 is not on a closed form, meaning that it can
cause problems to some distributions. Gneiting et al. [16] derived an an-
alytic expression for the CRPS when the cdf is normal distributed with
mean µ and variance σ2. By repeated partial integration in Eq. 3.10 the
CRPS for a normal distribution becomes

CRPSt(N (µm,t, σ
2
t ), yt) =

σ

(
yt − µm,t

σt

[
2Φ

(
yt − µm,t

σt

)
− 1

]
+ 2φ

(
yt − µm,t

σt

)
− 1√

π

)
,

(3.14)

where φ(·) and Φ(·) denote the pdf and the cdf of a standard normal
random variable at the normalized prediction error, (yt − µt)/σt [13, 18].
Eq. 3.14 is used to evaluate the EMOS model. However, for BMA, F is
the cdf of a Gaussian mixture distribution, meaning that the distribution
is composed of two or more normal distributed pdf’s. Hence, given a set of
n cdf’s, F1, ..., Fn, the mixture distribution for non-exchangeable ensemble
forecasts, introduced by Raftery et al. [26] can be written as

F =
n∑
i=1

wiFi, (3.15)

where wi are non-negative weights and
∑
wi = 1. For exchangeable en-

semble forecasts a closed form solution for this is

CRPSt

(
M∑
m=1

wN (µm,t, σ
2
t ), yt

)
=

M∑
m=1

wA(yt − µm,t, σ2t )−
1

2

M∑
m=1

M∑
n=1

w2A(µm,t − µn,t, σ2t + σ2t ),

(3.16)

where A is
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A(µm,t, σ
2
t ) = 2σtφ

(
µm,t
σt

)
+ µm,t

(
2Φ

(
µm,t
σt

)
− 1

)
. (3.17)

Eq. 3.16 is used to evaluate the BMA model.

An illustration of a predictive cdf is given in Figure 3.3. It is plotted
together with the corresponding observation. The grey area between the
observation and the predicted cdf is the value returned by the CRPS.

Figure 3.3: Illustration of CRPS for January 31st 2011. The forecasts
are made twelve hours ahead and the corresponding observation is observed
at 12:00 UCT. The figure shows the computation of the CRPS, which is the
grey area between the cdf of the forecast and the observation, y = 32.

Energy score (ES) is a generalization of the CRPS to evaluate multivariate
probabilistic forecasts [15]. For one forecast-observation pair at one lead
time, it is defined by

ESt(Ft,Yt) = E ‖Xt −Yt‖ −
1

2
E ‖Xt −X∗t ‖ (3.18)

where ‖·‖ denotes the Euclidean norm, and Xt and X∗t are independent
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random vectors from the multivariate probabilistic forecast with cdf F t.
Yt is a vector of observations. It can be calculated using samples of the
multivariate probabilistic forecast

ESt(Ft, ~yt) =
1

M

M∑
m=1

‖Xm,t −Yt‖ −
1

2M2

M∑
m=1

M∑
n=1

‖Xm,t −Xn,t‖ , (3.19)

where X1,t, ...,Xm,t are m independent vectors sampled from the multi-
variate probabilistic forecast. The temporal average of all values of ESt is
denoted as ES, where T is the number of forecast-observation pairs,

ES =
1

T

T∑
t=1

ESt. (3.20)

3.4. Parameter estimation

We use two different methods when estimating the parameters: Maximum
likelihood estimation (MLE) and minimum CRPS estimation (minCRPS).

3.4.1. Maximum likelihood estimation

Maximum likelihood estimation (MLE) was proposed by R. A. Fisher and
is a common method to estimate the parameters of a statistical model.
Generally, for a given data set and a basic statistical model, the maxi-
mum likelihood method selects values of the parameters that maximize
the likelihood function.

BMA

At one lead time l, we have the training data, yt−1, yt−2..., yt−K of K ob-
servations with conditional pdf’s, pm(yt−k|xm,t−k, θbma). For BMA with
exchangeable ensemble forecasts, the parameters α and β are estimated
by simple linear regression, and only the standard deviation, τ , is esti-
mated by MLE. The likelihood function L for mixture normal distributed
functions is defined by
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L(x1, ..., xM , τ |yt−1, ...yt−K) =

t−1∏
k=t−K

[
M∑
m=1

wpm(yk|xm,k, τ)

]
. (3.21)

In practice, it is easier to find the MLE by maximizing the log-likelihood
function. This is because the logarithm is a monotonically increasing func-
tion. Equation 3.21 can then be rewritten as

logL(x1, ..., xM , τ |yt−1, ..., yt−K) =

t−1∑
k=t−K

log

[
M∑
m=1

wpm(yk|xm,k, τ)

]
, (3.22)

where we consider equal weights and parameters. Because of the logarithm
of a sum in the function, this problem is not possible to solve analytically.
Therefore it is necessary to find a numerical method to compute the MLE.

EMOS

Given the training data yt−1, yt−2..., yt−K of K observations, the EMOS
parameters, a, b, c and d are all estimated at once with MLE. Equally as
for the BMA, it is more convenient to maximize the logarithm of the like-
lihood function. The log-likelihood function for the EMOS model Eq. 3.6 is

logL(x1, ..., xM , a, b, c, d|yt−1, ..., yt−K) =

− 1

2

{
K log(2π) +

t−1∑
k=t−K

[yk − (a+ bx̄k)]
2

c+ dS2
k

+
t−1∑

k=t−K
log(c+ dS2

k)

}
.

(3.23)

To make sure that the density is a valid probability distribution, we set
c and d as non-negative parameters [16]. To include these constraints in
the EMOS model we write

c = γ2

d = δ2.
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3.4.2. Minimum CRPS estimation

An other estimation method is the Minimum CRPS (minCRPS) estima-
tion, suggested by Gneiting et al. [16].

BMA

Similarly as for MLE, we use the training data yt−1, yt−2..., yt−K of K
observations. By taking into account that we have equal weights and ex-
changeable ensemble member forecasts, we can rewrite Equation 3.16 as

minCRPS

(
M∑
m=1

wN (ηm, τ
2), y

)
=

1

K

t−1∑
k=t−K

(
M∑
m=1

wA(yk − ηm,k, τ2)−
1

2

M∑
m=1

M∑
n=1

w2A(ηm,k − ηn,k, 2τ2)

)
,

(3.24)

where w = 1/M where
∑M

m=1w = 1, and A is defined as Eq. 3.17. It is
minimized numerically.

EMOS

Also for EMOS, we estimate the model parameters by minimizing the
CRPS value for the training data. We calculate the minimum CRPS esti-
mation by minimizing Equation 3.25. Hence, minimizing equation can be
written as

minCRPS[N (µ, σ2), y] =

1

K

t−1∑
k=t−K

[
σ

(
yk − µk

σ

(
2Φ

(
yk − µk

σ

)
− 1

)
+ 2φ

(
yk − µk

σ

)
− 1√

π

)]
,

(3.25)

where φ(·) and Φ(·) denote the pdf and the cdf of a standard normal
random variable at the normalized prediction error, (y−µ)/σ [13, 18]. As
for BMA, it is minimized numerically.
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3.5. Software

In this thesis the software MATLAB is used for the analysis. Ensemble
forecasts were loaded from GRIB-files. Gridded Information in Binary
(GRIB) files are outputs directly from Numerical Weather Prediction pro-
grams. The toolbox NCTOOLBOX provides methods for data access.
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4. Bivariate forecasts

In order to account for lead time dependencies between errors at a single
location and single quantity, we need bivariate statistical post-processing
techniques. In this chapter we introduce an extended version of the BMA
and EMOS models for bivariate lead times. Let t be the issue time, l
the lead time and m the number of an ensemble member in an ensem-
ble forecast. We then denote xm,t = {xm,t,l : l ∈ L} as a vector with
ensemble member forecasts at lead time l of a set of lead times L, and
yt = {yt+l : l ∈ L} the corresponding observation vector. For simplicity
we suppress issue time from the notation and denote the ensemble mem-
ber forecast and observation vector as xm and y. Additionally, we let
L = {1, 2} label the elements in the vectors. This is only in order to sim-
plify the notation and does not mean that we have set the two lead times
to be l = 1 and l = 2.

After introducing the extended version of the BMA and EMOS models
in section 4.1 and 4.2, we present how to estimate the bivariate parame-
ters with the estimation methods by MLE in section 4.3. In section 4.4
we derive how to estimate the parameters with minimum ES (minES).

4.1. Bivariate Normal distributed BMA

Bivariate normal distributed BMA is an extended version of the univariate
BMA model introduced in section 3.1. It takes two lead times into account
at a time in order to account for lead time dependencies between errors.
Let Θbma = {α,β, τ , r}, where α = [α1 α2]’, β = [β1 β2]’, τ

2 = [τ21
τ22 ]’ and r the correlation coefficient. For exchangeable ensemble mem-
bers, each pair of ensemble member forecasts is associated with a pdf,
p(y|x1, ...,xM ,Θ

bma). The bivariate normal BMA is a mixture of M bi-
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variate Gaussian pdf’s and equals

p(y|x1, ...,xM ,Θ
bma) =

M∑
m=1

wpm(y|xm,Θbma), (4.1)

where M is the total number of forecasts in the ensemble, and the weights
are w = 1

M . Normal distribution is considered for temperature ensem-
ble forecasts. The distribution is centred so that the conditional pdf,
pm(y|xm,Θbma) has a mean, η = α + βxm and covariance matrix Σbma.
This can be denoted as

pm(y|xm,Θbma) ∼MVN (α+ βxm,Σ
bma). (4.2)

were y = [y1 y2]’, xm = [x1m x2m]’ and

Σbma =

[
τ21 rτ1τ2
rτ1τ2 τ22

]
. (4.3)

Hence, the distribution pm(y|xm,Θbma) can be written as

pm

([
y1
y2

] ∣∣∣∣ [x1mx2m

]
,Θbma

)
∼MVN

([
α1 + β1x1m
α2 + β2x2m

]
,

[
τ21 rτ1τ2
rτ1τ2 τ22

])
.

(4.4)

In order to illustrate bivariate BMA predictive pdf, we let the parame-
ters be α = [0 0]’, β = [1 1]’, τ1 = 0.2, τ2 = 0.2, ρ = 0.8 and apply these
on an ensemble forecasts with M = 5. Hence, the weights are w = 1/5.
In Figure 4.1 the estimated probability density contours for the bivariate
normal mixture distribution are plotted. We observe that the ensemble
members are divided into two clusters. Values of the bias-corrected en-
semble members (black dots) are also shown.
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Figure 4.1: Extended predictive BMA pdf. The parameters are α = [0
0]’, β = [1 1]’, τ1 = 0.2, τ2 = 0.2, ρ = 0.8 and the weights are w = 1/5.

4.2. Bivariate Normal distributed EMOS

The bivariate normal EMOS model is an extended version of the univari-
ate EMOS model introduced in section 3.2. Let Θemos = {a,b,σ, ρ},
where a = [a1 a2]’, b = [b1 b2]’, σ = [σ21 σ

2
2]’ and ρ the correlation co-

efficient. The EMOS predictive pdf is normal distributed with predictive
mean, µ = a + bx̄ and covariance Σemos and is denoted as

p(y|x̄,Θemos) ∼MVN (a + bx̄,Σemos), (4.5)

where y = [y1 y2]’, x̄ = [x̄1 x̄2]’ and

Σemos =

[
σ21 ρσ1σ2

ρσ1σ2 σ22

]
. (4.6)
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Here the predictive variance is σ2L = c+ dS2
L, where S2

L = 1
M

∑M
m=1(xm−

x̄)2. Remembering the notation, L = {1,2}, the bivariate normal predic-
tive EMOS pdf, p(y|x̄,Θemos), equals

p

([
y1
y2

] ∣∣∣∣ [x̄1x̄2
]
,Θemos

)
∼MVN

([
a1 + b1x̄1
a2 + b2x̄2

]
,

[
σ21 ρσ1σ2

ρσ1σ2 σ22

])
.

(4.7)

In order to illustrate bivariate EMOS predictive pdf, we use the same
parameters and ensemble forecast as in the example of bivariate predic-
tive BMA pdf, see section 4.1. Figure 4.2 shows the estimated probability
density contours for the bivariate normal distribution. Values of the bias-
corrected ensemble members (black dots) are also shown.

Figure 4.2: Extended predictive EMOS pdf. The same parameters as for
the extended predictive BMA pdf are used (see figure text 4.1).
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4.3. ML estimation for bivariate model

Given the training data yt−1,yt−2, ...,yt−K of K observations with condi-
tional pdf p(yt−k|xm,t−k,Θ). The log-likelihood function for the bivariate
BMA is defined by

logL(x1, ...,xM ,Σ
bma|yt−1, ...,yt−K) =

t−1∑
k=t−K

log

[
M∑
m=1

wpm(yk|xm,k,Σbma)

]
, (4.8)

where Σbma is the covariance matrix in Eq. 4.3. The log-likelihood func-
tion for the bivariate EMOS is defined by

logL(x̄,Σemos|yt−1, ...,yt−K) =
t−1∑

k=t−K
log [p(yk|x̄k,Σemos)] , (4.9)

where Σemos is the covariance matrix in Eq. 4.6. In practice we estimate
the parameters in two steps. For the normal distributed BMA model,
we first estimate the parameters α, β and τ . This is done in the same
way as we did for univariate models, see section 3.4. In the next step, we
then estimate the correlation coefficient, r. Similarly for EMOS, we first
estimate a, b, c and d before we estimate the correlation coefficient, ρ.
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4.4. Minimum ES estimation for bivariate
model

A second estimating method, minimum ES (minES), is proposed for es-
timating the bivariate model correlation parameter. For computational
simplicity, we estimate the correlation coefficient with minES by sampling
from the predictive BMA and EMOS distribution. For convenience the
following trick is used:

Algorithm for estimating ρ

· Given a set of correlation coefficients, ρ ∈ {-0.95:0.01:0.95};
for each ρ do
· calculate the ES;

end
· find ρ giving the lowest ES;

Note that we here used the parameter notation for EMOS model. The
same procedure is done for the BMA model. In more details, for one sim-
ulation, s, one training day, k, and one given ρ, we sample yemoss from a
predictive EMOS distribution, p(y|x̄,a,b, c,d, ρ), by the following algo-
rithm:

Algorithm for sampling yemoss

Input: x̄,a,b, c,d, ρ;

· generate εemoss
iid∼MVN (0,Σ(ρ)emos);

· set yemoss = a + bx̄ + εemoss ;

We note that yemoss varies with an independent normal distributed error
term. For the BMA model we have to take into account the ensemble
members. For one simulation, s, one training day, k, and one given r, we
sample ybmas from a predictive BMA distribution, pm(y|xm,α,β, τ , r), by
the following algorithm:
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Algorithm for sampling ybmas

Input: x1, ...,xM ,α,β, τ , r

· draw m
iid∼ Unif [1, 50];

· generate εbmas
iid∼MVN (0,Σ(r)bma);

· ybmas = α+ βxm + εbmas ;

In the algorithm above, an index m is drawn in order to select a random
member from the ensemble forecasts. This ensemble member forecast is
further used when sampling from the predictive BMA distribution. In

order to generate normal random variables, εemoss
iid∼MVN (0,Σ(ρ)emos),

the Cholesky decomposition is used. This decomposition commonly used
in e.g. the Monte Carlo method [2]. For one training day, k, one given ρ
and s = 1, ..., Ns simulations, we generate εemoss as follows:

Algorithm for generating εs

Input: ρ,Σemos

· set Σ(ρ)emos = Q−1(ρ)emos;
· find L such that LTL = Q(ρ)emos;
for 1:Ns do

· generate z
iid∼MVN (0, I);

· set εemoss = LT z
end

We compute the lower-triangular, L, by decomposing the correlation ma-
trix, Σemos . Applying this to a standard normal distributed vector, z, we
obtain normal random variables, εemoss .

The same procedure is used for the BMA model. However, in order to
get smoother Gaussian curves, we use the same generated z for the sim-
ulations for each given correlation parameter. How to find the number of
simulations, Ns, is discussed in the next chapter. A more detailed algo-
rithm for the estimation of the correlation coefficient for BMA model is
given in the following algorithm:
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Detailed algorithm for BMA

Input: x1, ...,xM ,α,β, τ , r

· draw ~m
iid∼ Unif [1,M ] of vector size [1 Ns];

· generate z
iid∼MVN (0, I) of matrix size [2 Ns];

for r = −0.95 : 0.01 : 0.95 do
· set Σ(r)bma = Q−1(r)bma;
· find L such that LTL = Q(r)bma;
for k = 1:K do

for s = 1:Ns do
· set εemoss = LT z;
· set ybmas = α+ βxm + εbmas ;

end
· calculate ESk;

end

· calculate ES = 1
K

∑K
k=1 ESk;

end
· find r giving the lowest ES;

A similar algorithm is used for the EMOS model. However, in this case it
is not necessary to draw a random index, m, since the EMOS model uses
the mean of the ensemble members as input.
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5. Simulation study

In this study the parameters of BMA and EMOS are estimated with two
different methods: by MLE and minCRPS estimation for univariate mod-
els, and with MLE and minES estimation for bivariate models. A simula-
tion study is performed in order to explore the properties of the estimates,
τMLE , τminCRPS , σMLE , σminCRPS , rMLE and ρMLE . The subscripts
MLE, minCRPS and minES denote the estimation method used to esti-
mate the parameters. We do a different study for rminES and ρminES ,
where we find out how many simulations which are needed to estimate
the parameters with minES estimation. This is because a simulation op-
timization routine is used for minES estimation.

Univariate model

A training period of K = 30 days and ensemble forecasts for l = 2 are
considered for univariate models. How the training period length is found
is described in the next chapter.

The normal predictive pdf of the univariate BMA model is defined as
pm(y|xm, θbma) ∼ N (α + βxm, τ

2). In order to test whether the esti-
mates, τ , are consistent, we sample normal mixture distributed obser-
vations, Y bma, from a known pdf for each of the training days. First,
we randomly extract an index i from a uniform distribution with length
equal to the number of ensemble members in an ensemble forecast, M
= 50. The ensemble member of the daily ensemble with index i, xi, is
then used as the mean when sampling the observation, Y bma. Hence,
given a standard deviation, τg, we sample the observations from the pdf
p(Y bma|xi, τg) ∼ N (xi, τg). Furthermore, we estimate the standard de-
viation, τ , with both the MLE and minCRPS estimation using Y bma as

39



5. Simulation study

observational input. If τ is similar to the given parameter, τg, we conclude
that our estimates are consistent.

We sample the observation Y bma for BMA for the given standard devia-
tions τg = 0.01, 0.1, 0.5, 1, 1.5 and 2. In order to compare the estimation
methods, we use the same Y bma for both the MLE and minCRPS estima-
tion. We sample Y bma 100 times for the same given τg in order to calculate
a 95% confidence interval (CI).

Table 5.1 a) lists the result for the MLE estimates. We observe that
τMLE is close to τg and that the confidence intervals are relatively small.
We also note that τMLE is three out of six times greater than τg.

a) BMA, MLE

τg τMLE 95% CI Length of CI

0.01 0.0102 [0.0098, 0.0106] 0.0008
0.1 0.1048 [0.0937, 0.1159] 0.0222
0.5 0.4748 [0.4553, 0.4944] 0.0391
1.0 0.9734 [0.9457, 1.0010] 0.0553
1.5 1.4669 [1.4329, 1.5010] 0.0681
2.0 2.0236 [1.9726, 2.0746] 0.1020

b) BMA, minCRPS

τg τminCRPS 95% CI Length of CI

0.01 0.0194 [0.0780, 0.0109] 0.0671
0.1 0.1335 [0.1181, 0.1489] 0.0308
0.5 0.4578 [0.4360, 0.4796] 0.0436
1.0 0.9417 [0.9108, 0.9727] 0.0619
1.5 1.4275 [1.3897, 1.4654] 0.0757
2.0 1.9847 [1.9254, 2.0440] 0.1186

Table 5.1: Simulation study for τMLE and τminCRSP . In order to calculate
a 95% confidence interval (CI), the observation Y bma is sampled 100 times
for the same given standard deviation, τg. A training length of K = 30 days
and data from l = 2 is used.
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For minCRPS estimates, we observe that τminCRPS is not as close to
τg as when we use the MLE method, see Table 5.1 b). Additionally, we
note that the confidence intervals are slightly larger for τminCRPS than for
τMLE . We also observe that τminCRPS mostly lies below τg. Hence, the
minCRPS estimation method seems to underestimate the parameter.

a) EMOS, MLE

σg σMLE 95% CI Length of CI

0.01 0.0101 [0.0098, 0.0105] 0.0007
0.1 0.1055 [0.1011, 0.1099] 0.0088
0.5 0.5326 [0.5123, 0.5529] 0.0406
1.0 1.0548 [1.0096, 1.0999] 0.0903
1.5 1.6091 [1.5405, 1.6776] 0.1371
2.0 2.0937 [1.9990, 2.1884] 0.1894

b) EMOS, minCRPS

σg σminCRPS 95% CI Length of CI

0.01 0.0095 [0.0092, 0.0097] 0.0005
0.1 0.0970 [0.0939, 0.1001] 0.0062
0.5 0.4959 [0.4800, 0.5119] 0.0319
1.0 0.9694 [0.9365, 1.0024] 0.0659
1.5 1.4656 [1.4154, 1.5157] 0.1003
2.0 1.9288 [1.8635, 1.9942] 0.1307

Table 5.2: Simulation study for σMLE and σminCRSP . In order to calcu-
late a 95% confidence interval (CI), the observation Y emos is sampled 100
times for the same given standard deviation, σg. A training length of K =
30 days and data from l = 2 is used.

The normal distributed predictive pdf for the univariate EMOS model is
defined as p(y|x̄, θemos) ∼ N (a+ bx̄, c+dS2). We test whether the EMOS
predictive standard deviations, σ = c+dS2, are consistent in a similar way
as for the univariate BMA model. However, for EMOS the mean of the
ensemble forecasts, x̄, is used as the mean when sampling the observations
Y emos. There is therefore no need for extracting an index i in this case.
Hence, given a predictive standard deviation, σg, we sample the observa-
tions from the pdf p(yemoss |x̄, σg) ∼ N (x̄, σ2g). Furthermore, we estimate
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the predictive standard deviation, σ, with both the MLE and minCRPS
estimation using Y emos as observational input.

The observation Y emos for EMOS is sampled with the given standard
deviations, σg = 0.01, 0.1, 0.5, 1, 1.5 and 2. In a similar way as for BMA,
Y emos is sampled 100 times for each given predictive standard deviation,
σg. In order to compare the estimation methods, we use the same Y emos

for both the MLE and minCRPS estimation. We observe that σMLE is
close to σg most of the times, and that the confidence intervals are rela-
tively small, see Table 5.2 a). However, σMLE is greater than σg for all
cases. Hence, it seems like MLE overestimates the EMOS estimates.

Table 5.2 b) lists the results for minCRPS estimates. We observe that
σminCRPS is smaller than σg for all cases. Hence, it seems like minCRPS
underestimates the EMOS parameters. Furthermore, we note that the
confidence intervals are smaller for σminCRPS than for σMLE .

Bivariate model

A training period of K = 80 days and ensemble forecasts for l = 5 and l
= 6 are used for bivariate models with MLE estimates. How the training
period is found is discussed in the next chapter.

We remember that for bivariate models, the ensemble members are vec-
tors, xm = {x, l : l ∈ L}. Here we suppress the issue time. The normal
bivariate predictive pdf of the BMA model is defined by Eq. 4.1. The
process is similar as for univariate BMA, where we first extract an index

i
iid∼ Unif [1,M ]. The ensemble member with this index, xi, is then used as

input for the mean when sampling the observations, Ybma. Hence, given a
correlation coefficient, rg, we sample bivariate normal mixture distributed
observations, Ybma, from a known pdf

pm(y|xi,Σbma
g ) ∼MVN (xi,Σ

bma
g ), (5.1)

where

Σbma
g =

[
τ21 rgτ1τ2

rgτ1τ2 τ22

]
. (5.2)
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We sample Ybma for the given correlation coefficients rg = 0.01, 0.1, 0.5
and 0.8. As for the univariate models, Ybma is sampled 100 times for each
rg in order to calculate a 95% confidence interval. However, for bivariate
models, the estimation process is done in two steps. First, the standard
deviations are estimated. Next, we estimate the correlation coefficient.
Table 5.3 a) shows the result for BMA with MLE estimates. We observe
that rMLE is relatively close to rg, except for when rg = 0.5. Further-
more, we note that three out of four times rMLE is greater than rg. This
indicates that MLE overestimates the correlation coefficient for the BMA
model.

a) BMA, MLE

rg rMLE 95% CI Length of CI

0.01 0.0207 [-0.0058, 0.0472] 0.0530
0.1 0.1112 [0.0864, 0.1359] 0.0495
0.5 0.4311 [0.4135, 0.4486] 0.0351
0.8 0.8123 [0.7987, 0.8569] 0.0582

b) EMOS, MLE

σg ρMLE 95% CI Length of CI

0.01 0.0101 [-0.0177,0.0379] 0.0556
0.1 0.0995 [0.0720, 0.1269] 0.0549
0.5 0.4920 [0.4734, 0.5106] 0.0372
0.8 0.7810 [0.7711, 0.7908] 0.0197

Table 5.3: a) Simulation study for rMLE. b) Simulation study for ρMLE.
In order to calculate a 95% confidence interval (CI), the observation Y bma

and Y emos is sampled 100 times for the same given standard deviation, rg
and ρg, respectively. A training length of K = 80 days and data from l = 5
and l = 6 is used.

The normal bivariate predictive pdf of EMOS model is defined by Eq. 4.5.
When sampling the observations, yemoss , the mean of the daily ensemble,
x̄, is used as input for the mean. Given a correlation coefficient ρg, we
sample yemoss from a known pdf
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pm(y|x̄,Σemos
g ) ∼MVN (x̄,Σemos

g ), (5.3)

where

Σemos
g =

[
σ21 ρgσ1σ2

ρgσ1σ2 σ22

]
. (5.4)

Table 5.3 b) shows the estimates, ρMLE , for EMOS. We observe that
ρMLE is close to ρg. Furthermore, we note that three out of four times
ρMLE is smaller than ρg. This indicates that MLE underestimates the
correlation coefficient for the EMOS model. We also note that the width
of the confidence intervals for ρMLE are similar to the with of the confi-
dence interval for rMLE .

Furthermore, we do a simulation study for minES estimates, where we
find out how many simulations, s, which are needed to optimize a con-
sistent correlation coefficient. For both the BMA and EMOS models, we
use data from year 2007 as training period and test the estimates on year
2008. We test the different simulation lengths s = 50, 100, 150, ..., 300.
The same optimization routine as explained in subsection 4.4 is used. Fig-
ure 5.1 shows the result for each simulation length. We observe that BMA
converges to ES = 1.53 after slightly more than 150 simulations. EMOS
converges to 1.47 after around 150 simulations. Hence, we choose to use
200 simulations for BMA and 150 simulations for EMOS when estimating
the parameters with minES.
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BMA, minES

EMOS, minES

Figure 5.1: ES for l = 5 and l = 6 using different lengths of simulations.
Data from year 2007 is used as training period. The estimates are tested on
year 2008.
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6. Case study: Temperature fore-
cast of Trondheim - Voll

In this chapter, we first introduce the raw ensemble data before we de-
scribe how to choose the length of the training period. Furthermore, we
present the results of applying the BMA and EMOS techniques for both
univariate and bivariate models on ensemble forecasts of 2-m temperature
in Trondheim – Voll. Ensemble forecasts from ECMWF between January
1st 2007 and December 31st 2011 were used. During this period, there
were T = 1826 corresponding observations for each lead time, l = 0, 1, 2,
3, and T = 1825 corresponding observations for each l = 4, 5, 6, 7. The
number of ensemble members is M = 50. Furthermore, we compare two
different estimation methods, MLE and minCRPS for univariate models,
and MLE and minES for bivariate models. For univariate models we use
the approaches and estimation methods on all 8 different lead times. The
extended bivariate BMA and EMOS techniques are only applied on l = 5
and 6.

6.1. Raw ensemble data

As mentioned in the introduction, ensemble forecasts tend to be underdis-
persive [19]. In order to see that this also is true in our case, verification
rank histograms for all lead times are plotted, see Figure 6.1. We observe
that the histograms are slightly U-shaped. However, we note that the
corresponding observations more often fell above than below the ensemble
range for all lead times. Thus, our raw ensemble forecasts are biased and
underdispersed. Hence, post-processing techniques are needed in order to
calibrate them.
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6.1. Raw ensemble data 6. Case study

Figure 6.1: Verification rank histogram for the raw ensemble forecasts for
all lead times. The entire verification period between January 1st 2007 and
December 31st 2011 was used. The height of the bars in each histogram
indicates the percentage of cases for which the observation fell in each of
the 51 bins.
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6. Case study 6.2. Length of training period

6.2. Length of training period

The model parameters are estimated using data from a ”sliding window”
training period consisting of the previous K days. A training period should
be a balance between rapidly adapting of seasonal variation and give pre-
cise estimates of parameters. Hence, it is a trade-off: we want the training
period to be as short as possible, but on the other hand, the longer the
training period, the better estimates of the parameters. According to
Gneiting et al. [12] one should maximize the sharpness subject to calibra-
tion. Therefore proper scoring rules, as e.g. CRPS are useful tools when
choosing the training length. Raftery et al. [26] used a training period of
25 days to estimate temperature parameters to the BMA model. Gneiting
et al. [16] chose a sliding 40-day training period for EMOS temperature
forecasts. In order to find out how many training days we should use for
the univariate models for our data, we minimise MAE and CRPS. For the
bivariate models we minimise ES.

Univariate model

The minimisation of MAE and CRPS is done for both the univariate BMA
and EMOS models, and for both the MLE and minCRPS estimation meth-
ods. Hence, we find the length of the training period for four different com-
binations. We consider the training period lengths, K = 10, 15, 20, ..., 50
for l = 2 to see which of these gives the lowest score. The results are
plotted in Figure 6.2, showing MAE and CRPS as a function of the train-
ing period lengths. We observe that all four combinations decrease up to
K = 30 for both MLE and CRPS. After that, they increase slightly at
K = 35 before they decreases again. There seems to be little difference
in MAE and CRPS between K = 30 and K = 40, 45, 50. Remembering
that there is an advantage of using a short training period, we choose a
training period of K = 30.

Bivariate model

We find the length of the training period for the bivariate BMA and EMOS
models by minimising ES. This is only done for the MLE method, since
the parameters with minES are found by sampling. For simplicity, we
therefore choose to use the same training period length, found for MLE
estimation, for minES estimation. Hence, for bivariate models, we only
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6.2. Length of training period 6. Case study

Training period for univariate BMA and EMOS parameters

Figure 6.2: Comparison of training period lengths for temperature at lead
time 2. Both a plot for BMA parameters estimated with MLE and with
minCRPS is shown.

50



6. Case study 6.3. Univariate model

Training period for bivariate BMA and EMOS parameters estimated

with MLE

Figure 6.3: Comparison of training period lengths for temperature at lead
time 5 and 6. The plot shows ES of multivariate BMA and EMOS model.

find the length of training period for two different settings.

We consider the training periods lengths, K = 30, 50,..., 500 for l = 5
and 6. The results are plotted in Figure 6.3, showing ES as a function of
the training period lengths. We observe that the bivariate EMOS model
has the lowest ES with length of training period, K = 80. The bivariate
BMA model has the lowest ES with K = 500 training days. However,
the ES is not very different between K = 80 and K = 500 for the BMA
model. Hence, we choose to use a training period of K = 80 for the bi-
variate models. We note that bivariate BMA gives higher ES than the
bivariate EMOS model.

6.3. Univariate model

In this section, we present results for the univariate BMA and EMOS mod-
els, which are presented in section 3.1 and 3.2, respectively. A training
period of K = 30 days is applied to the data presented in Chapter 2.

In the next subsections, assessment methods, explained in section 3.3, are
used to evaluate the univariate models. First calibration is assessed by
PIT-histograms and prediction intervals. Furthermore, sharpness is eval-
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6.3. Univariate model 6. Case study

uated by proper scoring rules, which were explained in subsection 3.3.2.
We also compare the predictive standard deviations before the CRPS is
calculated.

6.3.1. Assessment of univariate predictive performance

The PIT-histogram is the most common method for identifying calibra-
tion of probabilistic forecast [8]. A verification rank histogram (VRH)
of the bias-corrected ensemble forecasts, shows the importance of post-
processing, see Figure 6.4. The U-shape indicates that the bias-corrected
ensemble forecasts are very underdispersed for all lead times. This means
that the observations fell as much below as above the ensemble range. We
also note that the observations much more often fell outside the ensemble
range for l = 0 than for e.g. l = 7.

Figures 6.5 – 6.8 shows the PIT-histograms for the BMA and EMOS
models. We observe that these are close to uniform. Hence, they are very
well calibrated. Figures 6.5 and 6.6 show the PIT-histograms for the BMA
model with parameters estimated with MLE and minCRPS, respectively.
Comparing the estimation methods, we observe that the PIT-histograms
are almost identical. The same result is observed for the EMOS model,
see Figure 6.7 and 6.8. This indicates that there is little difference be-
tween the estimation methods. However, we note that BMA give slightly
different PIT-histograms than the EMOS. For lead time, l = 0 to l = 6
the PIT-histograms for the EMOS models seem to be slightly U-shaped.
This indicates underdispersion. For lead time 6 and 7 they seem to be
more hump-shaped, which indicates overdispersion. It seems like the BMA
model is slightly better calibrated than the EMOS model.
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Bias-corrected
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Figure 6.4: Verification rank histogram for the bias-corrected ensemble
forecast for all lead times from 2007 to 2011. The height of the bars in each
histogram indicates the percentage of cases for which the observation fell in
each of the 51 bins.
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BMA, MLE
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Figure 6.5: PIT histogram for BMA ensemble forecast for all lead times
from 2007 to 2011. The height of the bars in each histogram indicates the
percentage of cases for which the observation fell in each of the 51 bins.
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BMA, minCRPS
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Figure 6.6: PIT histogram for BMA ensemble forecast for all lead times
from 2007 to 2011. The height of the bars in each histogram indicates the
percentage of cases for which the observation fell in each of the 51 bins.
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EMOS, MLE

Figure 6.7: PIT histogram for EMOS forecast for all lead times from 2007
to 2011. The height of the bars in each histogram indicates the percentage
of cases for which the observation fell in each of the 51 bins.
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EMOS, minCRPS

Figure 6.8: PIT histogram for BMA ensemble forecast for all lead times
from 2007 to 2011. The height of the bars in each histogram indicates the
percentage of cases for which the observation fell in each of the 51 bins.
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Another method for measuring calibration is to find the coverage of pre-
diction intervals. Figures 6.9 and 6.10 show the percentage of observations
within a certain prediction interval for raw ensemble forecasts and bias-
corrected ensemble forecasts, respectively. The dashed line shows where
the values would be if the ensemble members were perfectly calibrated.
We observe that the forecasts are calibrated for non of the lead times, nei-
ther for raw or bias-corrected ensemble forecasts. However, we note that
the bias-corrected ensemble forecasts are slightly closer to be calibrated
than the raw ensemble forecasts.

Raw

Figure 6.9: Percentage of observations within a certain prediction interval
for raw ensemble forecasts. The dashed line shows where the values would
have been if the ensemble members were perfectly calibrated. Each lead time
(LT) is plotted.

Figure 6.11 shows the BMA and EMOS predictive pdf’s with MLE es-
timates. We observe that these ensemble forecasts are almost perfectly
calibrated up to a 55% prediction interval. For the reminding prediction
intervals, the percentage of observations lie slightly below.

Figure 6.12 shows the BMA and EMOS predictive pdf’s with minCRPS
estimates. We observe that BMA and EMOS are almost perfectly cal-
ibrated up to a 45% prediction interval. For the reminding prediction
intervals, the percentage of observations lie slightly below.

Comparing the CRPS estimates with the MLE estimates, we observe that
the minCRPS estimates give slightly less calibrated ensemble forecasts
than the MLE estimates. Comparing the models, they seem to give similar
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Bias-corrected

Figure 6.10: Percentage of observations within a certain prediction inter-
val for bias-corrected ensemble forecasts. The dashed line shows where the
values would have been if the ensemble members were perfectly calibrated.
Each lead time (LT) is plotted.

results. This is the same result as we observed when evaluating calibration
with PIT-histograms.

However, although the PIT-histogram and prediction intervals are good
tools for evaluating calibration of probabilistic forecasts, it is not sufficient
to tell if a post-processing technique is useful or not. We therefore assess
the sharpness of BMA and EMOS by evaluating the width of 95% predic-
tion intervals.

Figure 6.13 shows how sharp the BMA and EMOS predictive pdf’s are
for MLE and minCRPS estimates. We observe that all four cases are
quite similar, and that the prediction intervals become wider for each lead
time. The width of the prediction intervals should ideally be shorter for
more accurate predictions. It is hard to tell which of the models and
estimation methods make the sharpest ensemble forecasts. We therefore
examine the BMA and EMOS predictive standard deviations closer. The
predictive BMA standard deviations are denoted as σbmaMLE , σbmaminCRPS and
are calculated from Eq. 3.4. Similarly, the predictive EMOS standard
deviations from Eq. 3.6 are denoted as σemosMLE , σemosminCRPS . The subscript
MLE and minCRPS denote the estimation method used to estimate the
parameters.
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BMA, MLE

EMOS, MLE

Figure 6.11: Percentage of observations within a certain prediction in-
terval for BMA and EMOS forecasts with MLE estimates. The dashed line
shows where the values would have been if the ensemble members were per-
fectly calibrated. Each lead time (LT) is plotted.
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BMA, minCRPS

EMOS, minCRPS

Figure 6.12: Percentage of observations within a certain prediction inter-
val for BMA and EMOS forecasts with minCRPS estimates. The dashed
line shows where the values would have been if the ensemble members were
perfectly calibrated. Each lead time (LT) is plotted.
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Figure 6.13: Width of 95% prediction interval for each lead time between
year 2007 and 2011. The blue box shows the 25-75% quantiles, the red line
the median and the red crosses the outliers.
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The predictive standard deviations were estimated for the entire verifi-
cation period for each lead times. σbmaMLE and σbmaminCRPS are very similar
for both estimation methods, MLE and minCRPS (see Figure 6.14). We
also note that σbma grows with higher lead times. However, we do observe
small differences between the BMA predictive standard deviations. This
is better observed in Figure 6.15, where the difference between the BMA
predictive standard deviations, σbmaMLE − σbmaminCRPS are shown. There are
indications of σbmaMLE lying slightly above σbmaminCRPS most of the time for
all lead times. This can especially be observed in extreme situations. For
example, around April 2011 there was a storm caused by low air pressure
meeting high pressure from Great Britain [23]. This made it hard to pre-
dict the temperature, and we note that MLE estimates were clearly higher
than minCRPS estimates around that time for all lead times. We also note
that the differences between σbmaMLE and σbmaminCRPS are quite similar for all
lead times. The intercept in Figure 6.14 are σbmaMLE and σbmaminCRPS when
fitting models using all K = 1825 days. We note that σbmaMLE lies above
σbmaminCRPS for all lead times. However, the values of σbma vary little from
lead time to lead time.

Furthermore, we observe that also σemosMLE and σemosminCRPS are very simi-
lar for both estimation methods, MLE and minCRPS, but only up to l =
5, see Figure 6.16. For l = 6 and 7 we note that σemos grows significantly,
which also leads to bigger differences in the estimates. This is better ob-
served in Figure 6.17, where the differences between the EMOS predictive
standard deviations, σemosMLE − σemosminCRPS are plotted. As for BMA pre-
dictive standard deviations, it also seems like σemosMLE lies slightly above
σemosminCRPS most of the time for all lead times. Furthermore, we again note
that MLE estimates are higher than minCRPS estimates in extreme sit-
uations. However, the error between σMLE and σminCRPS is more stable
for BMA than for EMOS. Additionally, we note that the intercept in Fig-
ure 6.16 varies from lead time to lead time. However, again σemosMLE lies
above σemosminCRPS for all lead times.
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6.3. Univariate model 6. Case study

BMA

Figure 6.14: BMA predictive standard deviation estimated over the entire
verification period for all lead times with both MLE and minCRPS. The
straight lines are the predictive σ using all years as training period.
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BMA

Figure 6.15: Difference between the MLE and minCRPS predictive stan-
dard deviations.
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EMOS

Figure 6.16: EMOS predictive standard deviation estimated over the en-
tire verification period for all lead times with both MLE and minCRPS. The
straight lines are the predictive σ′ using all years as training period.
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EMOS

Figure 6.17: Difference between MLE and minCRPS predictive standard
deviations.
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The CRPS gives a joint assessment of calibration and sharpness. We recall
that for a deterministic forecast the CRPS reduces to the MAE, hence we
can compare these two scores. Table 6.1 lists the resulting CRPS for the
deterministic and probabilistic forecasts using K = 30 days as training
period. The scores are better for the BMA and EMOS techniques than
for raw and bias-corrected ensemble forecasts. This is also observed in
Figure 6.18, where the scores from Table 6.1 are plotted. The mean of
raw ensemble forecasts give by far the poorest score. Comparing only the
predictive BMA and EMOS performance, we note that τminCRPS gives
overall the lowest CRPS. Hence, the BMA model with minCRPS esti-
mates give the most calibrated and sharpest ensemble forecasts.

CRPS K = 30 l=0 l=1 l=2 l=3

Raw ensemble forecast 1.37 1.80 1.57 2.07
Mean of raw ensemble forecast 1.44 1.96 1.78 2.32
Mean of bias-corr. ensemble forecast 1.03 1.12 1.28 1.24
Bias-corr. ensemble forecast 0.96 0.98 1.10 1.04
BMA τMLE 0.75 0.82 0.92 0.91
BMA τminCRPS 0.75 0.82 0.92 0.91
EMOS σMLE 0.76 0.84 0.93 0.93
EMOS σminCRPS 0.75 0.82 0.92 0.92

CRPS K = 30 l=4 l=5 l=6 l=7

Raw ensemble forecast 2.32 2.03 1.67 2.13
Mean of raw ensemble forecast 2.62 2.34 2.00 2.52
Mean of bias-corr. ensemble forecast 1.27 1.26 1.40 1.37
Bias-corr. ensemble forecast 1.04 1.03 1.14 1.11
BMA τMLE 0.92 0.92 1.02 1.01
BMA τminCRPS 0.91 0.92 1.02 1.00
EMOS σMLE 0.92 0.93 1.04 1.05
EMOS σminCRPS 0.92 0.92 1.02 1.03

Table 6.1: CRPS for temperature forecasts between year 2007 and 2011.
The bias-corrected ensemble forecast, BMA τMLE, τminCRPS and EMOS
σMLE, σminCRPS were trained on a sliding 30-day period.
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Figure 6.18: CRPS for temperature forecasts using a K = 30 day training
period. The accurate values are listed in Table 6.1

CRPS K = 1825 l=0 l=1 l=2 l=3

BMA τMLE 0.76 0.81 0.91 0.92
BMA τminCRPS 0.76 0.81 0.91 0.92
EMOS σMLE 0.76 0.81 0.91 0.92
EMOS σminCRPS 0.75 0.80 0.91 0.92

CRPS K = 1825 l=4 l=5 l=6 l=7

BMA τMLE 0.95 0.92 1.02 1.01
BMA τminCRPS 0.95 0.92 1.00 1.01
EMOS σMLE 0.95 0.92 1.00 1.01
EMOS σminCRPS 0.95 0.92 1.00 1.00

Table 6.2: CRPS for temperature forecasts where the model was fitted to
all data, K = 1825 is used.
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6.4. Bivariate model 6. Case study

The temperature in Trondheim can be hard to predict due to a lot of
changes in the weather during the day. It might therefore be hard to
adapt these varieties with a training period of only 30 days. Hence, we
fitted a model using all K = 1825 available days. However, we observe
that the scores are very similar to the scores when using a training period
of K = 30 days, see Table 6.2. Thus, this time the EMOS method with
minCRPS estimates gives the best score.

Taking into account the PIT-histogram, CRPS and prediction interval
using a K = 30 day training period, the BMA model with minCRPS es-
timates gives the most calibrated and sharpest ensemble forecasts. The
BMA model might be better than EMOS because single ensemble mem-
bers give more information than using only the mean of the ensemble
members, x̄. Moreover, the minCRPS estimation method might be better
than MLE because the minCRPS is more robust. MLE performs best
when the model is perfect. However, when fitting a model using all K =
1825 days, the EMOS model with minCRPS gives the best score.

6.4. Bivariate model

In this section we present the results for the bivariate BMA and EMOS
models. These are extended versions of the univariate BMA and EMOS
models presented by Raftery et al. [26] and Gneiting et al. [16], respec-
tively. We use two different estimation methods, MLE and minES to
estimate the model parameters. In section 6.2 we found that a training
length of K = 80 days is sufficient for bivariate models. However, instead
of using a sliding training period, we choose to fit the models using one
year, S = 365 days, of data. The parameters are evaluated on the next
year. We also fitted a seasonal model using one season, S = 92 days,
of data and evaluated the parameters on the same season the next year.
The seasons are divided into: Winter (Dec. – Feb.), Spring (Mar. – May),
Summer (Jan. – Aug.) and Autumn (Sept. – Nov.).

Correlation

Before we start applying the extended approaches to ensemble forecasts,
we are interested in finding out if there is lead time correlation between
errors. In the previous section we saw that the estimation methods, MLE
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and minCRPS, were quite similar. Hence, we only consider the differ-
ence between the observations and the median of the BMA and EMOS
probabilistic forecasts with minCRPS estimates and suppress the MLE
estimates. The errors are denoted as:

• et,l = yt+l −median[xm,t,l]

• ebmat,l = yt+l −median[p(y|xm,t,l, θmle)]

• eemost,l = yt+l −median[p(y|x̄t,l, θemos)]

For each of the errors, we calculate the empirical correlations, shown in
Table 6.3, 6.4 and 6.5, respectively. In all three matrices we observe that
there is small lead time dependencies between errors. The bold numbers
in the matrices indicate the highest correlation in each row. We note that
the highest empirical lead time correlation between errors is when l and
l+1 for l = 1,...,6. This is observed in all three matrices. Furthermore,
there is little correlation between l = 0 and the reminding lead times.
This makes sense in that l = 0 was issued at the same time as it was
observed. Thus, there is little uncertainty in the ensemble forecasts for l
= 0 compared to the other lead times.

et,l

l 0 1 2 3 4 5 6 7

0 1.0 0.30 0.25 0.12 0.09 0.03 0.05 0.01
1 1.0 0.53 0.50 0.43 0.36 0.29 0.32
2 1.0 0.65 0.40 0.37 0.42 0.37
3 1.0 0.64 0.54 0.46 0.50
4 1.0 0.67 0.43 0.45
5 1.0 0.60 0.56
6 1.0 0.70
7 1.0

Table 6.3: Correlation of error between observation and the median of
the raw ensemble member forecasts; et,l = yt+l −median[xm,t,l]. The bold
numbers indicate the highest correlation in each row.
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ebma
t,l

l 0 1 2 3 4 5 6 7

0 1.0 0.30 0.27 0.16 0.09 0.02 0.05 0.03
1 1.0 0.46 0.40 0.33 0.20 0.15 0.14
2 1.0 0.58 0.35 0.23 0.25 0.16
3 1.0 0.58 0.40 0.31 0.30
4 1.0 0.60 0.38 0.33
5 1.0 0.53 0.44
6 1.0 0.63
7 1.0

Table 6.4: Correlation of error between observation and the median of the
BMA ensemble member forecasts; ebmat,l = yt+l −median[p(y|xm,t,l, θmle)].

eemos
t,l

l 0 1 2 3 4 5 6 7

0 1.0 0.29 0.26 0.15 0.08 0.02 0.04 0.03
1 1.0 0.43 0.38 0.32 0.20 0.13 0.12
2 1.0 0.57 0.32 0.22 0.23 0.16
3 1.0 0.56 0.40 0.30 0.31
4 1.0 0.58 0.34 0.30
5 1.0 0.51 0.43
6 1.0 0.62
7 1.0

Table 6.5: Correlation of error between observation and the EMOS en-
semble member forecasts; eemost,l = yt+l −median[p(y|x̄t,l, θemos)].

Furthermore, we note that the raw ensemble forecasts show overall higher
correlation between the errors than the BMA and EMOS forecasts. Lower
correlation between the errors for BMA and EMOS might have been
caused by the calibration process. Furthermore we observe that ebmat,l

shows slightly higher correlation than eemost,l between l and l+1 for l =
0,...,6. However, we note that the correlation between l and l+1 for l =
2,...,6 are stable, in that the correlation is almost the same. We there-
fore choose to focus on l = 5 and l = 6 in the parameter estimation and
evaluation part.
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Correlation coefficient

In this subsection, we apply the estimation methods, explained in sec-
tion 4.3 and 4.4, on data for l = 5 and l = 6. Table 6.6 shows the
estimates when fitting models using one year, K = 365 days, of data.
Also the estimates when fitting a models using all data, K = 1825 days,
are shown. We observe that there is correlation between l = 5 and 6. We
note that the tables list the correlation parameter, r, for BMA, and the
predictive correlation parameter, ρ, for EMOS.

r ρ

Year BMA EMOS

MLE minES MLE minES

2007 0.66 0.68 0.58 0.60
2008 0.70 0.67 0.68 0.63
2009 0.57 0.53 0.54 0.55
2010 0.78 0.74 0.64 0.68

All 0.73 0.71 0.59 0.63

Table 6.6: Correlation coefficient, ρ between l = 5 and l = 6 using one
year as training period. The bold numbers indicate the highest correlation
coefficient for each year.

Furthermore, a model is fitted using one season, K = 92 days, of data.
Table 6.7 lists r and ρ for the different seasons. Comparing the seasons, we
note that there is less correlation between the lead times during Summer
than the other seasons for both BMA and EMOS.

Assessment of bivariate predictive performance

The performance of the models is evaluated with ES, which gives a joint
assessment of calibration and sharpness. Table 6.8 lists the ES for BMA
and EMOS when fitting the model to one year of data, K = 365 days,
and applying the estimates on the next year. For example, 07 ⇒ 08 in
Table 6.8 means that all available data from year 2007 are used to fit the
model, and that the estimates are evaluated on year 2008. The bold num-
bers show the lowest ES for each year.
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r ρ

Season BMA EMOS

Winter MLE minES MLE minES

2007 0.73 0.77 0.63 0.65
2008 0.68 0.65 0.54 0.55
2009 0.91 0.89 0.74 0.76
2010 0.92 0.92 0.86 0.87

All 0.90 0.94 0.80 0.84

Spring

2007 0.66 0.63 0.62 0.63
2008 0.73 0.67 0.55 0.56
2009 0.81 0.79 0.73 0.77
2010 0.67 0.61 0.52 0.57

All 0.74 0.76 0.62 0.62

Summer

2007 0.39 0.36 0.35 0.33
2008 0.38 0.31 0.31 0.25
2009 0.25 0.26 0.15 0.22
2010 0.19 0.18 0.12 0.16

All 0.35 0.34 0.20 0.25

Autumn

2007 0.67 0.67 0.51 0.54
2008 0.77 0.74 0.67 0.71
2009 0.79 0.71 0.67 0.63
2010 0.74 0.71 0.65 0.59

All 0.85 0.83 0.63 0.68

Table 6.7: Correlation coefficient for l = 5 and l = 6 using one year as
training period. The bold numbers indicate the highest correlation coefficient
for each season and year.
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We observe than the EMOS model with minES estimates gives the lowest
ES for all years except for one. For the BMA model the estimation meth-
ods give almost the same ES. However, they are always higher than for
the EMOS model. This indicates that the EMOS model with minCRPS
estimates is the most calibrated and sharpest model.

We evaluate the seasonal fitted models by applying the parameters on
the next season, see Table 6.9. We again observe that the EMOS model
with minES estimates gives the lowest ES.

ES

Year BMA EMOS

MLE minES MLE minES

07 ⇒ 08 1.53 1.53 1.46 1.47
08 ⇒ 09 1.57 1.58 1.54 1.52
09 ⇒ 10 1.84 1.84 1.76 1.75
10 ⇒ 11 1.96 1.96 1.81 1.80

All ⇒ All 1.79 1.78 1.73 1.71

Table 6.8: ES for l = 5 and l = 6 using one year as training period. The
bold numbers indicate the lowest correlation coefficient for each year.

Figure 6.19 shows the contour plot for both seasonal BMA and EMOS
models with minCRPS estimates, applied on July 1st 2011. Here, the
models are fitted on the data of the previous summer season, the summer
of 2010. BMA makes use of a mixture distribution, in which each ensemble
member corresponds to its own component. We therefore expect contour
plots of BMA where more than one clustering is shown. However, we
observe that the contour plots for the bivariate BMA models give similar
results as for the bivariate EMOS models. This might be due to high stan-
dard deviations of the components. The same is observed in Figure 6.20,
where the models are fitted to all summer season data, K = 470 days and
applied on July 1st 2011.

75



6.4. Bivariate model 6. Case study

ES

Season BMA EMOS

Winter MLE minES MLE minES

07 ⇒ 08 1.83 1.86 1.71 1.70
08 ⇒ 09 1.86 1.86 1.78 1.79
09 ⇒ 10 2.65 2.69 2.39 2.32
10 ⇒ 11 2.56 2.54 2.37 2.39

All ⇒ All 2.09 2.06 2.04 2.04

Spring

07 ⇒ 08 1.45 1.46 1.46 1.43
08 ⇒ 09 1.58 1.57 1.56 1.53
09 ⇒ 10 1.77 1.80 1.68 1.68
10 ⇒ 11 2.32 2.30 2.21 2.20

All ⇒ All 1.71 1.71 1.63 1.62

Summer

07 ⇒ 08 1.45 1.46 1.41 1.40
08 ⇒ 09 1.42 1.39 1.28 1.24
09 ⇒ 10 1.45 1.44 1.37 1.35
10 ⇒ 11 1.78 1.78 1.48 1.42

All ⇒ All 1.55 1.55 1.37 1.35

Autumn

07 ⇒ 08 1.71 1.72 1.57 1.56
08 ⇒ 09 1.56 1.59 1.47 1.49
09 ⇒ 10 2.04 2.03 1.95 1.89
10 ⇒ 11 1.99 2.04 1.67 1.66

All ⇒ All 1.68 1.68 1.57 1.56

Table 6.9: ES for l = 5 and 6 using one season as training period. The
bold numbers indicate the lowest correlation coefficient for each season.
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Figure 6.19: a) Contour plot of BMA with minES estimates, applied on
July 1st 2011. b) Contour plot of EMOS with minCRPS estimates applied
on July 1st 2011. The model is fitted using all days of summer seasons
2010. The black dots shows the bias-corrected ensemble forecasts. The red
dot show the observation that day.
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Figure 6.20: a) Contour plot of BMA with minES estimates, applied on
July 1st 2011. b) Contour plot of EMOS with minCRPS estimates applied
on July 1st 2011. The model is fitted using all days of summer seasons be-
tween year 2007 and 2011. The black dots shows the bias-corrected ensemble
forecasts. The red dot show the observation that day.
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In this study, we have used the existing BMA [26] and EMOS [16] post-
processing techniques to obtain calibrated and sharp predictive probability
distributions for temperature forecasts. These techniques were applied to
a single weather quantity, at a single location only.

The most common method for estimation of BMA and EMOS param-
eters is the Maximum likelihood estimation (MLE) [26, 28]. This method
has been used to estimate the parameters of both BMA and EMOS mod-
els. For EMOS parameter estimation, we have also seen that minimum
CRPS (minCRPS) estimation, proposed by Gneiting et al. [16], has been
used [16, 27]. However, to our knowledge, there is only a limited number
of studies using the latter estimation method on BMA models. This moti-
vated us to compare both estimation methods for both BMA and EMOS
post-processing techniques. Hence, we evaluated four different settings to
see if any of these performed differently. These were applied on 8 different
lead times.

Furthermore, we proposed an extended bivariate BMA and EMOS model
which accounts for correlation in errors. Two different estimation meth-
ods were also applied on these models. However, minCRPS estimation
is only applicable on univariate models. Hence, we additionally proposed
the minimum ES (minES) estimation method for bivariate models. Fur-
thermore, we observed that the highest empirical lead time correlation
between error occurs when l = i and l = i+1, for l = 1,...,6. However,
only l = 5 and 6 were considered .

The BMA and EMOS models were applied on 2-m surface temperature
ensemble forecasts in Trondheim – Voll between January 2007 and De-
cember 2011, using European Center for Medium-range Weather Forecasts
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(ECMWF) ensembles. A training period of 30 days was used for the uni-
variate models. In order to get better results, longer training periods were
necessary for bivariate models. Hence, a model was fitted on one year of
data. In order to see if there was seasonal variation, we additionally used
one season to fit the model. Following Raftery et al. [26], the distribution
of forecast errors is approximated by a normal distribution.

We start by only comparing the models, suppressing that we also have
used two different estimation methods. Our results showed well calibrated
predictive pdf’s for both models. All methods outperformed the raw en-
semble forecasts. One might argue that there would be an advantage
using BMA over EMOS because BMA models utilizes all ensemble mem-
bers, while EMOS only makes use of the mean of these. Only using a single
model often leads to an underestimation of the uncertainty in the process
of the model selection. However, our results showed that both approaches
yield nearly the same predictive performance. Still, considering the PIT-
histograms, the univariate EMOS models were slightly overdispersed for
higher lead times. For lower lead times, there were indications of underdis-
persiveness. The univariate BMA model seemed to perform slightly better
than the EMOS model when only assessing the calibration. Thus, also the
BMA model shows hints of underdispersiveness. Furthermore, the EMOS
predictive standard deviation showed much more variation for higher lead
times than the BMA predictive standard deviation. Yet, CRPS, giving a
joint assessment of both calibration and sharpness, indicates that BMA
only performs slightly better than the EMOS model for a training period
of K = 30 days. When we fitted a model using all K = 1825 days, the
EMOS model yielded an overall lower score than the BMA model. For
bivariate models, we used both one year and one season as training pe-
riod. In both cases the EMOS model outperformed the BMA model. This
might be an indications that it is an advantage for EMOS models to use
longer training periods.

BMA makes use of a mixture distribution, in which each ensemble member
corresponds to its own component. We therefore expected to see contour
plots of BMA where more than one clustering is shown. However, the
contour plots for the bivariate BMA models give similar results as for the
bivariate EMOS models. This might be due to high standard deviations
of the components.
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Two different training periods for bivariate models were used. First we
fitted a model using one year of data. Further, we fitted a model using one
season of data, where the parameters became a seasonal index. In both
cases we observed that there is high lead time correlation between the
errors. Furthermore, we noted that, when fitting a seasonal model, there
is lower lead time correlation between the errors during summer than for
the other seasons.

We continue with the comparison of the estimation methods. PIT-histograms
showed very little difference in calibration between MLE and minCRPS
estimation. However, plots of predictive standard deviations, σ, indicate
that the MLE method estimates overall higher σ than minCRPS esti-
mation. This was especially observed when fitting the model using all
K = 1825 days. Furthermore, σMLE was higher in extreme situations than
σminCRPS . However, CRPS and ES showed that minCRPS and minES
performed better than MLE for univariate and bivariate models, respec-
tively. The reason for this might be that minCRPS is more robust than
MLE. The MLE method gives good estimates for perfect models, which
we do not have in our case. For univariate models, the EMOS model with
MLE estimates yields higher CRPS than both the BMA and EMOS mod-
els with minCRPS estimates. The same was observed for both training
periods for bivariate models.

Overall, in our case study, the BMA and EMOS models give very similar
results for univariate models. However, bivariate EMOS models perform
better than bivariate BMA models. Comparing the estimation methods,
minCRPS and minES estimation outperformed MLE. Hence, the BMA
model with minCRPS estimation performs best for univariate models,
when we consider a training period of K = 30. For bivariate models,
EMOS with minES estimation gives the best results.

There are several directions into which our bivariate BMA and EMOS
models could be developed. First of all, only two lead times were con-
sidered at a time. Hence, the model could also be extended to account
for multivariate correlation. Additionally, our bivariate models are only
applicable to temperature forecasts where normal distribution has been
approximated. We could therefore extend the models so that one could
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apply them to e.g. precipitation, where it seems more reasonable to ap-
proximate the conditional pdf by a gamma distribution [29]. Also more
explanatory variables, as for example air pressure, could be taken into
account in the temperature models.
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