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In changing environments, phenotypic traits are shaped by numerous agents33

of selection. The optimal phenotypic value maximizing the fitness of an indi-34

vidual thus varies through time and space with various environmental covari-35

ates. Selection may differ between different life cycle stages and act on cor-36

related traits inducing changes in the distribution of several traits simultane-37

ously. Despite increasing interests in environmental sensitivity of phenotypic38

selection, estimating varying selective optima on various traits throughout39

the life cycle, while considering (a)biotic factors as potential selective agents40

has remained challenging. Here, we provide a statistical model to measure41

varying selective optima from longitudinal data. We apply our approach to42

analyse environmental sensitivity of phenotypic selection on egg-laying date43

and clutch size throughout the life cycle of a white-throated dipper popula-44

tion. We show the presence of a joint optimal phenotype that varies over the45

35-yr period, being dependent on altitude and temperature. We also find that46

optimal laying date is density-dependent, with high population density favor-47

ing earlier laying dates. By providing a flexible approach, widely applicable48

to free-ranging populations for which long-term data on individual pheno-49

types, fitness and environmental factors are available, our study improves the50

understanding of phenotypic selection in varying environments.51

Key words: Clutch size, density dependence, egg-laying date, fluctuating52

environment, selection episode.53
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Environments, through variation in habitats, competition or predation, are heteroge-54

neous at both temporal and spatial scales. Such changes in biotic and abiotic conditions55

impose selection on wild populations (Bell, 2010), leading phenotypic traits to be con-56

stantly shaped and reshaped by the environment and numerous agents of natural selection57

(Endler, 1986). Although often ignored, population density is one of these potential selec-58

tive agents (Sæther et al., 2016). For a long time, evolution has been considered too slow59

and too weak to leave a signature in ecological dynamics (Slobodkin, 1961). However, it60

is now widely accepted that rates of evolution can be rapid and strong (Pelletier et al.,61

2007; Ozgul et al., 2009, 2010; Pemberton, 2010; Bell, 2010; Schoener, 2011). Interest-62

ingly, observations of phenotypic selection in free-ranging populations also indicate that63

evolution may vary through space (Endler, 1977; Hereford, 2009; Siepielski et al., 2013;64

Hedrick et al., 1976) and time (Bell, 2010; Siepielski et al., 2009; Morrissey and Hadfield,65

2012). A landmark case study of varying selection is the beak size variation in Dar-66

win’s finches in response to droughts. While drought events have favored large beaks well67

adapted to large seeds, high precipitation have selected for smaller beak sizes particularly68

useful for consuming small and soft seeds (Grant and Grant, 2002) such that the optimal69

phenotypic value maximizing fitness is moving as a result of fluctuating environmental70

conditions (Charlesworth, 1993; Tufto, 2015; Chevin et al., 2015).71

Chevin et al. (2015) provided a method for estimating varying phenotypic selection72

from measurements of a fitness-related trait across time. It assesses the support for73

stabilizing selection and for an optimal phenotype possibly influenced by environmen-74

tal covariates (hereafter called environmental sensitivity of selection sensu Chevin et al.75

(2010)) and random effects autocorrelated across years. Using great tits (Parus major)76

as a case study, this work showed autocorrelated variations in the optimal egg-laying77

date that maximizes the number of offspring surviving to the fledgling stage. In addition,78

the optimal date was well predicted by spring temperature. This study left some ques-79

tions unanswered, in particular how to measure varying phenotypic selection on multiple80

correlated traits and also throughout multiple episodes of selection.81

Indeed, natural selection does not operate on a single trait but acts jointly and cor-82

relatively on multiple characters, and the environment causes this complex selection to83

change in a more or less predictable way. This very fundamental and widely acknowledged84

vision of how adaptation to changing environment proceeds still fails to be detected in a85
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comprehensive way. The classical approach of Lande and Arnold (1983) allows estimating86

variation in linear and quadratic selection gradients acting on multiple traits including87

correlational selection (Phillips and Arnold, 1989b; Sinervo and Svensson, 2002) over88

time (Engen et al., 2012). This multivariate selection analysis thus provides important89

information on the direction, shape and strength of selection acting on multiple pheno-90

typic traits over time by linking relative fitness to trait values. However, relating such91

phenotypic selection gradients to environmental factors may lead to incomplete repre-92

sentations of how the environment interacts with the trait-fitness relationships (Hunter93

et al., 2018). Indeed, this variation not only reflects variation in the fitness function94

(i.e. the relationship between individual expected fitness and individual phenotype, see95

Walsh and Morrissey (2018)), but is complicated by the response to selection generated96

by the varying fitness function and phenotypic changes caused by other evolutionary97

forces. As a simple illustration, if the mean phenotype tracks a varying optimum almost98

perfectly (e.g. through plasticity), little variation in selection gradients will be detected99

using the traditional method of Lande and Arnold (1983). Conversely, an evolutionary100

force such as genetic drift will generate varying gradients, even if the fitness function101

is constant (Chevin and Haller, 2014). In other words, considering phenotypic selection102

coefficients such as selection gradients or differentials alone does not necessarily allow one103

to characterize how the fitness function has changed, because changes in the distribution104

of phenotype can change selection coefficients, independently of changes in the fitness105

function.106

Natural selection does not operate on a single episode but the strength and the di-107

rection of selection on a trait may change from one life cycle stage to another (Chevin108

et al., 2017; Engen et al., 2011). This was recognized more than thirty years ago by109

Arnold and Wade (1984) who highlighted the need to measure selection through separate110

episodes of selection across the life cycle. However, if selection is estimated separately111

for each life cycle segment as in Engen et al. (2012), this leads to a loss of parsimony112

when different episodes are similarly influenced by the same environmental covariates or113

random processes.114

Here, we analyze fluctuating fitness functions through time and space in a Norwe-115

gian white-throated dipper population (Cinclus cinclus) by extending the approach from116

Chevin et al. (2015). In particular, we explore the dynamics of selective optima through117
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time and space on two key fitness-related traits in such a small passerine (Newton, 1998),118

namely egg-laying date and clutch size. For many breeding females, information on egg-119

laying date and clutch size is available annually, thus providing the required data to120

develop a multivariate approach. We evaluate the effects of biotic and abiotic factors121

such as weather conditions, altitude and densities as well as random unobserved drivers122

on spatio-temporal variation in selective optima of the two traits. To make efficient use123

of all the data, we estimate varying phenotypic selection through several episodes of se-124

lection in a single joint model, from egg to fledgling stage (episode 1), from fledgling to125

recruit stage (episode 2) and via mother survival (episode 3), thanks to the availability126

of individual-based data from birth to death.127

Importantly, instead of modelling variation in selection gradients, we model fluctua-128

tions in the fitness function directly. Parameter estimates from our model can thus more129

easily be related to the theory on varying selection, both in time (Bull, 1987; Lande and130

Shannon, 1996; Lande, 2007; Tufto, 2015) and space (Kirkpatrick and Barton, 1997).131

While much of this theory predominantly deals with simple life histories with discrete,132

non-overlapping generations, our approach provides a statistical model for estimating133

varying selection acting in an age-structured population by applying a stochastic trait-134

dependent Leslie matrix (Caswell, 2001), including covariates such as population density.135

Further theoretical work will be needed to understand the evolutionary response to se-136

lection described by our modelling approach, through some integrated measure of overall137

lifetime fitness. Still, in our dipper case study, even in the absence of such theory, we138

find that the observed pattern in mean phenotypic trait values, qualitatively behaves as139

expected in response to our estimated spatial and temporal variation in selective optima.140

Methods141

STUDY SPECIES AND DATA COLLECTION

The studied population is located in the river system of Lyngdalselva in southern Norway142

(58°08’ - 58°40’N, 6°56’ - 7°20’E). The white-throated dipper is a short-lived passerine bird143

distributed in mountainous regions across the Palearctic. It depends on open water for144

foraging and running water for nesting. The amount of ice during the winter thus influ-145

ences the availability of feeding and breeding habitats explaining why survival and fecun-146
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dity rates are affected by mean winter temperature (temp) (December-February) of the147

whole region called Sørlandet (http://www.yr.no/sted/Norge/Vest-Agder/Audnedal/148

Konsmo~6051/klima.vinter.html) (Sæther et al., 2000; Loison et al., 2002; Nilsson149

et al., 2011a; Gamelon et al., 2017). Demographic rates are also strongly density-150

regulated and annual estimates of the number of breeding females in the population151

(variable dens) are available from a previous study (Gamelon et al., 2017). For each year152

t = 1979, 1980, . . . , 2013, all breeding sites were visited during the nest building period to153

identify breeding pairs and record occupied nests. Assuming that covariates are missing154

at random, we based the analysis on a subset of i = 1, 2, . . . , 546 breeding events with155

non-missing covariates out of a total of 1880 observed breeding events. The altitude (alti)156

(ranging from sea level to an altitude of about 600m above sea level) and the identity of157

each breeding territory (k = 1, 2, . . . , 167) were recorded. During visits in the breeding158

season, ringed mothers were identified and unringed mothers given a ring to allow future159

identifications (j = 1, 2, . . . , 375). For each breeding pair, the egg-laying date (date of160

first egg laying) and the clutch size (y0i) was determined (Nilsson et al., 2011b). We161

express egg-laying date as the number of days elapsed since 1st of March (zi). On av-162

erage, twenty-two days later, fledglings that had survived were ringed and their number163

recorded (y1i). Finally, the next season, that is, on average 343 days later, a number y2i164

of ringed fledglings were recorded as recruited to the breeding population if they were165

caught breeding. Mothers caught again breeding the following year were recorded as166

having survived (y3i = 1); otherwise, they were considered as dead (y3i = 0) (Fig. 1).167

Therefore, survival on episodes 2 and 3 (p2i and p3i) correspond to apparent survival, i.e.168

the probability for a female to survive and stay in the population until the next breeding169

season. Survival on the first episode (p1i) corresponds to true survival, because there170

is no possible dispersal during the first episode. Note that the annual recapture rate is171

high during the studied period, ranging between 88 and 92% (estimates obtained in a172

previous work (Gamelon et al., 2017)), meaning that virtually all the females alive were173

caught breeding. Moreover, age of the mothers (ai) was determined. The oldest breeding174

female recorded in our population was 10 years of age. Note that multiple-clutching was175

sometimes observed in that population. Thus, we also recorded the total number of eggs176

produced by a female a given year.177
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Figure 1: Dipper life cycle. Episode 1 corresponds to the episode from egg to fledgling stage (in red),

episode 2 from fledgling to recruit stage (in green), and episode 3 corresponds to adult female stage (in

blue).

STATISTICAL MODEL

Using the above data, our aim is to estimate varying selective optima, extending the178

method of Chevin et al. (2015) to multiple traits (individual laying dates and clutch179

sizes) and to multiple episodes of selection (egg-to-fledgling survival s = 1, fledgling-180

to-recruit survival s = 2, and adult female survival s = 3) through associated survival181

probabilities psi, s = 1, 2, 3 (Fig. 1). A more technical discussion of other differences182

from the Chevin et al. (2015) method is given in Appendix A.1. We emphasize that183

our model of stabilizing selection does not necessarily imply a fitness optimum within184

the range of observed phenotypic values in any particular generation. Instead, as in185

theoretical models such as Lande and Shannon (1996); Hansen (1997); Bürger (1999),186

overall individual fitness is a strictly decreasing function on both sides of some optimal187

trait value possibly located outside this range. The particular model we implement, at188

least when survival is low such that the model becomes approximately Gaussian, also189
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implies that selection acts to reduce the phenotypic variance and that selection gradients190

(sensu Lande and Arnold, 1983) change linearly with the distance from the assumed191

optimum.192

Before describing in detail how we implement stabilizing selection, we describe more193

generally how covariates and random effects (some of which induce varying selection)194

need to enter into the model given that the different episodes differ in duration. As195

recommended by Ergon et al. (2017), we model all three survival probabilities psi only196

indirectly via effects of covariates and random effects on the hazard function. More197

specifically, we allow a non-constant hazard (instantaneous mortality rate) with respect198

to age but assume that covariates and random effects act with a constant multiplicative199

effect on this rate (via a log link) within each episode of selection. Thus, the hazard for200

an offspring or an adult female at age a is201

λsi(a) = λ0(a) exp(ηsi). (1)

Here, ηsi is a (non-linear) predictor containing fixed and random effects on the hazard202

associated with the i’th breeding event during selection episode s = 1, 2, 3, and λ0(a) is a203

baseline hazard affecting all individuals, possibly varying with age a within each interval.204

The survival probabilities associated with each of the three episodes of selection are given205

by206

psi = exp
(
−
∫ as

as−1

λ0(a) exp(ηsi) da
)

= exp
(
− exp(ηsi)λ̄s(as − as−1)

)
,

(2)

where as−1 and as is the age at the beginning and end of selection episode s. Note how λ̄s207

is the mean of the possibly non-constant baseline hazard λ0(a) during selection episode208

s.209

To model selection on the laying date zi and on clutch size y0i, we in turn assume that210

the (time-averaged) hazard of individual i during each selection episode has the form211

exp(ηsi)λ̄s = exp

(
η
(β)
si +

1

2ω2
s

(zi − η(θ)si )2
)
. (3)

with the parameter ωs determining the rate of proportional increase in the hazard with212

increasing deviations of the phenotypic laying date zi from the optimal laying date η(θ)si .213

ωs thus corresponds to the width of the fitness peak (smaller ωs causes stronger stabilizing214
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selection). Here215

η
(θ)
si = θ0s + θdens,sdensi + θtemp,stempi + θalt,salti + ζti (4)

is a linear sub-predictor determining the optimal laying date during episode s containing216

possible effects of environmental covariates such as population density (densi), winter217

temperature (tempi) and altitude (alti) as well as a random effect term ζt as in Chevin218

et al. (2015). Similarly,219

η
(β)
si = β0s + βclutchsize,sy0i

+ βtemp,stempi + βdens,sdensi + βalt,salti + βage,sai

+ σsuti + τsvki + κswji + xai,s

(5)

is another linear sub-predictor determining the hazard at the optimal laying date con-220

taining effects of covariates as well as a number of random effects (details are given in221

the next 4 paragraphs and Appendix A.1). The above regression coefficients must not222

be confused with the selection gradient β as defined by Lande and Arnold (1983). All223

parameters possibly differ between episodes s = 1, 2, 3, but can also be constrained to the224

same value for different subsets of episodes. Importantly, this facilitates the formulation225

of more parsimonious model alternatives in cases where the evidence for any difference226

between episodes is small. Note that the log of mean baseline hazard has been absorbed227

in the possibly episode-dependent intercept β0s = ln λ̄s in (5).228

Before going through the details of the linear predictors in 4 and 5, note first that229

the expected number of recruits produced by a given female (the fecundities fa in the230

first row of a pre-breeding census Leslie matrix), assuming that a single clutch is laid, are231

given by products of clutch size y0 and the survival probabilities for the two first episodes232

of selection fa(y0i, zi) = y0ip1ip2i. These fecundities are important fitness components233

and correspond to the number of young produced during the breeding season in year t234

that have survived until the next year t+ 1 (see Fig. 1). Even without a quadratic effect235

of clutch size in (5), provided that increasing clutch sizes translates to a reduction in236

overall survival during episodes s = 1 or 2 (βclutchsize,s sufficiently positive), it follows that237

these fecundities are maximized for some intermediate clutch size, as expected through238

the trade-off between offspring number and offspring survival (Smith and Fretwell, 1974).239

Note that the model may predict an optimum located outside the range of observed240

phenotypic values. Thus, our model specifies a joint optimum for the two phenotypic241
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traits laying date and clutch size for which fa(y0, z) is maximized. To obtain a more242

standard measure of the strength of stabilizing selection acting jointly on both traits, we243

evaluated the matrix of second derivatives of ln fa(y0, z) at the joint optimum to obtain244

the parameters of the Gaussian approximation of the fitness function (appearing in many245

theoretical models, e.g. Phillips and Arnold (1989a); Chevin (2013); Tufto (2017)). We246

report the widths ωy0 and ωz of this approximation with respect to each trait (in units247

of number of eggs and number of days, respectively), analogous to standard deviations248

of Gaussian distributions.249

Temporal covariates and temporal random effects appearing in 4 and 5 translate to250

variation from year to year in the optimal laying date and clutch size, respectively. To251

model possibly correlated fluctuations in the joint optimum as in Chevin (2013) as well252

as autocorrelation across time (as in Lande and Shannon, 1996; Lande, 2009; Tufto, 2015;253

Chevin et al., 2017), the random effects representing yearly variation in overall survival254

ut (5) and variation in the optimal laying date ζt (4) are assumed to follow a first-order255

vector autoregressive VAR(1) process256 ut
ζt

 = Φ

ut−1
ζt−1

+ wt, (6)

where Φ is a 2×2 matrix of autoregressive coefficients and wt is bivariate normal N(0,Σ)257

white noise. This only specifies the autocorrelation matrix function (see Wei, 2006, ch.258

16.1) of the process (ut, ζt). But as long as the variance of ut is small, optimal clutch size259

will be approximately linearly dependent on ut and so the autocorrelation matrix function260

of the joint optimal clutch size and laying date will be almost identical to that of (ut, ζt).261

Correlation between ut and ζt can arise either through Σ, Φ or both having non-zero262

off-diagonal entries. If Φ and Σ are both diagonal, this simplifies to two independent263

AR(1) processes and if all entries of Φ are zero, ut and ζt are simple independent and264

identically normally distributed (iid) white noise processes. We parameterize this part265

of the model in terms of Φ, the white noise correlation ρ = Σ12/
√

Σ11Σ22, the stationary266

variance σ2
ζ of ζt, and with the stationary variance of ut in (5) set equal to one but with267

separate parameters σs representing the potentially different effects of ut on the three268

selection episodes. Note also that additional correlation in variation of the joint optimum269

as well as autocorrelation across time can be induced through the temporal fixed effect270

covariates appearing in each linear predictor.271
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Correlated optima discussed above are distinct from correlational selection. Two kinds272

of correlational selection can be accommodated in our non-Gaussian model for fa(y0i, zi),273

either by adding ziy0i as a covariate in (5) making the optimal clutch size dependent274

on laying date (first kind), or by adding clutch size y0i as an additional covariate in (4)275

making the optimal laying date dependent on clutch size (second kind).276

To model the effect of the age of breeding female, we consider models where the log277

hazard during the different episodes is either independent of age (a single term β0,s in (5)),278

linearly dependent on age (an additional term βage,sagei in (5)) or non-linearly dependent279

on age. Instead of modelling non-linear age-dependence parametrically (using for example280

quadratic, Gompertz, piecewise linear or two-parameter Weibull models (Gaillard et al.,281

2004; Marzolin et al., 2011)), we use a non-parametric approach: we model the age effects282

through a set of correlated random effects, more precisely as a second-order random283

walk. This is a commonly used method for smoothing data and modelling response284

functions (Green and Silverman, 1994; Rue and Held, 2005). It provides a simple and285

flexible way to model the hazard variations as a function of age, and thus to explore286

senescence. Under the second order random walk model, the joint distribution of the age287

effects xs,1, xs,2, . . . , xs,10 (last term in (5), Fig. 2, upper plot, blue curve) is specified by288

assuming that the second order differences ∆2xs,a are independently normally distributed289

with zero mean and variance νs. The parameter νs (estimated along with the random290

age effects themselves) thus controls the magnitude of these second order differences291

(analogous to the second order derivative) and hence the smoothness of the resulting292

function. Further details on the implementation of the model and the two last random293

effects terms appearing in 5 are given in Appendix A.1.294

Apart from the non-linear predictor, our model based on the assumption of multi-295

plicative effects on the hazard corresponds to a generalized linear mixed model with a296

log-log link (or complementary log-log) function with the log of the length of the se-297

lection episode included as an offset variable. Surprisingly, this link and its associated298

assumption of multiplicative effects on the hazard is rarely used in ecology and evolu-299

tion. However, this is a standard assumption in many models in survival analysis (Ergon300

et al., 2017), for example in Cox proportional hazards model, and seems more reasonable301

from a biological point of view. We must point out, however, that the magnitude of302

the variation in optimal clutch size induced by temporal covariates and random effects,303
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depends, to some extent, on our choice of link function. For the alternative logit link, the304

induced variations implied by the model would have been somewhat smaller and would305

go to zero in the limit of low survival where the logit tends to a log link. The logit and306

other link functions such as the probit, however, would not lead to regression coefficients307

having a common interpretation across episodes of selection of different length (Ergon308

et al., 2017). Hence, those link functions would not facilitate the fitting of sometimes309

more parsimonious null models for which these regression coefficients are constrained to310

a common value across several selection episodes.311

Table 1: Parameters estimated with the best model retained (Table 2). Displayed are the meaning of the

parameters, their notations and their estimates (± standard errors) for the three episodes of selection.

Selection episode

Parameters Egg to fledgling Fledgling to recruit Adult female

Meaning Symbol s = 1 s = 2 s = 3 Unit

Intercept, mortality β̂0,s 1.95± 0.40 0.66± 0.28 0

Effect of clutch size on mortality β̂clutchsize,s −0.170± 0.080 0.076± 0.055 0

Effect of winter temperature on mortality β̂temp,s 0 0 −0.243± 0.035 ◦C−1

Effect of population density on mortality β̂dens,s 0 0 0.0096± 0.0028

Effect of altitude on mortality β̂alt,s 0.00053± 0.00028 0.00053± 0.00028 0 m−1

Intercept, optimal egg-laying date θ̂0,s 40.9± 9.6 42.1± 5.5 0 d

Effect of population density on optimal date θ̂dens,s −0.41± 0.14 −0.41± 0.14 0 d

Effect of winter temperature on optimal date θ̂temp,s 0 8.9± 3.5 0 d ◦C−1

Linear deterministic trend on optimal date θ̂t,s −1.37± 0.59 −1.37± 0.59 0 d year−1

Effect of altitude on optimal date θ̂alt,s 0.100± 0.029 0.100± 0.029 0 d m−1

Quadratic effect of egg-laying date ω̂s 45± 12 45± 12 0

SD of random year effect σ̂s 0 0.144± 0.050 0.144± 0.050

SD of random territory effect τ̂s 0.180± 0.054 0.180± 0.054 0.180± 0.054

Beta-binomial dispersion parameter γ̂s 1.879± 0.137 1.093± 0.085

SD of second order random age effect ν̂s 0 0 0.36± 0.17

Results and discussion312

Our statistical model applied to the dipper allows us to select the most parsimonious313

model (Table 1) among all the tested ones (Table 2). In this section, we explore in detail314

all the effects retained in the best model and discuss their implications.315
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Table 2: Model selection - Displayed are all the tested models derived from the best model retained, the
difference ∆AIC (respectively ∆p) in AIC (respectively in number of parameters p) between each model
and the best one and their description. Subscripts indicate the selection episode under consideration,
i.e. 1 for the first episode from egg to fledgling stage, 2 for the second episode from fledgling to recruit
stage and 3 for the third episode corresponding to the adult stage.

∆AIC ∆p Description
A 0 0 Best model, see Table 1
B 2.44 2 βage,1 6= 0, βage,2 6= 0 (different linear age effect for episodes 1 and 2)
C 1.97 1 βage,1 6= 0 (linear age effect for episode 1)
D 0.66 1 βage,1 = βage,2 6= 0 (common linear age effect for episodes 1 and 2)
E 0.49 1 βage,2 6= 0 (linear age effect for episode 2)
F 0.94 1 β#eggs,3

G 1.96 1 φ11 6= 0 (ut ∼ AR(1))
H 2 1 σζ > 0 and φ12 6= 0 (ut dependent on ζt-1)
I 2.97 2 βclutchsize/date,1 6= 0, βclutchsize/date,2 6= 0 (correlational selection of first kind)
J 1.56 1 βclutchsize/date,1 = βclutchsize/date,2 6= 0 (correlational selection of first kind)
K 16.73 -6 Remove stab. sel. on z (quadratic term in eq. 3) for episodes 1 and 2
L 0.5 1 ω1 6= ω2 (strength of stabilizing selection different for episodes 1 and 2)
M 2.02 1 θ0,3 6= 0 (stabilizing selection for episode 3)
N 5.73 -1 θt = 0 (remove trend in optimal laying date)
O 1.21 1 θclutchsize,1 = θclutchsize,2 6= 0 (correlational selection of second kind)
P 2 1 σζ > 0 (random effect on optimal laying date)
Q 4 2 σζ > 0 and φ22 6= 0 (ζt ∼ AR(1))
R 3.93 2 σζ > 0 and φ21 6= 0 (ζt dependent on ut−1)
S 9.06 -1 θtemp,2 = 0 (remove temperature effect on optimal laying date)
T 7.31 -1 θdens,1 = θdens,2 = 0 (remove density effect on optimal laying date)
U 9.88 -1 θalt,1 = θalt,2 = 0 (remove altitude effect on laying date)
V 16.9 0 All age effects modelled as second order random walks
W 2.48 -2 βclutchsize,1 = βclutchsize,2 = 0
X 45.88 -1 βtemp,3 = 0
Y 0.7 1 βtemp,2 6= 0
Z 24.39 0 βtemp,2 = βtemp,3

AA 10.39 -1 βdens,3 = 0
AB 1.46 1 βdens,2 6= 0
AC 0.98 1 βdens,1 6= 0
AD 11.62 0 βdens,1 6= 0, βdens,3 = 0
AE 14.34 0 βdens,1 = βdens,3 6= 0
AF 7.71 0 βdens,2 = βdens,3

AG 12.36 0 βdens,2 6= 0, βdens,3 = 0
AH 10.4 0 βdens,1 = βdens,2 = βdens,3

AI 2.66 2 βdens,1 6= 0, βdens,2 6= 0, βdens,3 6= 0
AJ 1.88 -1 βalt,1 = βalt,2 = 0
AK 2.9 1 βalt,1 = 0, βalt,3 6= 0
AL 1.97 1 βalt,1 6= 0, βalt,2 6= 0
AM 1.97 1 βalt,3 6= 0
AN 3.41 0 βalt,2 = 0
AO 0.94 0 βalt,1 = 0
AP 2.11 0 βalt,1 = 0, βalt,2 = βalt,3 6= 0
AQ 3.74 0 βalt,1 = βalt,2 = 0, βalt,3 6= 0
AR 1.27 0 βalt,1 = βalt,2 = βalt,3

AS 3.95 2 βalt,1 6= 0, βalt,2 6= 0, βalt,3 6= 0
AT 1.03 1 βclutchsize/date,1 6= 0 (correlational selection of first kind)
AU 2 1 βclutchsize/date,2 6= 0 (correlational selection of first kind)
AV 2.13 1 θ0,1 6= 0, θ0,2 6= 0, θ0,3 6= 0
AW 1.99 1 θt,1 6= θt,2
AX 2.14 2 θclutchsize,1 6= 0,θclutchsize,2 6= 0 (correlational selection of second kind)
AY 2.03 0 θdens,1 = 0
AZ 7.54 0 θdens,2 = 0
BA 1.44 1 θdens,1 6= 0, θdens,2 6= 0
BB 2.96 0 θalt,1 = 0
BC 11.38 0 θalt,2 = 0
BD 1.32 1 θalt,1 6= 0, θalt,2 6= 0
BE 1.99 1 σ2 6= 0, σ3 6= 0
BF 2 1 σ1 6= 0, σ2 = σ3 6= 0
BG 4 2 σ1 6= 0, σ2 6= 0, σ3 6= 0
BH 2.26 2 τ1 6= 0, τ2 6= 0, τ3 6= 0
BI 1.8 1 τ1 6= 0, τ2 = 0, τ3 6= 0
BJ -0.18 0 τ1 = τ3 6= 0,τ2 = 0
BK 0.28 1 τ1 = τ3 6= 0, τ2 6= 0
BL 5.2 3 κ1 6= 0, κ2 6= 0, κ3 6= 0
BM 3.2 2 κ1 = 0, κ2 6= 0, κ3 6= 0
BN 1.4 1 κ1 = κ3 = 0, κ2 6= 0
BO 1.28 1 κ2 = κ3 6= 0, κ1 = 0
BP 3.96 2 σζ > 0 and φ11 6= 0 and φ22 6= 0 (ut and ζt ∼ AR(1))
BQ 4 2 σζ > 0 and φ12 6= 0 and φ21 6= 0
BR 7.96 4 σζ > 0 and φ11, φ12, φ21 and φ22 6= 0
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AGE EFFECTS ON SURVIVAL

The best model indicates no effect of mother age on offspring survival from egg to fledgling316

stage (episode 1) and from fledgling to recruit stage (episode 2) (see last row in Table 1,317

Fig. 2). Considering for instance a linear effect of female age on offspring survival does318

not improve the model fit (models B to E, Table 2). Indeed, model B that includes a319

different linear age effect for episodes 1 and 2 provides estimates not significantly different320

from zero (β̂age,1 = −0.009± 0.039 for episode 1 and β̂age,2 = −0.029± 0.024 for episode321

2). Because the probability of rearing a chick is independent of mother age, our findings322

indicate no senescence in maternal care. Note also that we do not detect senescence in323

clutch size (results not shown here). Mean survival on the first episode is close to 83%324

and drops around 7% on the second episode (Fig. 2). This high mean survival on episode325

1 compared to episode 2 (about 10 times higher) simply results from the much longer326

duration of the second episode. At the adult stage (episode 3), survival is age-dependent,327

increasing from age 1 to 4 and decreasing from age 4 onwards. This result indicates328

actuarial senescence (Fig. 2), caused by a progressive loss of cellular and physiological329

functions late in life (Williams, 1957; Hamilton, 1966). Senescence is pervasive in the wild330

(Nussey et al., 2013), and we provide here additional evidence in a short-lived species.331

ENVIRONMENTAL EFFECTS ON SURVIVAL

As expected for this species that strongly depends on open water for foraging, warmer332

winters favor adult survival (see third row in Table 1). Therefore, adult females are333

more likely to survive, stay and breed the next breeding season in the population when334

the winters are mild. Apparent survival from fledgling to recruit stage is not affected335

by winter temperatures (model Y, estimate = 0.043 (SE: 0.042)). In accordance with336

previous studies (Gamelon et al., 2017; Nilsson et al., 2011a; Sæther et al., 2000; Loison337

et al., 2002), high population density increases competition among individuals and thus338

mortality (and possibly dispersal rate), especially at the adult stage (see fourth row in339

Table 1). Including an effect of density on survival on other episodes does not improve340

the model fit (models AA to AI, Table 2). However, it is noteworthy that a model341

including an additional effect of density on episode 1 is close to the best model (model342

AC), but the low effect size indicates no density-dependent mortality on this first episode343

(β̂dens,1 = −0.003 ± 0.003). We thus do not find any evidence for density-dependent344
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Figure 2: The log of the hazard (per year) (upper plot) and the resulting probability of surviving each

episode (lower plot) as a function of mother age. Mean hazard and survival are computed at optimal

egg-laying date and at the most frequent clutch size (5 eggs), at mean altitude, population density and

winter temperature for each episode.

mortality at the offspring stage, contrary to some other passerine bird species such as345

great tit (Reed et al., 2013a; Sæther et al., 2016) for which low densities are generally346

associated with high offspring survival. Notice also that high altitudes negatively affect347

offspring survival from egg to fledgling stage and also from fledgling to recruit stage (see348

fifth row in Table 1).349

SURVIVAL AND VARYING SELECTIVE OPTIMA FOR CLUTCH SIZE

Mortality on episode 1 decreases in large clutches (see second row in Table 1, first axis350

on Fig. 3A). However, because of high overall survival during the first short selection351

episode, this does not translate to strong selection for large clutch sizes. Low mortality352

on episode 1 in large clutches also means that females with large clutches have offspring353

with the highest survival in the nest. This suggests individual heterogeneity, with some354
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Figure 3: Estimated A) survival rate on episode 1 (from egg to fledgling stage, in red), B) survival rate

on episode 2 (from fledgling to recruit stage, in green), and C) total fecundity rate (i.e. total survival

rate from egg to recruit stage x clutch size, in black) as a function of egg-laying dates and clutch sizes.

Mean vital rates are computed at average altitude, population density and winter temperature. The red

cross indicates mean clutch size and mean egg-laying date observed during the study period. The minor

tick marks are at the 10th, 20th and 30th of each month.

females performing better than others in terms of reproductive success. It is noteworthy355

that females that lay a large number of eggs, not only during a given breeding event but356

generally during the whole breeding season, do not pay direct survival costs. Indeed,357

adding a term for the effect of the total number of eggs laid during the whole breeding358

season in (5) does not provide any improvement as indicated by model F (Table 2, β̂eggs,3 =359

−0.062± 0.061). For episode 2, the best model indicates that large clutch sizes increase360

mortality (Table 1, Fig. 3B). This might be due to malnutrition and reduced parental361

care (Noordwijk et al., 1980). As a result of lower survival during the second episode,362

this translates to overall survival over the two first episodes combined decreasing with363

increasing clutch size. Therefore, laying too many eggs is associated with increasing364

offspring mortality. But obviously, laying too few eggs is not a successful breeding tactic365

for a female either (Lack, 1954; Boyce and Perrins, 1987; Both et al., 2000). Here,366

we provide evidence for an optimal clutch size maximizing offspring survival and more367

generally overall fecundity rate estimated to be 6.69 eggs. The width of the fitness368

function with respect to clutch sizes, ωy0 , is estimated to be between 4.89 and 5.89 eggs369

in different years, being approximately proportional to the optimum in any given year.370

The fitness function is also somewhat asymmetric with respect to clutch size (Fig. 3C).371

This high value for the width of the fitness function indicates weak stabilizing selection372
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Table 3: Observed frequencies of different clutch sizes in the population.

Clutch size 0 1 2 3 4 5 6 7

Frequency 57 1 52 69 186 636 192 4

for optimal clutch size, as also illustrated in Fig. 3C.373

We find that this optimal clutch size varies through time between 6.19 and 7.53 eggs374

(Fig. 4A). This agrees quite well with observed clutch sizes in the population, mainly375

ranging between 4 and 6 eggs (Table 3). The mean observed clutch size of 4.52 eggs is376

somewhat smaller than the estimated overall optimum. However, this observed mean is377

influenced by the left tail of the frequency distribution, which might reflects total failure378

of some females. Interestingly, the observed mean clutch size maximizes total fecundity379

rate (Fig. 3C).380

According to our model, the temporal variation in optimal clutch size is induced by381

random variations in survival during episode 2 modelled by the random effect term σ2ut382

in (5) (σ̂s = 0.144±0.050 for episode s = 2, Table 1) such that larger clutches turn out to383

be favoured in years with high survival. Modelling ut as an autoregressive process does384

not improve the model (Table 2, model G), that is, we find no evidence for autocorrelation385

in these variations.386

Finally, the models including correlational selection between egg-laying date and387

clutch size on maximum survival on the first two episodes do not perform better than388

the best model (models I and J, Table 2). There is thus no evidence for correlational389

selection between clutch size and egg-laying date on offspring survival.390

It should be noted that we have treated clutch size as a trait on which selection391

operates, rather than as a fitness component. This is reasonable because in many bird392

populations, recruitment (function of clutch size) has a limited influence on the popula-393

tion growth rate (see Sæther et al. (2016) for a comparative analysis). Instead, a large394

proportion of the temporal variance in population change of temperate passerines is due395

to variation in survival (Gould and Nichols, 1998; Sæther et al., 2004), dipper being no396

exception (Loison et al., 2002). It is therefore relevant not to consider clutch size as a397

fitness component but rather as a trait under selection.398
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SURVIVAL AND VARYING SELECTIVE OPTIMA FOR EGG-LAYING DATE

We find that egg-laying date is under stabilizing selection. Indeed, removing stabilizing399

selection in (3) for episodes 1 and 2 does not provide any improvement in AIC (model K,400

Table 2). Interestingly, ωs, that determines the strength of stabilizing selection, is similar401

for episodes 1 and 2 (see eleventh row in Table 1). Indeed, estimating two different values402

(ω̂1 = 33.37± 9.1 and ω̂2 = 49.11± 12.8) does not improve the model fit (model L, Table403

2). Given the much longer duration of episode 2, however, most of the selection happens404

during this episode. The approximate width of the overall fitness function ωz varies405

between 27.76 and 32.01 days reflecting strong stabilizing selection on egg-laying date,406

as illustrated in Fig. 3C. Adding stabilizing selection for episode 3 does not improve the407

model fit (model M, Table 2), meaning laying eggs early or late in the breeding season408

has no effect on mother survival. In contrast, in a tropical parrot, the green-rumped409

parrotlet (Forpus passerinus), there is strong selection on egg-laying date through adult410

survival, such that females that breed early in the season exhibit lower survival to the411

next breeding season (Tarwater and Beissinger, 2013). This discrepancy between our412

finding and Tarwater and Beissinger (2013) might be explained by the contrasting life413

history strategies of these two species. Indeed, parrotlets have a much slower pace of life414

than the dipper. In slow-living species, adult survival has the highest contribution to415

population growth rate and is thus expected to be particularly canalized (Gaillard and416

Yoccoz, 2003). This explains why viability selection is important in slow-living species like417

parrotlets compared to short-lived species such as dipper. As a consequence, our results418

indicate that the strong stabilizing selection on egg-laying date operates only through419

offspring survival.420

The timing of egg laying and more generally the timing of reproduction is critical421

in many species (Price et al., 1988) because hatching/birth should match with good422

environmental conditions in terms of weather and/or food resources. Otherwise, offspring423

survival may be jeopardized. Our findings provide evidence for an optimal laying date in424

the dipper with an overall mean egg-laying date maximizing survival from egg to fledgling425

stage estimated to be θ̂0,1 = 40.9±9.6 days after the 1st of March (i.e. mid-April, Fig. 3A,426

see sixth row in Table 1) and with an overall mean egg-laying date maximizing survival427

from fledgling to recruit stage estimated to be θ̂0,2 = 42.1±5.5 days after the 1st of March428

(Fig. 3B, Table 1). This translates to a mean egg-laying date maximizing total fecundity429
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rate estimated to be April 12 (Fig. 3C). This mean optimal date is slightly earlier than the430

mean laying date actually observed over the study period (April 22 for n = 741 clutches431

for which information on egg-laying date was available, second axis, Fig. 3C).432

Observed egg-laying dates have advanced at a rate of 0.15 ± 0.07 days/year during433

the 35-year period (Fig. 4B, grey dots). Interestingly, we find a significant trend towards434

earlier optimal dates at a rate of θ̂t,s = 1.37 ± 0.59 days/year (Table 1). Removing the435

trend worsens model fit considerably (model N, Table 2). This estimate seems somewhat436

large and would imply an advance in the optimum of 47 days over the course of the study.437

The lower confidence limit of 7.24 days for this advance (based on approximate normality438

of θ̂t,s) seems more reasonable and comparable to the observed phenotypic change of 8.8439

days on average (ranging from 4 to 17 days), recorded in other bird populations over a440

25-year period (Crick et al., 1997).441

Importantly, in addition to the linear trend, the estimated optimal laying date (at the442

average altitude) varies over years between February 8 and May 24 (Fig. 4B, black line)443

as a result of the effects of winter temperature and population density. Removing the444

effect of environmental covariates on the optimal laying date worsens model fit (models S445

and T, Table 2) thus providing strong evidence for environmental sensitivity of selection.446

In particular, when the winter following the breeding season is warm, the optimal laying447

date maximizing survival from fledgling to recruit stage (i.e. episode 2) is delayed by448

θ̂temp,2 = 8.9± 3.5 days/°C (see eighth row in Table 1). One can hypothesize that when449

the subsequent winter is mild, offspring produced at late laying dates during the previous450

breeding season are disproportionately more likely to survive, thus generating selection451

for later laying dates. While including the same effect of winter temperature on the452

optimal laying date of episode 1 led to a slight improvement in AIC, such a model would453

clearly be biologically unrealistic as survival on episode 1 has to be causally independent454

of the following winter conditions (Fig. 1). This model alternative was thus excluded455

from consideration (see Burnham and Anderson, 2002, ch. 6.8.7). Under our best model,456

different optima for episodes 1 and 2 are therefore estimated (Fig. 4B, red and green457

curves). The overall optimum (black curve) is approximately an average of the optima458

for each of the two episodes, weighted by the respective strength of stabilizing selection for459

each episode (this approximation would be exact if the fitness functions for each episode460

were exactly Gaussian). Indeed, as can be seen from Fig. 4B, the overall optimum always461
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Figure 4: Estimated annual optimal clutch size (plot A) and laying dates (plot B) for the best model

(Table 1). In plot B, the red and green curves are the estimated optimal laying dates in terms of survival

during episodes 1 and 2, respectively, and the black curve the optimal laying date for both episodes

combined. Note that the overall optima (black curve) nearly coincide with the optima of the episode 2.

All optima are estimated at the average altitude and for the most frequent clutch size (5 eggs). Grey lines

represent mean phenotypic values and the size of the grey dots the frequencies of different phenotypes

in the total population. The minor tick marks in plot B are located as in Fig. 3.

falls between the green and red curve but much closer to the green curve given the much462

stronger stabilizing selection during episode two.463

Interestingly, previous studies on other passerine bird species have shown that selec-464

tion on egg-laying date often depends on the timing of the peak in caterpillars, the main465

food resources, itself closely related to spring temperatures (e.g. in great tits, (Chevin466

et al., 2015; Visser et al., 2006; Reed et al., 2013b)). Here, we do not find statistical evi-467

dence for the effect of spring conditions (date of ice break-up) on the optimal egg-laying468
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date. Based on the upper confidence limit, the regression coefficient is considerably469

smaller than its expected value (see Appendix A.2), suggesting that other environmental470

factors are more important for the dipper´s optimal laying date. This discrepancy be-471

tween our findings and previous works may be explained by the difference in the biology472

of these species. While great tit strongly depends on insect availability during spring,473

food resources are available on a larger time window (over spring and summer) for the474

dipper.475

We also find that optimal egg-laying date is density-dependent, with high densities476

favoring earlier optimal date (see seventh row in Table 1). Despite a large amount of the-477

oretical and experimental works on the role of density as a selective agent (Charlesworth,478

1994; Engen et al., 2013; De Lisle and Rowe, 2013; Shaw, 1986), empirical evidence in the479

wild remains scarce (but see Sæther et al. (2016) for great tits Parus major and Hunter480

et al. (2018) for Soay sheep). In green-rumped parrotlets for instance, late breeding dates481

are selected for when the density is low, through enhanced adult survival (Tarwater and482

Beissinger, 2013). Similarly, a recent study has shown that in North American red squir-483

rels (Tamiasciurus hudsonicus), high population densities might increase the strength of484

selection for earlier birth dates (Fisher et al., 2017), favoring successful recruitment for485

juveniles. Here, our findings provide additional support for a key role of density as a486

selective agent in the wild.487

Having included the temporal covariates winter temperature and population density,488

we do not find any latent variations in optimal laying date as indicated by the lack of489

improvement in AIC when including ζt (corresponding to random variation in the optimal490

laying date) as a iid random effect (model P, Table 2). We also considered including ζt491

distributed as an AR(1) process (φ22 6= 0, model Q), cross-correlated with ut−1 (corre-492

sponding to variation in overall survival) (φ21 6= 0, model H) or cross-correlated with ut+1493

(φ12 6= 0, model R) but neither of these model alternatives led to any improvement in494

AIC.495

Through their estimated joint effect on the optimal laying date, winter temperature496

and population density induce autocorrelation on the deviations of the optimal laying497

dates from the estimated linear trend. For episode 1, only influenced by population498

density and no additional latent random process, the autocorrelation function of the499

optimum is identical to that of population density, with a significant autocorrelation of500
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0.58 at lag 1 (Figure A.3). For episode 2, despite also being influenced by population501

density in addition to winter temperature, the resulting optimum given by θ̂dens,2denst +502

θ̂temp,2tempt exhibited no significant autocorrelation, mainly because of the larger effect503

of winter temperature (exhibiting no autocorrelation, Fig. A.2) accounting for 75% of504

the total variance in the optimum. Since the optimal laying date for episodes 1 and 2505

combined almost coincides with the optimum for episode 2 (Fig. 4B, black and green506

curves), the same applies to the corresponding autocorrelation function.507
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Figure 5: Estimated optimal (black line) and observed mean (grey line) egg-laying dates as a function of

altitude (mean centered), together with observed egg-laying dates (grey dots). Dot sizes illustrates the

number of individuals exhibiting the same laying date at a given altitude. Estimated optimal egg-laying

dates are computed at average population density and winter temperature. The minor tick marks are

located as in Fig. 3.

Finally, in addition to the dependency on winter temperature and population density,508

we find that optimal and observed egg-laying dates depend on altitude (model U, Table509

2), occurring later at high altitudes (see tenth row in Table 1, black line on Fig. 5).510

This result gives clear support for spatial variation in phenotypic selection and provides511

empirical evidence for adaptation along an environmental gradient. To what extent this512

can be explained by the altitudinal gradient in temperatures would require fine-grained513

data on local temperature, unfortunately not available. Interestingly, the slope in the514

mean phenotype based on the egg-laying dates in the complete data (grey line in Fig. 5,515
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n = 741) is significantly shallower than the estimated slope in the optimum (black line516

in Fig. 5, one sided Z-test, p-value = 0.041). Thus, laying tends to occur too late at517

low altitudes and too early at high altitude relative to the estimated optimal laying date.518

This suggests maladaptation at the extreme ends of the gradient, possibly caused by519

gene flow as in Kirkpatrick and Barton’s (1997) model of evolution of species’ range or520

by imperfect plasticity (Tufto, 2000; Chevin and Lande, 2011; Gienapp et al., 2014).521

MODEL WITHOUT TEMPORAL COVARIATES

Our statistical approach can be used when environmental covariates involved in the vary-522

ing optima are missing. As an illustration, we removed population density and winter523

temperatures as temporal covariates as well as the trend in optimal egg-laying dates and524

tested different models for the random effects instead (see Table A.1). The best model525

(see Fig A.1 and Table A.2) included both latent variations in overall mortality (through526

the ut term inducing variation in optimal clutch size as before) and in optimal laying527

date (through a significant ζt term, model BT vs. best model, σ̂ζ = 19± 12 days), jointly528

following a vector autoregressive process (see (6)). In line with the absence of autocorre-529

lation in the optima induced by the temporal covariates for model A in Table 2 (Fig A.3),530

we found no evidence for autocorrelation in optima via ut and ζt for the model without531

temporal covariates (models BU and BV in Table A.1). Surprisingly, this model includes532

a negative autoregressive coefficient φ̂12 = −0.45±0.95, making ζt−1 (optimal laying date533

in year t− 1) negatively correlated with ut (the hazard in year t). A possible explanation534

is that an unknown temporal covariate influences the optimal laying date with a delayed535

effect on survival.536

The moving optimal laying dates and clutch sizes estimated with the best models537

with and without temporal covariates are generally in accordance (Fig. 4 vs. Fig A.1).538

The parameter estimates provided by the model without temporal covariates are close539

to the ones of our best model for the effects of clutch size and altitude on mortality540

(comparison between Table 1 and Table A.2). However, including temporal covariates541

improves the precision of most parameter estimates (Table 1 vs Table A.2). In particular,542

the precision of the estimates of optimal egg-laying date strongly differs between the two543

models, being equal to θ̂0,1 = 22 ± 29 days after the 1st of March (i.e. March 30 ± 29544

days) when excluding temporal covariates and to 40.9 ± 9.6 days (i.e. April 10 ± 9.6545
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days) for the first episode and to θ̂0,2 = 42.1± 5.5 days (i.e. April 12 ± 5.5 days) for the546

second episode when including them. Similarly, ωs for episodes 1 and 2 is estimated to be547

45±12 and 81±45 for the best models with and without temporal covariates (translating548

to widths ωz of the Gaussian approximation of the fitness function ranging from 28 to549

32 days and 39 to 62 days, respectively). This difference also explains the shift in the550

estimated optimal laying dates (Fig. 4B vs. Fig A.1B) since the location of the optimum551

is, to some extent, estimated through extrapolation of the quadratic model of the effect552

of laying date on the hazard beyond the range of observed phenotypic values (see (3)).553

Conclusion554

Understanding how life history traits vary in time and space and determining the selective555

forces behind this variation is one of the central issues in ecology and evolution. Instead556

of working within the classical framework of Lande and Arnold (1983), we have extended557

the statistical glm-like approach used in several works (Janzen and Stern, 1998; Shaw558

and Geyer, 2010; Chevin et al., 2015), by allowing movements of the underlying fitness559

function. These movements can be induced through observed environmental covariates560

or latent processes following different types of plausible autoregressive models. This561

extension leads to a non-linear latent variable statistical model, efficiently handled thanks562

to modern statistical software. A particular advantage of our approach is that all the data563

for several episodes are utilized in a single joint model. Also, correlational selection on564

multiple traits and correlated optima are accommodated as possible model alternatives.565

The statistical approach we have used leads to models of stabilizing selection that566

are different from the standard Gaussian fitness function frequently used in theoretical567

models. Our approach is similar to how a quadratic effect of a trait in the logistic568

regression approach of Janzen and Stern (1998) translates into a non-Gaussian, plateauing569

fitness function if survival is high. Our view is that such non-Gaussian functions are570

more realistic because they reflect the constraint that survival probabilities necessarily571

have an upper bound of one. The difference from our approach is in the exact link572

function used (the logit link versus the loglog link corresponding to our proportional573

hazard assumption). The same type of argument can be made for how non-Gaussian574

stabilizing selection on clutch size emerges in our model. This being said, if survival575
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is low, for example during selection on laying date in episode s = 2, and not strongly576

dependent on clutch size, the resulting fitness function is well approximated by a Gaussian577

function with widths ωz and ωy0 easily derived from the basic parameters of the model578

(Table 1). It should also be noted that when estimated optima fall outside the range579

of observed phenotypic values, the existence of an optimum is not an inference drawn580

from the data alone. Instead, we assume that an optimum exists and this is a reasonable581

assumption. For instance, based on a priori biological knowledge, we know that the582

reproductive success of a female that starts breeding too early in the season under harsh583

winter conditions will be low. The locations of optima are in turn estimated based on584

the most parsimonious model of the fitness curvature supported by the data.585

In our dipper case study, using model selection criteria to choose between a large586

number of alternative models, we find evidence for varying selective optima on two key life-587

history traits. Spatio-temporal variation in optimal laying dates is induced by variation in588

altitude, winter temperature and population density. Optimal clutch sizes, resulting from589

an estimated trade-off between offspring number and survival, exhibit similar random590

variations over time. Selection on these traits mainly operates through low survival from591

fledgling to recruit stage (episode 2), paralleling the key role of this life stage as a driver592

of fluctuations in avian population dynamics (Sæther et al., 2016). For adult survival, we593

clearly show that senescence occurs but we find no cost of large clutch sizes or selection594

on laying dates via adult survival.595

Our statistical approach can also be used when environmental covariates involved in596

the varying optima are missing. Indeed, the moving optimal laying dates and clutch597

sizes estimated with the models with and without temporal covariates are generally in598

accordance (Fig. 4 vs. Fig A.1). However, including relevant environmental covariates599

is important to improve the overall precision of parameter estimates and of course, to600

identify the agents of selection.601

Our main objective in the present study has been to estimate the pattern of varying602

selective optima acting at various life stages. We are not aware of any simple theory for603

how this translates to variation in selection acting over the whole lifespan of an individual.604

It is noteworthy that the variation in mean phenotypes through space and time in many605

respects are qualitatively similar to variation in the estimated optima. However, we606

cannot conclude that these patterns in mean phenotypes are consistent with the pattern607
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of varying selection estimated by our method. Further work is needed to quantify the608

expected evolutionary response that is expected from our model. Given the complications609

of age-structured and density-dependent models (Engen and Saether, 2017), this is likely610

feasible only via simulation-based approaches.611
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Appendix A Appendix810

A.1 STATISTICAL MODEL DETAILS

To accommodate overdispersion in the number of surviving fledglings y1i and in the811

number of surviving recruits y2i, we use a beta-binomial distribution for each episode812

s = 1, 2, parameterized in terms of the survival probability psi and a dispersion parameter813

γs (the factor by which the variance is inflated relative to the simpler binomial model).814

Conditional on the initial clutch size y0i, the joint distribution of number of fledglings y1i815

and number of recruits y2i is then816

p(y1i, y2i) = p(y1i)p(y2i|y1i)

=
2∏
s=1

betabin(ysi; ys−1,i, psi, γs),
(A.1)
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where betabin(y;n, p, γ) is the probability mass function of the beta-binomial distribu-817

tion. Similarly, the survival of the adult female y3i associated with breeding event i is818

modelled as Bernoulli distributed with parameter p3i.819

The other random effects vk and wj appearing in (5), based on territory and female820

identity, are included to model possible positive correlation between number of fledglings821

and recruits produced by the same territory and female in different years. We param-822

eterized the model such that they are iid standard normal and like ut, their effect on823

the different episodes s = 1, 2, 3 are potentially different, depending on whether their824

standard deviations τs and κs differ between episodes.825

In practice, the expected number of recruits produced as function of clutch size y0826

and laying date z, fa(y0, z) (Fig. A.1C), was computed by evaluating827

fa(y0, z) =

∞∫
−∞

∞∫
−∞

y0p1(y0, z, v, w)p2(y0, z, v, w)f(v)f(w)dvdw

=

∞∫
−∞

∞∫
−∞

y0 exp

(
−

2∑
s=1

(as − as−1) exp
(
ηs(y0, z, v, w)

))
f(v)f(w)dvdw,

(A.2)

using numerical integration (R-package cubature), thus integrating out the above non-828

temporal random territory and female identity effects v and w. Here f is the standard829

normal probability density function, ηs(y0, z, v, w) is the non-linear predictor given by830

equations (3), (4) and (5) (a function of y0, z, v and w), and as − as−1 the duration of831

episode s. In the terminology of generalized linear mixed models, this gives us the so called832

marginal as opposed to conditional model (Agresti, 2002, section 12.2.2) with respect to v833

and w. Fixed effect covariates were set to their mean values and other temporal random834

effects were set to zero (in Fig. 3) or to their estimated values (in Fig. 4) (giving us a835

conditional model with respect to ζt and ut). Computing the arithmetic mean fitness in836

this way, averaging over these random effects rather than considering the fitness function837

conditional on their values, appears to be the most reasonable approach, at least under the838

assumption of hard selection (non-local density regulation occurring after locally varying839

selection, see Tufto (2015) appendix S3). The joint optimum of fa(y0, z) (Figs. 4 and A.1)840

and the second derivatives of its log was also computed numerically (R function optim).841

To implement the model, software for fitting generalized linear mixed models cannot842

be used, because ηsi in (3) is non-linear in the parameters and the random effects. In-843

stead, we used Template Model Builder (Kristensen et al., 2016) (R-package TMB) which844

35



provides a general framework for fitting complex, non-linear, random effects (latent vari-845

able) models. Briefly, the user defines the joint likelihood for the data and the random846

effects as a C++ template function. Based on this template, TMB generates a function847

computing the Laplace approximation of the marginal likelihood. This is, in turn, maxi-848

mized numerically to obtain the maximum likelihood estimates of the model parameters.849

Biologically meaningful models derived from variations of (4) and (5) were fitted (Table850

2). We selected the best model using the Akaike information criteria AIC (Burnham and851

Anderson, 2002) among all tested models and recovered the estimates of all parameters852

together with their associated standard errors. Explanatory variables alti, tempi and853

densi were mean centered.854

An important advantage of the modelling framework provided by TMB is that models855

that are non-linear in the parameters and random effects can be fitted with little effort856

from the user perspective. In contrast, Chevin et al. (2015) used the INLA R-package857

(Rue et al., 2009) to estimate a log-linear model for the Poisson mean with a constant858

quadratic term representing stabilizing selection and a random autocorrelated effect on859

the slope. This translates to autocorrelated fluctuations in the moving optimal phenotype.860

This approach requires modelling variation in the elevation of the fitness function in861

different years through a fixed effect on the intercept (the term µt in their Eq. (3)). If862

instead, variation in elevation was modelled through a random effect on the intercept,863

this would translate to an undesirable and unrealistic quadratic relationship between the864

expected fitness at the optimum and the location of the optimum. In contrast, the TMB865

framework we have used here allows more biologically realistic models to be fitted with866

the inclusion of random effects acting directly on the fitness maximum (or equivalently,867

on the minimum of the hazard function) and on its location. Modelling variation in the868

elevation of fitness functions across years in this way makes better use of the data as some869

of the information contained in mean survival in a given year to some extent, depending870

on the magnitude of the random effect on the fitness maximum, is informative about the871

location of the optimum.872

Another important improvement over the Chevin et al.’s (2015) method is the inclu-873

sion of individual level covariates (such as altitude) directly influencing the location of874

the phenotypic optimum at the individual level. This makes the overall predictor (3)875

non-linear also in the fixed effect parameters (the parameter θalt,s in 4). In the INLA-876
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based approach of Chevin et al. (2015), a term for this could naively be included as an877

interaction term between trait value and altitude in the linear predictor. But again, this878

would translate to an unrealistic quadratic relationship between the maximum of the879

fitness function and the fitness optima experienced by individuals at different altitudes.880

A.2 EFFECT OF SPRING CONDITIONS ON OPTIMAL EGG-LAYING DATE

As the species mainly feed underwater, we used the timing of ice break-up during spring881

as a measure of spring conditions. Ice cover break-up was defined as when there no longer882

was a connective ice layer across the southern end of the lake Lygne located in the middle883

of the dipper system, where the outlet is 1st of March was set as day 1 and dates were884

sequentially numbered. This information was available from 1979 to 2009. From 2010 to885

2013, the timing of ice break-up was set to its mean observed between 1979 and 2009,886

i.e. 46 days after 1st of March.887

From the best model retained (Table 2), we tested an additional effect of the timing of888

ice break-up (denoted spring) on optimal egg-laying date, similar for episodes 1 and 2 (i.e.889

θspring,1 = θspring,2 6= 0, ∆AIC=0.89). We found that θ̂spring,1 = θ̂spring,2 = −0.229± 0.276,890

in the opposite direction and different from the theoretical value of θspring,s = 1 expected891

if the optimal laying date occurs at a fixed number of days after ice break up. While892

there may still be an effect that is not detected because of low statistical power, the effect893

would have to be quite small, based on the upper approximate confidence 95% confidence894

limit of 0.31. We also considered additional model alternatives by excluding the effect895

of mean winter temperatures (i.e. θspring,1 = θspring,2 6= 0, θtemp,2 = 0). Once again, this896

model did not show any improvement (∆AIC=9.16). In addition, we tested an effect of897

the timing of ice break-up on optimal egg-laying date, different for episodes 1 and 2 (i.e.898

θspring,1 6= 0, θspring,2 6= 0, ∆AIC=2.23). We also evaluated the effect of the timing of ice899

break-up on optimal egg-laying date on episode 1 only (i.e. θspring,1 6= 0, ∆AIC=0.23)900

and on episode 2 only (i.e. θspring,2 6= 0, ∆AIC=1.99). Finally, we tested the effect of the901

timing of ice break-up on optimal egg-laying date on episode 1 only while excluding the902

effect of mean winter temperatures (i.e. θspring,1 6= 0, θtemp,2 = 0, ∆AIC=8.19). None of903

these models improved the fit.904
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Table A.1: Model selection - Displayed are all the tested models derived from the best model without

temporal covariates (i.e. best model without population density and winter temperatures, see Table

A.2 for a list of parameters included in the best model), the difference ∆AIC (respectively ∆p) in AIC

(respectively in number of parameters p) between each model and the best one and their description.

∆AIC ∆p Description

BS 0 0 Best model

BT 6.74 -1 φ12 = 0

BU 1.79 1 φ11 6= 0

BV 1.76 1 φ22 6= 0

BW 1.59 1 φ21 6= 0

BX 7.1 0 φ11 6= 0, φ12 = 0

BY 5.35 0 φ22 6= 0, φ12 = 0

Table A.2: Parameters estimated with an alternative model without any temporal covariates (population

density and winter temperatures) but with autocorrelated random effects. Displayed are the meaning of

the parameters, their notations and their estimates (± standard errors) for the three episodes of selection.

Selection episode

Parameters Egg to fledgling Fledgling to recruit Adult female

Meaning Symbol s = 1 s = 2 s = 3 Unit

Intercept, mortality β̂0,s 1.94± 0.40 0.68± 0.29 0

Effect of clutch size on mortality β̂clutchsize,s −0.170± 0.080 0.082± 0.055 0

Effect of altitude on mortality β̂alt,s 0.00084± 0.00053 0.00084± 0.00053 0 m−1

Intercept, optimal egg-laying date θ̂0,s 22± 29 22± 29 0 d

Effect of altitude on optimal date θ̂alt,s 0.20± 0.12 0.20± 0.12 0 d m−1

Quadratic effect of egg-laying date ω̂s 81± 45 81± 45 0

SD of random year effect σ̂s 0 0.032± 0.067 0.032± 0.067

SD of random territory effect τ̂s 0.181± 0.055 0.181± 0.055 0.181± 0.055

Beta-binomial dispersion parameter γ̂s 1.915± 0.139 1.072± 0.084

SD of second order random age effect ν̂s 0 0 0.34± 0.17

VAR(1) autoregressive parameters Φ̂ 0 −0.45± 0.95

0 0

SD of latent fluctuations in optimum date σ̂ζ 19± 12 d
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Figure A.1: Estimated annual optimal clutch size (plot A) and laying dates (plot B) for the alternative

model without temporal covariates (Table A.2).
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Figure A.2: Sample autocorrelation- and cross-autocorrelation functions (see e.g. Shumway and Stoffer,

2011, Defs. 1.14 and 1.41) for the time series of observed population densities and temperatures. The

off-diagonal plots displays estimates of corr(denst, tempt−k).
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Figure A.3: Estimated autocorrelation functions of optimal laying dates θ̂dens,sdenst + θ̂temp,stempt
induced by population density and winter temperature for episodes s = 1 and s = 2.
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